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Abstract

Hadronic resonance propagators which take into account the analytical properties of
decay processes are built in terms of the dispersion relation technique. Such propagators
can describe multi-component systems, for example, those when quark degrees of freedom
create a resonance state, and decay products correct the corresponding pole by adding
hadronic deuteron-like components. Meson and baryon states are considered, examples
of particles with different spins are presented.
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1 Introduction

Nowadays we face a pressing request for studying multi-component systems, in particular, those
with concurrent parts of quark and hadron degrees of freedom. Recent experimental evidences
for exotic states (see Refs. [1–3] and references therein) definitely indicate the important role of
both short-distance physics (predominantly quark-gluon one) and long-distance hadron physics
where the notion of deuteron-like systems or molecules looks quite appropriate.4, 5 The active
discussion of the pentaquark topic is in line with this trend.6–16

The two-component structure of resonances can reveal itself in propagators of the res-
onances. A corresponding consideration of meson resonances is performed in Ref. [17] for
tetraquark systems with hidden charm where meson states for decay processes were taken into
account (but with non-relativistic spin wave functions). In this paper we present the relativis-
tic consideration of both meson and baryon systems with spins. An important point in this
consideration is to keep the analytic amplitude with correct singular structure.
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Figure 1: Graphic representation of the Breit-Wigner pole term as an infinite set of transitions
resonance state→ decay products→ resonance state.

Let us turn to a standard description of resonances. The Breit-Wigner pole18 gives us
a description of a resonance state in a form of particle propagator, for non-relativistic and
relativistic cases the pole amplitudes read:

non− relativistic :
GıG

E0 − E − iΓ
2

, (1)

relativistic :
GıG

M2 − s− iΓM
.

Here E is the energy of the non-relativistic system, and E0 is the energy of the resonance level;
Γ is the width of the resonance and Gı, G are couplings with initial and final states. For
the relativistic case the total energy

√
s includes the mass of the system and M refers to the

resonance mass.

The energy independent width corresponds to a rough approximation, for the study of the
πp scattering in the ∆(1240) region (hadrons πp are in the P -wave) Gell-Mann and Watson19

suggested to use the energy dependent width:

Γ → γ
k3πp

1 +R2k2πp
, (2)

where kπp is the relative momentum of πp in the c.m. system. Actually the width in the
form Eq. (2) takes into account the threshold singularity (k2L+1 where L = 1 is the orbital
momentum) inherent to transitions ∆ → πp→ ∆. The threshold singularity appears when we
consider a set of diagrams related to decay processes such as shown in Fig. 1. But Eq. (2)
contains also singularities which are absent in the scattering amplitude.

First, there are those related to

kπp =

√
[s− (mp +mπ)2][s− (mp −mπ)2]

4s
, (3)

namely, the square root singularities at s = 0 and s = (mp−mπ)
2; the form factor 1/[1+R2k2πp]

has a pole singularity which gives zeros in the related amplitudes. For the precise use of
amplitudes with the resonance propagators one needs to take into account the contributions of
decay processes without false singularities, i.e. to use the corresponding loop diagrams.

The paper is assembled as follows. In Section 2 spinless hadron resonances are given and
multi-channel cases are considered. Sections 3 and 4 are devoted to particles with spins, cor-
respondingly, to meson and baryon resonances. In Section 5 we investigate the problem of
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formation of the deuteron-like components in states belonging originally to quark-gluon ones.
In Appendices A, B, C elements of technique for working with loop diagrams of spin particles
are given.

2 Propagators for meson resonances

For the inclusion of the loop diagrams into the resonance propagator the D-function technique
is appropriate, we use it here. First, we consider scalar mesons, after that we generalize the
consideration to cases of spin particles.

2.1 Loop diagrams in the resonance propagator

The set of diagrams of Fig. 1 reads:

1

−s +m2
+

1

−s+m2
B(s)

1

−s+m2
+

1

−s +m2
B(s)

1

−s+m2
B(s)

1

−s+m2
+ ...

=
1

−s+m2 − B(s)
, (4)

where B(s) is the contribution of the loop diagram related to the resonance decay (in Fig. 1
it is supposed that we deal with a two-particle decay). If a resonance state decays into several
channels, one should replace:

B(s) →
n∑

ℓ=1

B(ℓ)(s) (5)

where n is the number of open channels. In the standard Breit−Wigner approach the s-
independent loop diagrams are used:

M2 = m2 −
n∑

ℓ=1

ReB(ℓ)(M2), MΓ =
n∑

ℓ=1

ImB(ℓ)(M2) . (6)

Following the Gell-Mann−Watson prescription19 one takes into account the s-dependent imag-
inary part of the loop diagrams:

ImB(ℓ)(s) = ρℓ(s)g
2
ℓ (s), ρℓ(s) =

k2Lℓ+1
ℓ

8π
√
s
, (7)

where ρℓ(s) is the phase space for loop-diagram particles, gℓ(s) is the vertex for the transition
resonance state→decay particles of the ℓ-state, and Lℓ is the orbital momentum of particles
in the loop diagram. But, as it was discussed above, the imaginary part alone contains false
singularities. For reproducing the analytical amplitude correctly, one needs to take into account
the real part of B(ℓ)(s) as well.
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2.2 D-function and loop diagrams with L = 0 for the one-pole am-

plitude

Let us consider a loop diagram above the threshold, at s > (Ma +Mb)
2. The equation for

one-pole and one-channel D-function reads:

D = d+DB d, d =
1

m2 − s
, B =

∞∫

(Ma+Mb)2

ds′

π

G2ρ(s′)

s′ − s− i0
. (8)

Here m is a bare mass of this state, the factor B goes from the loop diagram formed by hadrons
(a, b), and Ma,Mb are masses of the loop mesons. The phase space factor for the S-wave state
(L = 0) is:

