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ASYMPTOTIC STABILITY OF THE CAUCHY AND JENSEN

FUNCTIONAL EQUATIONS

ANNA BAHYRYCZ, ZSOLT PÁLES, AND MAGDALENA PISZCZEK

Abstract. The aim of this note is to investigate the asymptotic stability behaviour of the
Cauchy and Jensen functional equations. Our main results show that if these equations hold
for large arguments with small error, then they are also valid everywhere with a new error term
which is a constant multiple of the original error term. As consequences, we also obtain results
of hyperstability character for these two functional equations.

1. Introduction

The stability theory of the classical Cauchy and Jensen functional equations has attracted
a lot of attention in the last decades. Historically, this theory was stimulated by a question
of S. M. Ulam [31], though the first result of this kind is due to Gy. Pólya and G. Szegő [25].
The majority of the results concentrates on proving that if a function satisfies a given functional
equation approximately, then it approximates a function which is the exact solution of the given
functional equation. To demonstrate this phenomenon, we recall D. H. Hyers’ classical theorem
([16]) which states that if, X is a linear space and Y is a Banach space and, for some ε ≥ 0,
a function f : X → Y is ε-additive, i.e.,

‖f(x) + f(y)− f(x+ y)‖ ≤ ε (x, y ∈ X),

then there exists an additive function g : X → Y such that f is ε-close to g, i.e.,

‖f(x)− g(x)‖ ≤ ε (x ∈ X).

Motivated by this result several contributions have been obtained since then ([1, 8, 26, 21]). For
the interested reader, we recommend the following books and surveys: Ger [15], Forti [13], Czer-
wik [10], Hyers, Isac and Rassias [17]. There are at least four significantly different approaches
to obtain stability theorems. The first one, the so-called direct method, or iterative method was
already invented by Hyers in [16] (see also [6], [14], [24], [28]). Results using the technique of
invariant means (over amenable semigroups) were first proved by L. Székelyhidi [29] (see also
[2], [3], [4]). The third method is to use variants of the Hahn–Banach separation theorem or
sandwich theorems, or more generally selections theorems, see [23], [22]. The most recently dis-
covered method is to use fixed point theorems suggested by L. Cădariu and V. Radu [11], [12]
(see also [9]).

In the present note, we do not apply any of the general patterns to obtain stability theorems.
Instead, we assume that the stability of the functional equation holds only for large values of the
variables and we deduce that the stability holds on the entire domain. Such results explicitely
or implicitely have already been obtained by S.-M. Jung [18], by L. Losonczi [20], and by F.
Skof [27]. To formulate the main results of this paper, the most convenient structures for the
domain and the codomain of the given functions are metric abelian groups. A triple (X,+, d) is
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called a metric abelian group if (X,+) is an abelian group which is equipped with a translation
invariant metric d. In this case we define ‖x‖d := d(x, 0) and we call ‖ · ‖d the norm induced
by the metric d. Then ‖ · ‖d is an even subadditive function on X. The standard example for
a metric abelian group is the additive group of a normed space. We note that, in general, the
norm on a metric abelian group is not necessarily positively homogeneous. By the subadditivity
of the norm, the inequality ‖2x‖d ≤ 2‖x‖d is always valid, however the equality may fail.

2. Results on the stability

Theorem 1. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is unbounded by d.

Let ε ≥ 0 and assume that f : X → Y possesses the following asymptotic stability property

(1) lim sup
min(‖x‖d,‖y‖d)→∞

‖f(x+ y)− f(x)− f(y)‖ρ ≤ ε,

then

(2) ‖f(x+ y)− f(x)− f(y)‖ρ ≤ 5ε for all x, y ∈ X.

Furthermore, provided that (1) holds, the constant 5ε is the smallest possible in (2).

Proof. Let η > ε be arbitrary. Then, by the asymptotic stability property (1) of f , there exists
r > 0 such that, for all x, y ∈ X with ‖x‖d ≥ r, ‖y‖d ≥ r,

(3) ‖f(x+ y)− f(x)− f(y)‖ρ < η.

Let x, y ∈ X be fixed. Using the unboundedness of X, choose u ∈ X first and then v ∈ X such
that

‖u‖d ≥ r + ‖x‖d and ‖v‖d ≥ r + ‖x‖d + ‖y‖d + ‖u‖d.

