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Executive Summary 

The Government of India plans to optimize Crop Cutting Experiments (CCEs) and Gram 

Panchayat crop yield estimations using different technologies including satellite derived 

metrics and crop modelling techniques. The present study for Kharif season (2020) aims to 

Rice crop yield estimations in 25 districts of six states viz. Andhra Pradesh, Karnataka, Odisha, 

Tamil Nadu, Telangana and Uttar Pradesh. The study will use comprehensive and existing 

environmental, weather and management data along with satellite derived crop spatial data. 

This information will be modelled using statistical optimization techniques and DSSAT crop 

modelling to assess the yield estimations. 

The project will be executed by ICRISAT in partnership with Mahalanobis National Crop 

Forecasting Center (Ministry of Agriculture, India)  

Objectives: 

1. Rice Crop extent mapping for the study districts 

2. Conduct and assess crops cutting experiments using spatial statistical optimising 

technique for Rice crop of kharif season in the study districts.  

3. Crop yield estimation based on DSSAT crop simulations. 

Target Areas: 

     The pilot study allocated following twenty-five districts in six states for gram panchayat 

level rice crop yield estimation. 

S.No State District 

1 Andhra Pradesh Krishna 

2 West Godavari 

3 East Godavari 

4 Karnataka Raichur 

5 Mandya 

6 Davangere 

7 Mysore 

8 Shimoga 

9 Yadgir 

10 Uttar Pradesh Ballia 

11 Faizabad 

12 Deoria 

13 Tamil Nadu Thanjavur 

14 Telangana Jayashankar Bhupalpally  

15 Odisha Angul 

16 Baragarh 

17 Balangir 

18 Dhenkanal 

19 Kalahandi 

20 Kendujhar 

21 Koraput 
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22 Mayurbanj 

23 Nuapada 

24 Sundargarh 

25 Puri 

 

 

ICRISAT: Project implementation, monitoring, coordination and reporting 

 

Ground Data for Crop Classification 

Ground data were collected based on preliminary crop classification and near real-time satellite 

imagery, i.e., Sentinel-2 false color composites with tracking GPS using image processing 

software. The ground data were collected in a 30 m 9 30 m plot and included location, LULC 

categories, crop type and cropping pattern, methods of irrigation, farmers’ interviews 

(wherever possible), etc. Crop name and location data were collected at each point to validate 

crop type classification. Two independent datasets were collected: one for training and another 

for validation (Murali Krishna Gumma et al., 2022). 

Accuracy Assessment for Crop Classification 

Accuracy Assessment of Crop Type Maps Accuracy assessment of the maps was performed 

based on validation data. A ground survey samples were used to assess the accuracy of the 

classification map, by generating a confusion matrix, wherein columns represent field-plot data 

points, and rows represent results of classified rice maps in the confusion matrix. The confusion 

matrix contains corresponding class changes in a multidimensional table. The statistical 

approach of accuracy assessment shows multivariate statistical analyses such as Kappa to relate 

results from different classifications and regions; it is a degree of agreement between user and 

reference ground data with a score of homogeneity, or consensus. 

 

Rice Crop mapping - Methodology 

The process began with preparing NDVI maximum images for every 15 days of every month 

from June to December and stacked together and the crop mask was prepared using sentinel-1 

VH-min by giving threshold value of greater than -25 for easy extraction of croplands as well 

as transplant rice fields in Google Earth Engine (GEE) Platform. 

The NDVI images was prepared using normalised difference of Near Infrared (NIR) and Red 

(R) bands of Sentinel 2. 
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Fig 1: Flow Chart of Methodology of Rice crop mapping 

Spectral Matching Techniques: 

The stacked image downloaded from GEE consists of every 15 days for entire Kharif season. 

Unsupervised classification was used to generate initial classes(Murali Krishna Gumma et al., 

2020). The unsupervised ISOCLASS cluster algorithm (ISODATA in ERDAS Imagine 2018) 

run on the stack generated an initial 40 classes, with a maximum of 40 iterations and 

convergence threshold of 0.99. Though ground survey data was available at the time of image 

classification, unsupervised classification was used in order to capture the complete effect of 

all wavelengths over a large area. Use of unsupervised techniques is recommended for large 

areas that cover a wide and unknown range of vegetation types, and where landscape 

heterogeneity complicates identification of homogeneous training sites. Identification of 

training sites is particularly problematic for small, heterogeneous irrigated areas(Murali Krishna 

Gumma et al., 2022). 

Land use/land cover classes were identified based on temporal signatures along with ground 

survey data. We observed crop growth stages including length of growing periods (LGPs) and 

cropping pattern from temporal signatures, such as (a) onset of cropping season (e.g., monsoon 

and winter); (b) duration of cropping season such as monsoon and winter; (c) magnitude of 

crops during different seasons and years (e.g., water stress and normal years); and (d) end of 

cropping season. 

The process of labelling and class identification was done based on spectral matching 

techniques (SMTs) (Murali Krishna Gumma, Thenkabail, Deevi, et al., 2018; Murali Krishna Gumma 

et al., 2016; Murail Krishna Gumma, Uppala, Mohammed, Whitbread, & Mohammed, 2015). Initially, 

40 classes from the unsupervised classification were grouped based on spectral similarity or 
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closeness of class signatures. Each group of classes was matched with ideal spectral signatures 

and ground survey data, and assigned class names. Classes with similar time series and land 

cover were merged into a single class, and classes showing significant mixing, e.g., 

homogeneous irrigated areas and forest, were masked and reclassified using the same 

ISOCLASS algorithm. This resulted in following classes for each district. We employed a user-

intensive method that incorporates both ground survey data and high resolution imagery in 

order to avoid lumping classes that might be spectrally similar but have distinct land 

cover(Murali Krishna Gumma, Thenkabail, Teluguntla, & Whitbread, 2018).  

Areas estimated are attached as Annexure 2 

Following are the crop type classification images for all study districts (Fig 2): 

Andhra Pradesh 

 

Odisha 
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Tamil Nadu & Telangana 

 

Uttar Pradesh 

Karnataka 
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Fig 2: Crop Classification maps for study districts 

 

 

 

 

 

CCE’s Data Optimisation: 

 

The optimisation of CCE’s were carried out using following methodology (Fig.3). The process 

begin with collection of sentinel 2 NDVI Maximum data (available), climate data and soil map. 

