
Low-Latency Scheduling in MPTCP
Per Hurtig , Member, IEEE, Karl-Johan Grinnemo, Senior Member, IEEE, Anna Brunstrom, Member, IEEE,

Simone Ferlin , Özgü Alay , and Nicolas Kuhn

Abstract— The demand for mobile communication is continu-
ously increasing, and mobile devices are now the communication
device of choice for many people. To guarantee connectivity
and performance, mobile devices are typically equipped with
multiple interfaces. To this end, exploiting multiple available
interfaces is also a crucial aspect of the upcoming 5G standard
for reducing costs, easing network management, and providing
a good user experience. Multi-path protocols, such as multi-
path TCP (MPTCP), can be used to provide performance opti-
mization through load-balancing and resilience to coverage drops
and link failures, however, they do not automatically guarantee
better performance. For instance, low-latency communication
has been proven hard to achieve when a device has network
interfaces with asymmetric capacity and delay (e.g., LTE and
WLAN). For multi-path communication, the data scheduler
is vital to provide low latency, since it decides over which
network interface to send individual data segments. In this paper,
we focus on the MPTCP scheduler with the goal of providing
a good user experience for latency-sensitive applications when
interface quality is asymmetric. After an initial assessment of
existing scheduling algorithms, we present two novel scheduling
techniques: the block estimation (BLEST) scheduler and the
shortest transmission time first (STTF) scheduler. BLEST and
STTF are compared with existing schedulers in both emulated
and real-world environments and are shown to reduce web
object transmission times with up to 51% and provide 45%
faster communication for interactive applications, compared with
MPTCP’s default scheduler.

Index Terms— Transport protocols, MPTCP, low-latency,
scheduling, asymmetric paths.

I. INTRODUCTION

TODAY, the number of mobile devices exceeds the world’s
population, according to Cisco’s Global Mobile Data

Traffic Forecast [1]. Trends suggest that mobile devices are
becoming end users’ de facto communication device in part
thanks to technology advancements that enable employing
multiple interfaces for communication, e.g. LTE and WLAN.
The use of multiple interfaces has made Internet access truly
ubiquitous as users now can access online services at home,
while commuting, or even when hiking.

P. Hurtig, K.-J. Grinnemo, and A. Brunstrom are with the Department of
Computer Science, Karlstad University, 651 88 Karlstad, Sweden (e-mail:
per.hurtig@kau.se; karl-johan.grinnemo@kau.se; anna.brunstrom@kau.se).

S. Ferlin is with Ericsson Research, 164 40 Stockholm, Sweden (e-mail:
simone.ferlin@ericsson.com).

Ö. Alay is with the Simula Research Laboratory, 1364 Oslo, Norway
(e-mail: ozgu@simula.no).

N. Kuhn is with the French National Space Centre, Centre National d’Etudes
Spatiales, 31 401 Toulouse, France (e-mail: nicolas.kuhn@cnes.fr).

Digital Object Identifier 10.1109/TNET.2018.2884791

With more devices, the demand for data transmission
within mobile networks has also increased significantly, requir-
ing new technical solutions and innovative network designs.
Operators providing both LTE and WLAN access see this
as an opportunity to provide simultaneous access, simplify-
ing mobility and network off-loading. Aggregating LTE and
WLAN access at the data-link layer can result in improved
performance [2]. However, deployment of such solutions is
complex since operators have to consider already deployed
networks, each of them having its specific Medium Access
Control (MAC) management. On the other hand, Multi-
path TCP (MPTCP) [3] emerged as a drop-in extension to
TCP and can be deployed as a proxy before the aggregation
networks of both LTE and WLAN networks. Despite being
a recent standard, MPTCP is already widely deployed and
used by major software vendors, including Apple and its Siri
service [4], [5].

Recently, a lot of research and development have exploited
MPTCP’s multi-path transmission capabilities to offer new
transport services and performance enhancements. For exam-
ple, MPTCP can be used to provide seamless handover
between network interfaces to enable user mobility and
resilience to link failures [6]. Performance improvements,
compared to single-path protocols, include, e.g. simultaneous
use of multiple paths for capacity aggregation [7]. Aggregating
capacity can be useful in, e.g. data center scenarios [8], where
nodes often need to transmit a large amount of data and
have a high degree of inter-connectivity. Capacity aggregation
does, however, not always work well when asymmetric link
technologies are used (e.g. LTE and WLAN) and low latency
is more important than high throughput [9]. The lack of proper
support for low-latency capacity aggregation is a serious
drawback for many applications. For example, consider an end
user that is trying to chat with a friend using a messaging
service on a smartphone. For such applications, throughput
does not matter, since the users just want to have a smooth
and responsive communication with minimum latency.

This article focuses on low-latency capacity aggregation,
by considering different scheduling techniques in MPTCP.
First, the limitations of state-of-the-art MPTCP schedulers are
explored and analysed. Most schedulers are found to underper-
form with asymmetric paths, where they are unable to provide
low latency and utilise the aggregate capacity. Then, two
novel schedulers are proposed to address shortcomings related
to asymmetry: BLock ESTimation (BLEST) scheduler [10]
which aims to reduce buffer blocking and Shortest Transfer
Time First (STTF) [11] that tries to minimise the transmis-
sion time of each data segment. The design of BLEST and
STTF is influenced by the limitations of previously proposed
schedulers. While BLEST is a lightweight solution, STTF is
more complex and requires more computational resources. The
article covers both the design and the implementation of these
scheduling techniques in the Linux kernel. The schedulers

https://orcid.org/0000-0002-8731-2482
https://orcid.org/0000-0002-0722-2656
https://orcid.org/0000-0001-5800-2779
https://orcid.org/0000-0001-6671-3490

are also evaluated using realistic application scenarios in
both emulations and real-world environments. The results
show that both BLEST and STTF fulfil their design goals
and can reduce application latency significantly. Compared to
MPTCP’s default scheduler, experiments show that STTF can
reduce web object transmission times with up to 51% and
provide 45% faster communication for interactive applications.
We further provide the open source implementation along with
all the necessary changes to MPTCP for both BLEST and
STTF to the community [12], [13].

The rest of the article is structured as follows. Section II
gives the necessary background and motivation for this work,
including an overview of MPTCP and the general problem of
communicating over asymmetric paths efficiently. Section III
presents the state-of-the-art in MPTCP scheduling; schedulers
that aim to perform well under both symmetric and asymmetric
conditions. Although some of the schedulers presented in
Section III work quite well, they are still unable to deliver low-
latency communication. Section IV therefore introduces and
describes BLEST and STTF – two novel schedulers designed
for asymmetric interface usage. In Section V, BLEST and
STTF are evaluated through basic latency and throughput
experiments, as well as emulated network scenarios involving
both web traffic and traffic generated by a typical interactive
application, Google Maps. The final step of the evaluation is
given in Section VI, where the schedulers are evaluated in a
series of real-world web experiments. The article ends with
related work in Section VII, and a summary and avenues for
future work in Section VIII.

II. BACKGROUND AND MOTIVATION

This section shortly describes the basics of MPTCP, the gen-
eral problems of efficiently transmitting data over asymmetric
paths, and how MPTCP is unable to resolve these challenges,
making it unsuitable for applications with low-latency require-
ments.

A. The Multi-Path TCP (MPTCP) Protocol

To allow for cheap and ubiquitous Internet access, smart-
phone providers are equipping devices with multiple network
interfaces. The reason for this has been to enable handover
from slow and expensive mobile data networks to fast and
free WLANs, when possible. This is now changing as mobile
data networks are becoming faster (e.g. the upcoming 5G
standard) and cheaper. Therefore, the use case of multi-
access devices is no longer limited to flipping between radio
technologies, it is now possible to use multiple technologies
simultaneously to increase throughput and robustness against
network path failures [14]. MPTCP was designed as a set
of transport extensions to TCP, allowing already existing
applications to benefit from such interface aggregation. To
date, MPTCP is standardised by the IETF in RFC 6824 [3],
and a de facto state-of-the-art reference implementation exists
for Linux [15]. Apart from the reference implementation,
there are several commercial and non-commercial options
available [16], including Apple’s iOS implementation [5].

Figure 1 shows how MPTCP is situated in the network
stack. An MPTCP connection is comprised of one or more
subflows which typically are bound to separate network inter-
faces. For example, one subflow over an LTE interface and one
over a WLAN interface. Subflows are regular TCP connections
and MPTCP’s main task is to transparently split data among
the subflows. When an MPTCP connection contains more than

Fig. 1. MPTCP connections contains several TCP subflows which are
employed to send data according to the scheduling policy of the selected
scheduler.

one subflow the data scheduler decides, for each segment,
which subflow to use for transmission. The decision is typi-
cally done with respect to network properties of the subflows’
underlying network paths. For instance, if a particular subflow
has a very low round-trip time (RTT) compared to the other
available subflows it might be beneficial to send data on that
subflow. The task of efficiently scheduling data over paths with
different characteristics is hard, especially if their capacity
and/or latency differs significantly.

