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ABSTRACT

Dengue is a virus that is spreading quickly and poses a severe threat 
in Malaysia. It is essential to have an accurate early detection system 
that can trigger prompt response, reducing deaths and morbidity. 
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Nevertheless, uncertainties in the dengue outbreak dataset reduce 
the robustness of existing detection models, which require a training 
phase and thus fail to detect previously unseen outbreak patterns. 
Consequently, the model fails to detect newly discovered outbreak 
patterns. This outcome leads to inaccurate decision-making and delays 
in implementing prevention plans. Anomaly detection and other 
detection-based problems have already been widely implemented with 
some success using danger theory (DT), a variation of the artificial 
immune system and a nature-inspired computer technique. Therefore, 
this study employed DT to develop a novel outbreak detection model. 
A Malaysian dengue profile dataset was used for the experiment. 
The results revealed that the proposed DT model performed better 
than existing methods and significantly improved dengue outbreak 
detection. The findings demonstrated that the inclusion of a DT 
detection mechanism enhanced the dengue outbreak detection 
model’s accuracy. Even without a training phase, the proposed 
model consistently demonstrated high sensitivity, high specificity, 
high accuracy, and lower false alarm rate for distinguishing between 
outbreak and non-outbreak instances.

Keywords: Aedes, artificial immune system, danger theory, dengue, 
outbreak.

INTRODUCTION

Dengue is a contagious disease that is among the fastest spreading in 
the world. Female Aedes mosquitoes that feed on human blood spread 
the disease, which is transmitted through mosquitoes. A person with 
dengue suffers a sudden high fever accompanied by muscle and joint 
pains, vomiting, and rashes. These symptoms usually develop from 
day 4 to day 10 after an infected Aedes mosquito has bitten a person. 
Normally, dengue requires a 14-day recovery period (WHO, 2021). 
Dengue haemorrhagic fever (DHF) is a rare, dangerous consequence 
of dengue fever that includes abnormal fever, plasma leakage, fluid 
accumulation, respiratory distress syndrome, severe bleeding, or 
circulatory organ failure.

Dengue fever outbreaks have been more common in recent decades 
worldwide. It is a disease that affects around 2.5 billion people 
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worldwide, most of whom live in Asia Pacific nations such as Malaysia 
(Suppiah et al., 2018). Furthermore, 50 million dengue cases, of 
which 500,000 were DHF, and 12,500 deaths have been reported 
annually (CDC, 2021). In today’s globalised world, disease outbreaks 
may spread rapidly across borders through trade and tourism (WHO, 
2021). In Malaysia, dengue fever was first detected in 1902 and DHF 
in 1962. As a result of the increase in the population density in urban 
areas, rapid development, poor environmental cleanliness, a high 
Aedes breeding index, and changes in the climate, the country has 
recently experienced an upsurge in the incidence of dengue (Ahmad 
et al., 2018). There has also been an upward trend in its incidence over 
the past few decades despite the implementation of various campaigns 
and prevention control programmes (Mudin, 2015), as shown in 
Figure 1 as reported by the Malaysian Ministry of Health (Loh, 2016). 
Dengue outbreaks spiked in 2015, and it remains the most serious type 
of outbreak in the country due to the effect of climate change (Cheong 
et al., 2013). In 2020, the reported dengue cases showed a declining 
pattern after the country’s COVID-19 lockdown because most people 
stayed home and did not go to the hospital (Ong et al., 2021).

Figure 1

Malaysian Dengue Cases and Fatalities from 1995 to 2019 (Loh, 
2016)
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An outbreak occurs when the number of cases in a certain period 
exceeds what would be expected. The definition of a dengue outbreak 
varies among countries. For instance, in China, an outbreak starts after 
three cases have been identified in a similar location within 15 days 
(Zhang et al., 2014). In Malaysia, at least one suspected case reported 
within 14 days is enough to raise the alarm (Seng et al., 2005). At 
a catastrophic level, an outbreak can lead to a high death toll and a 
downturn in the affected country’s economy. A detection system that 
can notify authorities about early signs of an outbreak is necessary to 
avoid a dengue outbreak and its consequences (Masmas & Mohamed, 
2021).