ρ(s) =

√
[s−(Ma+Mb)2][s−(Ma−Mb)2]

16πs
. (9)

The convergency of the integral for B(s) can be organized either due to introducing a s-
dependence of the vertex G→ G(s′) or by switching the subtraction procedure:

B(s) =

∞∫

(Ma+Mb)2

ds′

π
· G2 ρ(s′)

s′ − s− i0
→

b0 +

∞∫

(Ma+Mb)2

ds′

π

[s−(Ma+Mb)
2] ·G2 ρ(s′)

(s′−(Ma+Mb)2)(s′−s− i0)
. (10)

Imposing G2 = 1 we write for positive s, s > (Ma +Mb)
2:

B(s) = b0 + β
(Ma +Mb)

2 − s

s(Ma +Mb)2
+

√
[s− (Ma +Mb)2][s− (Ma −Mb)2]

16πs
×

[
1

π
ln

√
s− (Ma −Mb)2 −

√
s− (Ma +Mb)2

√
s− (Ma −Mb)2 +

√
s− (Ma +Mb)2

+ i
]
,

β = −M
2
a −M2

b

16π2
ln
Ma

Mb

. (11)

The point s = (Ma +Mb)
2 is singular. For s < (Ma +Mb)

2 we write
√
s− (Ma +Mb)2 →

i
√
(Ma +Mb)2 − s, the points s = (Ma −Mb)

2 and s = 0 are not singular, the pole singularity
at s = 0 is cancelled due to the term with β.

The subtraction constant b0 regulates a value of the meson component near the threshold,
i.e. the fraction of the deuteron-like system. The zero value of the deuteron-like fraction is
realized with B(s)

∣∣∣
s=(Ma+Mb)2

= 0, namely at: b0 = 0.

We have eliminated the pole singularity in the loop diagram introducing the cancellation
term β

s
. Let us remark, however, that the pole singularity in the loop diagram does not violate

the analytical structure of the total amplitude because the poles in the loop diagram do not
lead to new singularities but to zeros of the amplitude (see Appendix A).
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2.3 One-pole propagator with non-zero orbital momenta of mesons,

L 6= 0

The loop diagram expression of Eq. (11) gives a possibility to write down analogous terms with
non-zero orbital momenta, Lℓ 6= 0, and taking into account form factor Gℓ(s):

BLℓ

ℓ (s) = k2Lℓ

ℓ Gℓ(s)Bℓ(s)Gℓ(s) . (12)

Factor Gℓ(s) is to be chosen in a form without the violation of the analytical structure of the
amplitude, for example, one can use the simple exponential form Gℓ(s) = G0 exp(−R2

ℓs). The
exponential form guarantees the convergence of the loop diagrams. One can use the inverse

polynomial function as well: Gℓ(s) ∼ 1/Pn(s) with Pn(s) =
n∑

ν=0
aνs

ν because zeros of the Pn(s)

are not singilar points of the amplitude.

2.4 Two-pole amplitude

The two-pole D-matrix functions can be written as solutions of the following equations:

D11 = d1 +D11B11 d1 +D12B21 d1 ,

D12 = D11B12 d2 +D12B22 d2 ,

D21 = D22B21 d1 +D21B11 d1 ,

D22 = d2 +D22B22 d2 +D21B12 d2 , (13)

that results in the explicit form

D12 =
d1B12d2

(1− B22d2)(1− B11d1)− d1B12 d2B21
, (14)

D11 =
d1(1− B22d2)

(1− B22d2)(1− B11d1)− d1B12 d2B21

.

Here Bif = Bfi, zeros of the denominator determine positions of the poles. Expressions for D12

and D22 are given by the replacement of indices 1 ⇀↽ 2. We have D12 = D21 and a common
denominator for all D-functions.

If B12 is small we have two separate poles in the region of studies similar to that discussed
in the one-pole case. Non-zero B12 means a mixture of the input pole states and the change of
their masses and widths. At large Bif additional poles can appear, the additional poles mean
the appearance of new two-meson states created by mesons of the loop diagrams.

2.5 D-matrix with an arbitrary number of poles

The equation for the D-matrix can be written as follows:

D̂(s) = d̂(s) + D̂(s)B̂(s)d̂(s), (15)

that gives:

D̂(s) = d̂(s)
1

I − B̂(s)d̂(s)
(16)
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where

D̂(s) =

∣∣∣∣∣∣∣∣∣∣∣∣

D11(s) D12(s) D13(s) · ·
D21(s) D22(s) D23(s) · ·
D31(s) D32(s) D33(s) · ·

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

, d̂(s) =

∣∣∣∣∣∣∣∣∣∣∣∣

d1(s) 0 0 · ·
0 d2(s) 0 · ·
0 0 d3(s) · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

,

B̂(s) =

∣∣∣∣∣∣∣∣∣∣∣∣

B11(s) B12(s) B13(s) · ·
B21(s) B22(s) B23(s) · ·
B31(s) B32(s) B33(s) · ·

· · · · ·
· · ·

∣∣∣∣∣∣∣∣∣∣∣∣

. (17)

and

di(s) =
1

m2
i − s

, (18)

Bif (s) =
∑

ℓ

k2Lℓ

ℓ Giℓ(s)Bℓ(s)Gℓf(s) .

Recall that for the one-pole case Bℓ(s) ≡ B{ab}(s) ≡ B(s) is given by Eq. (11).

3 D-function for mesons with spin

We consider here meson resonances with spin. First, as elucidation examples, cases with scalar
(S), pseudoscalar (P), vector (V), and tensor (T) particles are considered, after that the D-
functions for particles with higher spins are presented.