B. Communication Over Asymmetric Paths

Most Internet-based applications require that data is
received in the same order it was sent. Since multi-path
protocols like MPTCP split data among several paths, chances
are that data arrive out-of-order. This is especially true if
paths are asymmetric, in terms of capacity and/or delay. When
data arrives out-of-order a number of performance-related
problems may occur, all well-known problems in transport-
layer research [17]. Figures 2a to 2d illustrate two inherent
problems when transmitting data over paths with asymmetric
characteristics (in this example RTTs). Figure 2a illustrates
two end-hosts, where the leftmost is about to send a number
of data segments to the host on the right-hand side using
two paths. As shown in the figure, the upper path has an
RTT that is ten times larger than the RTT of the lower path.
The sending host starts transmitting segments 1 and 2 over
the slow path and segments 3 and 4 over the faster path,
as shown in Figure 2b. For this example, Figure 2c shows
the well-known Head-of-Line (HoL) blocking problem, where
segments 3 and 4 have been received and are kept buffered
until segments 1 and 2 arrive, potentially causing delays.
A problem related to HoL blocking is receiver buffer blocking.
While HoL blocking introduces a delay in delivering data
to the application, it does not interact with the sending of
data. Receiver buffer blocking, however, reduces throughput
and can, therefore, further increase delay. This is illustrated
in Figure 2d; if more data is sent over the faster subflow,
the receiver’s buffer might be filled with data that cannot be
delivered until segments 1 and 2 have been received. When the
receiver’s buffer becomes completely filled, the sender will be
blocked from sending, causing both reduced throughput and
increased latency.

To avoid these problems, multi-path protocols need to
carefully select which interface to use for transmission of each
individual segment. The employed scheduling strategy must

Fig. 2. Illustration of Head-of-Line Blocking and Receiver Buffer Blocking. (a) At t0; asymmetric path RTT2 = 10 × RTT1. (b) At t1 = t0 + ε; #1 and
#2 on path 1; #3 and #4 on path 2. (c) At t2 = t1 + RTT1; #3 and #4 are received but can not be read because #1 and #2 are missing ⇒ Head-of-Line
(HoL) blocking. (d) At t3 = t1 + 2 × RTT1; #1 and #2 are not received and the receiver’s buffer can not receive #7 ⇒ receiver buffer blocking.

avoid overuse of slower network paths, as they will limit the
aggregate performance of the connection.

C. MPTCP Over Asymmetric Paths

For the work described in this article, the Linux kernel
MPTCP implementation is used. Although no default sched-
uler has been standardised for MPTCP, most implementations,
including the Linux implementation, use some variant of the
Lowest-RTT-First (LRF) scheduler [18]. LRF was designed to
maximise throughput by prioritising subflows with low RTTs:
for all subflows with available space in their CWNDs, schedule
segments over the one with the lowest smoothed RTT (SRTT).

While this strategy effectively maximises connection
throughput when network paths are symmetric, it works poorly
for asymmetric paths. It is rather surprising that new protocols
like MPTCP does not have a good strategy for communicating
over asymmetric paths, especially since one of MPTCP’s
core use cases [16] involves network technologies that are
inherently asymmetric (i.e. WLAN and cellular). Actually,
a simple switch from TCP (running over WLAN) to MPTCP
(running over both WLAN and 3G) could ruin the performance
of a simple file transfer. This is illustrated in Figure 3, which
shows the transmission times of a number of file transfers. The
transfers were of different sizes (10-100 segments large) and
were conducted over real WLAN and 3G networks running the
Linux kernel implementations of TCP and MPTCP. As hinted
by the graph, MPTCP is unable to properly deal with the
asymmetry between the two available interfaces which causes
the slower 3G path to limit the performance.

The simple explanation for MPTCP’s performance problems
is that slow subflows tend to be used when they really should
not. The reasons for such overuse are actually many, present
in protocol and scheduler design as well as in unexpected
interactions between MPTCP and TCP. For example, one of

Fig. 3. Transmission time of differently sized files, using TCP and MPTCP,
with two available paths having asymmetric RTTs (10 ms vs 100 ms).

LRF’s problems is the strict use of the CWND to select which
subflows that are suitable for scheduling data on. Let us elabo-
rate on what happens when 15 segments are to be transmitted
over an MPTCP connection with one subflow routed over
a WLAN (with a 10 ms RTT) and the other over 3G (with
a 100 ms RTT). LRF will immediately schedule segments
on the WLAN subflow, as it has the lowest RTT. However,
if the MPTCP connection has just been opened, or idle for
a short while, the initial CWND size will limit the number
of segments to ten. The remaining five segments will have
to be scheduled on the 3G subflow. LRF causes the transfer
of 15 segments to last for at least 50ms (RTT3G

2) as each
subflow will be utilised in parallel and the slow subflow
dominates. (We disregard the bandwidth in this example.) TCP,

TABLE I

MAIN PROPERTIES AND KEY METRICS OF THE LRF, DAPS, OTIAS AND ECF SCHEDULERS

on the other hand, only utilises the WLAN and is finished in
10+5 = 15ms, as one and a half RTT is required to complete
the transfer.

In addition to scheduler design issues, unexpected protocol
interactions between TCP and MPTCP can occur as TCP is
optimised for single-path use. Given that the work described in
this article used the Linux kernel implementation of MPTCP, a
few interaction problems between MPTCP and TCP in Linux
are given as examples. One such example is Linux’s use of
stale RTT measurements, which may lead to the abandonment
of a fast subflow in favor of a slower one. Consider two
subflows, S1 and S2, which experience RTTs of RTTS1

and RTTS2 where RTTS1 < RTTS2. Since S1 has the
lowest RTT, it will be the preferred subflow. (In this example,
we assume an equal capacity for the two subflows.) Now, let’s
assume that S1 starts to fill up intermediate queues, and, as a
result, RTTS1 starts to increase. At the time when RTTS1

becomes larger than RTTS2, MPTCP will start using S2. If we
further assume that RTTS1 later on starts to decrease and that
we eventually fall back to the initial situation with RTTS1 <
RTTS2 , MPTCP will not switch back to S1: Since MPTCP
stopped sending data over S1 when RTTS1 > RTTS2 , it is
not aware of the decrease in RTTS1. Additional examples of
unexpected implementation interactions include the TCP Small
Queues (TSQ) mechanism [19]. TSQ is designed to reduce
latency among concurrent flows by limiting the amount of data
that can be queued within the TCP stack. Currently, its default
limit is set to the minimum of two data segments or 1 ms
worth of data. When segments are about to be scheduled on
a subflow, the scheduler first checks whether TSQ indicates
that its limit has been reached. In most situations, this limit is
reached rather quickly, after a few segments, with the result
that MPTCP abandons the current subflow and chooses the
next in line. The consequence of this behaviour is that MPTCP
may switch to a slower subflow prematurely; long before the
CWND of the faster subflow has been filled. This is illustrated
in Figure 3, where the ten-segment transfer for MPTCP clearly
utilises both paths, although the congestion window supports
sending all data over the faster path.

To avoid buffer blocking problems, due to overuse of slow
subflows, a number of schedulers for MPTCP have been
proposed. The following section will examine the three state-
of-the-art schedulers DAPS, OTIAS, and ECF, and compare
their performance to the default LRF scheduler.

III. PERFORMANCE EVALUATION OF THE

STATE-OF-THE-ART MPTCP SCHEDULERS

As described earlier, MPTCP’s default LRF scheduler oper-
ates by filling the congestion window (CWND) of the subflow

with the lowest RTT before advancing to other subflows in
ascending RTT order. This approach works well when using
symmetric paths, but has otherwise been proven suboptimal.
In this section, we analyse three state-of-the-art MPTCP sched-
ulers designed to overcome LRF’s problems with asymmetric
path conditions: DAPS, OTIAS, and ECF. An overview of the
properties of these three schedulers along with the baseline
LRF is given in Table I. Next, we detail these schedulers,
compare their performance under symmetric and asymmetric
paths, and finally discuss their strengths and shortcomings.

A. Delay-Aware Packet Scheduler (DAPS)

The main idea behind the DAPS scheduler [20] to schedule
the segments over the available subflows in such a way that
the probability of in-order reception at the destination is
maximised. In that sense, the main objective is not to reduce
latency per se, but to ascertain the efficient use of the MPTCP
receive buffer at the destination, and in so doing minimise the
chances of receive-buffer blocking.