 

The NDVI data with rice crop mask and respective climate and soil data were combined into 

homogenous stratum and collected random points using stratified sampling. By multiple 

regression techniques, the number of samples were reduced into half of random samples. 
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Fig.3 : Optimisation of Crop Cutting Experiments using remote sensing techniques 

 

Using above optimization, we instructed our field staff to collect the possible samples. 

 

In most of the districts, there was same soil type and no significant weather changes available, 

so, most of the stratification depends upon the NDVI. 

  

Improvements required for stratification: 

 High resolution soil data is required for analysis 

 There is a need to include agronomical parameters (cultivar types) for smart sampling  

 Weather data at possible lower administration level is required; 

 

 

CCE’s Data Collection: 

 

Based on spatial map of Crop extent, optimization and Leaf Area Index (LAI) of rice in their 

respective areas, the selection of CCE’s were shortlisted. LAI indirectly shows the health of 

the crop, which helps in locating the good crop fields as well as adverse fields for collection of 

CCE’s. 

 

The CCE’s was carried out by selecting 5m X 5m plot of field, manually harvested and 

weighted as shown in following images. 

 

The total number of 160 samples were collected for each district (Annexure 1). 

 

Locations of CCE’s collected (Fig 4) 

 

Uttar Pradesh 
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Odisha 
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Andhra Pradesh 

 

 
Telangana 

 
 

Karnataka 

 
 

Fig 4: CCE’s distribution across study districts 

 

 

5. Leaf Area Index  

 

This study used MODIS derived LAI and also sentinel -2 derived LAI index. 
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• Based on the fact that the spectral response of leaves is unique compared to that of 

other parts of the plant. 

• Vegetation indices – NDVI, EVI, SAVI, etc. – have shown high positive correlation 

to LAI. 

• With a limited field data consisting of LAI values at few locations, regression 

equations can be arrived at, relating LAI to spectral vegetation indices. 

• METRIC (Measuring Evapotranspiration at high Resolution with Internalized 

Calibration) model has developed a relation between LAI and Sentinel 2-derived Soil 

Adjusted Vegetation Index (SAVI). According to METRIC model, 

𝐿𝐴𝐼 =
−ln(

0.69 − 𝑆𝐴𝑉𝐼
0.59

) 

0.91
 

For Landsat-8 images used in this study, SAVI is computed from the formula: 

𝑆𝐴𝑉𝐼 =
(1 + 𝐿) (𝐵8 − 𝐵4)

𝐿 + 𝐵8 + 𝐵4
 

Where L is a soil factor, taken to be 0.1, B8 in the spectral reflectance in band 8 (Near 

Infrared) and B4 is the spectral reflectance in band 4 (Red). 

 

Due to Coarse resolution of MODIS, the study uses LAI derived from Sentinel 2. 

Compared both values and used the optimised values. 

 

LAI values were extracted for every CCE location and validated against the DSSAT crop model 

LAI  

                                         

Integration of remote sensing LAI products with crop simulation models 

for better crop yield estimation 

1. Introduction 

Timely and accurate prediction of crop yield is important for agricultural land management and 

policy making. Several studies have demonstrated the utilization of satellite data in crop yield 

estimation. However, majority of studies used methods of empirical nature and they work only 

for specific locations, crops, cultivars and for a particular crop growth stage.  Cropping system 

models and remote sensing tools are two different methodologies often used to answer some 

of the agronomic questions at various levels such as field and regional scales. Several 

researchers used these technologies independently however information derived from remote 

sensing is used to update cropping systems model simulations in recent times as both these 

technologies are complementary.  

 

Keeping in view the complimentary nature of these technologies several researchers started 

integration of remote sensing data with crop growth simulation models found to be a promising 

option for crop growth monitoring and yield estimation.  However, each technology has its 

own advantages limitations. For example use of remote sensing as a temporal crop analysis 

tool is limited due to availability of cloud free time-series remote sensing data and difficulties 

in accurate LAI estimation from remotely sensed data.  
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Similarly cropping systems models are often limited by data availability such as information 

on cultivar, management, soil, and meteorological inputs for spatial simulations. Uncertainties 

associated with spatial simulations can be reduced by periodically readjusting the simulation 

using spatial information from remote sensing images. 

 

Several remote sensing data assimilation methods at various complexity levels were tried 

mostly either by directly using remote sensing data in the simulation models, updating the state 

variables or re parameterization of the model using remote sensing data in recent years. 

 

In this study, we used the technique of re- parameterization of crop simulation models based 

on the several iterations using remote sensing input such as leaf area index(LAI) as it is 

supposed to be the highest degree of integration. The essence of the data assimilation approach 

is to improve the initial parameterization of the crop growth model and augment simulation 

with the use of remotely sensed observations. 

 

2. Methodology 

 

The methodology (Fig 5) includes crop model data mainly soil, weather and crop 

management data and its integration with remote sensing data. 

 

 

2.1.Data collection 

 

Crop Cutting Experiments (CCE) is an assessment method employed by governments to 

estimate the crop yield in the region given cultivation cycle. The traditional method of CCE is 

based on the yield component method where sample locations are selected based on a random 

sampling of the total area under study.  In the current analysis, we identified few mandals in 

study districts in six states six states viz. Andhra Pradesh, Karnataka, Odisha, Tamil Nadu, 

Telangana and Uttar Pradesh., to test the methodology. Data assimilation from remote sensing 

products such as leaf are index (LAI) in to cropping system models to predict crop yield in 

CCE sites. We have collected GPS location, date of sowing, irrigated vs rainfed and other 

management details from CCE location if available. 

 

2.2.Soil data 

Biophysical crop simulation models normally require profile-wise soil data. For each CCE 

location, soil inputs to the model were obtained from a set of soil profile data available from 

ICRISAT data repository and NBSSLUP data bases. We also used certain parameters in soil 

as free variable. Soil physical and chemical properties such as texture, hydraulic parameters, 

bulk density, organic matter and available N were extracted for each location based on the 

available soil profile data. Additional soil parameters such as soil albedo, drainage constant, 

and runoff curve number were estimated based on soil texture and converted using the generic 

soil database available in the DSSAT-models. 