3.1 Transition 1− → [1−(ka) + 0+(kb)]S−wave → 1−

To calculate the propagator we should calculate the imaginary part of the loop diagram and
restore the real part using Eq. (11). In this procedure the S-wave terms for the transitions
V (in) → [V (a) + S(b)]S−wave → V (fin) (see Fig. 1) are written as follows:

g⊥P
αβ

m2 − s
+

g⊥P
αα′

m2 − s
G(ab)(s)

∫ d4k1d
4k2

i(2π)4

×
δ(P − ka − kb)g

⊥ka
α′β′

(M2
a − k2a − i0)(M2

b − kb2 − i0)
G(ab)(s) · g⊥P

β′β

m2 − s
+ ...

=
g⊥P
αβ

m2 − s

[
1 +

G(ab)(s)S
V S
V (s)B(s)G(ab)(s)

m2 − s
+ ...

]

=
g⊥P
αβ

m2 − s−G(ab)(s)S
V S
V (s)B(s)G(ab)(s)

. (19)

Here g⊥P
αβ = gαβ − PαPβ

P 2 and

3SV S
V (s) = g⊥P

αα′g⊥ka
α′β′g⊥P

β′α = [2 +
(kaP )

2

sM2
a

] , (20)
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with vectors k1, k2 being the mass-on-shell values (k2a =M2
a , k2b =M2

b ) that result:

2(kaP ) = s+M2
a −M2

b . (21)

The width is determined by the imaginary part of the loop diagram, and SV S
V (s) is a meromor-

phic function.

3.2 Transition 1− → [1−(ka) + 0−(kb)]P−wave → 1−

For the propagator V (in) → [V (a) + π(b)]P−wave → V (fin) we write:

g⊥P
αβ

m2 − s
+

g⊥P
αα′

m2 − s
G(ab)(s)

∫
d4ka
i(2π)4

×
ǫα′γ′kaP g

⊥ka
γ′δ′ ǫδ′β′Pka

(M2
a − k2a − i0)(M2

b − k2b − i0)
G(ab)(s)

g⊥P
β′β

m2 − s
+ ...

=
g⊥P
αβ

m2 − s

[
1 +

G(ab)(s)S
V π
V (s)B(s)G(ab)(s)

m2 − s
+ ...

]

=
g⊥P
αβ

m2 − s−G(ab)(s)S
V π
V (s)B(s)G(ab)(s)

, (22)

with spin factor SV π
V (s) determined by mass-on-shell mesons, k2a =M2

a , k
2
b =M2

b :

3SV π
V (s) = g⊥P

αα′ǫα′γ′kaP g
⊥ka
γ′δ′ ǫδ′β′Pkag

⊥P
β′α =

2s

MaMb

[(kaP )2

s
−M2

a

]
. (23)

Recall that the loop diagram factor B(s) is given in Eq. (11).

3.3 The S-wave transition of vector-axial state

1+ → [1−(ka) + 1−(kb)]S−wave → 1+

For the transition A(in) → [V (a) + V (b)]S−wave → A(fin) the second diagram of the set of Fig. 1
reads:

g⊥P
αα′

m2 − s
iǫα′γ′γ′′P ·G(ab)(s)

∫
d4kad

4kb
i(2π)4

δ(P − ka − kb) (24)

×
g⊥ka
γ′δ′ g

⊥kb
γ′′δ′′

(M2
a − k2a − i0)(M2

b − k2b − i0)
G(ab)(s) · (−i)ǫδ′δ′′β′P

g⊥P
β′β

m2 − s

with the notation ǫδ′δ′′β′P = ǫδ′δ′′β′β′′Pβ′′ and g⊥P
αβ = gαβ − PαPβ

P 2 .

The spin factor of the second term is equal to:

g⊥P
αα′ǫα′γ′γ′′P · g⊥ka

γ′δ′ g
⊥kb
γ′′δ′′ · ǫδ′δ′′β′P · g⊥P

β′β = g⊥P
αβ SVaVb

A (s) . (25)

Let us remind that here we mean M2
a = k2a an M2

b = k2b . The resonance propagator is
written as follows:

J = 1 :
g⊥P
αβ

m2 − s−G(ab)(s)SV (a)V (b)

A (s)B(s)G(ab)(s)
. (26)

7



3.4 The S-wave transitions S → V (a) + V (b) → S,

and T → V (a) + V (b) → T

The propagator for resonance with J = 0 is:

J = 0 :
1

m2 − s−G(ab)(s)S
V (a)V (b)

S (s)B(s)G(ab)(s)
, (27)

SV (a)V (b)

S (s) =
1

3
G2(s)Γγ′γ′′

0 (⊥ P ) ·Oδ′

γ′(⊥ ka)O
γ′′

δ′′ (⊥ kb) · Γδ′δ′′

0 (⊥ P ) ,

Γδ′δ′′

0 (⊥ P ) = Oδ′′

δ′ (⊥ P ) .

Here we introduce the vertex function Γγ′γ′′

0 (⊥ P ) and denote Oγ′

γ′′(⊥ P ) = g⊥P
γ′′γ′ , see Appendix

B for details.

We write for J = 2:

J = 2 :
Oα1α2

β1β2
(⊥ P )

m2 − s−G(ab)(s)SV (a)V (b)

T (s)B(s)G(ab)(s)
, (28)

S2(s, k
2
1, k

2
2) =

1

5
G2(s)Oγ′γ′′

α1α2
(⊥ P ) · Oδ′

γ′(⊥ k1)O
δ′′

γ′′(⊥ k2) · Oα1α2
δ′δ′′ (⊥ P ) .

The operator for the tensor state, Oγ′γ′′

α1α2
(⊥ P ), is given in Appendix B.

4 Baryon resonances

Propagators for baryon resonances can be constructed in a way analogous to that for mesons
but with some complication, namely: determining one-channel rescattering we face two basic
loop functions, B(s) and B̃(s).

First, we present several examples of propagators for spin-1/2 resonances. Then the cases
with larger spins (J > 1/2) are discussed. The technique used here for fermions with spins
J > 1/2 is given in Appendix C.

