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Tracking 21st century anthropogenic and
natural carbon fluxes through model-data
integration
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Raphael Ganzenmüller 1, Liang Xu 4,6, Sassan Saatchi4 & Julia Pongratz1,2

Monitoring the implementation of emission commitments under the Paris
agreement relies on accurate estimates of terrestrial carbon fluxes. Here, we
assimilate a 21st century observation-based time series of woody vegetation
carbon densities into a bookkeepingmodel (BKM). This approach allows us to
disentangle the observation-based carbon fluxes by terrestrial woody vege-
tation into anthropogenic and environmental contributions. Estimated emis-
sions (from land-use and land cover changes) between 2000 and 2019 amount
to 1.4 PgC yr−1, reducing the difference to other carbon cycle model estimates
by up to 88% compared to previous estimates with the BKM (without the data
assimilation). Our estimates suggest that the global woody vegetation carbon
sink due to environmental processes (1.5 PgC yr−1) is weaker and more sus-
ceptible to interannual variations and extreme events than estimated by state-
of-the-art process-based carbon cycle models. These findings highlight the
need to advancemodel-data integration to improve estimates of the terrestrial
carbon cycle under the Global Stocktake.

Environmental change is altering the global balance between CO2

emissions and uptakes by terrestrial ecosystems. The natural carbon
sinks in terrestrial vegetation and soils provide an immense buffer for
anthropogenic emissions, currently sequestering about one-third of
fossil and land-use change CO2 emissions1. Opposing effects on the
strength of the terrestrial carbon sinks, such as increased plant pro-
ductivity through CO2 fertilization

2 and enhanced wildfires triggered
by pronounced droughts3, lead to large uncertainties when estimating
present and future dynamics of the natural carbon sinks4. Reducing
those uncertainties through analyzing the individual contributions of
anthropogenic and environmental processes to the global carbon
cycle is one of the main aims of the annually updated Global Carbon
Budget (GCB), published by the Global Carbon Project1. Within the
scope of the GCB, the net land-atmosphere exchange of CO2 is defined
as the sum of (1) anthropogenic fluxes from land-use and (land-use

induced) land cover change activities (LULCC), including manage-
ment, and (2) fluxes due to environmental processes (e.g., effects of
increased atmospheric CO2 levels and N-deposition, pests, wildfires,
altered precipitation patterns). The first term is called ELUC and is
estimated with semi-empirical bookkeeping models (BKMs), whereas
the second term is referred to as the natural terrestrial carbon sink,
SLAND, which is estimated with process-based dynamic global vegeta-
tion models (DGVMs).

For both ELUC and SLAND, there is a large spread among model
estimates. ELUC is estimated to be 1.1 ± 0.7 PgC yr−1 for 2011–2020, i.e.,
has an uncertainty of ±64% (for one standard deviation). The DGVM
estimate for SLAND for the same time frame has an uncertainty of ±19%1.
BKMs commonly simulate emissions due to LULCC in the absence of
environmental influences by combining assumptions on the amountof
carbon contained in vegetation and soils with empirical decay
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functions, describing their response to LULCC. DGVMs additionally
account for environmental effects on the different carbon pools and
simulate biogeochemical processes such as photosynthesis5.

The main sources of uncertainty depend on the model type. For
BKMs, different assumptions regarding the amount of contained car-
bon per unit area (=carbon density) contribute substantially to the
uncertainty in ELUC6. Moreover, carbon densities of soils and vegeta-
tion in BKMs are typically based on contemporary carbon stocks,
which inevitably introduces an error when simulating past (i.e., the
periodprior to thedata recordof theunderlying carbondensities) ELUC
(“bookkeeping error”)7. For DGVMs, different parameterizations and
whether and how vegetation and soil processes are captured lead to a
large spread in the estimated soil and vegetation carbon stocks
(vegetation carbon ±55% of the average for eight DGVMs from the
TRENDY Model-Intercomparison Project (https://blogs.exeter.ac.uk/
trendy/, last access: 11 April 2022); see Table 1)8.

Observational estimates of global vegetation carbon stock from
existing datasets9,10 and upcoming satellite missions (e.g., ESA BIO-
MASS mission11) offer large potentials for reducing the mentioned
model uncertainties by constraining models with observations12,13.
However, there are limitations to all satellite-based estimates of global
vegetation carbon fluxes for terrestrial carbon budget analyses. Some
of the major limitations are: the restriction to gross fluxes/sub-com-
ponent fluxes of ELUC (e.g., only carbon emissions from deforestation
or carbon uptakes after the abandonment of agricultural lands) are
captured; the difficulty to distinguish anthropogenic from environ-
mental fluxes and the restriction to committed fluxes14. In committed
fluxes, biomass loss is assumed equal to emissions to the atmosphere,
unless additional assumptions are applied that track the fate of carbon
on site and in products over time, as in legacy fluxes15.

Here, we propose an approach that overcomes the mentioned
limitations of BKMs and satellite-based estimates by allowing us to
decompose observationally constrained estimates of carbon stocks
into anthropogenic (ELUC) and environmental (SLAND) contributions.
We only count fluxes resulting from direct anthropogenic activities in
the form of LULCC towards anthropogenic processes. These include
carbon uptakes due to regrowth after wood harvesting and abandon-
ment of agricultural lands and carbon emissions due to forest clearing,
wood harvesting, etc. Indirect anthropogenic influences (e.g., effects

of increasing CO2 on plant productivity) are defined as environmental
processes. Our analysis is based on the recently published time series
of global woody vegetation carbon densities for 2000–2019 by ref. 16.
The observation-based time series is assimilated into the BKM BLUE
(“Bookkeeping of Land Use Emissions”)5, which is one of three BKMs
used in the GCB. We apply our approach to analyse the implications of
considering environmental processes on the estimated ELUC. Further-
more, we assess uncertainties of the land cover and plant functional
type distribution in BLUE. Lastly, we provide observation-based SLAND
estimates for woody vegetation, which are subsequently compared to
DGVMs from the TRENDY project (v8)8.

Results
A model-data integration framework for separating anthro-
pogenic and environmental carbon fluxes
Our methodological framework, as shown in Supplementary Fig. 1, is
based on the BKM BLUE and the time series of woody vegetation
carbon densities from ref. 16. In its default setup, BLUE simulates
LULCC emissions in the absence of environmental influences. The
carbon densities of vegetation and soils (see Methods) on different
land cover types (primary land, secondary land, cropland and pasture)
and plant functional types (PFTs) are based on fixed contemporary
values17. Over time, the amount of carbon stored in the terrestrial
biosphere is altered by LULCCprescribed fromexternal data (here: the
Land-Use Harmonization 2 (LUH2)18 dataset). Recovery and decay of
soil and vegetation carbon follow fixed contemporary rates (see ref. 17
and Methods).

The dataset by ref. 16 provides annual estimates of carbon den-
sities in living woody vegetation (i.e., trees and shrubs) for the period
2000–2019. The dataset was generated by integrating data from
spaceborne LiDAR, RADAR, optical imagery, airborne laser scanning
and ground inventory data in a spatio-temporal machine learning
algorithm. The algorithm was trained by a large number of samples
derived from LiDAR measurements of vegetation structure converted
to aboveground and belowground woody vegetation carbon densities
using allometric models16. We assimilate this dataset in BLUE in several
steps to calculate SLAND: We (1) distribute the grid cell-based (i.e.,
average per grid cell) biomass carbon densities of ref. 16 between sub-
pixel fractions for the different land cover types and PFTs in BLUE, (2)

Table 1 | Comparison of global living biomass (above- plus belowground) carbon stocks and associated fluxes (positive for
uptake and negative for release) from this study compared to a range of other recent studies

Living biomass carbon stocks and fluxes (AGB+BGB)

