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Abstract

We propose a change detection method for the famous Cox–Ingersoll–Ross model.

This model is widely used in financial mathematics and therefore detecting a change in

its parameters is of crucial importance. We develop one- and two-sided testing proce-

dures for both drift parameters of the process. The test process is based on estimators

that are motivated by the discrete time least-squares estimators, and its asymptotic

distribution under the no-change hypothesis is that of a Brownian bridge. We prove

the asymptotic weak consistence of the test, and derive the asymptotic properties of

the change-point estimator under the alternative hypothesis of change at one point in

time.

1 Introduction

We consider the well-known Cox–Ingersoll–Ross (CIR) model

dXt = (a− bXt) dt+ σ
√
Xt dWt, t > 0,(1.1)

where a > 0, b > 0, σ > 0 and (Wt)t>0 is a standard Wiener process. We will be interested

in detecting a change in the parameters a and b, and for brevity we will use θ := (a, b)⊤.

The volatility parameter σ will not be estimated because we work with a continuous sample,

from which (and indeed, from an arbitrarily small part of which) σ can be calculated exactly,

see Barczy and Pap (2013, Remark 2.6). Therefore change detection in σ is not necessary

– we can calculate, without any uncertainty, whether σ is constant across our sample. The

constraints on the parameter values ensure the ergodic behavior of our process – for details

see Theorem 2.2 below. These constraints also ensure that any solution of (1.1) starting

from a nonnegative value stays nonnegative indefinitely almost surely – see Proposition 2.1.

The process was proposed as an interest rate model by Cox et al. (1985) and is one

of the standard ”short rate” models in financial mathematics. The statistical properties
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of the model have therefore been extensively studied: Overbeck (1998) provided estimators

based on continuous-time observations, while the low-frequency discrete-time CLS estimators

were proposed by Overbeck and Rydén (1997). High-frequency estimators were proposed by

Ben Alaya and Kebaier (2012, 2013), whose results we will require occasionally.

There are a handful of change detection tests for the CIR process in the literature:

Schmid and Tzotchev (2004) used control charts and a sequential method (i.e., an online

procedure, which is in contrast to our offline one, where we assume the full sample to be

known before starting investigations). They also supposed noisy observations, which will

not be our interest. Guo and Härdle (2010) used the local parameter approach based on

approximate maximum likelihood estimates. In essence, they wanted to find the largest

interval for which the sample fits the model. Also, they used a discrete sample, whereas we

will use a continuous one. The main result of our paper is that we were able to prove some

asymptotic properties of the testing procedure under the alternative hypothesis as well as the

null hypothesis. We believe this to be important because, if investigated only under the null

hypothesis, a change-detection procedure is essentially a model-fitting test, and results under

the alternative are necessary to verify its use for the more special task of change detection.

The statistical problem we are concerned with is the following: we would like to test the

null hypothesis

H0 : (Xt)t∈[0,T ] is the path of a CIR process

against the alternative hypothesis

HA : ∃τ ∈ [0, T ] :(Xt)t∈[0,τ ] is a CIR process with parameters a = a′, b = b′, and

(Xt)t∈[τ,T ] is a CIR process with parameters a = a′′, b = b′′.

In general, we will be interested in asymptotic results as T → ∞. Under HA we will also

require τ = ρT with ρ ∈ (0, 1).

The layout of the paper is the following: in the remainder of the present Section 1 we

will explain our notations. Section 2 will deal with the basic finite-sample and asymptotic

properties of the CIR process and establishes the tools for our proofs. We will introduce our

parameter estimators in Section 3 and derive their strong consistency. We will not investigate

them in more detail than necessary since we will only use them to construct the test process,

and we are more interested in their nice algebraic form than their statistical properties.

We construct our test process and describe the test procedures in Section 4, where we also

obtain the asymptotic distribution of the test process under H0. Section 5 contains the first

of our two asymptotic results – namely, the weak consistence of the test. The second result,

which concerns the properties of the change-point estimator under HA, is stated and proved

in Section 6. Section 7 explains how to modify the proofs in order to detect a change in b.