4.1 Spin-1/2 state and its decay with the emission of a scalar meson

We consider here transitions of the type N∗(1
2

+
) → [S(0+) +N(1

2

+
)] → N∗(1

2

+
).

The first two terms of the series shown in Fig. 1 are written as:

P̂ +
√
s

m2 − s
+
P̂ +

√
s

m2 − s
·G(s)BN∗(s)G(s) · P̂ +

√
s

m2 − s
, (29)

where the loop function BSN
N∗ (s) = BN∗(s) · 2

√
s has the following form:

BSN
N∗ (s) =

∫
d4k

i(2π)4
k̂ +MN

(k2 −M2
N − i0)((P − k)2 −M2

S − i0)
· (P̂ +

√
s)

8



=
∫

d4k

i(2π)4

(kP )
P 2 P̂ +MN

(k2 −M2
N − i0)((P − k)2 −M2

S − i0)
· (P̂ +

√
s)

=
∫

d4k

i(2π)4

(kP )
s

√
s+MN

(k2 −M2
N − i0)((P − k)2 −M2

S − i0)
· 2
√
s . (30)

We use k = k⊥+ (kP )
P 2 P and (P̂ +

√
s)(AP̂ +B)(P̂ +

√
s) = (P̂ +

√
s)(A

√
s+B) ·2√s; recall that

the loop diagram hadrons are mass-on-shell in the imaginary part, and 2(kP ) = s+M2
N −M2

S.

The propagator for the N∗(1
2

+
)-state reads:

P̂ +
√
s

m2 − s−G2(s)BSN
N∗ (s)

, (31)

with loop function BSN
N∗ (s):

BSN
N∗ (s) = 2[(kP )B(s) +M2

N B̃(s)] . (32)

The loop function B(s) given in Eq. (11). The new basic term B̃(s) reads as follows:

B̃(s) = b̃0 +

√
[s− (MS +MN )2][s− (MS −MN )2]

16πMN

√
s

(33)

×
[
1

π
ln

√
s[s− (MS −MN)2]−

√
(MN −MS)2[s− (MS +MN )2]

√
s[s− (MS −MN )2] +

√
(MN −MS)2[s− (MS +MN)2]

+ i
]
.

Singularities s = 0 and s = (MS −MN )
2 are absent in B̃(s), the only present singularity is the

threshold one s = (MS +MN )
2. In the determination of the B̃(s) an uncertainty exists which

is related to zeros of the loop functions; this item is discussed in Appendix A, subsection 7.3.

At (MS −MN)
2 = 0 the loop function has a simple form:

B̃(s) = b̃0 + i

√
[s− (MS +MN )2]

16πMN

. (34)

4.2 Decay of the N∗(12
+
)-state with the emission of a pseudoscalar

meson

The propagator for the N∗(1
2

+
)-state with the transition N∗(1

2

+
) → π(0−) +N(1

2

+
) → N∗(1

2

+
)

taken into account can be written as:

P̂ +
√
s

m2 − s−G2(s)BπN
N∗ (s)

, (35)

where BπN
N∗ (s) is determined by the loop diagram N∗(1

2

+
) → π(0−)+N(1

2

+
) → N∗(1

2

+
), namely:

BπN
N∗ (s) = (36)

=
∫

d4k

i(2π)4
ik̂⊥γ5(k̂ +MN)iγ5k̂⊥

(k2 −M2
N − i0)((P − k)2 −M2

π − i0)
· (P̂ +

√
s)

9



=
∫

d4k

i(2π)4
−k2⊥( (kP )

P 2 P̂ +MN )

(k2 −M2
N − i0)((P − k)2 −M2

π − i0)
· (P̂ +

√
s)

=
∫

d4k

i(2π)4
( (kP )2

P 2 −M2
N )(

(kP )
P 2

√
s+MN )

(k2 −M2
N − i0)((P − k)2 −M2

π − i0)
· 2
√
s .

Recall, we use k = k⊥ + (kP )
P 2 P and P̂ → √

s.

The hadron rescattering factor is

BπN
N∗ (s) = 2(

(kP )2

P 2
−M2

N )
[
(kP )B(s) +M2

NB̃(s)
]
, (37)

with B(s) and B̃(s) given in Eqs. (11) and (33).

4.3 Transitions ∆(3
2

+
) → [N(1

2

+
) + π(0−)] → ∆(3

2

+
)

The propagator of the ∆(3
2

+
)-resonance, taking into account the transition ∆(3

2

+
) → N(1

2

+
)π(0−)

(see Chapter 5 of ref. [27] and references therein) reads:

(−g⊥µν + 1
3
γ⊥µ γ

⊥
ν )(P̂ +

√
s)

m2 − s−G2(s)BπN
∆ (s)

, (38)

see Appendix C for details. The factor BπN
∆ (s) is determined by the P -wave loop diagram

∆(3
2

+
) → [N(1

2

+
)π(0−)]P−wave → ∆(3

2

+
), namely:

(−g⊥µν +
1

3
γ⊥µ γ

⊥
ν ) (P̂ +

√
s)BπN

∆ (s) (39)

= (−g⊥µµ′ +
1

3
γ⊥µ γ

⊥
µ′)(P̂ +

√
s)
∫

d4k

i(2π)4
k⊥µ′(k̂ +MN )k

⊥
µ′

(k2 −M2
N − i0)((P − k)2 −M2

π − i0)

×(−g⊥ν′ν +
1

3
γ⊥ν′γ

⊥
ν ) (P̂ +

√
s)

= (g⊥µν −
1

3
γ⊥µ γ

⊥
ν )(P̂ +

√
s)
∫

d4k

i(2π)4

k2⊥
(
(kP )
P 2 P̂ +MN

)

(k2 −M2
N − i0)((P − k)2 −M2

π − i0)
2
√
s .