The DAPS algorithm comprises of three phases. In the first
phase, the order in which the available subflows should be
employed for transmission of segments is determined. On the
basis of this order, the second phase involves determining
which segments to send over each available subflow every time
the DAPS scheduler is invoked. Finally, in the third and last
phase, segments are sent in accordance with the determined
schedule in phase 2.

B. Out-of-Order Transmission for In-Order
Arrival Scheduler (OTIAS)

The OTIAS scheduler [21] builds on the idea of scheduling
a segment on the subflow with the shortest transfer time, i.e. on
the subflow over which it takes the shortest time to arrive at the
destination. Here, OTIAS includes a simplification, assuming
that the one-way delay is RTT/2. This means that the OTIAS
scheduler differs from LRF in that it permits the scheduling
of segments on all available subflows, not only those with
available CWND space.

Every time a segment is to be scheduled, the OTIAS
scheduler computes the expected transfer time over each of
the available subflows. The computation of the transfer time
on those subflows with no available CWND space entails
calculating the number of RTTs worth of data that is queued
on these subflows. Eventually, the segment is scheduled on the
subflow with the shortest expected transfer time.

C. Earliest Completion First (ECF)

The ECF scheduler aims to tackle the performance degra-
dation problems that arise from path heterogeneity [22].

Fig. 4. Goodput for bulk traffic: LRF, DAPS, OTIAS, and ECF.
(a) WLAN/3G. (b) WLAN/WLAN.

More specifically, ECF aims to minimise the periods where
a fast subflow becomes idle, i.e. waiting until a slow subflow
completes its assigned packet transmissions, due to the lack
of packets to send.

In order to make a scheduling decision, ECF not only
monitors the subflows’ RTT estimates, but also the size of
the CWND and the amount of data available to send. More
concretely, ECF takes the following decisions: ECF always
prefers the fastest subflow, i.e. the subflow with the shortest
RTT, as long as it is able to send on that subflow. Otherwise,
ECF searches for the next fastest subflow, i.e. the next subflow
with the shortest RTT, which also has space in its CWND. To
take the decision, whether to wait for the fastest subflow or use
another one, ECF calculates the arrival time for a segment that
can be sent now on both subflows. If the required time is at
least twice the RTT of the fastest subflow, ECF waits for the
fastest subflow instead.

D. Performance Evaluation and Discussion

Next, we evaluate the performance of LRF, DAPS, OTIAS,
and ECF using an emulated network with a non-shared
bottleneck topology. The settings and further experimental
configuration are detailed in [10].

In Figure 4, we illustrate the performance of the schedulers
using bulk transfer as the target application and application
goodput as our metric. For the WLAN/3G setting, we observe
that OTIAS provides similar performance to LRF, while DAPS
and ECF perform worse than LRF. For the WLAN/WLAN
case, DAPS performs worse than LRF while OTIAS having
virtually the same goodput as LRF. However, we observe that
ECF provides gains compared to LRF.

In Figure 5, we evaluate the performance of the sched-
ulers using web traffic. For these experiments, each site is
downloaded over six concurrent connections using HTTP1 and
page load time is used as metric. For the WLAN/3G set-
ting, we observe that all schedulers perform similarly with
marginal differences in most cases, with OTIAS providing
a slight improvement in page load time compared to LRF
for Wikipedia. For the WLAN/WLAN scenario, we observe
increased page load times for DAPS and OTIAS for Huffpost,
and also for ECF although marginal, compared to LRF.

Overall, we observe that the current state-of-the-art sched-
ulers are limited to address the path asymmetry for different
applications. For example, DAPS is not able to promptly react
to network changes due to long schedule runs arising from
high-delay asymmetry. Furthermore, it persistently uses all
available subflows, even if their contribution is small. This is
the main difference compared to both OTIAS and LRF, which
can reduce or even skip the input of a certain subflow. On the
other hand, OTIAS assumes symmetric forward delays, i.e.

Fig. 5. Page load time for web traffic (Wikipedia, Amazon and Huffington
Post) for LRF, DAPS, OTIAS and ECF. (a) WLAN/3G. (b) WLAN/WLAN.

OWD = RTT/2 and makes decisions on a per-segment basis,
using the current network state and the subflows’ CWND as
input. However, it builds up queues on subflows with the
lowest RTTs, regardless of available CWND space. Moreover,
similar to DAPS, OTIAS does not have a defined behaviour for
retransmissions. ECF’s design is very similar to OTIAS when
determining whether packets should be scheduled in another
subflow or wait, i.e. skipping a transmission opportunity. How-
ever, it has a better implementation design: It does not build
queues on the subflows and it does not include simplifications
such as OWD = RTT/2, which can be detrimental in real
scenarios.

The rationale of this experiment is to illustrate that, despite
being designed with asymmetric paths in mind, recently pro-
posed schedulers do not achieve the performance that could
have been expected. This justifies the need for new, more
latency aware, schedulers. Furthermore, as neither OTIAS nor
DAPS can significantly improve performance relative to LRF,
and ECF brings clear benefits only with bulk in symmetric
scenarios (see Figures 4 and 5); in the remainder of this paper,
we take LRF as the baseline scheduler while evaluating the
proposed schedulers.

IV. LOW-LATENCY MPTCP SCHEDULERS: DESIGN

AND IMPLEMENTATION

By tackling path asymmetry to avoid out-of-order delivery,
latency can be reduced significantly. However, current state-
of-the-art schedulers are not able to completely do so. To mit-
igate latency problems, we introduce two new scheduling
algorithms: BLEST [10], and STTF [11]. While BLEST is
designed to estimate and minimise buffer blocking, STTF’s
goal it to predict and minimise the transfer time of each
individual segment, to circumvent any blocking problems.

A. Blocking Estimation (BLEST)

The main idea behind BLEST is to keep the buffer block-
ing under control and avoid spurious retransmissions. In the
following, we explain the design of BLEST’s [10] new metric
to estimate the amount of buffer blocking that might result
from scheduling a segment on a given subflow. The BLEST
algorithm is presented in Algorithm 1.

Algorithm 1 BLEST [10]
Require: srttF < srttS
1: if can_send(F) then
2: selected_subflow = F
3: else if can_send(S) then
4: rtts = srttS/srttF
5: X = MSSF × (CWNDF + (rtts − 1)/2)× rtts
6: if X × λ ≤ MPTCPSW -MSSS × (inflightS + 1)

then
7: selected_subflow = S

To overcome the reactive approach of MPTCP’s default
LRF scheduler, which reduces the CWND of slower subflows,
we propose a proactive approach that decides at the time of
segment scheduling whether to send over the slow subflow or
not. The decision is made using MPTCP’s send window.

MPTCP maintains a send window on its connection level for
each connection, one level above the subflows. This window is
necessary due to the full data multiplexing among all subflows
belonging to the same MPTCP connection. However, due
to the scheduler, if data is not acknowledged in one of the
subflows, MPTCP’s send window can be temporarily blocked,
stalling the multi-path connection.

Thus, BLEST assumes that provided a segment is sent on
S, the segment will occupy space in MPTCP’s send window
(MPTCPSW) for at least RTTS. We assume that all segments
in flight on S occupy space in the window for the same
amount of time. This is a conservative assumption since these
segments can be acknowledged earlier on the fastest subflow.
The remaining send window can be used by the faster subflow,
i.e. the lower RTT subflow, F . This means that blocking would
occur if F was not able to send, e.g. due to lack of space in the
send window because of S. Therefore, we estimate the amount
of data, X , that will be sent on F during RTTS, and check
whether this data fits into MPTCP’s send window. To estimate
X , we assume that for every RTTF , its CWND grows by 1
(as it is done in congestion avoidance) and is always filled by
the scheduler, as

rtts = RTTS/RTTF

X = MSSF · (CWND + (rtts − 1)/2) · rtts

If X×λ > |MPTCP SW|−MSSS ·(inflightS +1), the next
segment will not be sent on S. Instead, the scheduler waits
for the faster subflow to become available. Essentially, while
LRF always opts to use an available subflow, BLEST is able
to skip a subflow, waiting for a more advantageous subflow
which can offer a lower risk of blocking, and the number of
retransmissions that would have been consequently triggered.

The estimate of X can, however, sometimes be inaccurate.
To address this, we introduce a correction factor λ, to scale X .
The λ correction factor is adjusted as follows. Buffer blocking
during one RTTF is an event that triggers an increase of λ
by δλ. Conversely, the absence of buffer blocking triggers a
decrease by δλ. At the beginning of the connection, we set
λ = 1.0, i.e. no correction of the estimation.

The implementation of BLEST along with all the necessary
changes to MPTCP is available at [12]. The implementation
consists of 800 lines of code and can be used with version
0.91.2 of the Linux MPTCP kernel.