Finally, the lemmata necessary for the proofs of the main theorems have been collected into

Section 8.
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1.1 Notations

In the following we describe our basic notations. Let N, Z+, R, R+ and R++ denote

the sets of positive integers, non-negative integers, real numbers, non-negative real numbers

and positive real numbers, respectively. For x, y ∈ R, we will use x ∧ y := min(x, y) and

x ∨ y := max(x, y). By ‖x‖ and ‖A‖ we denote the Euclidean norm of a vector x ∈ R
d

and the induced matrix norm of a matrix A ∈ R
d×d, respectively. We will use asymptotic

notation for rates of convergence: f(t) = O(g(t)) means that lim supt→∞
f(t)
g(t)

<∞. Similarly,

for a stochastic process Xt, the notation Xt = OP(g(t)) means that the collection of measures(
L
(
Xt

g(t)

))
t>t0

is tight for some t0 ∈ R+. Unless otherwise noted, asymptotic statements are

to be understood as T → ∞. Following the usual conventions,
P−→,

D−→ and
a.s.−→ will

denote convergence in probability, in distribution and almost surely, respectively.

As for the probabilistic setup,
(
Ω,F , (Ft)t∈R+

,P
)

will always be a filtered probability

space satisfying the usual conditions, i.e., (Ω,F ,P) is complete, the filtration (Ft)t∈R+
is

right-continuous and F0 contains all the P-null sets in F . We will repetadly work with

continous martingales; as usual, their quadratic variation will be denoted by 〈·〉.

2 Preliminaries

In our first proposition we recall some well-known properties of the solution of (1.1).

2.1 Proposition. For any random variable ξ independent of (Wt)t∈R+
and satisfying

P(ξ ∈ R+) = 1, there is a (pathwise) unique strong solution (Xt)t∈R+
of the SDE (1.1) with

X0 = ξ. Further, we have P(Xt ∈ R+ for all t ∈ R+) = 1 and the following equalities:

Xt = e−bt
(
X0 + a

∫ t

0

ebu du+ σ

∫ t

0

ebu
√
Xu dWu

)
, t ∈ R+,(2.1)

X2
t = e−2btX2

0 +

∫ t

0

e−2b(t−u)(2a+ σ2)Xu du+ 2σ

∫ t

0

e−2b(t−u)X3/2
u dWu, t ∈ R+.(2.2)

The conditional distribution of Xt on Xs, where s < t, is noncentral chi-squared and we have

(2.3) sup
t∈R+

E(Xη
t ) <∞

for all η > 0.

Proof. By a theorem due to Yamada and Watanabe (see, e.g., Karatzas and Shreve, 1991,

Proposition 5.2.13), the strong uniqueness holds for (1.1). By Ikeda and Watanabe (1989,

Example V.8.2, page 221), there is a (pathwise) unique non-negative strong solution (Xt)t∈R+
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of (1.1) with any initial value ξ independent of (Wt)t∈R+
and satisfying P(ξ ∈ R+) = 1,

and we have P(Xt ∈ R+ for all t ∈ R+) = 1. Next, by application of the Itô’s formula for

the process (Xt)t∈R+
, we obtain

d(ebtXt) = bebtXt dt+ ebtdXt = bebtXt dt + ebt
(
(a− bXt) dt+ σ

√
Xt dWt

)

= aebt dt+ σebt
√
Xt dWt

for all t ∈ R+, which implies (2.1).

The noncentral chi-squared distribution is a well-known property of the process, and it

can be found in the paper of Feller (1951). The property (2.3) is a direct consequence of this

fact and the calculations can be found, e.g., in Ben Alaya and Kebaier (2013, Proposition

3). ✷

The following result states the existence of a unique stationary distribution and the

ergodicity of the CIR process. The proof can be put together from Feller (1951), Cox et al.

(1985, Equation 20), and Jin et al. (2013).