Recently, there have been many efforts to produce a more effective 
outbreak detection model for dengue, particularly focusing on areas 
such as improving the detection rate, reducing the false detection rate, 
and speeding up the detection time. The existing models use either a 
statistical or artificial intelligence (AI) approach. However, because 
outbreak information is weak, vague, and inconsistent, these models 
still tend to generate inaccurate results (Baharom et al., 2022). One 
of the key issues is that the model loses its robustness when dealing 
with unseen outbreak patterns, i.e., patterns that were unavailable 
during model development. Although a detection model undergoes an 
extensive training phase, it fails to detect an incoming outbreak when 
the signal varies from what it has received as input during training. 
The existing outbreak data have yet to be analysed intelligently to 
extract any discernible patterns that would provide insights to enable 
the accurate prediction of unknown new outbreaks. Therefore, 
a robust detection system that is capable of reacting to the ever-
changing nature of this disease is vital. In achieving this, considerable 
research over the past decade has focused on the artificial immune 
system (AIS), a subdivision of artificial intelligence (Timmis et al., 
2008). AIS has been proven to be an accurate analytical tool for other 
detection problems, such as the detection of fraud in business (Huang 
et al., 2009), faulty machines (Bi et al., 2010), intrusion in a computer 
network (Aickelin & Greensmith, 2008), and disease in medical 
(Periasamy et al., 2021). Inspired by those successes, this study has 
developed an outbreak detection model for dengue by using an AIS 
approach called danger theory (DT) (Matzinger, 1994). DT can detect 
hidden anomalies from a dataset without undergoing a training phase 
and thus does not rely on knowing the number of outbreak and non-
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outbreak cases that would have been input during training (Greensmith 
et al., 2006). When DT is compared to other detection techniques, it 
has been shown to offer a satisfying outcome (Yan et al., 2021) as it 
can produce a balance score between the actual detection rate and the 
false detection rate.

RELATED WORKS

Different approaches can be used to model an outbreak: anomaly 
detection and classification (Bakar et al., 2011). An outbreak is an 
anomaly detection task if the outbreak case is viewed as a rare item 
in a dataset, where it behaves very differently from other data. The 
anomaly detection approach usually involves unsupervised learning, 
where the information on the outbreak and non-outbreak classes is 
unknown during training (Toshniwal et al., 2020). Conversely, an 
outbreak can be a classification problem if the number of outbreaks 
and non-outbreak cases is almost balanced. The classification process 
determines the objects that belong in each class according to their 
specific features. Normally, two types of dengue dataset are used 
to construct a detection model: retrospective and prospective. The 
retrospective dataset consists of the results of laboratory diagnoses 
and is very accurate. Nevertheless, it is very timely as the information 
only becomes available when incidences of a disease have already 
occurred. In contrast, the prospective dataset comprises syndromic 
data that are not based on laboratory diagnosis results but provide 
insightful information on outbreaks. Accordingly, this study chose to 
develop an anomaly detection-based model and utilise prospective 
datasets.

Many studies on dengue outbreak detection models are based on 
statistical and artificial intelligence approaches. In the early years, 
the models mostly depended on statistics, where health data were 
monitored in a timely manner, and any activities that exceeded the 
upper control line were considered abnormal (outbreak). The China 
Infectious Disease Automated-alert and Response System (CIDARS) 
was built a few years prior, in 2008, to identify a dengue outbreak 
at the province level in China. With a time-series moving-percentile 
technique, the system compares the reported cases during the current 
observation period to those during the historical databank that is 
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equivalent for each of the 31 provinces. (Yang et al., 2011). Yan et al. 
(2008) developed a hybrid predictive model by combining statistical 
and artificial intelligence approaches, i.e., the support vector machine 
and regression, to detect dengue in Singapore. Interestingly, they 
found that climate factors, such as rainfall and humidity, contribute to 
prediction accuracy. Their findings are consistent with Ahmad et al. 
(2018), who showed the viability of building a model-based dengue 
early warning system utilising temperature and rainfall data. Salim et 
al. (2021) discovered that wind speed effect was a factor in the spike 
in dengue cases.