Dataset Period Stocks (PgC) Flux type Net flux (PgC yr-1) IAV of net flux

This study* transient woody biomass carbona,e 2000–2019 399 ± 2 ELUC,B + SLAND,B −0.6 ± 0.0 2.4 ± 0.0

fixed woody biomass carbona 2000–2019 382 ± 2 ELUC,B −2.0 ± 0.0 0.3 ± 0.0

Hansis et al.5a 2000–2019 506 ELUC,B −1.2 0.3

Xu et al.16•a,e 2000–2019 381 ± 2 ELUC,B + SLAND,B 0.3 6.1

TRENDY v8 # S3a,e (transient environmental conditions) 2000–2018 368 ± 204 ELUC,B + SLAND,B 0.4 ± 0.6 2.2 ± 2.9

S5a (fixed environmental conditions) 2000–2018 434 ± 237 ELUC,B −0.8 ± 0.6 0.7 ± 0.2

Liu et al.53 $a,e 1998–2002 362 -

Tagesson et al.22 $a,e 1993–2012 353 ELUC,B + SLAND,B -

Erb et al.23 (Compilation of
datasets)a,e

multiple 407-476 -

Spawn et al.24a,e 2010 409 -

Interannual variability (IAV) is calculated as the ratio of the standard deviation (SD) to themean. Note that the IAV estimates presented in ref. 16 are calculated as the standard deviation and therefore
differ fromour estimates. Error estimates are given as themean of eight TRENDYDGVMs ± 1 SD (#) resp. as themean from two threshold approaches (seeMethods) ±an error of 0.5%propagated from
ref. 16 to our woody vegetation carbon estimates (*). Note that for estimates that only consider aboveground biomass, roughly 20–60% needed to be added to account for belowground biomass
carbon16. Note that, to avoid errors from the rounding of numbers in the table, percentage values in the main text were calculated from unrounded numbers.
$ Estimate only includes aboveground biomass carbon.
• Estimate only includes woody biomass carbon.
e Estimate includes environmental influences.
a Estimate includes anthropogenic influences.
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define upper thresholds for the exclusion of unrealistic biomass car-
bon densities that arise from inconsistencies between the dataset by
ref. 16 and themodel assumptions, and (3) interpolate “missing values”
(i.e., values that were excluded according to the chosen threshold
approach) (see Methods). We employ two different simulation setups
to isolate environmental carbon fluxes (SLAND) by terrestrial woody
vegetation (4). The first setup (4a) relies on transient biomass carbon
densities, i.e., the biomass carbondensities from ref. 16 are assimilated
intoBLUE at each time step (i.e., each year). In this setup, carbon stocks
of woody biomass between two time steps are affected by anthro-
pogenic and environmental drivers. The second setup (4b) is based on
fixed biomass carbon densities from the year 2000. In this setup, the
biomass carbon densities from ref. 16 are assimilated into BLUE for the
year 2000 and the carbon stocks are in the subsequent time steps only
altered by LULCC, i.e., only anthropogenic processes are considered.
We 5) define the difference in the annual change of woody biomass
carbon between the transient and the fixed simulation setup as the
woody terrestrial biomass carbon sink (=SLAND,B). Our definition is
consistent with the GCB in the sense that it defines SLAND,B as the sum
of all carbon sources and sinks due to environmental processes on any
type of land (i.e., managed and unmanaged). However, there are sub-
stantial differences between our estimates and the GCB estimates,
including differences in the assumed land cover distribution (see fol-
lowing explanation on the “loss of additional sink capacity”) and the
restriction of our estimates towoody vegetation and to living biomass,
excluding litter, dead wood and soil dynamics. Contrary to the GCB,
our estimated carbon fluxes from woody vegetation due to LULCC
(ELUC,B) and SLAND,B should notbeused to create a balance to derive the
net exchange of carbon between the land and the atmosphere, since
ELUC,B only captures fluxes to/from the atmosphere from/to woody
vegetation, whereas SLAND,B also includes fluxes that are in reality
delayed (to the atmosphere) due to the deposition of carbon to litter
and soil carbon pools. In our approach, carbon releases from woody
vegetation are positive, whereas uptakes of carbon by woody vegeta-
tion are negative.

Our approach introduces various important novelties compared
to DGVMs and to BKMs with fixed contemporary carbon densities.
Compared to DGVMs, our approach has the advantage that estimates
for SLAND,B and ELUC are estimated on transient, present-day land cover
distribution, and do therefore not include the “loss of additional sink
capacity” (LASC). The LASC implies that SLAND fromDGVM simulations
without LULCC under transient environmental conditions and under

pre-industrial land cover distribution is larger than under present-day
land cover distribution. This is due to larger forested areas under pre-
industrial land cover compared to present-day land cover, which
allows for more carbon accumulation caused by favorable environ-
mental conditions (e.g., increasing atmospheric CO2)

19. Similarly,
a recent study by ref. 19 suggests that calculating ELUC as the difference
between DGVM simulations with and without LULCC (i.e., under pre-
industrial land cover) under transient environmental conditions leads
to a 40% larger ELUC for 2009–2018 compared to the pre-industrial
control simulation, which is attributable to the LASC. Furthermore, the
bookkeeping error is resolved for ELUC,B after 2000 due to the assim-
ilation of observed woody biomass carbon densities. Lastly, our
approach considers all impacts on carbon fluxes related to woody
vegetation, including processes that are commonly not considered in
model-based approaches (e.g., forest degradation caused by environ-
mental processes).

Throughout our analysis, we use slightly different time frames for
aggregating the data fromour BLUE simulations. The data on ELUC and
on biomass carbon stocks is aggregated for the entire time series, i.e.,
2000–2019. Fluxes that are calculated fromannual changes in biomass
carbon, including SLAND,B, are available for 2001–2019. However, for
any direct comparisons with only the TRENDY DGVMs, we restrict our
SLAND,B estimates to the time frame of the TRENDY data on SLAND,B
(2001–2018).

Anthropogenic effects (LULCC) on global woody vegetation
carbon
To assess the general behavior of the BKM using updated woody
biomass carbon stocks from observations, we compare the results of
our fixed woody biomass carbon simulations to the default setup (of
BLUE) and other models, which follow the classical bookkeeping
approach (i.e., exclude environmental influences). The default setup
of BLUE is based on carbon densities from ref. 17 and is referred to as
ref. 5 in Table 1–3. On a global scale, ELUC between 2000 and 2019 for
the fixed woody biomass runs is on average 0.2 PgC yr−1 (13%) lower
than the estimate with the default setup. This brings our updated
ELUC estimate closer to the other BKMs used in the GCB20,21 and to the
multi-model average of the TRENDY simulations with fixed present-
day carbon densities19 (Table 2). The spread between the BKMs is
reduced by 43% (BLUE minus OSCAR20) resp. 29% (BLUE minus
H&N21), whereas the difference to the TRENDY multi-model average
(1.4 PgC yr−1) is reduced by 88% compared to the default BLUE setup.

Table 2 | Comparison of estimated global carbon flux from land-use and (land-use induced) land cover change (positive into
atmosphere) from this study compared to a range of other recent studies. Interannual variability (IAV) is calculated as the ratio
of the standard deviation (SD) to the mean

Carbon flux from land-use and land cover change (ELUC)

Dataset Period Cumulative
(PgC)

Net flux
(PgC yr−1)

IAV of
net flux

This study * transient woody biomass carbona,e 2000–2019 57 2.8 0.2

fixed woody biomass carbona 2000–2019 27 1.4 0.2

Hansis et al.5a 2000–2019 32 1.6 0.2

Xu et al.16a,e 2001–2019 88 4.6 0.1

Houghton et al.21a 2000–2019 17 0.9 0.2

Gasser et al.20 transient environmental conditionsa,e 2000–2018 25 1.3 0.1

fixed environmental conditionsa 2000–2018 21 1.1 0.1

TRENDY v8# S2-S3a,e (transient environmental conditions) 2000–2018 29 ± 9 1.5 ± 0.4 0.3 ± 0.1