B. Shortest Transfer Time First (STTF)

STTF’s design is similar to OTIAS [21] and ECF [22] in
that it tries to calculate the expected transfer time of a segment
considering the path characteristics of all available subflows.
Thus, STTF will schedule all unsent data on the fastest
available subflow, even though its CWND is full. While the
initial idea behind STTF is sketched in a technical report [11],
this article presents the complete algorithm together with a
Linux implementation and performance evaluation.

Conceptually, the idea behind STTF is simple: whenever
there is data ready to schedule, STTF traverses all unscheduled
segments; predicts the transfer time for each of them, when
transferred over each of the available subflows, and deter-
mines, on the basis of the predicted shortest transfer time,
on which subflow each segment should be scheduled. The
predicted transfer time for a segment over a certain subflow is
computed with regards to the SRTT, the congestion state of the
subflow, i.e. whether the subflow is in slow-start or congestion
avoidance, and the number of segments already queued in the
subflow. The consideration of the current congestion state is
an important difference to other schedulers that often assume
that connections are in congestion avoidance, an assumption
that is often wrong as short-lived flows, e.g. which often start
and terminate before leaving slow-start.

After the assignment of segments to subflows, STTF
releases its control to the MPTCP output engine to enable
data transmission. If the transmission is interrupted in any way,
e.g. by incoming acknowledgments before all segments have
been transmitted, STTF removes all subflow assignments and
reschedules unsent data. The rescheduling is done to update
transmission time estimations as the external event(s) causing
the interruption may have altered previous conditions. The
rescheduling is a major component that enables STTF to react
more promptly to changes in the underlying network than,
e.g. DAPS, OTIAS, and ECF (see Section III-D). In addition
to the congestion state optimisation and re-scheduling, STTF
also makes use of some minor optimisations. These include,
e.g. an RTT-reset mechanism to solve the problem of using
stale RTT measurements, described in Section II-C.

Algorithm 2 STTF Scheduling
1: mptcp_sttf_reschedule()
2: for each unsent segment p do
3: for each available subflow s do
4: T p

s = transfer_time(s,p)
5: if T p

s < Tmin then
6: Tmin = T p

s

7: selected_subflow = s

The main loop of STTF is shown in Algorithm 2. First,
it extracts all unsent data from all subflows for rescheduling.1

Then, for each segment, it calculates the expected transfer
time considering all subflows, scheduling the corresponding
segment on the subflow with the shortest transmission time.
The actual transmission time is calculated as Algorithm 3.
The algorithm starts by calculating the time needed for
transmission that can be immediately sent; in other words,
segment transmission that is not limited by the CWND of

1In practice, the rescheduling of unsent data is not done in every scheduler
invocation. For instance, if paths are symmetric, or a bulk flow is transferred,
this operation is unnecessary and it is ignored to save computational resources.

the current subflow (lines 2–3). After this initial assessment,
the algorithm calculates how much the CWND can grow
during the current RTT, considering the subflow’s congestion
control state (line 5). The calculation considers if the subflow:
(a) is, and will be, in slow start the entire RTT; (b) will exit
slow start during the RTT; or (c) be completely in congestion
avoidance. The remainder of the algorithm uses the predicted
CWND together with the amount of data to send to derive a
transmission time that is dependent on the number of RTTs
the subflow will spend in different congestion states.

Algorithm 3 STTF Time Calculation
1: procedure TRANSFER_TIME

2: if cwnd_free > 0 and data_to_send < cwnd_free then
3: return rtt / 2
4: transfer_time = transfer_time + rtt
5: cwnd = increase_cwnd(current_cc_state)
6: if data_to_send <= max_segments_in_ss then
7: transfer_time = transfer_time + rtt × (rounds_in_ss-

1) + rtt/2
8: return transfer_time
9: else

10: if cwnd < ssthresh then
11: transfer_time = transfer_time + max_rounds_in_ss

× rtt
12: if ends_in_ss(data_to_send) then
13: return transfer_time
14: cwnd = ssthresh
15: transmission_time += rtt × (rounds_in_ca - 1) + rtt

/ 2
16: return transfer_time

The STTF implementation along with all the necessary
changes to MPTCP is available in [13]. The implementation
consists of about 1200+ lines of code and can be used with
version 0.91.2 of the Linux MPTCP kernel.

C. Functional Comparison of LRF, BLEST, and STTF

We continue by elaborating on how scheduling decisions are
made by LRF, BLEST, and STTF. The data shown in Figure 6
was collected from controlled emulation experiments using
Linux with an MPTCP-enabled kernel equipped with all
algorithms. Figure 6 illustrates how the schedulers act when a
burst of 15 segments are sent by an application when two paths
are available, and their respective RTTs are P1 = 10ms and
P2 = 100ms. For the sake of simplicity, the available capacity
is equal for both paths (0.5Gbit/s). Furthermore, the two
MPTCP subflows traversing these paths both have a CWND
of ten segments. The graphs illustrate each invocation of the
schedulers. That is, whenever the corresponding scheduler is
utilised by MPTCP to schedule a segment, the graphs show
for each path: (a) the smoothed RTT (SRTT) at the moment
of scheduling (•); (b) if the segment cannot be scheduled due
to full CWND (�); or (c) if TSQ inhibits scheduling (�). The
lines connecting the SRTT dots indicate both that a segment
was successfully scheduled and over which path it will be sent.

First, we consider the LRF scheduling mechanism, as shown
in Figure 6a. When scheduling the first six segments, LRF
selects P1 having a 10ms SRTT, compared to the 100ms SRTT
over P2. However, both the seventh and eight segments are

inhibited from being sent over P1, even though the SRTT of
P1 is lower than that of P2. The reason is that TSQ has kicked
in on the faster path, in an attempt to limit the queueing for
this subflow. As a consequence, data is, instead, scheduled
over the much slower subflow (P2). After scheduling the two
segments over the slower path, the queueing in lower layers
has been cleared and the faster path is used again for four
additional segments. After this point, however, the scheduler
has filled the CWND of the faster subflow and is yet again
forced to schedule data over the slower path, even though the
transmission will be completed much slower.

The scheduling decisions by BLEST is made within two
RTTs, compared to LRF. During the first RTT, shown in Fig-
ure 6b, BLEST only schedules data on P1, as indicated by the
black line connecting the ten scheduling invocations. When
ten segments have been scheduled, and the CWND limitation
kicks in, BLEST does not schedule data on P2. Instead,
BLEST waits for acknowledgments from the segments sent
on P1 to open up the CWND. When the acknowledgments
arrive during the next RTT, shown in Figure 6c, BLEST again
starts to schedule data on P1. Notice that BLEST, during this
RTT as well, rather waits for the CWND limit and TSQ to
disappear instead of scheduling data over the slow subflow.
This simple experiment illustrates BLEST’s ability to prevent
data from arriving out-of-order at the receiver.

Finally, Figure 6d illustrates how STTF works. In contrast
to the SRTT metric used by LRF and BLEST, STTF operates
on its estimated transmission time (TT) of each individual
segment. As described earlier, LRF is very sensitive to CWND
limitations and chooses a slower subflow when the fastest filled
its CWND. BLEST was shown not to pick a slower subflow,
but rather wait for the faster one to become available again.
In contrast to both LRF and BLEST, STTF does not care about
CWND limitations or TSQ when scheduling. Instead, it relies
on its rescheduling component to fix suboptimal decisions.
Therefore, as shown in Figure 6, the scheduling occurs on the
subflow with the lowest calculated transfer time, in this case
always P1, for all segments.

V. EVALUATING BLEST AND STTF

To assess the benefits of avoiding blocking and closely
approximating the transmission time of queued data, we per-
formed controlled experiments comparing the performance of
LRF, BLEST, and STTF. To evaluate the schedulers regarding
latency and throughput, we conducted a series of experiments
involving synthetic and real workloads, including traffic from
interactive applications and web browsing. The schedulers
were also evaluated in real-world experiments and these results
are reported in Section VI.

A. Experimental Setup

A testbed setup consisting of five regular desktop computers
was used for the experiments. The machines were connected as
illustrated in Figure 7, to emulate a topology with: a client, two
wireless access points (WLAN/3G), a server access router and
a server. Two configurations were used for the experiments;
one for basic latency and throughput experiments (reported
in Section V-B) and one for experiments involving web and
interactive traffic (reported in Section V-C and V-D). The
left part of Table II shows the parameterisation for the basic
latency and throughput experiments. The parameters used
for these experiments were not chosen to be representative

Fig. 6. Scheduling decisions for a burst of 15 segments, using the LRF, BLEST, and STTF schedulers. (a) LRF scheduler. (b) BLEST scheduler (1st RTT).
(c) BLEST scheduler (2nd RTT). (d) STTF scheduler.