Several studies have attempted to model dengue outbreaks in respect 
of Malaysia specifically. Pham et al. (2015) developed a statistics-
based system that used linear regression to forecast the occurrence of 
a dengue outbreak in Kuala Lumpur, Malaysia’s capital. Based on an 
evaluation of three factors: daily rainfall, average daily temperature, 
and improved vegetation index, they claimed that their model could 
forecast dengue 16 days in advance. An earlier model for the detection 
of dengue using multiple classifiers was created by Bakar et al. (2011). 
To integrate the best rules provided by each model into a single 
classifier, their model included many classifiers, comprising a rough 
classifier, decision tree, associative classifier, and Naïve Bayes (NB). 
In a similar vein, Tarmizi et al. (2013) tested three different classifiers 
– neural network, decision tree, and rough classifier – on a Malaysian 
dengue dataset and generated a good result. They concluded that 
the selection of important features determined prediction accuracy. 
Long et al. (2010) proposed an outbreak detection model based on 
association rules, where an outbreak was detected using the multiple 
attribute value (MAV). The idea behind using the MAV was to generate 
a set of frequent attributes of dengue data, and then an anomaly could 
be detected from the generated set. An anomaly was considered to 
be an outbreak when its confidence level exceeded the outbreak 
threshold. Salim et al. (2021) modelled the dengue prediction model 
using several machine learning algorithms for the Selangor state. 
They found that the support vector machine (SVM) model was the 
best-predicted dengue outbreak model without overfitting. In another 
study, Husin et al. (2012) employed a neural network as a dengue 
predictor for five districts in Selangor. The model was hybridised 
with a genetic algorithm for updating the neural network weight, and 
the prediction was made based on rainfall information. Mousavi et 
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al. (2013) used the AIS approach to develop an algorithm to detect 
dengue, which they called the negative selection algorithm. The model 
demonstrated high prediction accuracy; however, their proposed 
algorithm had some weaknesses highly related to the selection of 
attributes. Five machine learning algorithms were tested for their 
capabilities to forecast dengue outbreaks in Malaysia (Yavari Nejad 
& Varathan, 2021). They employed climatic risk factors as input and 
found the Bayes network model, which was capable of accurately 
identifying new meteorological risk factors. The recent work on 
dengue prediction was to discover the effect of COVID-19 lockdown 
towards dengue cases using the seasonal autoregressive integrated 
moving average (SARIMA) model (Ong et al., 2021). Alternatively, 
the spread of an outbreak could be monitored using a disease mapping 
approach, in which the geographical distribution of an outbreak was 
visualised in specific geographic regions (Mohd Diah & Aziz, 2022).

Danger Theory

Danger theory (DT) is one of the AIS paradigms proposed by 
Matzinger (1994). It implies that the human immune system is 
activated in response to a danger signal sent by a necrotic cell that 
suddenly dies from a pathogenic infection. When a cell in the human 
body becomes contaminated, it creates a danger zone around itself to 
reduce infection while an antibody is produced to fight the infection 
or illness. In contrast to a necrotic cell, an apoptotic cell is one that 
dies naturally; when it dies, it does not cause harm to the body, and it 
releases a safe signal rather than a danger signal. The danger theory 
differs from the conventional immune theory. The latter is founded on 
the idea that the human immune system distinguishes the self-cells 
and non-self-cells for it to be able to react appropriately when foreign 
substances are present while avoiding reacting with or attacking its 
own body cells (Lei et al., 2013). In DT, all body cells have a similar 
possibility of being affected by the pathogen. When a pathogen 
injures a bodily cell, it creates a danger zone around itself to protect 
the rest of the body. Here, the dendritic cells (DCs) play a crucial role 
in determining the danger signals by manipulating the type of signals: 
pathogen-associated molecular pattern (PAMP), danger signal (DS), 
and safe signal (SS). Based on these signals, the DC can determine if 
the cell’s status is safe or dangerous to the body. Figure 2a illustrates 
the biological DT.
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Figure 2

Biological DT and Artificial DT 
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All the input signals are then transformed into three cumulative 
output signals: costimulation (CSM), mature, and semi-mature. 
Depending on the CSM value, the DC’s maturity will evolve over 
time into one of two states, which is semi-mature/normal or mature/
abnormal. The maturity type is identified if the CSM value is larger 
than the migration threshold: If mature > semi-mature, use ‘mature’; 
otherwise, use ‘semi-mature’. The third step, aggregation (no. 6 in 
Figure 2b), occurs when learning is accomplished. The antigens given 
by the mature and semi-mature settings are tested for anomalies in 
this final phase. The mature context antigen value (MCAV) is used 
to determine an antigen’s abnormality, as depicted in Equation 2. The 
antigen is classified as anomalous if the MCAV is greater than the 
anomaly threshold; otherwise, it is classified as normal. Artificially, 
the mature cell with a higher MCAV is an anomaly or outbreak, while 
the semi-mature cell is seen as normal/non-outbreak.