2.2 Theorem. Let a, b, σ ∈ R++. Let (Xt)t∈R+
be a strong solution of (1.1) with

P(X0 ∈ R+) = 1. Then

(i) Xt
D−→ X∞ as t→ ∞, and the distribution of X∞ is given by

E(e−λX∞) =

(
1 +

σ2

2b
λ

)−2a/σ2

, λ ∈ R+,(2.4)

i.e., X∞ has Gamma distribution with parameters 2a/σ2 and 2b/σ2, hence

E(Xα
∞) =

Γ
(
2a
σ2

+ α
)

(
2b
σ2

)α
Γ
(
2a
σ2

) , α ∈
(
−2a

σ2
,∞
)
.

(ii) supposing that the random initial value X0 has the same distribution as X∞, the

process (Xt)t∈R+
is strictly stationary;

(iii) for all Borel measurable functions f : R → R such that E(|f(X∞)|) <∞, we have

(2.5)
1

T

∫ T

0

f(Xs) ds
a.s.−→ E(f(X∞)) as T → ∞.

4



2.3 Corollary. In the setting of Proposition 2.1 we have

E(Xt) = e−bt E(X0) + a

∫ t

0

e−b(t−u) du

E(X2
t ) = e−2bt

E(X2
0 ) +

∫ t

0

(2a+ σ2)

(
e−b(2t−u) E(X0) + a

∫ u

0

e−b(2t−u−v) dv

)
du.

Hence,

(2.6) lim
t→∞

E(Xt) = E(X∞) =
a

b
, lim

t→∞
E(X2

t ) = E(X2
∞) =

2a2 + a2σ2

2b2
,

moreover,

(2.7)

∫ ∞

0

|E(Xt)− E(X∞)| dt <∞,

∫ ∞

0

|E(X2
t )− E(X2

∞)| dt <∞.

Proof. The first equalities are straightforward by taking expectations on both sides in

Proposition 2.1 (we note that the stochastic integrals in question are indeed martingales due

to (2.3)). From there, (2.6) is a question of elementary calculus: for the first equation we

write

(2.8) lim
t→∞

(
e−bt E(X0) + a

∫ t

0

e−b(t−u) du

)
= lim

t→∞
a

∫ t

0

e−bv dv = a

∫ ∞

0

e−bv dv =
a

b
.

For the second equation we observe

(2.9)∫ t

0

∫ u

0

e−b(2t−u−v) dvdu =
1

b

(∫ t

0

(e−2b(t−u) − e−b(2t−u)) du

)
=

1

b

∫ t

0

e−2bu du+
e−bt

b

∫ t

0

e−bu du

and hence

lim
t→∞

(
e−2bt

E(X2
0 ) +

∫ t

0

(2a+ σ2)

(
e−b(2t−u) E(X0) + a

∫ u

0

e−b(2t−u−v) dv

)
du

)

= (2a + σ2) lim
t→∞

(
E(X0)e

−bt

∫ t

0

e−bw dw + a

∫ t

0

∫ u

0

e−b(2t−u−v) dv du

)

= (2a + σ2)
1

b

∫ ∞

0

e−2bw dw.

(2.10)

For the first part of (2.7) we consider (keeping in mind (2.8))

|E(Xt)− E(X∞)| =
∣∣∣∣e−bt E(X0)− a

∫ ∞

t

e−bu du

∣∣∣∣ 6 e−bt E(X0) + ab−1e−bt,
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which yields the result immediately. For the second part, we combine (2.9) and (2.10) to

obtain

|E(X2
t )− E(X2

∞)| =
∣∣∣∣e−2bt

E(X2
0 ) + (2a+ σ2)e−bt

∫ t

0

(
E(X0)e

−bu +
1

b
e−bu

)
du

−1

b

∫ ∞

t

e−2bu du

∣∣∣∣

6 e−2bt
E(X2

0 ) + (2a+ σ2)e−bt
(
E(X0) +

1

b

)
1

b
+

1

2b2
e−2bt.

This yields the desired result immediately. ✷

Finally, we recall a strong law of large numbers and a central limit theorem for continuous

local martingales.