 

2.3.Weather data 
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The weather data such as daily maximum temperature, minimum temperature, rainfall and solar 

radiation data was collected from Automatic Weather Stations (AWS) stations of respective 

state authorities. If AWS data not available, NASA power data was used for analysis. 

  

2.4.  The Cropping System Model 

 

The Cropping System Model (CSM)–Crop Environment Resource Synthesis (CERES)–Rice 

crop growth model as provided in the Decision Support System for Agro technology Transfer 

(DSSAT) were used for yield simulations. Daily biophysical crop information (e.g., LAI, 

biomass) was generated with the help of the crop growth model. Input data such as soil 

conditions, weather and management data (planting date, seed rate and fertilizer application 

rates) were prepared for each CCE location. The most common cultivar types representing a 

major part in the CCE location were used. Cultivar parameters were sourced from the ICRISAT 

data bank and from published literature. If the required cultivar parameters were not available, 

they were matched with cultivar of a similar duration. Nutrient supply, mainly nitrogen, was 

set as a free variable. The basal application dose was matched with planting date, and the 

remaining application rates and times were set as free variables. 

 

 
Fig 5. General methodology of the data assimilation approach integrating remote sensing data 

with crop growth models for crop yield estimation 

 

 

2.5. Assimilation of Remote Sensing Data into Crop Growth Model for Yield Estimation 

 

Remote sensing data assimilation methods with various levels of complexity have been tried, 

either by directly using remote sensing satellite data in simulation models (Doraiswamy, Moulin, 
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Cook, & Stern, 2003; Olioso et al., 2005), by updating state variables or by re-parameterization of 

the model using remote sensing satellite data (Fang, Liang, & Hoogenboom, 2011; Jin et al., 2017)., 

we used the technique of re-parameterization of crop simulation models through several 

iterations using remotely sensed LAI estimates; this technique is supposed to best integrate 

crop growth conditions. The data assimilation approach helps with initializing parameters of 

the crop growth model and improve simulations with the help of remotely sensed satellite 

observations. The optimization process starts with initial model parameterization by adjusting 

the free parameters so that the model-simulated LAI is in agreement with the Sentinel-2 LAI 

observations (Eq. 1). The simulated LAI values depend on the values of the free variables (e.g., 

planting date, nitrogen dose, soil profile parameters) that are generated by minimizing the value 

of the following cost function. The remote sensing LAI data were collected for six times during 

the crop growth period. 

 

                               --- Equation -1 

 

Where LAIS (ti), LAIM (ti) are the simulated and measured LAI at time ti, respectively. 

Using a cost function measuring the distance between the simulated state variables and 

observed ones, the method employed automatically adjusts the set of model input parameters 

until the difference between the Sentinel 2 LAI and the crop model-simulated LAI is 

minimized. Finally, using this optimization algorithm, crop yields were predicted at each CCE 

location by obtaining a new set of parameters or initial values and allowing a simulation that 

resembles better observations. The technique we used was a frequently applied re-calibration 

methodology that enabled us to estimate the yields of rice successfully and compare them with 

observed yields with significant accuracy at each CCE location. The data assimilation approach 

proved to be reliable and shows great potential in providing yield prediction data at the village 

level. In this study, since LAI is the only link between the crop growth model and remotely 

sensed data, the accuracy of the model and final predictions with optimized datasets depends 

on the quality of remotely sensed LAI data 

2.6. Calibration of DSSAT and Validation of yield data at GP level 

 

DSSAT crop models require genetic coefficients, which are cultivar specific for describing 

processes related to growth and development and grain production. These coefficients allow 

the model to simulate performance of diverse genotypes under different soil, weather and 

management conditions. The model was calibrated using field measured values of weather 

parameters, crop management and soil properties during the cropping season. In our previous 

studies as a part of Agricultural Model Intercomparison and Improvement Project (AgMIP) 

phase I & II, we have calibrated CERES-rice model for various cultivars of different duration  

 

As, the model was run at CCE plot level, the observed yield of every CCE collected was 

validated against the crop model yield generated by re-parameterization of the model free 

variables using remote sensing LAI  data. The rice yields  depends mainly on crop management 

practices followed mainly nitrogen amount and time of application,  irrigation application rates, 
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cultivar duration etc.,   The village mean yield was calculated with collected CCE yield and 

corresponding simulated yields.  

 

As some times models may underestimate LAI as seen in several published literature and hence 

we re-parameterized the CERES rice model variables using LAI developed from remote 

sensing data at regular intervals during crop growth period. However, the accuracy issues for 

remote sensing LAI may be possible due to due to cloud conditions and varying spectral 

indices. Further improvements of the Landsat-derived LAI and vegetation index products are 

necessary, especially during the beginning of the growing season and continued data during 

the crop growth period. There is also an immediate need to further invest in studying 

relationship between remote sensing derived LAI product and field LAI observations across 

locations to understand the accuracy of remote sensing LAI predictions 

 

Future Improvements: 

 Improvements in LAI predictions 

 Use of remote sensing derived dry matter production and other indices in 

addition to LAI to re-parameterization of model free variables for improving 

accuracy of predictions  

 Exploring the possibility of establishing a good network of AWS stations for 

accurate location specific daily weather data  for better prediction of crop yields 

 

3.0. Study sites –Results 

 
3.1 East Godavari 

 

R2 
0.805070039 

 

RMSE 412.4811875  

IoA 0.735168768  

T-test 0.379431032 Non-Significant 
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3.2 Krishna 

 

R2 0.745332892  

RMSE 554.2833264  

IoA 0.709312002  

T-test 0.373055539 Non-Significant 

3.3 West Godavari 

 

R2 0.809268986  

RMSE 234.8321176  

IoA 0.703002914  

T-test 0.415345658 Non-Significant 

 

3.4 Angul 
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R2 0.809570741  

RMSE 318.5945499  

IoA 0.698830945  

T-test 0.491766652 Non-Significant 

3.5 Balangir 

 

R2 0.796533052  

RMSE 629.9761184  

IoA 0.758597507  

T-test 0.130372327 Non-Significant 

 

3.6 Baragarh 
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R2 0.813802407  

RMSE 788.8227258  

IoA 0.759050185  

T-test 0.740622404 Non-Significant 

 

 

 

 

3.7 Dhenkanal 

 