Fig. 7. Experimental multi-path setup.

TABLE II

NETWORK CHARACTERISTICS. FOR THE LATENCY AND THROUGHPUT
EXPERIMENTS (LEFT), BANDWIDTHS AND DELAYS WERE FIXED

DURING EACH EXPERIMENTAL RUN AND FOR THE OTHER

EXPERIMENTS (RIGHT) THE CHARACTERISTICS WERE
UNIFORMLY DISTRIBUTED DURING EACH RUN

of typical WLAN/3G setups but rather to exhibit necessary
path asymmetry, causing data to arrive out-of-order. The right
part of Table II shows the parameterisation for the web and
interactive traffic experiments. In contrast to the previous con-
figuration, this one is meant to represent a typical WLAN/3G
setup. The parameterisation has also been used in previous
evaluation studies [17]. The WLAN links are 802.11ag, and
the loss rate is the rate experienced on transport-level (not
including, e.g. link-layer retransmissions).

To enable multi-path communication between client and
server, the machines were equipped with MPTCP-enabled
Linux kernels. The client used a stock version of the MPTCP
kernel, and the server used a modified version including the
BLEST and STTF schedulers. For all experiments, MPTCP

was configured to use Path 1/WLAN as the primary path.
The other machines in the setup used regular Linux kernels
configured to emulate link characteristics and forward traffic.
All network-related buffers were kept at their default settings.

B. Latency and Throughput

As a first step to assess the schedulers’ latency perfor-
mance, we compared the transmission time of differently sized
bursts sent over MPTCP using two paths, varying their RTTs.
We also ran the same experiments over TCP over the path
with the smallest RTT. The bursts were sized between 10 and
50 segments and the path RTTs were varied in such a way
that both symmetric and very asymmetric connections were
evaluated (path 1 had a 10ms RTT and path 2 had a 10, 40, and
100 ms RTT). Before each experiment, we pre-established the
MPTCP connection and sent enough data to create and utilise
subflows over both paths. This “warm-up” was performed to
guarantee that two subflows, one per path, were available to
MPTCP when experiments started. After each warm-up, the
corresponding MPTCP connection was made idle long enough
to reset the congestion state back to the slow-start phase.
The experiments for each scheduler combination, burst size
and path RTTs were repeated 30 times to minimise random
variations. Figure 8 shows the results of these experiments.
The y-axis of each graph shows the time (in ms) required
for a burst to be transmitted from sender to receiver, and the
x-axis shows the size of the corresponding burst (in segments).
Note that the transmission times in the graph only show the
one-way application delay, i.e. the time required for the data
to travel from sender application to receiver application. The
leftmost graph shows the results of the symmetric experiment
where both paths had an RTT of 10ms. The middle graph
shows a slightly asymmetric scenario where path 1 had an RTT
of 10ms and path 2 an RTT of 40ms. Finally, the rightmost
graph contains the results from the experiments in a highly
asymmetric setting where the RTT of path 1 is 10ms and
path 2 had an RTT of 100ms.

Fig. 8. Average transmission time for bursts of different sizes over subflows with symmetric and asymmetric RTTs.

MPTCP’s default LRF scheduler is most suitable in settings
with subflows that have symmetric characteristics. The reason
why LRF performs almost on par with BLEST and STTF
is simply due to the reason that symmetric connections are
aligned to the strategy of LRF: divide the traffic equally among
subflows. When the asymmetry increases (middle graph) LRF
performance decreases, especially for bursts with 30 seg-
ments or less. One result that stands out is when 10 segments
are transmitted, requiring significantly more time for LRF than
for TCP, BLEST, and STTF. While this might seem strange
at first, it is connected to the previously described use of
TSQ to limit the queueing within the TCP stack, as shown
in Figure 6. In this scenario, segments will be scheduled
over the fast subflow until TSQ is temporarily active and
inhibits the use of this subflow. As previously mentioned,
in Section II-C, this happens whenever the queueing exceeds
two segments or approximately one millisecond worth of
data. When asymmetry further increases (rightmost graph), the
results for LRF show quite high delays for all the different
burst sizes, and it is evident that some data always is sent
over the slower 100-ms RTT path. For most burst sizes this
is due to CWND limitations. LRF, as previously explained,
will immediately select another path if the CWND of the
current one becomes filled. This fact is the case for nearly
all depicted results, as the initial CWND in Linux is set to ten
segments [23]. Thus, when there are more than ten segments to
be sent, the use of the slow path is inevitable. This is not the
case for BLEST and STTF, both of which opportunistically
forego the use of the slow path. Interestingly, MPTCP also
transmits data over the slowest when the amount of data is
equal to the initial CWND (burst of ten segments).

Many of MPTCP’s motivating use cases have focused
on increasing throughput. Therefore, it is interesting to see
whether BLEST and STTF can maintain good throughput
while at the same time reducing latency. To test this, a simple
bulk transfer application was used to transmit data between
the sender and the client. Each transfer was configured to
last for three minutes. Figure 9 shows the average goodput
for TCP (over a single 10-ms RTT path) and MPTCP with
the LRF, BLEST and STTF schedulers. The graph illustrates
how the average goodput varied with increasing RTT on
path 2. As seen in the experiments with symmetric or slightly
asymmetric paths, MPTCP performed almost the same regard-
less of the scheduler. However, with increasing asymmetry,
the BLEST goodput, and, even more so, the STTF goodput
increased more than that of LRF. The problem for LRF is
receiver buffer blocking: Segments arriving on the fast path is
buffered while waiting for previously sent data on the slow

Fig. 9. Average goodput for TCP and MPTCP (LRF, BLEST, and STTF).

path. In those cases the asymmetry is large and the flow
long enough, the receive buffer eventually fills up and causes
the sender to intermittently stop sending. Since BLEST is
designed to reduce blocking effects, it is able to perform better
than LRF for moderate asymmetry. The minimisation of the
per-segment transmission time done by STTF is even more
effective. As shown in the graph, STTF is almost able to match
TCP, even when the asymmetry between the paths is large. The
TCP results are included to show that path asymmetry, after a
certain point, causes MPTCP goodput to be lower compared
to single-path protocols.

Although the STTF implementation is complex, we believe
that the algorithm will work well, even for link rates at gigabit
speeds. The calculations required by the STTF algorithm are
straightforward and can be optimised if necessary. However,
it is likely that the current implementation of STTF will
underperform somewhat at gigabit speeds as the process of
scheduling/rescheduling data causes segments to be moved
back and forth between the MPTCP send queue and the
subflows. The reason why the current implementation does
this is one of convenience; there were already mechanisms
available for this kind of operation within the Linux MPTCP
implementation. However, to save computational resources the
STTF implementation does not perform a rescheduling on
every invocation of the scheduler. For instance, if paths are
symmetric or bulk flows are transferred this operation is unnec-
essary and is therefore ignored. For a completely optimised
version of STTF, ready for production use, the scheduling

Fig. 10. Page load times, object download times and traffic path shares for HTTP2 experiments in emulated environment.

TABLE III

WEBSITES USED IN THE EVALUATION

should not result in segments being moved at all. Instead,
the scheduling process should merely result in a path assign-
ment stored as a variable in the data structure of the corre-
sponding segment. Segments should then be moved on demand
when its corresponding subflow is ready for transmission.
In the current implementation of STTF, rescheduling is not
done on each invocation of the scheduler.

C. Web

Recently, HTTP2 [24] has gained momentum and seen a
major increase in the number of supported domains. From
its standardisation in May 2015 until today, the deployment
has gone from approximately 13 000 to 242 000 hosts [25].
Compared with HTTP1, HTTP2 enables a more efficient
use of network resources and can reduce latency by, e.g.
providing header compression and concurrent object down-
load over the same connection. The simultaneous download
mechanism is interesting as it enables an MPTCP sched-
uler to simultaneously optimise the transmission over several
paths. For the experiments in this section, we chose five
websites of different sizes: google.com, wikipedia.com, insta-
gram.com, amazon.com, and theguardian.com. The sites vary
both regarding the number of objects and in their respective
sizes. Details regarding the size distribution can be found
in Table III. The primary goal of this experiment was to
evaluate whether the proposed schedulers can reduce latency
for web downloads, compared to LRF. To perform the actual
experiments, we used a set of applications on the client and
server to perform the downloads. On the server, we used
the nghttp2 web server which supports HTTP2 with, e.g.
HPACK [26] header compression. To model the download
process as thoroughly as possible we used data and depen-
dency graphs from Epload [27] together with a custom-made

client implemented with libcurl. The dependency models
tell the client in which order to download the web objects and
if there should be processing delays in between downloads.
The models are based on how real browser implementations
download and process these particular web sites. To account
for variability, each experiment was repeated 30 times.