S6-S5a (fixed environmental conditions) 2000–2018 26 ± 9 1.3 ± 0.5 0.4 ± 0.1

Note that the IAV estimates presented in ref. 16 are calculated as the standard deviation and therefore differ fromour estimates. Error estimates are given as themean of eight TRENDYDGVMs ± 1 SD
(#) resp. as themean from two threshold approaches (*) (seeMethods). Note that, to avoid errors from the rounding of numbers in the table, percentage values in themain text were calculated from
unrounded numbers.
e Estimate includes environmental influences.
a Estimate includes anthropogenic influences.
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ELUC estimated from the transient woody biomass carbon
simulations amounts to 2.8 PgC yr−1 for 2000–2019. The large dif-
ference in thefixedwoody biomass carbon estimate for ELUC ismainly
related to higher biomass carbon stocks in the transient simulations
(probably strongly driven by the effect of enhanced plant pro-
ductivity under increasing CO2)

2,22. In the fixed carbon density
simulation, vegetation on cleared or harvested areas is recovering/
slowly regrowing in the years after the respective land-use event. In
the transient carbon density simulation, the effect of higher CO2 on
plant productivity, together with other environmental influences,
leads to increased carbon uptake by woody vegetation. On managed
lands, increasing atmospheric CO2 can lead to a quicker recovery of
vegetation after clearing/harvesting. Consequently, the higher bio-
mass carbon in the transient simulation can lead to increased emis-
sions upon wood harvesting and clearing but also to increased
carbon uptake due to faster regrowth of vegetation on managed
lands. To identify the drivers behind the higher net ELUC in the tran-
sient woody biomass simulations, we analysed ELUC for the major
land-use transitions in BLUE (clearing, harvest, and abandonment)
(Supplementary Table 1). Accordingly, emissions from clearing and
wood harvesting are on average 1.7 PgC yr−1 higher in the transient
woody carbon density setup than in the fixed woody carbon density
setup, which is not compensated by the increased carbon uptakes
(i.e., negative flux from the atmosphere to the land) due to the
quicker vegetation regrowth on abandoned agricultural land under
higher CO2 concentrations (transient minus fixed: −0.3 PgC yr−1).
Regional hotspots that make up ~60% of the cumulative increase in
ELUC in the transient simulation setup are found in Europe, South- and
Southeast Asia. Furthermore, Europe and South Asia alone account
for the majority (~76%) of the increase in cumulative harvest emis-
sions. Building upon the uncertainty analysis in the Methods, these
are all regions where uncertainties due to the LULCC forcing and its
implementation in BLUE are high. On different spatial and temporal
scales than the ones investigated in our analysis, the effect of larger
ELUC under transient woody biomass carbon could be reduced or
compensated by an increased uptake of carbon due to faster vege-
tation regrowth under more favorable growing conditions (e.g., due
to increasing atmospheric CO2 concentrations).

Environmental effects on global woody vegetation carbon
We analyse similarities and differences between our estimates from
BLUE simulations with transient and fixed woody biomass carbon to
other model-based and observational estimates. Furthermore, we
compare global and regional environmental carbon fluxes in the form

of SLAND,B from our approach to estimates of an ensemble of TRENDY
models for the period 2001–2018.

Between 2000 and 2019, we estimate 399 ± 2 PgC contained in
global living vegetation (woody and non-woody) in the transient
woody biomass carbon simulations vs. 382 ± 2 PgC in the fixed woody
biomass carbon simulations. The difference of 17 ± 1 PgC is due to
environmental changes. The TRENDY estimates suggest that biomass
carbon stocks under fixed climate (S5 setup, see Methods) are 18%
higher than under transient climate (S3 setup, seeMethods). Similar to
our BLUE simulations, this is probably related to the fact that the
TRENDY simulations under fixed climate rely on present-day CO2

levels, leading to enhanced plant productivity compared to the simu-
lations under a transient climate that also have transient CO2 levels

19.
However, the assumption of constant, present-day CO2 levels over the
whole historical period in the TRENDY S5 simulations leads to a much
stronger CO2 fertilization effect on vegetation carbon stocks com-
pared to our simulations. The comparison of our estimated vegetation
carbon stocks to various other studies (Table 1) shows both BLUE
estimates (transient and fixed) are more consistent with the multi-
model average of eight TRENDY models (see Methods) and various
observation-based datasets23,24 than the default setup. Our updated
estimates of global forest carbon stocks (Table 3) are also closer to
other observation-based estimates23 than the estimates from the
default setup. The largest differences to the default setup and the
biggest improvements concerning the reconciliation with other data-
sets are found for tropical and boreal forests. In terms of the inter-
annual variability (IAV) of the net carbon fluxes from global woody
vegetation (Table 1), we find that the IAV is on average around eight
times larger when considering environmental effects on woody bio-
mass carbon. In other words, ~88% (2.1 PgC yr−1) of the IAV of the net
carbon fluxes from woody biomass (2.4 PgC yr−1) carbon is due to
environmental effects and their synergies on ELUCor conversely ~12%of
the IAV (0.3 PgC yr−1) is attributable to LULCC (Table 1). The same
relation between biomass carbon simulated under fixed vs. transient
climate is also shown for the TRENDY simulations, although our esti-
mates suggest a stronger contribution of environmental processes to
the IAV of carbon fluxes from vegetation. Between 2001 and 2018,
SLAND,B amounts to −1.6 PgC yr−1 (−1.5 PgC yr−1 for 2001–2019) based on
our BLUE simulations, suggesting a ~13% smaller sink than the TRENDY
multi-model average (Supplementary Table 2). There are some
important differences between the TRENDY estimates and our BLUE
results. First, the TRENDY results do not only include woody vegeta-
tion, but also herbaceous plants. Consequently, the IAV of the TRENDY
estimates also includes dynamics of non-woody vegetation. However,

Table 3 | Comparison of forest living biomass carbon stocks (above- plus belowground) and associated fluxes (positive for
uptake and negative for release) from this study compared to a range of other recent studies

Living forest biomass carbon stocks and fluxes (AGB+BGB)

Stocks (PgC) Flux type Net flux (PgC yr-1)

Dataset Period Global Boreal Temperate Tropical Global

This study* transient woody biomass carbona,e 2000–2019 311 ± 2 81 ± 0 52 ±0 178 ± 1 ELUC,B + SLAND,B −0.4 ± 0.0

fixed woody biomass carbona 2000–2019 296 ± 1 78 ±0 48 ±0 170 ± 1 ELUC,B −1.7 ± 0.0

Hansis et al.5a 2000–2019 415 101 52 262 ELUC,B −1.1

Xu et al.16•a,e 2000–2019 315 51 55 209 ELUC,B + SLAND,B −0.2

Liu et al.53 $a,e 1998–2002 235 73 162 -

Tagesson et al.22 $a,e 1993–2012 235 59 28 148 -

Erb et al.23 (Compilation of
datasets)a,e

multiple 297–368 -

Error estimates are given as the mean from two threshold approaches (see Methods) ±an error of 0.5% from ref. 16 to our woody vegetation carbon estimates (*). Note that for estimates that only
consider aboveground biomass, roughly 20–60% needed to be added to account for belowground biomass carbon16.
$ Estimate only includes aboveground biomass carbon.
• Estimate only includes woody biomass carbon.
e Estimate includes environmental influences.
a Estimate includes anthropogenic influences.
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we expect this effect to be small, since several studies25,26 show that the
IAV of the terrestrial carbon sink in semi-arid ecosystems is foremost
attributable to soil dynamics (as opposed to vegetation dynamics).
Second, as mentioned before, our estimates do not include the LASC,
as they are based on the present-day land cover distribution. The
overestimation of the terrestrial carbon sink strength due to the fixed
pre-industrial land cover distribution in the TRENDY simulation is in
line with the fact that our BLUE estimate for SLAND,B shows a smaller
sink than theTRENDYmulti-model average. Third, the TRENDYmodels
have amuch coarser horizontal resolution (0.5∘–2.8∘) thanBLUE (0.25∘),
which has important implications for the representation of sub-grid
scale processes (discussed below).