2.4 Theorem. (Special case of Liptser and Shiryaev, 2001, Lemma 17.4) Let the

process (Wt)t∈R+
be a standard Wiener process with respect to the filtration (Ft)t∈R+

. Let

(ξt)t∈R+
be a measurable process adapted to (Ft)t∈R+

such that

P

(∫ t

0

ξ2u du <∞
)

= 1, t ∈ R+ and

∫ t

0

ξ2u du
a.s.−→ ∞ as t→ ∞.(2.11)

Then

∫ t
0
ξu dWu∫ t
0
ξ2u du

a.s.−→ 0 as t→ ∞.(2.12)

2.5 Theorem. (Special case of Jacod and Shiryaev, 2003, Corollary VIII.3.24.)

Let (Xn
t )t∈R+

be a series of locally square-integrable continuous martingales such that

〈Xn〉t P−→ t, t ∈ R+, as n→ ∞.

Then (Xn)t∈R+

D−→ (Wt)t∈R+
, where (Wt)t∈R+

is a standard Wiener process.

3 Construction of our parameter estimators

In this section we will define some estimators for the drift parameters of the CIR process,

based on continuous time observations. We will do this in the following way: first we

introduce least squares estimators based on low-frequency discrete time observations, then

we will introduce our estimators as a formal analogy; we will not try to construct our

estimators as solutions to a least-squares problem.
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An LSE of (a, b) based on a discrete time observation (Xi)i∈{0,1,...,n}, can be obtained

by solving the extremum problem

(
âDn , b̂

D
n

)
:= argmin

(a,b)∈R2

n∑

i=1

(Xi −Xi−1 − (a− bXi−1))
2.

This is a simple exercise, which has the well-known solution

[
âDn

b̂Dn

]
=

[
n −

∑n
i=1Xi−1

−
∑n

i=1Xi−1

∑n
i=1X

2
i−1

]−1 [ ∑n
i=1(Xi −Xi−1)

−
∑n

i=1(Xi −Xi−1)Xi−1

]
,

provided n
∑n

i=1X
2
i−1 − (

∑n
i=1Xi−1)

2
> 0.

By a formal analogy, we introduce the estimator of (a, b) based on a continuous time

observation (Xt)t∈[0,T ] as

θ̂T :=

[
âT

b̂T

]
=

[
T −

∫ T
0
Xs ds

−
∫ T
0
Xs ds

∫ T
0
X2
s ds

]−1 [
XT −X0

−
∫ T
0
Xs dXs

]
,

provided T
∫ T
0
X2
s ds−

(∫ T
0
Xs ds

)2
> 0, which is true a.s. To see this, consider that, by a

simple application of the Cauchy–Schwarz inequality,

T

∫ T

0

X2
s ds−

(∫ T

0

Xs ds

)2

> 0,

and equality happens only if X is constant almost everywhere on [0, T ]. In particular, since

X is continuous on [0, T ] almost surely, this implies X0 = XT almost surely. However, since

the distribution of XT conditionally on X0 = x is absolutely continuous by Proposition 2.1,

P(XT = X0|X0 = x) = 0 for all x ∈ R+, which suffices for the statement.

To condense our notation, we will use

(3.1) Qs :=

[
s −

∫ s
0
Xu du

−
∫ T
0
Xu du

∫ s
0
X2
u du

]
and ds :=

[
Xs −X0

−
∫ s
0
Xu dXu

]

3.1 Remark. The stochastic integral
∫ s
0
Xu dXu is observable, since, by Itô’s formula, we

have d(X2
t ) = 2Xt dXt + σ2Xt dt, t ∈ R+, hence

∫ s

0

Xu dXu =
1

2

(
X2
s −X2

0 − σ2

∫ s

0

Xu du

)
.
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Using the SDE (1.1) one can check that

[
âT − a

b̂T − b

]
= Q−1

T

[
σ
∫ T
0
X

1/2
s dWs

−σ
∫ T
0
X

3/2
s dWs

]
,(3.2)

provided T
∫ T
0
X2
s ds −

(∫ T
0
Xs ds

)2
> 0, which is, again, true a.s. In further calculations

we will use

(3.3) d̃s := σ

[ ∫ s
0
X

1/2
u dWu

−
∫ s
0
X

3/2
u dWu

]
.