Figure 10 shows the average page load times, web object
download times, and the traffic share over each path, all
with 95% confidence intervals. The values are shown for the
default LRF scheduler, BLEST, and STTF. Although a page
becomes usable before it is completely loaded, the page load
time metric is useful for comparing network performance.
Furthermore, the page load times seem to correlate with the
object download times (middle graph). We define the object
download time as the average time required to download a
single web object. The download time of an object is also
a relevant metric, as users’ browsing experience sometimes
rely more on individual objects than entire pages. As shown
in both graphs, LRF poses the worst performance of the
three schedulers. BLEST decreases latency compared to LRF,
and STTF further reduces latency for object downloads, with
an exception to the Wikipedia site where the total amount
of data was discovered to be too small to trigger different
scheduling decisions among the schedulers, causing the object
download times to be rather equal for all schedulers. For some
sites, the performance improvement given by STTF is very
significant. For instance, STTF completes web object transfers
up to 51% faster than LRF for google.com. The reason for
the differences in performance is that BLEST and STTF use
the WLAN path more than LRF; the LRF scheduler sends
approximately 60% of the data over the best path (WLAN),
while BLEST uses this path for almost 80% and STTF for
roughly 90% of the traffic.

D. Google Maps

Google Maps is an excellent example of an interactive appli-
cation that requires low latency for a good user experience.
To perform experiments with this application, we replayed
real user sessions in our experimental environment. To obtain
actual traffic, we used tcpdump and captured network traf-
fic from repeated real sessions on a Google Chrome Web
browser, where a person was visualising routes between arbi-
trary locations. Since the captured traffic largely depended

Fig. 11. Google Maps experiment, graphs showing both a sample of the traffic
pattern and the results. (a) Google Maps data. (b) Average object download
times.

on the network conditions, such as the available bandwidth
and the RTT, at the time of the capture, we could not
directly create traffic profiles from the captured data. Instead,
we used the captures to reconstruct the application traffic and
created traffic profiles from this traffic. Since the traffic was
encrypted (HTTPS), the actual application traffic could only
be approximated. The complete traffic generation process is
further described in [28]. Figure 11a shows a representative
traffic time series plot from the Google Maps experiment.
Each dot in the graph represents a transmitted object, sent
at x seconds and with a size of y bytes. As shown in the
graph, the amount of data is small and sparsely communicated
due to real user interactions. Figure 11b shows the average
download time obtained with LRF, BLEST, and STTF, for
objects included in the traffic workload. Similar to previous
graphs, 95% confidence intervals are used, and the average
download time is based on 30 repetitions. Since data loss
had such a significant impact on performance, we choose
to show the results from the experiments without data loss
separately. For instance, when LRF is used and there is no
data loss, the average download time is about 60 ms compared
to more than 200 ms at 1% random packet loss. Similar
numbers were not observed in any other experiment, and
an analysis of the results confirms that the reason is the
limited amount of data sent. When data loss occurs, and
there is a small number of outstanding segments, MPTCP
struggles to recover the lost data quickly [29]. Despite this, and
that the differences due to the actual scheduling are smaller,
there are still significant differences in performance. When no
packet loss occurs, BLEST outperforms LRF by approximately
29%, and, when packets are lost, BLEST is about 5% faster.
Similarly, when no packet loss occurs, STTF outperforms
BLEST by approximately 23%, and, when packets are lost,
STTF is about 1.5% faster. Compared to LRF, STTF is 45%
faster when no packets are lost, and 6% faster otherwise.

VI. REAL-WORLD EXPERIMENTS

This section evaluates LRF, BLEST, and STTF in real-world
web experiments, using a mobile node with both WLAN and
3G interfaces. For these experiments, the MONROE mobile
broadband (MBB) network measurement platform [30]–[32]
was used. The MONROE platform provides a dedicated
infrastructure for measuring and experimenting over MBB
networks and WLAN. We used a setup similar to the one
described in Section V-A, where the server was a remote web
server located in Norway and the client was a MONROE node
in Sweden. Both the server machine and the MONROE node
were equipped with Linux MPTCP kernels, and the server
additionally extended with BLEST and STTF. Before and

Fig. 12. Page load times and object download times for real-world HTTP2
experiments.

during experimentation, we measured the RTT of the two
paths, which showed an average of RTTWLAN ≈ 25ms and
RTT3G ≈ 75ms. To compare the results to the previously
reported (emulation) results we used the same software tool-
chain and websites as for these experiments (see Section V-C).

The results of the experiments are shown in Figure 12. The
graphs show both the average page load times (left) and the
average object download times (right) for 30 repetitions of
downloading each site using the different schedulers. Similar
to the emulation results, BLEST and STTF outperform LRF.
For example, both BLEST and STTF reduce the page load
times for Amazon with approximately 27%, and the object
load times with an average of 41%. STTF achieves the best
overall performance, although the variation in the results is
larger when running over real networks.

For the Wikipedia experiments, there are no noticeable
differences in page load times among the schedulers, although
BLEST and STTF significantly reduce the object download
times. This is interesting for two reasons. First, in the emulated
web experiments the total amount of data to transfer was
discovered to be too small to trigger different scheduling
decisions among the schedulers, causing the object download
times to be rather equal for all schedulers. Second, reduced
object download times does not seem to cause a similar
reduction in page load times. The reason for BLEST and
STTF to transfer objects more quickly is related to the
dynamics of the real networks used in these experiments.
Variations in the real networks are more pronounced than in
the emulated scenario, e.g. causing the RTTs of the different
paths to fluctuate more. When examining packet traces from
the experiments, it became evident that network fluctuations
caused the data transmission to be more bursty, resulting in
scheduling decisions for relatively larger amounts of data,
at each instance, than in the emulated scenario. The larger
amounts of data then caused different scheduling decisions,
favourable to BLEST and STTF. The reason why the reduced
object download times for BLEST and STTF did not translate
into corresponding reductions in page load times is related
to the Wikipedia site structure. As described in Section V-C,
a dependency model is used for downloading each site. For
the Wikipedia experiments, we could observe that a slightly
quicker transmission of the objects was overshadowed by the
dependencies and processing delays provided by the model.

The distribution of data over WLAN and 3G is similar to
the emulation results, as shown in Figure 13. The difference
among the schedulers is slightly lower than for the emulation

Fig. 13. Path load share between WLAN and 3G for real-world HTTP2
experiments.

experiments, with LRF scheduling approximately 68% of the
traffic over WLAN, BLEST a little over 70%, and STTF
slightly over 80%. The narrow span of load shares, as com-
pared to the emulation experiments, is due to the variations
in the underlying networks, sometimes causing the 3G path to
becoming the preferred scheduling choice.

VII. RELATED WORK

The authors in [33] present a survey identifying the most
important aspects when shifting from single to multi-path
transport. They offer a list of merits of multi-path transport,
including features such as load balancing and diversification.
To evaluate the expected benefits of such features, various
studies have evaluated the performance of MPTCP in the
wild [9], [34]–[36]. These studies found that MPTCP can
provide higher throughput than TCP.

Even if the increased capacity through resource pooling
with MPTCP could be measured, the relevance of MPTCP
for latency-sensitive traffic is not straightforward. There are
many sources of latency [37], some that might have a detri-
mental effect on the performance of transport protocols. For
instance, HoL-blocking due to asymmetric paths can result in a
connection experiencing an aggregate performance worse than
that of its worst link, both regarding throughput and latency.

In relation to latency, the authors in [36] conclude that
delay-sensitive applications using MPTCP’s default scheduler
need fairly symmetric paths in terms of bandwidth and packet
loss, to gain from a path with shorter RTT. A similar finding
is made in [9], which shows that realistic scenarios with
asymmetric links do not make MPTCP perform better than a
single-path protocol. Both [34] and [35] show that paths with
shorter RTTs are used more frequently by MPTCP, resulting
in lower latency, if the CWND is not a limiting factor. The
latency reduction for cloud-based mobile applications has been
assessed in [28], and for the streaming of high-quality mobile
video in [38]. The authors in [28] find that MPTCP can reduce
latency for delay-sensitive applications provided that paths are
symmetric. Since asymmetric paths hamper performance, they
also identify the need for a different scheduler. To overcome
issues from path asymmetry, Wu et al. [38] argue for signifi-
cant modifications to MPTCP’s retransmission mechanism.