Figure 1 shows SLAND,B from our BLUE simulations for 15 regions
(Supplementary Fig. 2) against the TRENDY estimates of 13 DGVMs
(see Methods for a description of TRENDY database). The
2001–2018 average based on our BLUE simulations are very similar
to the TRENDY estimates for all regions (Fig. 1b). However, there are
large differences between our estimates and the TRENDY estimates
for the extreme values and the IAV of SLAND,B. We calculate the IAV as
the coefficient of variation, i.e., the standard deviation of SLAND,B
divided by the average16 SLAND,B between 2001 and 2018. There are
some regions where the TRENDY estimates show a higher IAV of
SLAND,B than our estimates. This mainly applies to Southern Africa
and especially Oceania (mostly Australia, Supplementary Fig. 2) and
is probably related to the dominating effects of grasslands there
(Supplementary Fig. 3), which are not captured in our BLUE results.
However, ref. 27 validate the Australian carbon cycle as simulated by
the TRENDY (v8) DGVMs with various observational datasets and
find that the uncertainty is large (Cumulative NBP 1901-2018: -4.7 to
+9.5 PgC), mainly due to different model assumptions (e.g., land
cover distribution, land-use implementation, atmospheric CO2

concentration). Contrary to that, we estimate a much higher IAV in
the boreal regions of Canada and Russia than the TRENDY models
(Supplementary Fig. 4). Despite large differences between the
individual models, we find that 12 out of 13 TRENDYmodels estimate
that the IAV of the carbon sink in boreal (defined in Supplementary
Fig. 5) vegetation is at least 67% (maximum: 96%) smaller than our
BLUE estimates.

Themagnitude of IAV of SLAND,B in our estimates is closely related
to that from the underlying biomass changes from ref. 16. While IAV
may seem high compared to regional estimates of disturbance
impacts, it is not inconsistent with previous studies of land sink fluxes
(see Section “Uncertainties” in the Methods Section). If we assume the
IAV, as based on ref. 16, is correct, several other explanations as towhy
the TRENDY DGVMs estimate a lower IAV of SLAND,B in boreal regions,
emerge. For the North American (NAM) boreal forest, our analysis
suggests that annual anomalies in air temperature have a large effect
on the variability of SLAND,B, as estimated by BLUE. We calculated the
Spearman correlation coefficient between the anomalies in annual
biomass carbon and the anomalies in (1) mean annual air temperature
and (2) annual precipitation sums (both from ERA-5 reanalysis data28).
We find a strong positive correlation (mostly >0.7) between the annual
mean air temperature anomaly and the annual anomaly in forest bio-
mass carbon (Fig. 2), whichmainly translates to a high IAVof SLAND,B, as
LULCC intensity is very low in this region (Fig. 3). Our findings are
similar to ref. 29, who constrain a light-use efficiency model with
satellite-derived vegetation dynamics and conclude that temperature,
together with water availability, strongly affects the high IAV in plant
productivity in northern high latitudes with an increasing influence of
temperature under global warming. We further find a spatial gradient
for the temperature-vegetation carbon correlation in the NAM boreal
forest, which implies decreasing (i.e., positive to negative) correlations
from east to west. This gradient represents the effect of temperature-/
radiation- vs. water-limited ecosystemsand is supportedby refs. 30, 31,
who find that air temperature and radiation are the dominant factors

for plant growth in the eastern parts of the NAMboreal forest, whereas
precipitation and soil moisture limit plant growth in the western parts
of the NAM boreal forest. Since heterotrophic respiration is also pri-
marily temperature-limited32, it should be noted that increased carbon
uptakes by the NAM boreal forests related to warmer years are
expected to be partly offset by increased heterotrophic respiration
when the total natural land sink is investigated (i.e., when natural
carbon fluxes from the soil, dead wood, and litter are accounted for).
The average of the TRENDY models (calculated as average biomass
carbon prior to the correlation analysis) show weaker (mostly <0.5)
correlations between annual anomalies in (transient) biomass carbon
and temperature anomalies and do not show a switch in sign of the
correlation within the NAM boreal forest from east to west, which
would be in line with the spatial biomass carbon gradient shown in our
results (Supplementary Fig. 6b). Despite large differences between the
individual models, we find that all DGVMs show much weaker corre-
lations than the results based on BLUE and none of the models
reproduces the spatial biomass gradient (not shown). Supplementary
Fig. 7 shows that the analysed correlations between air temperature
anomalies and biomass carbon anomalies based on BLUE are sig-
nificant (p < 0.05) throughout the majority of the NAM boreal forest,
whereas the correlations based on the TRENDY multi-model average
are only significant in some parts.

The lower IAV of SLAND,B in the boreal regions based on the
TRENDY results could also be related to the coarse horizontal
resolution8, which might lead to incomplete representations of sub-
grid scale processes (e.g., droughts or vegetation greening) that con-
tribute substantially to the variability of biomass carbon. This is further
supported by ref. 33, who suggest that the TRENDY (v6) models have
deficits in capturing local to regional (<1000 km) spatial variability in
(aboveground) biomass carbon. For reference, the NAM boreal forest
area in Fig. 2 extends over a distance of around 5000 km (north-wes-
tern corner to south-eastern corner of the blue frame).

Our BLUE estimates do not only suggest a larger IAV of SLAND,B in
some regions, but also a stronger reduction in sink capacity of the
terrestrial woody vegetation in response to specific drought years in
some regions. This is e.g., shown in Brazil, where our estimates
indicate a 0.4–0.9 PgC yr−1 weaker natural carbon sink than the
TRENDY multi-model average for the documented strong El Niño
years in 200522 and 201534, and for the severe drought in the Amazon
basin in 201022. For 2005 and 2010, our estimates lie outside the
TRENDY multi-model range. A similar dynamic is found for Europe,
where our estimates suggest that the reduction in sink strength in
2015 was ten times (+0.4 PgC yr−1) stronger (calculated as BLUE
SLAND,B,2015 minus TRENDY SLAND,B,2015) than the TRENDY multi-
model average (but still within the TRENDY range) as a response to
the severe drought in the same year35. An underestimation of the
drought-mediated reduction in vegetation productivity by DGVMs is
shown by other studies36–38 and is suggested to be partly attributable
to the fact that somemodels do not account for heat andwater stress
effects on plant productivity. Another suggested influential factor is
the implementation of empirically-derived response curves for
temperature and moisture in most models. The response curves
capture plant productivity as a function of temperature andmoisture
and are based on historically observed climate, which might not be
accurate for unprecedented extreme events38. The stronger reduc-
tion in our SLAND,B estimates as a response to drought events might
also be related to the implicit consideration of forest degradation in
our approach, which is not implemented in the DGVMs. A recent
study by ref. 39 suggests that forest degradation leads to three times
higher cumulative carbon losses of aboveground biomass than
deforestation in the Brazilian Amazon between 2010 and 2019, with
especially strong forest degradationdue to el Niño events. Thismight
be a further explanation for the differences between our results and
the TRENDY results in Brazil.
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Fig. 1 | Regional estimates of the natural biomass land sink (SLAND,B) between
2001 and 2018. The figures compare the estimates by 13 DGVMs of the TRENDY
model-intercomparison project (v8) vs. our observation-based estimateswith BLUE
(woody vegetation only). The temporal evolution for each region between 2001
and 2018 is shown in a. The lines mark the TRENDY multi-model average resp. the
BLUE average from two threshold approaches to exclude unrealistically high
woody biomass carbon densities (see Supplementary materials). The TRENDY

multi-model range and the range between the BLUE threshold approaches are
shown as shaded areas. The variability of SLAND,B, averaged over each region, is
presented in b: The whiskers extend from the multi-model minimum to the multi-
model maximum between 2001 and 2018, and the multi-model average over all
years is shown as gray triangles. Uptakes of carbon by vegetation are negative
(sinks), whereas releases of carbon by vegetation are positive (sources).
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Discussion
The separation of anthropogenic and natural carbon fluxes has been
identified as one of the key challenges for reconciling and integrating
models and observations14. The approach we developed tackles this
challenge by disaggregating observation-based estimates of carbon
stocks into the net LULCC flux (ELUC) and the natural terrestrial sink
(SLAND). Our analysis highlights the importance of observational con-
straints for a more realistic representation of observed global vege-
tation dynamics in models and the attribution of anthropogenic vs.
environmental impacts.