R2 0.829999301  

RMSE 507.5132163  

IoA 0.701486924  

T-test 0.202743099 Non-Significant 
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3.8 Kalahandi 

 

R2 0.807863397  

RMSE 768.1396821  

IoA 0.717659102  

T-test 0.056647698 Non-Significant 

 

3.9 Keonjhar 

 

R2 0.807042616  

RMSE 467.5801461  

IoA 0.736499989  

T-test 0.582791212 Non-Significant 
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3.10 Koraput 

 

R2 0.783387222  

RMSE 640.3160954  

IoA 0.753353225  

T-test 0.645961675 Non-Significant 

 

3.11 Mayurbhunj 

 

R2 0.758454997  

RMSE 546.6680645  

IoA 0.735784007  

T-test 0.369803373 Non-Significant 
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3.12 Nuapada 

 

R2 0.806733422  

RMSE 667.3681166  

IoA 0.747602367  

T-test 0.175054281 Non-Significant 

3.13 Puri 

 

R2 0.873651647  

RMSE 427.6400285  

IoA 0.74687204  

T-test 0.493874411 Non-Significant 

 

3.14 Sundargarh 
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R2 0.799976516  

RMSE 553.7189567  

IoA 0.721454228  

T-test 0.294386185 Non-Significant 

 

 

 

3.15 Ballia 

 

R2 0.678886  

RMSE 258.087674  

IoA 0.75005872  

T-test 0.56214495 Non-significant 
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3.16 Deoria 

 

R2 0.73133117  

RMSE 354.233123  

IoA 0.77110869  

T-test 0.05851086 Non-Significant 

 

3.17 Faizabad 

 

R2 0.67266026  

RMSE 519.864103  

IoA 0.7174809  

T-test 0.95079523 non-Significant 
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3.18 Davangere 

 

R2 0.764616226  

RMSE 605.4463118  

IoA 0.703079202  

T-test 0.293607104 Non-Significant 

 

 

 

3.19 Mandya 

 

R2 0.820219975  

RMSE 453.4588717  

IoA 0.734492488  
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T-test 0.531536949 Non-Significant 

 

3.20 Mysore 

 

R2 0.823101971  

RMSE 540.5912204  

IoA 0.72907445  

T-test 0.393425463 Non-Significant 

 

3.21 Raichur 

 

R2 0.724394874  

RMSE 408.170065  

IoA 0.770657505  

T-test 0.166536234 Non-Significant 
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3.22 Shivmogga 

 

R2 0.767856933  

RMSE 385.6849216  

IoA 0.745696817  

T-test 0.159906211 Non-Significant 

 

3.23 Yadgir 

 

R2 0.762117484  

RMSE 355.0286645  

IoA 0.758430529  
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T-test 0.438218204 Non-Significant 

 

3.24 Jayashankar Bhupalpally 

 

R2 0.827106657  

RMSE 363.6228963  

IoA 0.725159157  

T-test 0.066189445 Non-Significant 

 

4.0. Comparing Sentinel (10m) and Planet scope (3m) Data 

 

This study also compared the classification maps derived from Sentinel (10m) and 

Planet scope (3m) satellite imagery (Fig 6). This helps in finding the noise in crop 

classification maps and also helps in attaining good accuracy in classification of other 

land use land cover. 

 

The comparison was done by picking some area of district and observed the changes in 

classification. 
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Fig 6: Comparing Sentinel and Planet scope derived classification maps 

 

• For rice dominant areas (West Godavari), 10m has less noise in classification and where 

trees vegetation is dominant (Faizabad), there is possibility of high noise  

• High resolution 3m data is highly useful for identification of rice class, where rice crop 

is not dominant 

• The red colour indicates the other classes which is mixed with rice class in 10m 

resolution data 

 

5.0. Spatial Distribution of Yield 

 

Attached as Annexure 1 

 

6.0. Challenges and improvements 
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This study indicates the importance of LAI in the data assimilation process and that the 

incorporation of LAI can improve crop yield prediction. However, the following points need 

to be considered to further improve the yield prediction.  

 

1. Collection of cloud-free time-series remote sensing data during the cropping season (at 

least fortnightly if not weekly) for assimilation of data in crop models for improving 

modeling efficiency. 

2. There is a need to study the relationship between remote sensing derived LAI product 

and final yields of various crops especially in rain-fed regions. 

3. Further improvements of the Sentinel 2 -derived LAI and vegetation index products are 

necessary, especially during the beginning of the growing season and continuous data 

during the crop growth period. 

4. The availability of location-specific weather data is the key for proper simulations with 

crop simulation models. In some states there exists a good network of AWS stations, 

however the majority of other locations this is major lacunae. 
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Annexure 1: 

 

 

 