Yedugundla et al. [17] evaluate the adequacy of using both
CMT-SCTP and MPTCP as transport for video, web, and gam-
ing traffic, and concludes that, in most cases, the delay is not
increased by using multiple paths. This article demonstrates

that improving MPTCP scheduling is a crucial step to reduce
multi-path transport latency. This is also confirmed by [39],
which observes that the best scheduling policy depends on
the underlying path characteristics. Indeed, the occurrence
of out-of-order, and thus blocking, can increase when the
asymmetry increases. It is worth pointing out that depending
on the cellular technology, the asymmetry between WLAN and
cellular can change dramatically, even without considering the
bufferbloat effect on the cellular links [40], [41].

The most commonly used MPTCP schedulers are compared
in [18], where asymmetry is identified as one of the causes
of poor scheduling performance. To tackle this problem,
researchers have taken different approaches. For instance,
efforts have been made to optimise scheduling for specific
types of traffic. For video application traffic, several studies
have been conducted [42]–[46]. The performance that can
be achieved with knowledge of the transmitted data, such
as shown in [44], suggests that providing more proactive,
cross-layer information between applications and the transport
layer is necessary, and could be extended to other types of
applications as well. The exchange of cross-layer information
is an interesting approach, especially in managed environments
such as data centers [47]. The more traditional approach is to
reduce HoL-blocking without any application-specific knowl-
edge [18], [21], [22], [48]–[50]. The most relevant schedulers
in relation to our work have been detailed earlier in this work,
including LRF [18], DAPS [49], OTIAS [21], and ECF [22].
While DAPS was an initial attempt to reduce HoL-blocking
over asymmetric links, it was later shown to generate a non-
negligible amount of spurious retransmissions. To cope with
this, BLEST estimates the amount of receiver buffer blocking
for a given scheduling of segments on the available paths.
OTIAS was an initial attempt to minimise transmission times
by estimating the time required to send individual segments
over different subflows. STTF furthers the work on OTIAS by
adding a more precise time estimation and allows rescheduling
of segments to better accommodate for changes in the network
conditions. ECF is a recent scheduler that tries to maximise
throughput by increasing the use of the fastest subflow. This is
done by sometimes skipping transmission over slower paths,
and instead wait for the fastest path to become available.
ECF is very similar to OTIAS and does not consider slow-
start or rescheduling.

VIII. CONCLUSIONS

Today’s networks are often multi-path, i.e. an end host can
reach its peer through more than one network path. For exam-
ple, mobile devices usually have multiple interfaces and data
centers have redundant paths between servers. In view of this,
several works have investigated how to exploit this increased
connectedness to aggregate capacity and improve robustness.
While capacity aggregation works well for network paths with
symmetric capacity and delays, it has been shown to limit
the throughput and increase delays when using asymmetric
link technologies (e.g. LTE and WLAN). The reason for poor
performance can often be found in the scheduler that decides
over interface to transmit data. Basically, schedulers tend to
overuse slower network paths causing data travelling over the
faster paths to be blocked. This article provides an in-depth
evaluation of three state-of-the-art schedulers (DAPS, OTIAS,
and ECF) for MPTCP to highlight the problems of asymmetry.
To alleviate asymmetry-related problems two novel schedulers,

BLEST and STTF, are presented. BLEST estimates and tries
to reduce buffer blocking effects, while STTF predicts and
minimises the transmission time of individual segments. Both
schedulers can provide significant latency reductions to inter-
active applications, such as web browsers, while still being
able to provide throughput comparable to that of throughput-
aware schedulers. Future work includes refinements to BLEST
and STTF to better respond to varying link conditions.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update, 2016–2021,” Cisco Syst., San Jose, CA, USA, White Paper,
Feb. 2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/mobile-white-
paper-c11-520862.html

[2] B. Jin et al., “Aggregating LTE and Wi-Fi: ToWARD iNTRA-cELL
fAIRNESS AND hIgh TCP performance,” IEEE Trans. Wireless Com-
mun., vol. 16, no. 10, pp. 6295–6308, Oct. 2017.

[3] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions
for Multipath Operation With Multiple Addresses, document RFC 6824,
Jan. 2013.

[4] O. Bonaventure and S. Seo, “Multipath TCP deployments,” IETF
J., vol. 12, pp. 24–27, Nov. 2016.

[5] Apple, “Advances in networking,” in Proc. Worldwide Developers
Conf. (WWDC), Jun. 2017. [Online]. Available: https://developer.
apple.com/videos/wwdc2017/

[6] C. Paasch and O. Bonaventure, “Multipath TCP,” Commun. ACM,
vol. 57, no. 4, pp. 51–57, Apr. 2014.

[7] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. 8th USENIX Conf. Networked Syst. Design Implement. (NSDI),
Boston, MA, USA, pp. 99–112, 2011.

[8] C. Raiciu et al., “Improving datacenter performance and robustness with
multipath TCP,” in Proc. ACM SIGCOMM Conf., Toronto, ON, Canada,
Aug. 2011, pp. 266–277.

[9] S. Ferlin, T. Dreibholz, and Ö. Alay, “Multi-path transport over
heterogeneous wireless networks: Does it really pay off?” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA,
Dec. 2014, pp. 4807–4813.

[10] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Block-
ing estimation-based MPTCP scheduler for heterogeneous networks,”
in Proc. FIP Netw. Conf. Workshops, Vienna, Austria, May 2016,
pp. 431–439.

[11] D. Hayes et-al., “Report on prototype development and evaluation
of end-system, application layer and API mechanisms,” Simula Res.
Lab., Oslo, Norway, Tech. Rep. RITE EU FP7-ICT, Sep. 2015.
[Online]. Available: https://riteproject.files.wordpress.com/2015/12/rite_
deliverable_1-3.pdf

[12] S. Ferlin and C. Paasch. (2017). MPTCP BLEST Linux Kernel Imple-
mentation. [Online]. Available: https://git.cs.kau.se/pub/sttf

[13] P. Hurtig and K.-J. Grinnemo. (2017). MPTCP STTF Linux Kernel
Implementation. [Online]. Available: https://git.cs.kau.se/pub/sttf

[14] C. Raiciu, D. Wischik, and M. Handley, “Practical congestion control
for multipath transport protocols,” Dept. Comput. Sci., Univ. College
London, London, U.K., Tech. Rep., Nov. 2009.

[15] C. Paasch et al., (2016). Multipath TCP in the Linux Kernel. [Online].
Available: http://www.multipath-tcp.org

[16] O. Bonaventure, C. Paasch, and G. Detal, “Use Cases and Operational
Experience With Multipath TCP,” document RFC 8041, Jan. 2017.

[17] K. Yedugundla et al., “Is multi-path transport suitable for latency
sensitive traffic?” Comput. Netw., vol. 105, pp. 1–21, Aug. 2016.

[18] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in Proc. ACM SIGCOMM
Capacity Sharing Workshop (CSWS), 2014, pp. 27–32.

[19] E. Dumazet. (2012). TCP Small Queues. [Online]. Available:
https://lwn.net/Articles/507065/

[20] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in Proc. Int. Conf. Adv. Inf. Netw. Appl. Workshops
(WAINA), Barcelona, Spain, Mar. 2013, pp. 1119–1124.

[21] F. Yang, Q. Wang, and P. D. Amer, “Out-of-order transmission for in-
order arrival scheduling for multipath TCP,” in Proc. Int. Conf. Adv.
Inf. Netw. Appl. Workshop (WAINA), Victoria, BC, Canada, May 2014,
pp. 749–752.

[22] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens,
“ECF: An MPTCP path scheduler to manage heterogeneous paths,” in
Proc. ACM SIGMETRICS Int. Conf. Meas. Modeling Comput. Syst.,
Urbana-Champaign, IL, USA, Jun. 2017, pp. 33–34.

[23] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, Increasing TCP’s Initial
Window, document RFC 6928, Apr. 2013.

[24] M. Belshe, R. Peon, and M. Thomson, Hypertext Transfer Protocol
Version 2 (HTTP/2), document RFC 7540, May 2015.

[25] M. Varvello et al., “Is the Web HTTP/2 yet?” in Proc. Int. Conf. Passive
Act. Netw. Meas. (PAM), Crete, Greece, Apr. 2016, pp. 218–232.

[26] R. Peon and H. Ruellan, HPACK: Header Compression for HTTP/2,
document RFC 7541, May 2015.

[27] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall.
(2014). How Speedy is SPDY? [Online]. Available: http://wprof.cs.
washington.edu/spdy

[28] K.-J. Grinnemo and A. Brunstrom, “A first study on using MPTCP to
reduce latency for cloud based mobile applications,” in Proc. 6th IEEE
Int. Workshop Perform. Eval. Commun. Distrib. Syst. Web Based Service
Architectures (PEDISWESA), Jul. 2015, pp. 64–69.

[29] M. Rajiullah, P. Hurtig, A. Brunstrom, A. Petlund, and M. Welzl,
“An evaluation of tail loss recovery mechanisms for TCP,” ACM
SIGCOMM Comput. Commun. Rev., vol. 45, no. 1, pp. 5–11, 2015.