The comparison between our BLUE simulationswith transient and
fixed woody biomass carbon densities suggests that the biomass car-
bon sinks prior to clearing and wood harvesting were larger under
transient environmental conditions due to increasing atmospheric
CO2 levels and other favorable environmental changes, which in turn

led to larger carbon emissions upon clearing and wood harvesting
compared to fixed environmental conditions.

That current carbon budgeting approaches exclude the effects of
environmental changes on ELUC may have important implications for
our confidence in other budget terms. The budget imbalance (BIM) is a
measure of uncertainty in the estimated terms of the GCB, as it
describes the difference between the emissions and sinks on the land,
in the ocean, and in the atmosphere7. Following the GCB assessments,
it is assumed that the atmospheric growth rate of CO2 (Gatm) can be
measured with high confidence, whereas the assessments of the nat-
ural carbon sinks on land and in the ocean are more uncertain7. If the
SLAND trends were depicted accurately, there should be an increase in
SLAND when considering environmental effects on carbon
stocks (mainly due to more favourable growing conditions under
elevated CO2 levels), while the quantification of ELUC through BKMs

Fig. 2 | Spatial correlations between annual anomalies of climate variables and
biomass carbon between 2000 and 2019. The global maps show the Spearman
correlation coefficient between the time series of forest biomass carbon anomalies
and the time series of a precipitation (P) anomalies and b air temperature (Ta)

anomalies. The climate variables are taken from ERA-5 reanalysis data. The
anomalies are calculated by detrending each variable. The dark blue frame denotes
parts of the North American boreal forest, where we find a high (>0.7) positive
correlation between air temperature anomalies and biomass carbon anomalies.
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excludes all environmental effects, i.e., the budget imbalance would
have to increase over time. Since the budget imbalance has been
approximately constant with no trend since 1959 in the GCB assess-
ments, we conclude that the global trend of increasing SLAND is not
captured accurately (Fig. 4) in the GCB.

Our analysis highlights the potential of using observational con-
straints for improving and reconciling model estimates, as multi-
model uncertainties in ELUC estimates are reduced to a substantial
degree by assimilating observation-based woody biomass carbon
densities in a BKM. Further, our results suggest that state-of-the-art
DGVMshave deficits in capturing the IAVofSLAND,B and the responseof
terrestrial vegetation to extreme events. These findings are in line with
other recent studies,whichfind several explanations for the limitations

of DGVMs to represent observed patterns in terrestrial carbon cycle
dynamics. Our model-data integration also reveals hotspots where
model assumptions or the underlying LULCC forcing are inconsistent
with the observed carbon dynamics (see paragraph on “Uncertainties”
in Methods).

A major advantage of our framework is that it can be extended
flexibly toupdateddatasets and can constantly be improvedwithmore
observational datasets being made available.

There are various data additions to our approach that we would
consider to be especially valuable for improving model-data assimi-
lated estimates of global terrestrial carbon cycle dynamics. First, the
inclusion of a time series of observational estimates of carbon con-
tained in non-woody vegetation and soils would be a very valuable

Fig. 3 | Global maps of biomass assimilation bias and LULCC intensity accord-
ing to LUH2. The biomass assimilation bias (a) is due to uncertainties in the LULCC
forcing and plant functional type distribution in BLUE and is calculated as the
average (2000–2019) difference in woody biomass carbon stocks between the
assimilated time series in BLUE and the observed time series by ref. 16. The LULCC

intensity (b) is defined as the average (2000–2019) area percentage per grid cell,
that is cleared or harvested. Note the regions where high biomass assimilation
biases coincide with strong LULCC intensities in Northeast India, Europe, and
Equatorial Africa.
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addition to our approach, as recent studies suggest a major con-
tribution of soils to the IAV of the terrestrial carbon sink in transi-
tional regimes26,40. Second, extending the time series of carbon
stocks to sub-annual time scales would enable a more detailed ana-
lysis of the intra-annual response of the terrestrial carbon cycle to
extreme events, which has been shown to be highly variable in space
and time34. The need for observation-based estimates of terrestrial
carbon stocks that are consistent in space and time is acknowledged
by awider community and steps towards this goal are currently being
undertaken through various recently launched (Global Ecosystem
Dynamics Investigation, ECOsystem Spaceborne Thermal Radio-
meter Experiment on Space Station)41,42 and upcoming satellite mis-
sions (e.g., Geostationary carbon cycle observatory, BIOMASS)11,43,
which are dedicated to measuring the Earth’s vegetation properties.
Combining those measurements with ground-based observations
and models will be a major contribution towards more reliable esti-
mates of environmental and anthropogenic CO2 fluxes, which are
independent of national GHG inventories. This is crucial for mon-
itoring country-level emission commitments according to the 2015
Paris agreement and for future climate change mitigation and
adaptation strategies.

Methods
External datasets
Woody biomass carbon data. The dataset by ref. 16 maps annual
global woody biomass carbon densities for 2000–2019 at a spatial
resolution of ~10 km. The annual estimates represent averages for the

tropical regions and growing-season (April–October) averages for the
extra-tropical regions. Ref. 16 analyse global trends of gains and losses
in woody biomass carbon for 2000–2019. Overall, they find that grid
cells with (significant) net gains of vegetation carbon are by a factor of
1.4more abundant than grid cells with net losses of vegetation carbon,
indicating that there is a global greening trend when only considering
the areal extent of biomass gains and not the magnitude of carbon
gains. Their regionally distinct analysis of trends shows that almost all
regions, except for the tropical moist forests in South America and
parts of Southeast Asia, experienced net gains in biomass carbon. On
the country scale, the largest net increase in biomass carbon is shown
in China, which is mainly attributed to the large-scale afforestation
programs in the southern part of the country and increased carbon
uptakeof established forests.On theother hand, the largest vegetation
carbon losses are shown for Brazil and Indonesia, which is partly
attributed todeforestation, degradation, anddrought events.All of the
mentioned trends have been found to be significant16. The decreasing
carbon sink in Brazil is in line with ref. 44, who, considering both
natural and anthropogenic fluxes, show that the southeastern Amazon
has even turned from a carbon sink to a carbon source, mainly owing
to fire emissions from forest clearing. Isolating carbon fluxes in intact,
old-growth Amazonian rainforests (i.e., SLAND,B), ref. 45 also find evi-
dence for a significantly decreasing carbon sink due to the negative
effects of increasing temperatures and droughts on carbon uptake
since the 1990s.

Thedatasetwas remapped to theBLUE resolutionof0.25∘ through
conservative remapping (i.e., area-weighted averaging).

ERA-5 data. The ERA-5 variables were downloaded from the Coper-
nicus Climate Data Store (https://cds.climate.copernicus.eu/cdsapp#
!/home). Monthly air temperature (Ta) at 2mheight was averaged over
eachyear, and annual precipitationwas calculated by taking the sumof
themonthly total precipitation (P). Both variableswere regridded from
the original resolution of ~0.1° to 0.25° resp. to the TRENDY resolution
of 0.5° through conservative remapping.

TRENDY data. We used the TRENDY model ensemble version 8
(conducted for the 2019 GCB; ref. 8).We used net biome production
(NBP) and annual vegetation carbon stocks (cVeg) for 2000–2018
from four different model setups (S2, S3, S5, and S6) and eight resp.
13 DGVMs (depending on the data available). The selection of
DGVMs is done as in ref. 19 (Supplementary Tab. 3), but we included
one additional model (ISAM) for the S2 simulations. The terrestrial
biomass carbon sink (SLAND,B) was calculated for 13 DGVMs follow-
ing the GCB 2020 approach, i.e., from the S2 simulation, which is the
simulation without LULCC (i.e., fixed pre-industrial land cover)
under transient environmental conditions (climate, nitrogen
deposition, CO2 evolution). SLAND,B is the annual difference of cVeg
and makes no statements about the further fate of biomass if cVeg
decreases. SLAND,B, therefore, should not be interpreted as equiva-
lent to the flux to/from the atmosphere, since parts of cVeg may be
transferred to litter, dead wood, or soil. The same applies to our
BLUE estimates of SLAND,B, ensuring comparability between our
BLUE estimates and the TRENDY estimates. Increases (decreases) of
cVeg between two years are a net uptake (release) of carbon from
the terrestrial biosphere. The global sums of biomass carbon stocks
under transient climate and CO2 were calculated from the S3 setup
(LULCC under historical environmental conditions), whereas the
S5 setup provides biomass carbon under constant present-day
environmental forcing (closest to the classical bookkeeping
approach). In line with the GCB, ELUC was calculated under historical
environmental conditions as the difference in NBP between the S2
and S3 simulations (ELUC = NBP_S2 - NBP_S3). ELUC under constant
present-day environmental forcing was calculated as the difference
in NBP between the S6 (fixed pre-industrial land cover under