R-

Squared
RMSE

Index of 

Agreement
T-test

1 Krishna 170 171  85.38 161 159    0.745 554.3 0.709 0.373

2 West 

Godavari
126 145


84.14 161 132

  
0.809 234.8 0.703 0.415

3 East Godavari 160 138  86.96 163 168    0.8 412.5 0.735 0.379

4 Raichur 47 162  84.32 161 160    0.7243 408.2 0.7706 0.167

5 Mandya 69 171  87.72 171 160    0.8202 453.5 0.7344 0.532

6 Davangere 161 169  85.21 161 60    0.7646 605.4 0.703 0.293

7 Mysore 69 161  86.96 174 149    0.823 540.6 0.729 0.393

8 Shimoga 116 146  83.56 166 100    0.767 385.7 0.745 0.16

9 Yadgir 183 175  85.71 161    0.762 355 0.758 0.438

10 Ballia 209 144 179  88.89 161    0.678 258.1 0.75 0.56

11 Faizabad 203 144 128  86.81 168    0.672 519.9 0.717 0.95

12 Deoria 195 180  86.67 165    0.731 354.2 0.77 0.05

13 Tamil Nadu Thanjavur   

14
Telangana

Jayashakar 

Bhupalapally 
162 157


85.35 160 80

  
0.8271 363.6 0.725 0.066

15 Anugul 214 141  82.98 161 59    0.809 318.6 0.698 0.491

16 Bargarh 257 170  84.12 161 48    0.813 788.8 0.759 0.74

17 Bolangir 257 168  85.71 161 61    0.796 630 0.758 0.13

18 Dhenkanal 148 173  83.82 161 53    0.8299 507.5 0.701 0.202

19 Kalahandi 177 155  85.16 161 58    0.807 768.1 0.717 0.057

20 Kendhujar 187 174  87.93 161 56    0.807 467.6 0.736 0.582

21 Koraput 196 152  84.12 161 72    0.7833 640.3 0.7533 0.646

22 Mayurbanj 256 159  92.45 161 122    0.758 546.7 0.735 0.369

23 Nuapada 223 159  84.28 161 101    0.8067 667.4 0.747 0.17

24 Sundargarh 194 151  86.09 161 53    0.799 553.7 0.721 0.294

25 Puri 44 140  92.14 161 10    0.873 427.6 0.746 0.493

4023 3805 883 3904 1861

STATES.NO

YIELD

Andhra Pradesh

Karnataka

Classification

_Accuracy
ClassificationGT_BhuvanGT_ValidationDISTRICT WEATHERSOILLAI

CCE_Bhu

van
CCEGT_Training

Uttar Pradesh

Odisha

456

59

61
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#IFPRI Component – Picture Based Analysis 

GP level crop yield estimation by integration of biophysical model with 

near surface remote sensing derived parameters 

1. Introduction 

IFPRI’s role in the project was to analyze whether the use of smartphone images for targeted 

crops improves the accuracy of crop model-based predictions of GP-level yields. Past efforts 

of this approach have focused on studies on wheat in Haryana, where we have used 

interpolation of images throughout the season—and, as a more scalable approach, applied 

convolutional neural networks on individual images—to estimate growth stages (Hufkens et 

al., 2019) and identify visible crop damage in smartphone images of wheat (Ceballos et al., 

2020). Since project funding was insufficient to cover image acquisition throughout the season, 

we focused on images taken at the time of the CCEs, and hence do not analyze results around 

estimated growth stages (see Afshar et al., 2020 for more information on how visible 

information on growth stages can improve yield predictions).  

Instead, we focus on the use of images to identify visible crop damage and explain gaps 

between actual and modeled yields. Specifically, we do not estimate yield directly from the 

smartphone images, but rather assume that whereas potential yields can be predicted largely by 

biophysical crop models, for which we utilize ICRISAT’s crop model outputs. These models 

will not account for any mechanical damage that may have reduced yields below potential 

levels. Our objective, then, is to analyze to what extent visible damage identified in the 

smartphone images can be predicted using machine learning (specifically, using convolutional 

neural networks or CNNs); and if so, to what extent the gap in predicted or potential versus 

actual or measured GP-level yields is correlated with the extent to which we observe visible 

damage in a given GP. 

 

2. Methodology 

2.1 Damage Detection 

 

The smartphone images of crops were all captured during the maturity stage, since photos were 

acquired at the time of the CCEs. These photos were utilized to detect damage and estimate the 

extent of damage in two ways: by labeling of images based on visual inspections by agronomic 

experts; and by using the resulting image labels to train convolutional neural networks for 

classifying images in terms of whether crops were visibly damaged by hazards such as 

hailstorms, lodging or pests and disease. These types of mechanical damage, often localized, 

are not captured in crop growth models that predict potential yields but would cause losses 

relative to potential yields. As final step, we therefore estimated a ‘corrected’ statistical crop 

model that accounts for non-simulated mechanical damage visible in the smartphone images 

of crops, which we would expect to improve accuracy of yield estimation.  

 

Analysis of Images: Image pre-processing, filtering, and labeling 
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A total of 5,422 images were available. There were multiple types of images. For each of the 

fields studied, ICRISAT had provided images with a south-west view, a panoramic view, a 

granular view, and plot marking images. Only panoramic and granular view images are 

considered for analysis. Images were also rotated, and crops were not always in a near vertical 

orientation. To ensure that crops were vertically aligned, we rotated images by 90 degrees. To 

determine whether an image needed to be rotated clockwise or counterclockwise, we developed 

an algorithm to detect orientation of the images and correct the image orientation. Moreover, 

all images had a portion of the images rendered unusable because image meta-data were printed 

over the images. We recommend that applications used when conducting CCEs allow for these 

image meta-data to be removed from images themselves, and are stored in auxiliary datasets 

or in the image filenames instead, since the stamps printed over the images reduce value for 

future image processing.  

 

We pre-processed these images to improve model performance. As a first step, the portion of 

the image which contained image meta data was cropped away. Given the relatively smaller 

number of images in the dataset, as a second step, we cropped images so that only crop 

information was preserved, and extraneous information such as the sky were removed. 

Additional algorithms were developed to achieve these tasks quickly. Several enhancements 

were made to the modelling to improve accuracy. First, contrast normalization was done to 

eliminate the effects of images having been taken at different times of the day. Given that the 

number of images were small, image augmentation was done on the fly to simulate a larger 

dataset. These augmentations allowed for mirror images of the input images and small changes 

in rotation angles, color and contrast characteristics of the images. Finally, we removed blurry 

and non-significant images. 

 

Out of 5,422 images, we remained with 2,451 images, out of which we selected only images 

that were in the ripening and maturity stage, since those are the stages during which the CCEs 

can be conducted and during which principal damage occurs. This leaves us with 2,419 images, 

for which we assigned labels to the images indicating growth stages, the incidence (and cause 

of) visible damage, and if damaged, the extent of the damage. In the present analyses, we do 

not use information on growth stages, because there was little variation in growth stages given 

that all images were taken at the time of the CCEs; instead, we focus on the incidence, cause 

and extent of any visible crop damage.  