Then, one can easily see that

min
(

‖u‖d, ‖v‖d, ‖u+ v‖d, ‖x− u‖d, ‖y − v‖d, ‖x+ y − u− v‖d
)

≥ r.

Applying (3) five times, we get

‖f(x− u) + f(u)− f(x)‖ρ <η,

‖f(y − v) + f(v)− f(y)‖ρ <η,

‖f(x+ y − u− v)− f(x− u)− f(y − v)‖ρ <η,

‖f(u+ v)− f(u)− f(v)‖ρ <η,

‖f(x+ y)− f(x+ y − u− v)− f(u+ v)‖ρ <η.

By, the triangle inequality, we obtain

‖f(x+ y)− f(x)− f(y)‖ρ ≤ ‖f(x− u) + f(u)− f(x)‖ρ

+ ‖f(y − v) + f(v)− f(y)‖ρ

+ ‖f(x+ y − u− v)− f(x− u)− f(y − v)‖ρ

+ ‖f(u+ v)− f(u)− f(v)‖ρ

+ ‖f(x+ y)− f(x+ y − u− v)− f(u+ v)‖ρ

< 5η.

Taking the limit η → ε in the last inequality, we arrive at (2), which was to be proved.
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To show that 5ε is the best constant in (2), let x0 ∈ X \ {0} be an arbitrary element and
define a function f : X → R as follows:

f(x) =

{

ε, for x ∈ X \ {x0},

3ε, for x = x0.

Then, for all x, y ∈ X with ‖x‖d, ‖y‖d > ‖x0‖d, we have f(x) = f(y) = ε and f(x+ y) ∈ {ε, 3ε}.
Hence, for large values of x and y,

|f(x+ y)− f(x)− f(y)| = ε,

which implies the validity of (1). On the other hand, using that 2x0 6= x0, we obtain

sup
x,y∈X

|f(x+ y)− f(x)− f(y)| ≥ |f(2x0)− 2f(x0)| = 5ε,

proving that the constant on the right hand side of (2) cannot be smaller than 5ε. �

Our next result is related to the asymptotic stability of the Jensen functional equation.

Theorem 2. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is uniquely 2-

divisible and unbounded by d. Let ε ≥ 0 and assume that f : X → Y possesses the following

asymptotic stability property

(4) lim sup
min(‖x‖d,‖y‖d)→∞

∥

∥

∥
2f

(x+ y

2

)

− f(x)− f(y)
∥

∥

∥

ρ
≤ ε,

then

(5)
∥

∥

∥
4f

(x+ y

2

)

− 2f(x)− 2f(y)
∥

∥

∥

ρ
≤ 4ε for all x, y ∈ X.

Furthermore, provided that (4) holds, the constant 4ε is the smallest possible in (5).

Proof. Let η > ε be arbitrary. Then, applying (4), there exists r > 0 such that, for all x, y ∈ X

with ‖x‖d ≥ r, ‖y‖d ≥ r,
∥

∥

∥
2f

(x+ y

2

)

− f(x)− f(y)
∥

∥

∥

ρ
< η.

Let us fix x, y ∈ X and choose u ∈ X such that

‖u‖d ≥ r + ‖x‖d + ‖y‖d.

Then, as min
(

‖x+ u‖d, ‖y + u‖d, ‖x− u‖d, ‖y − u‖d
)

≥ r, we get the following four inequalities
∥

∥

∥
2f

(x+ y

2

)

− f(x+ u)− f(y − u)
∥

∥

∥

ρ
<η,

∥

∥

∥
2f

(x+ y

2

)

− f(x− u)− f(y + u)
∥

∥

∥

ρ
<η,

‖f(x+ u) + f(x− u)− 2f(x)‖ρ <η,

‖f(y + u) + f(y − u)− 2f(y)‖ρ <η.

Thus, by the triangle inequality, we obtain
∥

∥

∥
4f

(x+ y

2

)

− 2f(x)− 2f(y)
∥

∥

∥

ρ

≤
∥

∥

∥
2f

(x+ y

2

)

− f(x+ u)− f(y − u)
∥

∥

∥

ρ
+

∥

∥

∥
2f

(x+ y

2

)