Therefore the πN rescattering factor can be written as (k2⊥ =M2
N − (Pk)2

P 2 ):

BπN
∆ (s) = 2

(
−M2

N +
(Pk)2

s

)[
(kP )B(s) +M2

N B̃(s)
]
, (40)

with B(s) and B̃(s) given in eqs. (11) and (33).

5 Deuteron-like component

Let us consider in a more detailed way the case when the pole singularity is located near the
threshold, m ≃ Ma +Mb. In this situation the deuteron-like component in the resonant state
manifests itself evidently.
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As an example we consider a case of the one-channel and one-pole amplitude, leading to
S-wave decay-products. The scattering amplitude ab→ ab reads:

1

k
eiδ sin δ =

G2

m2 − s−G2(Bℜ(s) + ik)
(41)

where Bℜ(s) is the real part of the loop diagram. Expanding this amplitude in a series over
relative momentum of mesons, k, one has:

G2

[m2 − (Ma +Mb)2 −G2Bt]− k2 (Ma+Mb)2

MaMb
(1 +G2B′

t)− ikG2
(42)

=
a0

1 + 1
2
a0r0k2 − ia0k

,

here Bt = Bℜ(s)s=(Ma+Mb)2 and B′
t =

(
dBℜ(s)

ds

)

s=(Ma+Mb)2
, whereas a0 is the scattering length

and r0 is the effective radius of the ab-system:

a0 =
G2

m2 − (Ma +Mb)2 −G2Bt

, (43)

r0 = −2
(Ma +Mb)

2

MaMb

(G−2 +B′
t) .

At large negative a0 the system has a stable component (an analog of the deuteron), at positive
a0 the resonance signal appears only in the continuous spectrum (the system is the analog of
the singlet state in pp). A small value of [m2 − (Ma +Mb)

2 −G2Bt] (a large value of |a0|) can
exist independently of details of the long-range hadron-hadron interaction.

The large density of the levels in multi-particle systems enlarges the probability to face the
effect of appearance of the deuteron-like components.

6 Conclusion

The hadron resonance topic is a key subject for both experimental studies and theoretical
understanding in physics of elementary particles. An important point in this subject is the
correct description of resonances. Using the language of hadron amplitudes this means a correct
representation of the analytical structure of amplitudes. First of all, it concerns the propagators
of resonances.

The experimental study of resonances is connected mainly to the investigation of multi-
hadron reactions, the simplest reactions are three-particle ones. The description of Dalitz-plot
data faces problems with the simultaneous presentation of resonances from different channels
and the incorporation of requirements of the unitarity and analyticity into phenomenological
analyses.

The use of three-body equations leads to implementing the analyticity and the three-body
unitarity into the amplitude; in the non-relativistic case such an implementation can be per-
formed using the Faddeev equation21 while for the relativistic consideration the dispersion
relation technique looks as the most appropriate one. In this case the resonance propagators

11



with included decay components are essential. But in the first attempts to write dispersion
relation equations22 problems appeared in choosing the way of integration.

A correct integration over a three-body intermediate state was performed in Ref. [23], the
corresponding consequences of such an integration are discussed already for a long time.24–26,28

A realistic system of equations for coupled channel amplitudes for proton-antiproton annihila-
tion at rest [pp̄]at rest → πππ, ηηπ, KK̄π was written in Ref. [29] (see also Ref. [28], Chapter 5).
A critical issue in the equations is the dispersion relation presentation of two-meson amplitudes
and the corresponding resonances.

The multi-component structure of the constructed propagators for resonances allows to fix
deuteron-like states. Examples are presented by states with hidden charm. There are several
candidates for states with long-distant hadronic components: X(3872) → J/Ψππ (nearby
threshold D̄D∗) [30] , X(3900) → J/Ψπ (nearby threshold D̄D∗) [31], X(4020) → J/Ψπ
(nearby threshold D̄∗D∗) [32]. A popular interpretation of these states is that they are meson-
meson molecules ( D̄D∗ and D̄∗D∗). But it is possible that the states have two components,
namely, short-range and long-range ones. That happens when a quark-gluon state (presumably
a short-range one) is situated (may be accidentally) in the vicinity of the decay threshold.

To conclude: the construction of propagators of composite states with decay loop diagrams
taken into account is a relevant subject for both experimental and theoretical studies in hadron
physics.
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Appendix A: Loop diagram analyticity

The convergence of the loop diagram, B(s), can be guaranteed by introducing the vertex s-
dependence or using the subtraction procedure:

+∞∫

(Ma+Mb)2

ds′

π

ρα′(s′)

s′ − s− i0
→ B(s = s0) +

+∞∫

(Ma+Mb)2

ds′

π

ρα′(s′)

s′ − s− i0
· s− s0
s′ − s0

. (44)

Here the subtraction procedure is used. In our studies we put s0 = (Ma +Mb)
2.

We face two types of the imaginary parts for the loop diagrams:

Im B(s) =

√
[s−(Ma+Mb)2][s−(Ma−Mb)2]

16πs
, (45)

Im B̃(s) =

√
[s−(MS+MN)2][s−(MS−MN )2]

16πMN

√
s

.

Within these imaginary parts we restore the loop diagrams, see Eqs. (11) and (33).
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Meson-meson loop diagram

Let us consider the analytical sructure of the B(s) in a more detailed way, keeping s0 =
(Ma +Mb)

2.