 

The incidence and causes of visible damage are summarized in Table 1, which provides the 

number of instances obtained—and associated percentages—for each class of damage. Each 

image was assigned only a single damage label. Out of 2,419 images, about one fifth was 

classified not to have any visible damage. More than one third of all images was diagnosed to 

have visible damage from a disease (or a pest in a minority of cases), and more than one quarter 

of all images were classified to have damage from weeds. Another major class was formed by 

images in which crops were visibly damaged by heavy winds or lodging (15 percent). Floods, 

low plant population, nutritional deficiency and drought were detected in only a small minority 

of images. 
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Table 1: Types of damage obtained from image labeling 

Damage Type Nr images Percentage 

Good (no damage) 491 20.30 

Disease 877 36.25 

Weed 642 26.54 

Wind 364 15.05 

Pest 21 0.87 

Flood 8 0.33 

Low plant population 7 0.29 

Nutritional deficiency 6 0.25 

Drought 3 0.12 

Total 2419 100.0 

Agronomists also labeled all 2,419 images in terms of the extent of damage, estimated in 

percentages (see Table 2). As in Table 1, in about one fifth of all images, we did not find any 

evidence of visible crop damage (there are 16 images with disease, wind and weed damage 

whereby experts assessed that the damage was minimal, and as a result, 507 images are 

classified to have zero percent damage in Table 2, even though in Table 1, there are 491 images 

labeled to not have any damage). Most images were classified to have some damage, either 

10% (more than a quarter of all images), or 20% (more than a fifth of all images). More severe 

damage was visible in the remaining 30 percent of all images. The image labels presented in 

Tables 1 and 2 were used to train machine learning models, as discussed in the next section. 

Table 2: Extent of damage obtained from image labeling 

Extent of Damage  Nr Images Percentage 

0% 507 21.0 

10% 648 26.8 

20% 521 21.6 

30% 302 12.5 

40% 136 5.63 

50% 148 6.13 

60% 42 1.74 

70% 30 1.24 

80% 52 2.15 

90% 33 1.37 

Total 2419 100.0 

 

Damage Category Classification 

In training our machine learning models, we combined the categories for drought, flood, low 

plant population and nutritional deficiency into an ‘other’ category, which we dropped from 

the analyses, since these categories included only a small number of observations, and 

constituted only 1.04% of the total number of images. Alternative model architectures were 
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also examined, for instance with these other images included, but the final predicted classes 

including “Good (no damage)”, “Disease”, “Wind” and “Pest” (with “Other” omitted from the 

analyses). 

Table 3 provides the confusion matrix for the final image classification result, showing that the 

model assigns the majority of images to the same category as the actual label. For instance, we 

classify 91.7% of all images without visible damage into the ‘good health’ category; 95.2% of 

images with disease damage are accurately classified into the ‘diseased’ category; 93.8% of 

images with pest damage are classified into the ‘pest’ category (all but one of 16 images with 

visible pest damage); 92.2% of images with weed damage are accurately classified as such; 

and the model identifies wind damage in 90.1% of all cases where experts indeed identified 

wind damage. This is encouraging in terms of the scalability of an image-based approach; 

provided that farmers are able to send in these images, one can use automated image processing 

techniques to identify the cause of damage. 

 

Table 3: Confusion Matrix with final damage classes 

 

 

Extent of Damage Classification 

A second model, using the architecture of the classification model that was developed to predict 

the incidence and cause of damage, was developed to estimate the extent of damage. The model 

used root mean square error as the loss function. Threefold cross validation was used again to 

assess the consistency in the results. Several architectures were considered. The root mean 

square error obtained in the threefold cross-validation are 6.13%, 7.80% and 7.17%. The 

correlation coefficients between the actual and predicted and the actual values are 0.801, 0.679, 

and 0.672. The figure below provides a scatter plot of the observed extent of damage (in 

percentages, as determined by experts) against the predicted extent of damage by the 

Actual/Predicted Good Health Diseased Pest Wind Weed Total

Good Health 354 19 7 5 1 386

Diseased 0 657 5 25 3 690

Pest 0 1 15 0 0 16

Wind 1 16 4 265 8 294

Weed 2 28 2 11 510 553

Not Classified 0 0 0 0 0 0

Total 357 721 33 306 522 1939
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convolutional neural network, providing visual evidence of the strong correlation between the 

extent of damage assessed by experts and the damage predicted by the model. 

 

 

 

2.2 Building statistical models based on type and extent of damage 

 

Biophysical crop models such as ICRISAT’s [DSSAT] are commonly used to predict yield 

responses to weather, management practices, soil types and cultivar types. However, a 

challenge to applying this approach for estimating yields in real-world systems is that key input 

variables (e.g. plot-level management practices) and deviations from potential yields due to 

mechanical—often localized—damage are not captured by these models, and they are not 

easily monitored or observable without time consuming and costly field surveys. Crop models 

predict potential yields and do not estimate mechanical damage, for example damage caused 

by hailstorms, lodging due to high winds, or pests and disease. 

In this study, we address this challenge by combining the predictive capacity of crop models 

with measurable information derived at low cost from scalable smartphone imagery. The idea 

is to detect the occurrence of mechanical crop damage on individual plots, so that area-yield 

predictions based on our statistical model can be adjusted to account for these additional crop 

losses. To identify whether there is visible mechanical damage, and to assess the extent of the 

damage, we use smartphone images. 

The estimates of crop damage are combined with potential yields predicted by ICRISAT’s crop 

model in the following regression equation: 

𝑌𝑖𝑣 = 𝛼 + 𝑌𝑣
�̂�𝛽1 + 𝐃𝒊𝒗𝛽2 + 𝜀𝑖𝑣, 

 

whereby 𝑌𝑖𝑣
𝑚 is the yield predicted by the biophysical crop model (estimated by ICRISAT) for 

site 𝑖 in village 𝑣, 𝐃𝒊𝒗 is a vector with (1) the actual image labels (type of damage dummies 



 

37 
 

and intensity of damage + interactions with type of damage) or (2) predicted labels from the 

damage classification model, and 𝜀𝑖𝑣 is an error term, which we assume is clustered at the 

village level. We also control for district fixed effects (i.e., we include a separate intercept 𝛼 

for each district). 

 

3. Result and Discussion  

 

3.1 Descriptive analysis of data 

Table 4 describes the final image data used in the analyses (for which we have both predicted 

yields from the ICRISAT model and image data, and excluding the images with damage labels 

that were classified into the ‘other’ category), with the percentage of images classified in each 

of the different health categories at the site and GP level. Data are available for 1,159 GPs, 

with on average 1.69 images per GP. This is well below the targeted number of 4 CCEs per 

GP, meaning that the images provide merely a snapshot at the GP level, which will likely have 

implications for the extent to which GP-level yield measurements correlate with the extent of 

damage assessed from smartphone images for that GP. 

 

Table 4: Percentage of images classified in health categories and probability of 

classification in health categories.   