− f(x− u)− f(y + u)
∥

∥

∥

ρ

+ ‖f(x+ u) + f(x− u)− 2f(x)‖ρ + ‖f(y + u) + f(y − u)− 2f(y)‖ρ

< 4η.
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Upon taking the limit η → ε, the desired inequality (5) results.
To verify that 4ε is the best constant in (5), it suffices to consider the function f : X → R

defined by

f(x) =











0, for x ∈ X \ {x0,−x0, 0},

− ε
2 , for x ∈ {x0,−x0},

+ ε
2 , for x = 0,

where x0 ∈ X \ {0} is an arbitrary element. Then, for all ‖x‖d, ‖y‖d > ‖x0‖d,
∣

∣

∣
2f

(x+ y

2

)

− f(x)− f(y)
∣

∣

∣
∈ {0, ε},

wich shows that (4) is satisfied. On the other hand,

sup
x,y∈X

∣

∣

∣
4f

(x+ y

2

)

− 2f(x)− 2f(y)
∣

∣

∣
≥ |4f(0) − 2f(x0)− 2f(−x0)| = 4ε,

proving that the constant on the right hand side of (5) cannot be smaller than 4ε. �

Taking ε = 0 in Theorems 1 and 2, we can directly obtain the following corollaries.

Corollary 3. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is unbounded by

d. If f : X → Y satisfies

lim sup
min(‖x‖d,‖y‖d)→∞

‖f(x+ y)− f(x)− f(y)‖ρ = 0,

then

f(x+ y) = f(x) + f(y), x, y ∈ X.

Corollary 4. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is uniquely 2-

divisible and unbounded by d. If f : X → Y satisfies

lim sup
min(‖x‖d,‖y‖d)→∞

∥

∥

∥
2f

(x+ y

2

)

− f(x)− f(y)
∥

∥

∥

ρ
= 0,

then

4f
(x+ y

2

)

= 2f(x) + 2f(y), x, y ∈ X.

3. Results on the hyperstability

Theorem 5. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that 2X is unbounded by

d. Let ϕ : R+ := [0,∞) → R such that limt→∞ ϕ(t) = ∞ and let f : X → Y satisfy

(6) lim sup
min(‖x‖d,‖y‖d)→∞

ϕ(‖x− y‖d) · ‖f(x+ y)− f(x)− f(y)‖ρ < ∞,

then

f(x+ y) = f(x) + f(y) for all x, y ∈ X.

Proof. According to (6), there exist constants r > 0 and K > 0 such that, for x, y ∈ X with
‖x‖d ≥ r and ‖y‖d ≥ r,

ϕ(‖x− y‖d) · ‖f(x+ y)− f(x)− f(y)‖ρ < K.

Let ε > 0 be arbitrary and choose R > 0 such that, for all t ≥ R,

ϕ(t) ≥
5K

ε
.
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Then, for x, y ∈ X with ‖x‖d ≥ r, ‖y‖d ≥ r and ‖x− y‖d ≥ R, we have

(7) ‖f(x+ y)− f(x)− f(y)‖ρ <
ε

5
.

Let x, y ∈ X be fixed. In view of the unboundedness of 2X, we can choose u ∈ X such that

‖2u‖d ≥ 2r +R+ 2‖x‖d

and then we can choose v ∈ X satysfying

‖2v‖d ≥ 2r + 2R+ 2‖x‖d + 2‖y‖d + 2‖u‖d.

Then, using the trivial inequality ‖2z‖d ≤ 2‖z‖d (which is the consequence of the subadditivity
of ‖ · ‖d), we easily get

min
(

‖u‖d, ‖v‖d, ‖u+ v‖d, ‖x− u‖d, ‖y − v‖d, ‖x+ y − u− v‖d
)

≥ r,

min
(

‖x− 2u‖d, ‖y − 2v‖d, ‖x− y − u+ v‖d, ‖u− v‖d, ‖x+ y − 2(u+ v)‖d
)

≥ R.

Thus, using inequality (7) on the domain indicated, we obtain the following five inequalities

‖f(x− u) + f(u)− f(x)‖ρ <
ε

5
,

‖f(y − v) + f(v)− f(y)‖ρ <
ε

5
,

‖f(x+ y − u− v)− f(x− u)− f(y − v)‖ρ <
ε

5
,

‖f(u+ v)− f(u)− f(v)‖ρ <
ε

5
,

‖f(x+ y)− f(x+ y − u− v)− f(u+ v)‖ρ <
ε

5
.

Adding up these inequalities side by side and using the triangle inequality (as in the proof of
Theorem 1), we get

‖f(x+ y)− f(x)− f(y)‖d ≤ ε.