Below the threshold, at (Ma −Mb)
2 < s < (Ma +Mb)

2, the loop diagram reads:

B(s) = b0+β
(Ma +Mb)

2 − s

s(Ma +Mb)2
+i

√
[−s+(Ma+Mb)2][s−(Ma−Mb)2]

16πs

×
[
1

π
ln

√
s− (Ma−Mb)2 − i

√
−s + (Ma+Mb)2

√
s−(Ma−Mb)2 + i

√
−s+(Ma+Mb)2

+i
]

= b0 + β
(Ma +Mb)

2 − s

s(Ma +Mb)2
+ i

√
[−s+(Ma+Mb)2][s−(Ma−Mb)2]

16πs

×
[
− 2i

π
tan−1

(
√
−s+(Ma+Mb)2
√
s−(Ma−Mb)2

)
+ i
]
. (46)

The last line demonstrates the absence of a singularity in s = (Ma − Mb)
2. Indeed, in the

top-down approach to this point we have:

−2i

π
tan−1

(
√
−s+ (Ma +Mb)2
√
s− (Ma −Mb)2

)
+ i

= −2i

π

(
π

2
− tan−1

√
s− (Ma −Mb)2

√
−s + (Ma +Mb)2

)
+ i

≃ −2i

π

(
π

2
−

√
s− (Ma −Mb)2

√
−s + (Ma +Mb)2

)
+ i (47)

with the corresponding cancellation of the singular terms in Eq. (48).

Meson-baryon loop diagram

The meson-nucleon loop diagram B̃(s) below the threshold, at (MS−MN )
2 < s < (MS+MN )

2,
reads:

B̃(s) = b̃0+i

√
[−s+(MS+MN)2][s−(MS−MN )2]

16πMN

√
s

×
[
1

π
ln

√
s[s− (MS−MN)2]− i|MN −MS|

√
−s+ (MS+MN)2

√
s[s−(MS−MN )2] + i|MN −MS|

√
−s+(MS+MN)2

+i
]

= b̃0 + i

√
[−s+(MS+MN)2][s−(MS−MN )2]

16πMN

√
s

×
[
− 2i

π
tan−1

( |MN −MS|
√
−s+ (MS +MN )2

√
s[s− (MS −MN )2]

)
+ i
]
. (48)
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Near s = (MS −MN )
2 we write:

tan−1
( |MN −MS |

√
−s + (MS +MN )2

√
s[s− (MS −MN )2]

)

=
π

2
− tan−1

√
s[s− (MS −MN )2]

|MN −MS |
√
−s + (MS +MN )2

)
(49)

and the meson-nucleon loop diagram B̃(s) below the threshold is:

B̃(s) = b̃0 +

√
[−s+(MS+MN)2][s−(MS−MN )2]

16πMN

√
s

×
[
− 2

π
tan−1

√
s[s− (MS −MN )2]

|MN −MS|
√
−s + (MS +MN )2

]
. (50)

It is seen that points s = 0 and s = (MS−MN )
2 are non-singular. Moreover, at s = (MS−MN )

2

we have B̃(s) = b̃0, see Eq. (50), that corresponds to zero of the s-dependent part of the loop
diagram. Ambiguities in the determimation of the loop diagrams are related to zeros of B(s)
and B̃(s).

Ambiguites in the determination of the resonance amplitude

The ambiguities of the resonance amplitude are due to CDD-poles [20] . The resonance ampli-
tude with CDD-poles taken into account is written as follows:

B(s)

1− B(s) +
∑
n

γn
s−sn

(51)

A redefinition of the type

B(s) → B(s)

1 +
∑
n

γn
s−sn

(52)

returns us to the used form of amplitudes. But the redefined B(s) differs in numbers and the
positions of zeros.

Appendix B: Angular momentum operators for two-meson

systems

We use angular momentum operators X(L)
µ1...µL

(k⊥), Zα
µ1...µL

(k⊥) and the projection operator
Oµ1...µL

ν1...νL
(⊥ P ) (see [27, 28, 33]). Let us recall their definition.

The operators are constructed from the relative momenta k⊥µ and tensor g⊥µν . Both of them
are orthogonal to the total momentum of the system:

k⊥µ =
1

2
g⊥µν(k1 − k2)ν = k1νg

⊥P
νµ = −k2νg⊥P

νµ , g⊥µν = gµν −
PµPν

s
. (53)
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The operator for L = 0 is a scalar (we write X(0)(k⊥) = 1), and the operator for L = 1 is a
vector, X(1)

µ = k⊥µ . The operators X(L)
µ1...µL

for L ≥ 1 can be written in the form of a recurrency
relation:

X(L)
µ1...µL

(k⊥) = k⊥αZ
α
µ1...µL

(k⊥) ≡ k⊥αZµ1...µL,α(k
⊥),

Zα
µ1...µL

(k⊥) ≡ Zµ1...µL,α(k
⊥) =

2L− 1

L2

( L∑

i=1

X(L−1)
µ1...µi−1µi+1...µL

(k⊥)g⊥µiα
−

− 2

2L− 1

L∑

i,j=1
i<j

g⊥µiµj
X(L−1)

µ1...µi−1µi+1...µj−1µj+1...µLα
(k⊥)

)
. (54)

We have a convolution equality X(L)
µ1...µL

(k⊥)k⊥µL
= k2⊥X

(L−1)
µ1...µL−1

(k⊥), with k2⊥ ≡ k⊥µ k
⊥
µ , and the

tracelessness property of X(L)
µµµ3...µL

= 0. On this basis, one can write down the normalization
condition for orbital angular operators:

∫
dΩ

4π
X(L)

µ1...µL
(k⊥)X(L)

µ1...µL
(k⊥) = αLk

2L
⊥ , αL =

L∏

l=1

2l − 1

l
, (55)

where the integration is performed over spherical variables
∫
dΩ/(4π) = 1.

Iterating Eq. (54), one obtains the following expression for the operator X(L)
µ1...µL

at L ≥ 1:

X(L)
µ1...µL

(k⊥) = αL

[
k⊥µ1

k⊥µ2
k⊥µ3

k⊥µ4
. . . k⊥µL

− (56)

− k2⊥
2L− 1

(
g⊥µ1µ2

k⊥µ3
k⊥µ4

. . . k⊥µL
+ g⊥µ1µ3

k⊥µ2
k⊥µ4

. . . k⊥µL
+ . . .