Health Category Labelled Predicted Probability of classification 

 

Site Level 

       

Diseased 35.2 36.8 0.33 

Good Health 19.7 18.2 0.24 

Pest 0.8 1.7 0.03 

Weed 28.2 26.6 0.20 

Wind 15.0 15.6 0.20 

Total 1,961 1,939 1,961 

       

GP-Level      

Diseased 38.29 39.47 0.34 

Good Health 19.38 17.93 0.24 

Pest 1.12 1.97 0.03 

Weed 27.61 26.08 0.20 

Wind 12.51 13.46 0.19 

Total 1,159 1,159 1,159 

 

The figure below shows a histogram of CCE and simulated yield values. We find that CCE and 

simulated yield values are close to one another, indicating that farmers may not have had losses 

due to mechanical damage at a large scale. This will potentially limit the room for the images 
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to explain additional variation in the CCE yields that is not captured by the simulated yield 

values estimated using the ICRISAT crop model. 

 

Histogram of Simulated Yield distribution and CCE yield distribution.  

 

 

 

 

 

 

 

 

Table 5 provides other data used in the analyses, including simulated yields from the ICRISAT 

model (a measure of potential yields), actual yields measured through the CCEs, and the 

percentage of crop damage based on the image labels (labelled crop damage) versus the 

predictions from the convolutional neural networks (predicted crop damage), along with an 

estimate of the quantity lost based on the actual versus predicted image labels. Column (1) 

provides these statistics for all sites, including sites both with and without crop damage visible 

in the smartphone image. Column (2) includes only sites with damage. Columns (3)-(6) 

disaggregate this further into sites with visible damage due to disease, pest, weed and wind, 

respectively. 

We do not find that sites with damage have significantly lower yields based on the CCEs 

compared to sites without damage. In fact, sites in which agronomists identified diseases, yields 

are above average. Yields are lowest for sites with damage due to weed, which we classify as 

mismanagement. Simulated yields follow this trend, raising the question whether the modeled 

yields capture the types of damage that a program such as the PMFBY would want to insure. 

Overall, there is no major gap between simulated or potential yields and CCE yields, indicating 

that there is little room for mechanical damage observed from smartphone images to explain a 

discrepancy between potential and actual yields, with one exception: in the case of pest 

damage, we find that CCE yields are lower than average, but simulated yields are above 

average; and the estimated quantity lost is above average for these cases based on both the 

labelled and predicted estimates of crop damage. Here, images could potentially explain a 

discrepancy between potential and actual yields, although the number of images with visible 

pest damage is small, limiting the extent to which we can make inference based on the data. 
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Table 5: Descriptive statistics  

    

  

All sites 

Sites with damage 

    All 

Disease 

 Pest Weed Wind 

  (1) (2) (3) (4) (5) (6) 
        

CCE yield Mean 4503 4497 4708 4540 4286 4383 

  Std. dev. 1504 1535 1510 1511 1534 1524 

        

Simulated yield Mean 4509 4502 4716 4950 4315 4311 

  Std. dev. 1480 1509 1504 1491 1472 1511 

Labelled crop damage:         

Percentage damage Mean 21 26 24 29 21 40 

  Std. dev. 20 19 19 19 13 24 

Quantity lost* Mean 949 1179 1187 1550 904 1621 

Std. dev. 992 977 1083 1168 652 1040 

Predicted crop damage:         

Percentage damage Mean 23 26 26 21 22 38 

  Std. dev. 21 22 22 23 17 25 

Quantity lost* Mean 1017 1182 1260 1137 937 1526 

Std. dev. 1049 1089 1231 1304 795 1101 

Number of observations   1961 1575 690 16 553 294 
* Calculated as the percentage of damage times the simulated potential yields. 

 

3.2 Performance of statistical yield models for predicting CCE-level yields 

As a next step, we analyze to what extent crop damage identified in smartphone images are 

correlated with deviations between modeled and actual CCE yields at the level of an individual 

site, before aggregating data at the GP level. To that end, we regress measured yields (from the 

CCEs) on the yields predicted by the ICRISAT model, and on quantity lost due to crop damage, 

controlling for district fixed effects (to focus on variation in yields within districts). This is the 

basic model estimated in Column (1) of Table 6. In Column (2) we also control for the type of 

damage that is visible in the image of a given CCE site, and in Column (3) we include 

interaction terms for the type of damage and the percentage of damage that is visible in the 

crop pictures. 

A major challenge in these analyses is that potential yields, estimated with the ICRISAT model, 

are so closely correlated with measured yields that there is little room for images to explain 

any further variation. Even when controlling for district fixed effects in Column (1), potential 

yields explain 79.6 percent of the variation within districts. A model that indeed performs that 

well in predicting actual yields would reduce the need for any additional technology, such as 
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smartphone images to estimate localized mechanical damage, but with an R-squared of 0.796 

after controlling for variation between districts, we believe that the model used to estimate 

potential yields is likely overfitted, and we do not have access to the data on whether a sites 

has been included as training or validation data point, which could help rule this out. 

Table 6: Regressions for CCE-level yield predictions 

  

Dependent variable: Yield   

  (1) (2) (3) 

     

Modeled yields 0.892*** 0.894*** 0.894*** 

  (0.0222) (0.0228) (0.0229) 

Quantity lost 0.000167 0.000111 0.00309 

  (0.000179) (0.000174) (0.00198) 

Health = 1, Diseased  4.992 17.9 

   (31.64) (32.59) 

X % damage   -0.00308 

    (0.00198) 

Health = 2, Pest  -371.3*** -257.1** 

   (111.9) (93.82) 

X % damage   -0.00373 

    (0.0024) 

Health = 3, Weed  -39.4 -47.87 

   (36.26) (43.95) 

X % damage   -0.00283 

    (0.00194) 

Health = 4, Wind  49.84 43.92 

   (39.6) (40.98) 

X % damage   -0.00292 

    (0.00208) 

Constant 466.1*** 469.2*** 463.0*** 

  (96.82) (104.1) (105.2) 

Number of Districts 19 19 19 

Mean Yield - CCE 4532 4532 4532 

Observations 1,939 1939 1,939 

R-squared 0.796 0.798 0.798 

Note: Robust standard errors in parentheses clustered by GP. All estimates are controlling for district fixed 

effects, and the R-squared is the proportion of variation explained within districts.  