(2)

METHODOLOGY

This study divided the methodology into three phases: data gathering 
and preparation, algorithm implementation, and testing and evaluation. 
Figure 3 provides a visual representation of the three phases.
 
Figure 3

The Research Methodology
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Malaysia and the climate dataset provided by the Meteorological 
Centre, Malaysia. The original dataset of emergency visits contained 
15 mixed attributes representing the demographic and clinical data 
of dengue patients. In comparison, the original climate dataset had 
eight continuous attributes representing the information related to 
temperature, humidity, and rain. Both datasets covered the period 
from 2003 to 2009, were inclusive, and were presented in a weekly 
format. In this study, the datasets were combined into a single ‘dengue 
profile dataset’, which was then split into two smaller datasets, with 
the 2003–2005 data used to calculate the baseline for the outbreak 
and the 2006–2009 data used for the experiment’s monitoring phase. 
The dataset had 23 attributes cumulatively, including the target class, 
but only four were chosen based on expert recommendations to meet 
the DT requirement. Table 1 samples the four attributes: accumulated 
cases, humidity, rainfall, and temperature. Because DCA runs on 
continuous data types, the data types of each attribute were preserved 
in their original form.

Table 1

Attributes Chosen for Mining - Accumulated Cases, Temperature, 
Humidity, and Rainfall

Year Accumulated 
Week

Accumulated 
Cases

Temperature Humidity Rainfall Class

2003 40 32.0 0.38 0.62 0.10 normal
2003 40 32.0 0.38 0.62 0.10 normal
2003 40 32.0 0.38 0.62 0.10 normal
2003 40 32.0 0.38 0.62 0.10 normal
2003 40 32.0 0.38 0.62 0.10 normal
2003 40 32.0 0.38 0.62 0.10 normal

Implementation of DCA

The DCA for dengue outbreak detection modelling consisted of three 
main steps: signal formalisation, outbreak mining, and outbreak 
analysis. Signal formalisation involved two main tasks: 1) assigning 
dengue attributes into appropriate input signals (PAMP, DS, and 
SS) and 2) normalising them according to the type of input signal. 
Appropriate attribute-signal matching and signal normalisation were 
critically important in DCA because each signal represented a different 
characteristic that affected the result. PAMP and SS were good 
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markers of an abnormal or normal state, whereas DS was more likely 
to represent an abnormal situation. The consulted experts suggested 
that the temperature, humidity, and rainfall attributes were set as 
DS, while PAMP and SS could be represented as the accumulated 
registered cases, as shown in Table 2. The general principle for 
matching the attribute to the input signals was that PAMP indicated 
that an abnormal scenario existed and SS signified that no anomalous 
situation existed. DS implied that an occurrence might or might 
not indicate an anomalous condition, although the possibility of an 
anomaly was higher than in a normal situation. 

Table 2

Attribute-Signal Matching for DCA

DCA Signals Attributes
PAMP Accumulated Cases
SS
DS Weather (Average)

- Temperature
- Humidity
- Rain

PAMP and SS were normalised by using a pre-defined rule based 
on the abovementioned Malaysian definition of a dengue outbreak. 
The total case variant between the current week and the average two 
weeks was used to determine the value of both signals, as depicted in 
Algorithm 1.

Algorithm 1: The Algorithm to Determine the Signal
1.    Start
2.    Set the maximum value to 100;
3.  Determine the average number of dengue cases over the last two 

weeks1wqsxc 
4.   If (Cases of the current weeks – average of dengue cases from the    

previous 2 weeks > 1 case
5.    PAMP = 0;
6.    SS = Maximum value;
7.    Else
8.    PUMP = Maximum value * 7;
9.    SS = 0;
10.  End
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DS was normalised by using the statistical time series formula, i.e., 
cumulative sum (CUSUM), as defined in Equation 3:

(3)

(4)

After normalising PAMP, SS, and DS, the dengue outbreak dataset 
was presented to the DCA for mining. In this outbreak mining and 
outbreak analysis, the outbreak data were mined using DCA to detect 
an outbreak. The aim was to create an MCAV for each antigen that 
represented the final state of an outbreak, starting with DC in an 
immature state and progressing to a mature or semi-mature state. The 
general process consisted of setting the initial parameters, updating the 
input signal and antigen, calculating the MCAV, and categorising the 
antigen. The outbreak was detected using Equation 5. The occurrence 
of an outbreak was notified when MCAVi > Outbreak baseline.