[30] (2017). EU H2020 MONROE Measuring Mobile Broadband Networks
in Europe. [Online]. Available: http://www.monroe-project.eu

[31] Ö. Alay et al., “Measuring and assessing mobile broadband networks
with MONROE,” in Proc. Int. Symp. A World Wireless, Mobile Multi-
media Netw. (WoWMoM), Coimbra, Portugal, Jun. 2016, pp. 1–3.

[32] Ö. Alay, “Experience: An open platform for experimentation with
commercial mobile broadband networks,” in Proc. ACM MobiCom,
Snowbird, UT, USA, Oct. 2017, pp. 70–78.

[33] S. Habib et al., “The past, present, and future of transport-layer
multipath,” CoRR, vol. abs/1601.06043, Jan. 2016. [Online]. Available:
https://arxiv.org/abs/1601.06043

[34] Y.-C. Chen et al., “A measurement-based study of multipath TCP
performance over wireless networks,” in Proc. ACM Internet Meas. Conf.
(IMC), Barcelona, Spain, Oct. 2013, pp. 455–468.

[35] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure, “Observing
real smartphone applications over multipath TCP,” IEEE Commun. Mag.,
vol. 54, no. 3, pp. 88–93, Mar. 2016.

[36] B. Han, F. Qian, S. Hao, and L. Ji, “An anatomy of mobile Web
performance over multipath TCP,” in Proc. ACM CoNEXT, Heidelberg,
Germany, Dec. 2015, Art. no. 5.

[37] B. Briscoe et al., “Reducing Internet latency: A survey of techniques
and their merits,” IEEE Commun. Surveys Tuts., vol. 18, no. 3,
pp. 2149–2196, 3rd Quart. 2016.

[38] J. Wu, C. Yuen, B. Cheng, M. Wang, and J. Chen, “Streaming high-
quality mobile video with multipath TCP in heterogeneous wireless
networks,” IEEE Trans. Mobile Comput., vol. 15, no. 9, pp. 2345–2361,
Sep. 2016.

[39] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Impact of
path characteristics and scheduling policies on MPTCP performance,”
in Proc. IEEE AINA Workshop, May 2014, pp. 743–748.

[40] J. Garcia, S. Alfredsson, and A. Brunstrom, “Delay metrics and delay
characteristics: A study of four Swedish HSDPA+ and LTE networks,” in
Proc. Eur. Conf. Netw. Commun. (EuCNC), Paris, France, Jun./Jul. 2015,
pp. 234–238.

[41] J. Huang et al., “An in-depth study of LTE: Effect of network protocol
and application behavior on performance,” in Proc. ACM SIGCOMM,
Hong Kong, 2013, pp. 363–374.

[42] T. Ojanperä and J. Vehkaperä, “Network-assisted multipath DASH using
the distributed decision engine,” in Proc. Int. Conf. Comput., Netw.
Commun. (ICNC), Feb. 2016, pp. 1–6.

[43] P. Houzé, E. Mory, G. Texier, and G. Simon, “Applicative-layer multi-
path for low-latency adaptive live streaming,” in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–7.

[44] X. Corbillon, R. Aparicio-Pardo, N. Kuhn, G. Texier, and G. Simon,
“Cross-layer scheduler for video streaming over MPTCP,” in Proc.
7th Int. Conf. Multimedia Syst. (MMSys), Klagenfurt, Austria, May 2016,
Art. no. 7.

[45] C. Diop and G. Dugué, C. Chassot, and E. Exposito, “Qos-oriented
MPTCP extensions for multimedia multi-homed systems,” in Proc.
IEEE AINA Workshop, May 2012, pp. 1119–1124.

[46] D. Jurca and P. Frossard, “Video packet selection and scheduling
for multipath streaming,” IEEE Trans. Multimedia, vol. 9, no. 3,
pp. 629–641, Apr. 2007.

[47] M. Khabbaz, K. Shaban, and C. Assi, “Delay-aware flow scheduling
in low latency enterprise datacenter networks: Modeling and perfor-
mance analysis,” IEEE Trans. Commun., vol. 65, no. 5, pp. 2078–2090,
May 2017.

[48] A. Alheid, A. Doufexi, and D. Kaleshi, “A study on MPTCP for toler-
ating packet reordering and path heterogeneity in wireless networks,” in
Proc. Wireless Days (WD), Mar. 2016, pp. 1–7.

[49] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, and O. Mehani, “DAPS:
Intelligent delay-aware packet scheduling for multipath transport,” in
Proc. IEEE Int. Conf. Commun. (ICC), Sydney, NSW, Australia,
Jun. 2014, pp. 1222–1227.

[50] U. Javed, M. Suchara, J. He, and J. Rexford, “Multipath protocol for
delay-sensitive traffic,” in Proc. 1st Int. Commun. Syst. Netw. Workshops,
Jan. 2009, pp. 1–8.

Per Hurtig received the M.Sc. and Ph.D. degrees in
computer science from Karlstad University, Sweden,
in 2006 and 2012, respectively. He is currently an
Associate Professor at the Department of Computer
Science, Karlstad University. His research inter-
ests include transport protocols, low-latency Internet
communication, multi-path transport, and network
emulation. He has participated in several interna-
tional research projects and is also involved in
Internet standardization within the IETF.

Karl-Johan Grinnemo (SM’11) received the Ph.D.
degree in computer science from Karlstad University
in 2006. He has worked almost 15 years as an
Engineer in the telecom industry; first at Ericsson
and then as a Consultant at Tieto. A large part of his
work has been related to Ericsson’s signaling system
in the mobile core and radio access network. Since
2014, he has been a Senior Lecturer at Karlstad Uni-
versity. His research primarily targets application-
and transport-level service quality. In recent years,
his research has to a large degree focused on the use

of multipath transport protocols such as multipath TCP to increase reliability
and throughput and decrease latency in IP networks. He has authored and co-
authored around 40 conference and journal papers, and is a Senior Member
of IEEE.

Anna Brunstrom received the B.Sc. degree in
computer science and mathematics from Pepperdine
University, Malibu, CA, USA, in 1991, and the
M.Sc. and Ph.D. degrees in computer science from
the College of William & Mary, Williamsburg, VA,
USA, in 1993 and 1996, respectively. She joined
the Department of Computer Science, Karlstad Uni-
versity, Sweden, in 1996, where she is currently
a Full Professor and the Research Manager of the
Distributed Systems and Communications Research
Group. She has a background in distributed systems,

but her main area of work over the last years has been in computer networking
with a focus on transport protocol design, QoS issues, cross-layer interactions,
wireless communication, and network security. She has authored/co-authored
10 book chapters and over 100 international journal and conference papers.

Simone Ferlin received the Dipl.-Ing. degree in
information technology with major in telecom-
munications from Friedrich-Alexander Erlangen-
Nuernberg University, Germany, in 2010, and the
Ph.D. degree from the University of Oslo, Norway,
in 2017. She is currently a Researcher at the Net-
work Architecture and Protocols Group, Ericsson
Research. Her research interests lie in the areas of
computer networks, transport protocols, congestion
control, network performance, security, and mea-
surements. Her dissertation focused on improving

robustness in multipath transport for heterogeneous networks with MPTCP.

Özgü Alay received the B.S. and M.S. degrees in
electrical and electronic engineering from Middle
East Technical University, Turkey, and the Ph.D.
degree in electrical and computer engineering from
the Tandon School of Engineering, New York Uni-
versity. She is currently a Senior Research Scientist
at Networks Department, Simula Research Labora-
tory, Norway, and an Associate Professor with the
University of Oslo, Norway. She has authored more
than 50 peer-reviewed IEEE and ACM publications
and she actively serves on technical boards of major

conferences and journals. Her research interests lie in the areas of mobile
broadband networks, multi-path protocols and robust multimedia transmission
over wireless networks.

Nicolas Kuhn received the master’s degree in aero-
nautical engineering in 2010. From 2010 to 2013,
he was a Ph.D. student at the Institut Supérieur
de l’Aéronautique et de l’Espace (ISAE) and at
the National ICT Australia (NICTA) to obtain a
Ph.D. from the University of Toulouse - EDMITT
in December 2013. From 2014 to 2015, he was
the Principal Investigator with the Institut Mines-
Télécom, Télécom Bretagne for the RITE European
Project. Since 2015, he has been with the Centre
National d’Etudes Spatiales as a Research Engineer.

His research includes transport layer issues in spatial telecommunications and
how the end-to-end service can be achieved in this challenging environment.
Thus, he also works on quality of experience, quality of service, access
methods, and cross-layer designs.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