Fig. 4 | Simplified scheme of the implications of not considering synergies
between environmental effects on carbon stocks and ELUC. Trends of each term
are assumed to be linear for simplicity, which is not representative of the real
dynamics. Solid lines represent how environmental effects, such as increasing CO2

concentrations, on each term (i.e., increase or decrease) are considered in current
carbon budget approaches, such as the Global Carbon Budget (GCB)7. Dashed lines
show the expected trends if the effect of the increasing natural terrestrial carbon
sink (SLAND) due to environmental effects on carbon stockswere included in current
approaches. Solid lines, termed “observed”, show how environmental effects on
carbon fluxes from land-use and (land-use induced) land cover change activities
(ELUC) and on SLAND are considered in current approaches. The BIM in current
approaches is shownasdotted line (BIMobserved). ELUC (ELUC observed) is shown as
a constant (excluding variability due to LULCC), because the bookkeeping models
used in the GCB assume time-invariant carbon densities. Considering that the
increase in ELUC due to environmental effects is not captured and assuming that the
trend of increasing SLAND due to environmental influences is depicted accurately,
BIMwould have to increase over time (BIM expected). As this is not the case, i.e., the
BIM is approximately constant since 1959 (see BIMobserved), it is suggested that the
trend of increasing SLAND is underestimated (Offset SLAND) in the GCB assessments.
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present-day environmental forcing) and S5 simulations (ELUC =
NBP_S6 - NBP_S5)19. All datasets were remapped to a common
resolution of 0.5∘ through conservative remapping (area-weighted
average) for the data analysis.

Assimilation of observed woody biomass carbon in BLUE
The observed woody biomass carbon densities by ref. 16 are assimi-
lated in BLUE in several steps.

Carbon transfer in the default setup of BLUE. The BLUE simulation is
started in AD 850. Biomass and soil vegetation carbon densities are
based on ref. 17 (see ref. 5 for details). These carbon densities are
specific for eleven natural PFTs (Supplementary Fig. 3), which are
assigned one of four land cover types (primary land, secondary land,
cropland or pasture). The LULCC forcing is based on the LUH2
dataset18, defining the vegetated fractional area of each grid cell that is
affected by a land-use transition. Each transition may lead to a change
from one land cover type (=source land cover type: j) to another land
cover type (=target land cover type: j0). In the case of wood harvesting
on secondary land, j = j0, whereas all other transition types (e.g.,
clearing for agricultural expansion, abandonment of agricultural
lands) induce a change in land cover. The fractional grid cell areas
undergoing transitions are further distributed across PFTs pro-
portionally to the temporally constant PFT area fractions (Supple-
mentary Fig. 3). Upon each land-use transition, biomass carbon is
transferred between the source land cover type and the target land
cover type, whereby the amount of transferred carbon depends on the
biomass carbon density of the source and target land cover types (in
the respective PFT) and the area affected by the transition (in the
respective PFT). The temporal evolution of the biomass carbon pool
after any type of land-use transition is approximated by an exponential
function with different time constants for decay and regrowth,
depending on the type of land-use transition. The time constants are
based on linear estimates by ref. 17, which are converted to expo-
nential time constants. A detailed explanation of the exponential
model can be found in ref. 5.

While in the default setup, changes are only due to LULCC, our
assimilation approach now introduces environmental effects on
woody vegetation carbonby assimilating the observedwoody biomass
carbon densities in BLUE from 2000 onward according to the meth-
odological considerations explained below.

Calculation of woody biomass carbon densities for different land
cover types and PFTs. Within each 0.25° cell of the global grid, the
(remapped) woody biomass carbon density from ref. 16 must be the
sum of woody biomass carbon stored in all woody PFTs of all woody
land cover types. The distribution of thewoody biomass carbon across
PFTs and land cover types is achievedbydistributing theobserved (i.e.,
actual) woody biomass carbon densities (ρBa) from ref. 16 across the
two land cover types (j) and the eight PFTs (l) that can be woody
vegetation (primary land, called virgin, “v” in BLUE and secondary, “s”,
land) according to the fraction of total woody biomass carbon (fB)
contained in each land cover type and each PFT (fB,j,l) as estimated by
BLUE. fB,j,l varies for different PFTs and land cover types, depending on
their history of LULCC and their potential for carbon uptake (i.e., the
potential carbon densities).

fB,j,l is extracted from the default simulations for the first year of
the time series (i.e., 2000) and calculated for subsequent years from
the BLUE simulations using the assimilated woody vegetation carbon
densities for that year:

f B,j,lðtÞ=
CB,j,lðtÞ
CBðtÞ

ð1Þ

where CB is the woody biomass carbon stock.

Consequently, the assimilated woody biomass carbon stock per
cover type and PFT (CB_as,j,l) at each time step can be calculated as:

CB as,j,lðtÞ= ρBaðtÞ * A * f B,j,lðtÞ ð2Þ

with j{v, s}; l{1. . 8}; t{2000. . 2019}. A is the area per grid cell.

Thresholds for excluding inconsistent woody biomass carbon
densities. We eliminate unrealistically large values for woody bio-
mass carbon densities that our assimilation framework produces.
Woody biomass carbon densities in BLUE that exceed the highest
value (~374 t ha−1) of the original dataset indicate inconsistencies
between the observed woody biomass carbon estimates and the
fractional grid cell areas per PFT and land cover types that BLUE
simulates. To account for uncertainties related to the criteria for
exclusion of grid cells, multiple threshold approaches are applied
and the results are compared. To maintain a temporally and spa-
tially consistent time series of woody biomass carbon, grid cells that
are excluded according to the chosen threshold approach are
interpolated through linear barycentric interpolation. A first
approach relies on a uniform upper threshold of <375 t ha−1 for
woody biomass carbon densities. This approach leads to the
exclusion of ~3% of all grid cells, but is considered conservative in
the sense that it may lead to an overestimation of woody biomass
carbon densities of non-forested land, since it is expected that the
maximum value of ~374 t ha−1 occurs in heavily forested grid cells
only. To account for this potential overestimation, additional
threshold approaches are applied by cutting the distribution of grid
cells with woody biomass carbon densities smaller than 375 t ha−1 to
a range of specific percentiles and choosing the values corre-
sponding to each percentile as upper thresholds for the exclusion of
further grid cells. In the first step, we choose the 97th, 98th, and
99th percentiles and evaluate the resulting dynamics of total
vegetation carbon in terms of their agreement with the original
dataset by ref. 16. The evaluation is done by analyzing the results
from each percentile threshold approach in terms of the global
dynamics of the biomass carbon stocks in comparison to the esti-
mates from ref. 16 (see Supplementary material). This analysis
reveals that the annual dynamics (i.e., increase/decrease) of the
woody biomass carbon stocks start to diverge strongly from
the original time series for thresholds smaller than the 99th per-
centile. This is related to an enhanced loss of spatial and temporal
variability of the assimilated biomass carbon stocks due to an
increased number of interpolated grid cells with smaller percentile
thresholds. Consequently, we choose the two approaches with (1)
<375 t ha−1 and (2) <99th percentile of 375 t ha−1 as upper limits for
the exclusion of inconsistent biomass carbon densities and use their
average, unless indicated otherwise. Both threshold approaches are
applied to each woody PFT and the two woody land cover types
separately over the whole time series (2000–2019). Consequently,
it is ensured that differences in carbon storage potential between
different PFTs and land cover types are considered within the per-
centile threshold approach.