Test and Evaluation

This phase involved evaluating the proposed model based on a binary 
classification that categorised the outbreak problem into two possible 
groups: outbreak (anomaly) and non-outbreak (normal). Four 
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Algorithm 1: The Algorithm to Determine the Signal 
1. Start 
2. Set the maximum value to 100; 
3. Determine the average number of dengue cases over the last two 

weeks1wqsxc  
4. If (Cases of the current weeks – average of dengue cases from the 

previous 2 weeks > 1 case 
5. PAMP = 0; 
6. SS = Maximum value; 
7. Else 
8. PUMP = Maximum value * 7; 
9. SS = 0; 
10. End 

 
DS was normalised by using the statistical time series formula, i.e., 
cumulative sum (CUSUM), as defined in Equation 3: 
 

 
where,  

𝐶𝐶𝑖𝑖
+is the upper cumulative value at 𝑖𝑖𝑡𝑡ℎ observation, 

𝑥𝑥𝑖𝑖 is the process at 𝑖𝑖𝑡𝑡ℎ observation, 
 is the initial mean, 

𝐾𝐾 is the allowance value. 
 
The formula normally chose between the centre of the target mean  
and the out-of-control mean . After that, the average CUSUM of the 
temperature, humidity, and rainfall attributes was calculated using 
Equation 4: 
 

DS =
Crainfall

+ +  Ctemperature
+ +  Chumidity

+

n  
 
After normalising PAMP, SS, and DS, the dengue outbreak dataset was 
presented to the DCA for mining. In this outbreak mining and outbreak 
analysis, the outbreak data were mined using DCA to detect an 
outbreak. The aim was to create an MCAV for each antigen that 
represented the final state of an outbreak, starting with DC in an 
immature state and progressing to a mature or semi-mature state. The 
general process consisted of setting the initial parameters, updating the 
input signal and antigen, calculating the MCAV, and categorising the 
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evaluation metrics were selected for this study, namely sensitivity 
(SNS), specificity (SPS), False Positive Rate (FPR), and Accuracy 
(ACC). The details of the metrics are as follows, each of which has 
a different aim. SNS demonstrated the model’s ability to detect an 
outbreak, whereas SPS evaluated the model’s ability to detect a non-
outbreak. Meanwhile, FPR measured the amount of false detection 
that occurred when a non-outbreak case was mistakenly identified 
as an outbreak. Finally, ACC validated the modelling’s accuracy 
in correctly classifying both classes. For SNS, SPS, and ACC, the 
highest value indicated the best result, whereas for FPR, the best result 
was the lowest value. The performance of the proposed algorithm was 
compared in this study to three statistics-based methods (CUSUM, 
moving average (MA), and exponentially weighted moving average 
(EWMA)), as well as to two machine learning methods (multi-layer 
perceptron (MLP) and NB). These approaches were chosen based on 
their frequent use in anomaly detection and classification problems 
mainly related to time series.

ANALYSIS AND RESULT

The aim of the experiment was to evaluate the performance of the 
proposed model based on DT in detecting a dengue outbreak. The 
experiment used a population of 100 cells, with a total cycle cell update 
of 20. During each cycle, DC was authorised to sample the antigen ten 
times. The weights of the accumulative function were set to W1 = 1 
and W2 = 2. The weight value assigned to each signal represented 
the influence of a signal on an actual human body cell, whereby the 
value was relative and derived empirically from immunological data 
(Greensmith et al., 2008). Each assessment metric (SPS, SNS, FDR, 
and ACC) was averaged over the course of the experiment’s 100 runs 
and recorded for analysis. The algorithm was used in the Malaysian 
dengue dataset from 2006 to 2009 for the experiment. Figure 4 
shows the SPS and SNS values of the proposed model and that of 
the compared models. The scale in the figure runs from 0 to 1, with 1 
representing 100 percent of the highest scores.
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Figure 4

SNS and SPS of DT and Other Approaches
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The proposed model was the most accurate model compared to the 
other techniques, as seen by the large difference between SNS and FPR 
(difference = 0.81), representing the model’s ability to discriminate 
an outbreak week from a non-outbreak week accurately. In other 
approaches, the difference between SNS and FPR was less than 0.32. 
The FPR value should be as low as feasible because it signified the 
number of times an outbreak class was mistaken for a non-outbreak 
class. Besides that, DT was the most accurate model in terms of ACC, 
with a score of 0.89. Figure 6b indicates that the proposed model 
outperformed all other approaches examined.