*** p<0.01, ** p<0.05, * p<0.1       

 

3.3 Performance of statistical yield models for predicting GP-level yields 

Table 6 estimates the regression equation specified above with all variables aggregated at the 

GP instead of CCE level. That is, we regress GP-level yields measured through CCEs on the 

potential yields in the GP predicted by the ICRISAT model (‘Modeled yields’), and quantity 
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lost due to crop damage for a given GP, as estimated from the smartphone images available for 

that GP. Column (2) adds the proportion of sites for which images have been classified to have 

different types of damage, and in Column (3), we add interaction terms for this variable and 

the average quantity lost as inferred from the smartphone images available for that GP (both 

variables are demeaned so that the coefficients for the main effects can be interpreted as the 

marginal effect at the average quantity lost and the average proportion of sites with damage 

from different types of causes). We again control for district effects to focus on explaining 

within-district variation. 

In the first column, we find a close correspondence between actual yields measured from CCEs 

and modeled yields: an increase of 100kg in modeled yields is associated with an increase of 

93.6 kg in measured yields. The average quantity lost within that GP as estimated from the 

smartphone images is not significantly correlated with yields measured at the GP level. Losing 

an estimated 100kg is associated with a negligible increase in average yields of 0.02kg. These 

findings are robust to controlling for the proportion of images labeled with different types of 

damage within a GP in Columns (2) and (3). As in Table 6, the only type of damage that is 

associated with a reduction in measured yields is pest damage; so, pest damage predicts lower 

yields not only at the CCE level, but also at the GP level. In Column (3), we find increased 

average yields in GPs in which there has been moderate wind damage, but not in GPs in which 

there has been more severe damage and a higher quantity was lost. 

Table 7: Regressions for GP-level yield predictions 

  Dependent variable: Average yield in GP  

  (1) (2) (3) 

Modelled yields 0.936*** 0.938*** 0.939*** 

  (0.0262) (0.0259) (0.0278) 

Average quantity lost 0.000197 0.000136 0.0000497 

  (0.00026) (0.000263) (0.000421) 

Proportion of sites with damage from Disease  28.48 11.05 

   (35.59) (36.14) 

X Average quantity lost   74.44 

    (78.86) 

Proportion of sites with damage from Pest   -407.6*** -371.2*** 

   (135.4) (50.12) 

X Average quantity lost   -23.45 

    (228.4) 

Proportion of sites with damage from Weed   6.422 9.757 

   (43.65) (49.62) 

X Average quantity lost   4.671 

    (61.84) 

Proportion of sites with damage from Wind   59.23 158.8** 

   (43.91) (68.94) 

X Average quantity lost   -131.7 

    (123.9) 

Constant 257.7** 240.3* 239.6* 



 

42 
 

  (119.7) (115.3) (123.7) 

Number of Districts 19 19 19 

Mean Yield - CCE 4532 4532 4532 

Observations 1,159 1,159 1,159 

R-squared 0.81 0.812 0.812 

Note: Robust standard errors in parentheses clustered by GP. All estimates are controlling for district fixed 

effects, and the R-squared is the proportion of variation explained within districts.  

*** p<0.01, ** p<0.05, * p<0.1       

 

 

Conclusions and recommendations 

Summarizing, we find that convolutional neural networks can accurately identify from 

smartphone images taken at harvest time (i) whether a crop is damaged, (ii) the cause of the 

damage, including whether damage is due to natural hazards such as a disease or wind damage, 

versus management practices resulting in excess weeds; and (iii) the extent of the damage. 

However, controlling for yields predicted through the ICRISAT crop models, we do not find a 

strong association between these indicators and either CCE-level or GP-level yields. At least 

in this case, the type of damage and extent of damage are not major determinants of GP-level 

yields, and we would not recommend including these images for GP-level yield assessment. 

Nonetheless, the strong performance of the machine learning models to process smartphone 

images indicates that this method could still be useful in implementing other components of 

the PMFBY coverage, for instance localized damage, verifying mid-season adversities or post-

harvest losses. 

There are a few challenges that we encountered in these analyses, which provide further 

recommendations for how to use this technology. First, we needed to drop a significant number 

of images because image meta-data was covering the portion of the image in which crops were 

visible. We recommend that applications used when conducting CCEs allow for these image 

meta-data to be removed from images themselves, and are stored in auxiliary datasets or in the 

image filenames instead, since the stamps printed over the images reduce value for future image 

processing. 

Second, we could only use images from harvest time (taken at the time of the CCEs) in our 

analyses, since there were no images available from other periods during the season. 

Mechanical damage can have different impacts on crop yields depending on the growth stage 

during which it occurs, which would require more continuous monitoring. In absence of such 

data, we cannot answer the question if information on growth stages would have improved both 

damage predictions and whether growth stages could have contributed to refined crop models, 

which predict crop yields based on the interaction between weather and growth stages, rather 

than relying primarily on weather-based data and assuming the timing of growth stages based 

on observed sowing dates. 

Since the ICRISAT model already explains so much of the variation in yields, the images taken 

at the time of the CCEs do not add much value in estimating yields. And for localized damage, 

monitoring mid-season adversities, or post-harvest losses, one could imagine a system whereby 
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images are taken at the time when the damage occurs; provided that farmers or surveyors can 

send in these images, our convolutional neural networks are showing that images can be 

processed accurately and at scale. 
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Annexure 1: Spatial Yield Distribution 
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Annexure 2: Paddy Area Estimates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S.no  District Name Paddy_ Area (Ha) 

1 Angul 58060 

2 Balangir 145486 

3 Ballia 112682 

4 Baragarh 108845 

5 Davanagere 114717 

6 Deoria 89056 

7 Dhenkanal 54816 

8 East Godavari 183475 

9 Faizabad 56780 

10 Jayashanker Bhupalpally 47869 

11 Kalahandi 99076 

12 Kendhujhar 95510 

13 Koraput 62773 

14 Krishna 280576 

15 Mandhya 51784 

16 Mayurbhanj 216132 

17 Mysore 116300 

18 Nuapada 76005 

19 Puri 81334 

20 Raichur 148407 

21 Shimoga 145266 

22 Sundargarh 90952 

23 Thanjavur 114639 

24 West Godavari 213586 

25 Yadgir 116336 
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