Model initialization. In our transientwoodybiomass carbon approach,
we need to initialize the woody biomass pools in BLUE at each time
step (i.e., each year) to account for changes in biomass carbon den-
sities due to environmental processes. As we do not assimilate soil
carbon densities in our approach, the soil carbon pools are initialized
once at the beginning of the BLUE simulations (described below) and
subsequently only altered by LULCC. The re-initialization for the
woody biomass pools at each time step is necessary, as BLUE only
explicitly simulates annual changes in biomass carbon densities due to
LULCC. In the default approach, total biomass carbon is partitioned
between equilibrium pools (�CB,j,k,l) and excess pools (δB,j,k,l). The
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former mark the carbon stock that the biomass pools strive to reach
(i.e., the carbon stock that the PFT and land cover type would reach
after a sufficiently long time after a land-use disturbance), while the
latter indicate whether the current biomass carbon stock is in equili-
brium (δB,j,k,l =0) or in excess of equilibrium (δB,j,k,l ≠0) (Note that k is
the (land-use) history type, including clearing (“l”), harvest (“h”),
abandonment (“a”), other (“g”)). An in-depth explanation of the dif-
ferent pool types in BLUE can be found in the original documentation
by ref. 5. Biomass carbon is assumed to be in equilibrium upon model
initialization, i.e., the equilibriumpools contain all biomass carbon and
the excess pools are zero. Upon each land-use transition, the equili-
brium and excess biomass carbon pools are altered, depending on the
transition type.

In our approach, themodel initialization is done by distributing
the assimilated woody biomass carbon among the equilibrium
biomass pools for all woody PFTs and all land cover types
(see Supplementary materials for the handling of non-woody land
cover types). This means that the equilibrium biomass pools and all
excess biomass pools are then re-initialized at each time step
(annually) of the simulation from 2000 onward. The excess carbon
pools are changed upon each land-use transition, whereby the
spatially explicit actual woody biomass carbon densities derived
from ref. 16 replace the woody biomass carbon densities based on
ref. 17 from 2000 onward. The actual woody biomass carbon den-
sities from ref. 16 are assimilated in BLUE at the beginning of each
year X and subsequently altered by the land-use transitions in year
X. Consequently, the BLUE output of carbon stocks for year X
represents the end of year X and changes in carbon stocks between
year X+1 and year X are attributed to year X+1. Legacy fluxes (i.e.,
carbon fluxes from land-use that do not occur in the same time step
as the corresponding land-use event) are tracked according to the
approach explained below.

Handling of legacy carbon fluxes. Due to repeated initialization of
the (equilibrium and excess) biomass carbon pools at each time step,
legacy fluxes are not accounted for and need to be tracked separately.
Such legacy fluxes from/to the atmosphere to/from the terrestrial
woodybiomassoccur due to LULCCprior to the current time step, e.g.,
because the forest regrows slowly or because cleared biomass
decomposes slowly on site or in products.We track these legacy fluxes
separately for those from the LULCC prior to the assimilation period
(2000–2019), and those occurring during the assimilation period,
which are causedby the LULCC transitions andother biomass changes.
To track the former, we introduce an additional set of excess pools
δB,leg<2000 that include all excess woody biomass carbon from land-use
transitions prior to 2000 upon initialization of the actual woody bio-
mass carbon pools in 2000. Legacy carbon fluxes from land-use tran-
sitions prior to 2000 (θB,leg<2000,j,k,l) are calculated as in the default
approach (Note: carbon fluxes from LULCC in time step (t) from/to the
land to/from the atmosphere are realized at the beginning of time step
(t+1) in BLUE):

θB,leg < 2000,j,k,lðtÞ= δB,leg < 2000,j,k,lðt � 1Þ � δB,leg < 2000,j,k,lðt � 1Þ * e
�1

τB,j,k,l

ð3Þ

with j{v, s, p, c}; l{1. . 8}; t{2000. . 2019}; k{l,h,a,g}. τ is the time constant
for relaxationprocesses,which varies for different pool types (biomass
or soil), land cover types, and PFTs.

Excess woody biomass carbon from transitions from 2000
onward is tracked in another set of separate pools (δB,leg≥2000) to
account for≥2000 legacyfluxes.δB,leg≥2000 is adjusted at thebeginning
of each time step for all excess woody biomass carbon from the pre-
vious time step minus fluxes to/from the atmosphere (Eq. (4a))
(θB,leg≥2000,j,k,l) from relaxation processes in the respective time step

(Eq. (4b)):

δB,leg ≥ 2000,j,k,lðtÞ=δB,leg ≥ 2000,j,k,lðt � 1Þ+ δB,j,k,lðt � 1Þ � θB,leg ≥ 2000,j,k,lðtÞ ð4aÞ

θB,leg ≥ 2000,j,k,lðtÞ= δB,leg ≥ 2000,j,k,lðt � 1Þ � δB,leg ≥ 2000,j,k,lðt � 1Þ * e
�1

τB,j,k,l

ð4bÞ
Carbon fluxes between the terrestrial woody biomass pool and

the atmosphere pool at each time step, including all legacy fluxes
(θB,j,k,l), can then be calculated as the sum of instantaneous carbon
fluxes at the current time step (resulting from LULCC in the previous
time step), legacy carbonfluxes prior to 2000and legacy carbon fluxes
from 2000 onward, but prior to the current time step (resulting from
LULCC prior to the previous time step).

θB,j,k,lðtÞ= δB,j,k,lðt � 1Þ � δB,j,k,lðt � 1Þ * e
�1

τB,j,k,l

+ θB,leg < 2000,j,k,lðtÞ+θB,leg ≥ 2000,j,k,lðtÞ
ð5Þ

Derivation of the terrestrial woody biomass carbon sink. To isolate
anthropogenic from environmental (=SLAND,B) carbon fluxes from
woody vegetation, we performed two simulation setups based on
different approaches for assimilating the observed woody biomass
carbon densities. The biomass estimate by ref. 16 includes carbon
stored in living woody vegetation (trees and shrubs), whereas carbon
stored in dead plant material (litter, harvested wood products) is not
included in the estimate. Consequently, the change in woody bio-
mass carbon stocks within a certain time step results from carbon
sources and sinks driven by LULCC in the respective time step, from
carbon sinks due to regrowth of vegetation driven by past LULCC
(i.e., prior to the respective time step) and from all environmental
processes (onmanaged and unmanaged lands) in the respective time
step:

ΔCðtÞ=ΔCsourceðtÞ+ΔCsinkðtÞ+ΔCreg legðtÞ+ΔCsource,envðtÞ+ΔCsink,envðtÞ
ð6Þ

where ΔCsource resp. ΔCsink are sources resp. sinks of biomass carbon
due to LULCC in the current time step, ΔCreg_leg are sinks of biomass
carbon due to regrowth of vegetation fromLULCC prior to the current
time step and ΔCsource,env resp. ΔCsink,env are sources resp. sinks of
biomass carbon due to environmental processes in the current time
step. We performed additional BLUE simulations with fixed (i.e., sta-
tionary in time) woody biomass carbon densities to split the carbon
fluxes from woody vegetation into the anthropogenic and environ-
mental terms of Eq. (6). The fixed woody biomass carbon setup is
based on the 2000 estimates derived from ref. 16. As in the transient
simulations, model initialization is done from the same state of woody
biomass carbon in 2000 (i.e., anthropogenic and environmental
effects on woody biomass carbon prior to 2000 are implicitly cap-
tured), but changes in woody biomass carbon in the subsequent years
are only driven by LULCC in the fixed setup. In the fixed woody bio-
mass carbon simulations, there is no need for separately tracking
legacy fluxes from 2000 onward, since the biomass carbon pools are
only initialized in 2000 and the excess pools are altered subsequently
without re-initialization. Legacy carbon fluxes from land-use transi-
tions prior to 2000 are considered following the same approach as in
the transientwoodybiomass carbondensity setup. The termsof Eq. (6)
that capture environmental changes in biomass carbon stocks are only
included in the BLUE simulations with transient biomass carbon,
whereas biomass carbon changes driven by land-use change are
captured in both the transient and fixed biomass carbon simulations.
Consequently, our BLUE simulations allow us to isolate all environ-
mental effects on woody biomass carbon by taking the difference in
woody biomass carbon stocks between the two BLUE simulation
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setups:

SLAND,BðtÞ=ΔCtrans,BðtÞ � ΔCfix,BðtÞ ð7Þ

This term, the natural carbon sink in terrestrial woody vegetation,
represents the net effect of environmental processes on managed and
unmanaged lands on the terrestrial woody living vegetation.