The dengue dataset in the experiment in this study has been used 
in several research studies to test the performance of different 
approaches for dengue outbreak detection. Table 3 provides the result 
of a performance comparison of the proposed DT model with those 
reported in previous studies. As shown in the table, the proposed 
model outperformed the other dengue outbreak detection models. The 
result revealed that the proposed DT model generated a higher and 
more balanced result between SNS and SPS. 

Table 3

Comparison of the Proposed DT Model and Other Approaches in the 
Literature

Techniques (Researchers) SNS SPS ACC
a. Danger theory 0.9891Winner 0.8217 0.8900Winner

b. Frequent-outlier mining (Long, 2012) 0.9050W 0.7040W 0.8080W

c. Multi-classifier (Bakar et al., 2011) - - 0.7125W

d. Negative selection algorithm 
(Mousavi et al., 2013)

0.7016W 1.00Winner 0.8306W

Overall, the results of the experiments demonstrated that the proposed 
DT model could accurately detect an outbreak signal in a dengue 
dataset. It generated high SNS, SPS, and ACC as well as a lower FPR. 
The proposed DT model outperformed other detection approaches in 
all performance matrices and generated a better balance than the other 
approaches in terms of SNS, SPS, and FPR. This finding demonstrated 
that the proposed DT model had the ability to distinguish between an 
outbreak and a non-outbreak with a lower FPR. The other approaches 
were inconsistent in terms of accuracy as they misclassified many non-
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outbreaks as an outbreak. When this happens, the dengue detection 
system raises a high false alarm, which may result in the responsible 
parties expending energy and resources needlessly.

There are several reasons why the proposed DT model is a good dengue 
outbreak detector. First, when monitoring data, DT uses the threat 
of an antigen (known as the MCAV) rather than a pattern-matching 
strategy that considers all antigens (in the dengue data record) to have 
a comparable chance of becoming infected by a virus (in this case 
an outbreak). Consequently, it does not require a pre-defined dataset 
when monitoring data to help it classify incidences into an outbreak or 
a non-outbreak. Second, DT does not require a training phase, so it has 
increased robustness to deal with uncertainties in new dengue outbreak 
data, as the limitations of the pre-trained model do not constrain it. 
Third, DT is a multivariate detection approach that allows a mixture 
of multiple input features; it uses three types of input signal (PAMP, 
DS, SS) to represent multiple inputs from different prospective and 
retrospective sources. Fourth, because outbreak signals are frequently 
weak and inconsistent, the use of many input factors may explain why 
the suggested DT model outperformed techniques that rely on a single 
predictive variable in detecting outbreaks. In this study, the number 
of registered cases and CD (rainfall, temperature, humidity) were 
used as input. More interestingly, as seen by its present use in many 
real-time applications for detecting intruders in a computer network, 
an AIS-based system such as DT may be implemented in real-time 
applications with very low CPU processing requirements (González-
Patiño et al., 2020). DT is typically a problem-specific technique. 
In comparison to other DT-based anomaly detection systems, the 
assigned input to DT’s signal and the mechanism used to normalise 
the input signal would be significantly different.

CONCLUSION

This study developed a DT-based outbreak detection model to detect 
dengue outbreaks in Malaysia. Based on experimental data, it was 
discovered that the proposed model was superior to other well-
known models for detecting unpredictable dengue outbreak patterns. 
In addition, when compared to other research that used similar 
experiment datasets, the proposed model was shown to be a better 
dengue outbreak detection system with better detection capabilities. 
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The DT outbreak detection model can handle new unknown outbreak 
patterns and distinguish between outbreak and non-outbreak cases 
with a consistently higher specificity, higher sensitivity, and lower 
false positive rate even without a training phase. In the future, this 
model will be enhanced to predict which areas would be affected by 
a dengue outbreak.
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