)
+

+
k4⊥

(2L−1)(2L−3)

(
g⊥µ1µ2

g⊥µ3µ4
k⊥µ5

k⊥µ6
. . . k⊥µL

+g⊥µ1µ2
g⊥µ3µ5

k⊥µ4
k⊥µ6

. . . k⊥µL
+ . . .

)
+ . . .

]
.

For the projection operators, one has:

O = 1, Oµ
ν (⊥ P ) = g⊥µν ,

Oµ1µ2
ν1ν2

(⊥ P ) =
1

2

(
g⊥µ1ν1

g⊥µ2ν2
+g⊥µ1ν2

g⊥µ2ν1
−2

3
g⊥µ1µ2

g⊥ν1ν2

)
. (57)

For higher states, the operator can be calculated using the recurrent expression:

Oµ1...µL
ν1...νL

(⊥ P ) =
1

L2

( L∑

i,j=1

g⊥µiνj
Oµ1...µi−1µi+1...µL

ν1...νj−1νj+1...νL
(⊥ P )−

− 4

(2L− 1)(2L− 3)
×

L∑

i<j
k<m

g⊥µiµj
g⊥νkνmO

µ1...µi−1µi+1...µj−1µj+1...µL
ν1...νk−1νk+1...νm−1νm+1...νL

(⊥ P )
)
. (58)

The projection operators obey the relations:

Oµ1...µL
ν1...νL

(⊥ P )X(L)
ν1...νL

(k⊥) = X(L)
µ1...µL

(k⊥) ,

Oµ1...µL
ν1...νL

(⊥ P )kν1kν2 . . . kνL =
1

αL

X(L)
µ1...µL

(k⊥). (59)
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Hence, the product of the two XL(k⊥) operators results in the Legendre polynomials as follows:

X(L)
µ1...µL

(k⊥1 )(−1)LOµ1...µL
ν1...νL

(⊥ P )X(L)
ν1...νL

(k⊥2 )=αL

(√
−k⊥2

1

√
−k⊥2

2

)L
PL(z), (60)

where z ≡ (−k⊥1νk⊥2ν)/(
√
−k⊥2

1

√
−k⊥2

2 ).

Appendix C: Baryon resonances, wave functions and prop-

agators

We construct spin-dependent propagators which do not change their spin structure with the
inclusion of the loop-diagram interaction. The corresponding spin wave functions are eigenfunc-
tions for the interaction. In the framework of this procedure we work with the effective mass
of the system, and this effective mass depends on the energy, M(s). For resonance systems we
write M2(s) = s, for detail see [27,28, 34, 35].

Baryon spin-1/2 wave function

The spin-dependent numerator of the D-function reads:

∑

j=1,2

ψj(p) ψ̄j(p) = p̂+M(s),
∑

j=3,4

ψj(p) ψ̄j(p) = −(p̂+M(s)) . (61)

where M(s) is the effective mass of the resonance system. It means that we work with baryon
wave functions ψ(p) and ψ̄(p) = ψ+(p)γ0 which obey the following equations for spin-1/2
fermions:

(p̂−M(s))ψ(p) = 0, ψ̄(p)(p̂−M(s)) = 0, (62)

Wave functions are normalised as follows:

j, j′ = 1, 2 :
(
ψ̄j(p)ψj′(p)

)
= 2M(s) δjj′,

j, j′ = 3, 4 :
(
ψ̄j(p)ψj′(p)

)
= −2M(s) δjj′. (63)

The solution of the equation (62) gives us four wave functions:

j = 1, 2 : ψj(p) =
√
p0 +M(s)

(
ϕj

(σp)

p0+M(s)
ϕj

)
,

ψ̄j(p) =
√
p0 +M(s)

(
ϕ+
j ,−ϕ+

j

(σp)

p0 +M(s)

)
,

j = 3, 4 : ψj(−p) = i
√
p0 +M(s)

(
(σp)

p0+M(s)
χj

χj

)
,

ψ̄j(−p) = −i
√
p0 +M(s)

(
χ+
j

(σp)

p0 +M(s)
,−χ+

j

)
, (64)

where ϕj and χj are two-component spinors normalised as ϕ+
j ϕj′ = δjj′ and χ

+
j χj′ = δjj′ .
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Solutions with j = 3, 4 refer to antibaryons. The corresponding wave function is defined as

j = 3, 4 : ψc
j(p) = Cψ̄T

j (−p) , C−1γµC = −γTµ . (65)

We see that ψc
j(p) satisfies the equation:

(p̂−M(s))ψc
j (p) = 0 . (66)

Spin-32 wave functions

To describe resonance states ∆ and ∆̄, we use the wave functions ψµ(p) and ψ̄µ(p) = ψ+
µ (p)γ0

which satisfy the following constraints:

(p̂−M(s))ψµ(p) = 0, ψ̄µ(p)(p̂−M(s)) = 0,

pµψµ(p) = 0, γµψµ(p) = 0 . (67)

Here ψµ(p) is a four-component spinor and µ is a four-vector index. Sometimes, to underline
spin variables, we use the notation ψµ(p; j).

Wave function for ∆

The equation (67) gives four wave functions for the ∆:

j = 1, 2 : ψµ(p; j) =
√
p0 +M(s)

(
ϕµ⊥(j)

(σp)

p0+M(s)
ϕµ⊥(j)

)
,

ψ̄µ(p; j) =
√
p0 +M(s)

(
ϕ+
µ⊥(j),−ϕ+

µ⊥(j)
(σp)

p0 +M(s)

)
, (68)

where the two-component spinors ϕµ⊥(a) are determined to be perpendicular to pµ thus keeping
for ∆ four independent spin components µz = 3/2, 1/2,−1/2,−3/2 related to the spin S = 3/2
and removing the components with S = 1/2.