Since ε > 0 was arbitrary, this inequality implies that f is additive. �

We cannot omit the assumption that 2X is unbounded by d in Theorem 5. Indeed, if
supx∈X ‖2x‖d = K < ∞, then the function f : X → X defined by

f(x) =

{

x, x ∈ X \ {0},

a, x = 0,

where a 6= 0, for x, y ∈ X \ {0} satisfies

‖x− y‖d · ‖f(x+ y)− f(x)− f(y)‖d =

{

0 if x+ y 6= 0,

‖2x‖d · ‖a‖d if x+ y = 0.

Hence
lim sup

min(‖x‖d,‖y‖d)→∞
‖x− y‖d · ‖f(x+ y)− f(x)− f(y)‖d ≤ K · ‖a‖d < ∞,

which means that (6) is fulfilled with ϕ(t) := t. On the other hand, f is not additive.

Theorem 6. Let (X,+, d) and (Y,+, ρ) be metric abelian groups such that X is uniquely 2-

divisible and 2X is unbounded by d. Let ϕ : R+ → R such that limt→∞ ϕ(t) = ∞ and let

f : X → Y satisfy

(8) lim sup
min(‖x‖d,‖y‖d)→∞

ϕ(‖x − y‖d) ·
∥

∥

∥
2f

(x+ y

2

)

− f(x)− f(y)
∥

∥

∥

ρ
< ∞,



ASYMPTOTIC STABILITY OF THE CAUCHY AND JENSEN FUNCTIONAL EQUATIONS 6

then

(9) 4f
(x+ y

2

)

= 2f(x) + 2f(y) for all x, y ∈ X.

Proof. Similarly as in the proof of Theorem 5, it follows from (8) that there exist constants r > 0
and K > 0 such that, for x, y ∈ X with ‖x‖d ≥ r and ‖y‖d ≥ r,

ϕ(‖x − y‖d) ·
∥

∥

∥
2f

(x+ y

2

)

− f(x)− f(y)
∥

∥

∥

ρ
< K.

Let ε > 0 be arbitrary and choose R > 0 such that, for all t ≥ R,

ϕ(t) ≥
4K

ε
.

Then, for x, y ∈ X with ‖x‖d ≥ r, ‖y‖d ≥ r and ‖x− y‖d ≥ R, we have

(10)
∥

∥

∥
2f

(x+ y

2

)

− f(x)− f(y)
∥

∥

∥

ρ
<

ε

4
.

Let x, y ∈ X be fixed and, using the unboundedness of 2X, choose u ∈ X such that

‖2u‖d ≥ 2r +R+ 2‖x‖d + 2‖y‖d.

Then, by the triangle inequality, it follows that

min
(

‖x+ u‖d, ‖y + u‖d, ‖x− u‖d, ‖y − u‖d
)

≥ r,

min
(

‖2u‖d, ‖x− y + 2u‖d, ‖x− y − 2u‖d ≥ R.

Applying these conditions for the appropriate choice of variables, (10) implies the following four
inequalities:

∥

∥

∥
2f

(x+ y

2

)

− f(x+ u)− f(y − u)
∥

∥

∥

ρ
<
ε

4
,

∥

∥

∥
2f

(x+ y

2

)

− f(x− u)− f(y + u)
∥

∥

∥

ρ
<
ε

4
,

‖f(x+ u) + f(x− u)− 2f(x)‖ρ <
ε

4
,

‖f(y + u) + f(y − u)− 2f(y)‖ρ <
ε

4
.

Thus
∥

∥

∥
4f

(x+ y

2

)

− 2f(x)− 2f(y)
∥

∥

∥

ρ
< ε

and as ε > 0 was arbitrary, (9) holds. �

We complete this paper by providing an example of an unbounded metric abelian group X

such that 2X is bounded.

Example 7. Let

X := {(a1, a2, . . .) : ai ∈ {0, 1}, i ∈ N, ∃n0∈N∀i≥n0
ai = 0}.

For (a1, a2, . . .), (b1, b2, . . .) ∈ X, we define

(a1, a2, . . .) + (b1, b2, . . .) = ((a1 +2 b1, a2 +2 b2, . . .),

(where the operation +2 is the additon modulo 2 on {0, 1}) and

d((a1, a2, . . .), (b1, b2, . . .)) =

∞
∑

i=1

ai +2 bi

i
.
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Then (X,+, d) is an unbounded metric abelian group but 2X = {(0, 0, . . .)}, hence 2X is trivially
bounded.
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