Uncertainties. The main sources of uncertainty that affect the results
from our biomass assimilation approach are (1) model assumptions
regarding the global LULCC dynamics and the rates of vegetation
regrowth, (2) potential misattributions of anthropogenic fluxes as
natural fluxes owing to incomplete data on LULCC, and (3) uncer-
tainties within the original time series of woody biomass carbon den-
sities by ref. 16. We analyse the different sources of uncertainty as
described in the following.

(1) The difference between the observed woody vegetation car-
bon stocks from ref. 16 and the woody vegetation carbon stocks at the
beginning of each time step in the transient BLUE setup (=“assimilated
woody biomass carbon”) can be used to evaluate the LULCC forcing
and the PFT distribution in BLUE. Since the observed and the assimi-
lated woody vegetation carbon time series are not independent of
each other, the comparison solely aims at identifying potential model
uncertainties. The observed woody vegetation carbon densities are
assimilated into BLUE at each time step according to the spatial dis-
tributionof the land cover types andPFTs (see Eq. (2)). Consequently, a
larger difference between the observed woody vegetation carbon
stocks and the assimilated woody vegetation carbon stocks would
indicate that the actual LULCCdynamics and/or the spatial distribution
of PFTs are not captured well in BLUE. We call this difference the
“biomass assimilation bias”. The average global biomass assimilation
bias (±1 SD) amounts to 29 ± 4 PgC between 2000 and 2019. The
agreement between the observational dataset by ref. 16 and the
assimilated woody biomass carbon in terms of the trends in global
biomass carbon is quantified as the number of years that show the
same trend in both datasets related to the previous year divided by the
total number of years. Following this definition, a temporal agreement
of 100% would mean that the observed dataset and the assimilated
dataset show the same trend in biomass carbon for all years. The
regionally averaged agreement in the estimated biomass carbon
trends is generally high (>80%) (Supplementary Fig. 8) but smaller in
regions with strong LULCC dynamics (tropics and Europe). Some local
hotspots exist (Fig. 3), where differences between the observed data-
set and the assimilated dataset are larger. These are mainly located in
South- and Southeast Asia, Europe, and Equatorial Africa (Fig. 3a),
where clearing andwood harvesting rates of the forest as prescribed in
the LULCC forcing (Fig. 3b) are very high, leading to much lower bio-
mass carbon estimates in our assimilated woody biomass carbon
estimates than in the observed time series. This suggests that the
clearing and/or wood harvesting rates are overestimated in the LULCC
forcing and/or the rate of vegetation regrowth is underestimated in
BLUE, leading to a high biomass assimilation bias for the mentioned
regions, which further affects ELUC (see Results).

We further assessed the validity of our SLAND,B estimates in terms
of the high IAV shown in Canada, Russia, Brazil, and Europe. The
comparison of our time series of assimilatedwoody biomass carbon to
the original time series by ref. 16 shows that our assimilated dataset is
very close to the original dataset in the respective regions and that the
high IAV is also shown in the original time series16. Consequently, we
conclude that the high IAV is not introduced by uncertainties in our
model-data integration. Nevertheless, we acknowledge that the esti-
mated IAV inNAM (especially Canada)may seemhigh compared to the
IAV of carbon fluxes due to natural disturbances estimated by the
National Inventory Report of Canada46 or to specific disturbance
events, such as the mountain pine beetle outbreak in British Columbia

in the early 2000s47. However, our estimated IAV of SLAND,B of up to 2
PgC yr−1 in NAM is not inconsistent with previous studies estimating
annual changes of the total land sink48 resp. the natural land sink49,50 of
up to 3 PgC yr−1, including a switch in sign of the flux. Furthermore,
ref. 51 combine atmospheric CO2 measurements with inverse model-
ling and show that the North American net ecosystem exchange (NEE)
between 2007 and 2015 and its variability was strongly driven by el
Niño (more than average carbon uptake) and la Niña (less than average
carbon uptake) conditions, with monthly anomalies (related to the
mean for 2007–2015) of up to ±1.5 PgC yr−1. They further find that the
boreal coniferous forest is among the ecosystems with the largest
difference in NEE anomalies between el Niño and la Niña periods. Our
SLAND,B estimates broadly follow the dynamics described by ref. 51,
with higher than average carbon uptakes during el Niño conditions in
2010 and 2015 and lower than average carbon uptakes resp. carbon
releases during la Niña conditions in 2011. Furthermore, we wish to
clarify that we assume that the magnitude of fluxes to/from the
atmosphere from/to the biomass is smaller than our estimated chan-
ges in SLAND,B, since we include depositions to dead matter and soil in
our estimates. According to the global carbon budget decomposition
by ref. 49, around 50% of annual gross anthropogenic emissions
(including natural fluxes on managed lands, as described in ref. 52)
between 2000 and 2015 was due to direct emissions (i.e. in the year of
the respective disturbance), while the rest was attributable to legacy
fluxes (onsite decomposition and wood product degradation).
Assuming a similar dynamic for (solely) natural disturbances, we
expect that the magnitude of annual carbon fluxes to/from the
atmosphere from/to the biosphere is lower - depending on the degree
and type of disturbance - than the annual changes in SLAND,B. The
mentioned considerations highlight the need for future, independent
estimates – especially on a regional scale – to foster our understanding
of the IAV of terrestrial carbon fluxes. Furthermore, ref. 16 compared
their estimated IAV of woody biomass carbon with FAO estimates of
forest carbon, showing that there is no systematic overestimation of
IAV in the mentioned regions.

(2) A general shortcoming of all accounting approaches based on
observational datasets is their inability to capture all anthropogenic
activities related to LULCC. Consequently, there might be anthro-
pogenic carbonfluxes that are classified as environmental fluxes in our
approach, simply because the LULCC forcing is not capturing the
underlying anthropogenic activities completely. This caveat applies
foremost to certain types of anthropogenic degradation: while the
LULCC forcing covers logging (implemented as wood harvesting in
BLUE) and rangeland degradation, it does not account for degradation
caused by anthropogenic fires, which might lead to misattributions of
the related fluxes towards SLAND,B. However, there is currently no
(global) dataset available that separates anthropogenic and natural
degradation fires and that would allow us to provide an uncertainty
estimate for the misattributed fluxes.

(3) Reference 16 defines errors in the order of ±0.5% (2 PgC)
related to the 2000–2019 average global sum of carbon contained in
woody vegetation (381 PgC). The error estimate includes pixel-level
uncertainty andmodeling uncertainty fromparameter estimation. The
global uncertainty range of ±0.5% is considered in all of our aggregated
global estimates of woody biomass carbon. Thismeans that in Table 1,
the uncertainty range of ±2 PgC for the global living biomass (i.e.,
woody plus herbaceous vegetation) carbon stocks refers to the woody
vegetation estimate only (357 PgC).

Global maps of absolute and relative pixel-level uncertainty
(Supplementary Fig. 9) are provided and can be used as a reference to
evaluate the accuracy of our estimates for different regions.

Data availability
The ELUC data, SLAND,B data, correlations between biomass carbon
anomalies and climate anomalies, and the uncertainty data generated
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in this study have been deposited in World Data Centre for Climate
(WDCC) database provided by the German Climate Computing Center
(DKRZ: Deutsches Klimarechenzentrum GmbH) under https://doi.org/
10.26050/WDCC/MoDataInToTr21stCLandFl. The LUH2 data were
available at https://luh.umd.edu/data.shtml.

The woody biomass carbon time series by ref. 16 is available at
https://doi.org/10.5281/zenodo.4161694.

The TRENDY v8 ensemble of simulation outputs is available upon
request at https://sites.exeter.ac.uk/trendy.

Code availability
The code for the analysis in this paper is available on request to the
corresponding author.
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