The completeness conditions for the spin-3
2
wave functions can be written as follows:

∑

j=1,2

ψµ(p; j) ψ̄ν(p; j) = (p̂+M(s))
(
−g⊥µν +

1

3
γ⊥µ γ

⊥
ν

)

= (p̂+M(s))
2

3

(
−g⊥µν +

1

2
σ⊥
µν

)
, (69)

where g⊥µν ≡ g⊥p
µν and γ⊥µ = g⊥p

µµ′γµ′ . The factor (p̂ +M(s)) commutates with (g⊥µν − 1
3
γ⊥µ γ

⊥
ν )

in (69) because p̂γ⊥µ γ
⊥
ν = γ⊥µ γ

⊥
ν p̂. The matrix σ⊥

µν is determined in a standard way, σ⊥
µν =

1
2
(γ⊥µ γ

⊥
ν − γ⊥ν γ

⊥
µ ).

Wave function for ∆̄

The anti-delta, ∆̄, is determined by the following four wave functions:

j = 3, 4 : ψµ(−p; j) = i
√
p0 +M(s)

(
(σp)

p0+M(s)
χµ⊥(j)

χµ⊥(j)

)
,

ψ̄µ(−p; j) = −i
√
p0 +M(s)

(
χ+
µ⊥(j)

(σp)

p0 +M(s)
,−χ+

µ⊥(j)

)
. (70)
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The completeness conditions for spin-3
2
wave functions with j = 3, 4 are

∑

j=3,4

ψµ(−p; j) ψ̄ν(−p; j) = −(p̂+M(s))
(
−g⊥µν +

1

3
γ⊥µ γ

⊥
ν

)

= −(p̂+M(s))
2

3

(
−g⊥µν +

1

2
σ⊥
µν

)
. (71)

The equation (70) can be rewritten in the form of (68) using the charge conjugation matrix
C which was introduced for spin-1

2
particles. We write:

j = 3, 4 : ψc
µ(p; j) = Cψ̄T

µ (−p; j). (72)

The wave functions ψc
µ(p; j) with j = 3, 4 obey the equation:

(p̂−M(s))ψc
µ(p; j) = 0 . (73)

Projection operators for resonance states with J > 3/2.

The wave function of a resonance state with spin J = ℓ+1/2, momentum p and effective mass
term M(s) is given by a tensor four-spinor ψµ1...µℓ

. It satisfies the constraints

(p̂−M(s))ψµ1...µℓ
= 0, pµi

ψµ1...µℓ
= 0, γµi

ψµ1...µℓ
= 0, (74)

and the symmetry properties

ψµ1...µi...µj ...µℓ
= ψµ1...µj ...µi...µℓ

,

gµiµj
ψµ1...µi...µj ...µℓ

= g⊥p
µiµj

ψµ1...µi...µj ...µℓ
= 0. (75)

Conditions (74), (75) define the structure of the denominator of the fermion propagator (the
projection operator) which can be written in the following form:

F µ1...µℓ
ν1...νℓ

(p) = (−1)ℓ(p̂+M(s))Φµ1...µℓ
ν1...νℓ

(⊥ p). (76)

The operator Φµ1...µℓ
ν1...νℓ

(⊥ p) describes the tensor structure of the propagator. It is equal to 1
for a (J = 1/2)-particle and is proportional to g⊥p

µν − γ⊥µ γ
⊥
ν /3 for a particle with spin J = 3/2

(remind that γ⊥µ = g⊥p
µν γν).

The conditions (5)-(9) are identical for fermion and boson projection operators and therefore
the fermion projection operator can be written as:

Φµ1...µℓ
ν1...νℓ

(⊥ p) = Oµ1...µℓ
α1...αℓ

(⊥ p)φα1...αℓ

β1...βℓ
(⊥ p)Oβ1...βℓ

ν1...νℓ
(⊥ p) . (77)

The operator φα1...αℓ

β1...βℓ
(⊥ p) can be expressed in a rather simple form since all symmetry and

orthogonality conditions are imposed by O-operators. First, the φ-operator is constructed of
metric tensors only, which act in the space of ⊥ p and γ⊥-matrices. Second, a construction like
γ⊥αi
γ⊥αj

= 1
2
g⊥αiαj

+ σ⊥
αiαj

(remind that here σ⊥
αiαj

= 1
2
(γ⊥αi

γ⊥αj
− γ⊥αj

γ⊥αi
) gives zero if multiplied

by an Oµ1...µℓ
α1...αℓ

-operator: the first term is due to the traceless conditions and the second one to
symmetry properties. The only structures which can then be constructed are g⊥αiβj

and σ⊥
αiβj

.
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Moreover, taking into account the symmetry properties of the O-operators, one can use any
pair of indices from sets α1 . . . αℓ and β1 . . . βℓ, for example, αi → α1 and βj → β1. Then

φα1...αℓ

β1...βℓ
(⊥ p) =

ℓ+ 1

2ℓ+1
(g⊥α1β1

− ℓ

ℓ+1
σ⊥
α1β1

)
ℓ∏

i=2

g⊥αiβi
. (78)

Since Φµ1...µℓ
ν1...νℓ

(⊥ p) is determined by convolutions of O-operators, see Eq. (77), we can replace
in (77)

φα1...αℓ

β1...βℓ
(⊥ p) → φα1...αℓ

β1...βℓ
(p) =

ℓ+ 1

2ℓ+1
(gα1β1 −

ℓ

ℓ+1
σα1β1)

ℓ∏

i=2

gαiβi
. (79)

The coefficients in (79) are chosen to satisfy the constraints (74) and the convolution condition:

Φµ1...µℓ
α1...αℓ

(p)Φα1...αℓ
ν1...νℓ

(p) = Φµ1...µℓ
ν1...νℓ

(p) . (80)
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