3.2 Theorem. Let (Xt)t∈R+
be a strong solution of (1.1) with P(X0 ∈ R+) = 1. Then

the LSE of (a, b) is strongly consistent, i.e.,
(
âT , b̂T

) a.s.−→ (a, b) as T → ∞.

Proof. Recall (3.2) and write

[
âT − a

b̂T − b

]
=

(
QT

T

)−1 σ2
∫ T
0
X3
s ds

T



σ2

∫ T
0
Xs ds

σ2
∫ T
0
X3

s ds
· σ

∫ T
0
X

1/2
s dWs

σ2
∫ T
0
Xs ds

−σ
∫ T
0
X

3/2
s dWs

σ2
∫ T
0
X3

s ds


 .(3.4)

Now, the statement is evident from (2.12) and (2.5), noting that

σ2
∫ T
0
Xs ds

σ2
∫ T
0
X3
s ds

=
T−1σ2

∫ T
0
Xs ds

T−1σ2
∫ T
0
X3
s ds

a.s.−→ E(X∞)

E(X3
∞)
.

✷

4 Construction of the test process

First we introduce the martingale

Ms := Xs −X0 −
∫ s

0

(a− bXu) du = σ

∫ s

0

√
Xu dWs, s ∈ R+,

which satisfies

(4.1) dMs = dXs − (a− bXs) ds = σ
√
Xu dWs.

Let us fix a time horizon T ∈ R++. The process will again be introduced as a formal

analogy to the efficient score vector, as is done in Gombay (2008). The analogue of the
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efficient score vector process at time tT , t ∈ [0, 1], will be

∫ tT

0

[
1

−Xs

]
dMs.

The information contained in a continuous sample (Xu)u∈[0,tT ] is the quadratic variation of

the efficient score vector process, namely,

∫ tT

0

[
1

−Xs

][
1

−Xs

]⊤
〈M〉s ds = σ2

∫ tT

0

[
Xs −X2

s

−X2
s X3

s

]
ds =: I tT ,

since 〈M〉s = σ2Xs, s ∈ R+. For each s ∈ R+, replacing the parameters by their estimates

in Ms, we obtain an estimate M̂
(T )
s , i.e.,

M̂ (T )
s := Xs −X0 −

∫ s

0

(âT − b̂TXu) du, s ∈ R+.

Our test process will be the estimated efficient score vector multiplied by the square root of

the inverse of the information matrix, i.e.,

M̂
(T )

t := I
−1/2
T

∫ tT

0

[
1

−Xs

]
dM̂ (T )

s , t ∈ [0, 1].

This process can also be written in CUSUM form

M̂
(T )

t = I
−1/2
T QtT

(
θ̂tT − θ̂T

)
, t ∈ [0, 1].

Indeed,

∫ tT

0

[
1

−Xs

]
dM̂ (T )

s =

∫ tT

0

[
1

−Xs

]
dXs −

∫ tT

0

[
1

−Xs

][
1

−Xs

]⊤
θ̂Tds

= QtT

(
Q−1
tT

∫ tT

0

[
1

−Xs

]
dXs − θ̂T

)
.

4.1 Theorem. Let (Xt)t∈R+
be a strong solution of (1.1) with P(X0 ∈ R+) = 1. Then

(
M̂

(T )

t

)
t∈[0,1]

D−→ (Bt)t∈[0,1] as T → ∞,

where (Bt)t∈[0,1] is a 2-dimensional standard Brownian bridge.
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Proof. We have

∫ tT

0

[
1

−Xs

]
dM̂ (T )

s =

∫ tT

0

[
1

−Xs

]
dMs −

∫ tT

0

[
1

−Xs

](
dMs − dM̂ (T )

s

)
,

and

∫ tT

0

[
1

−Xs

](
dMs − dM̂ (T )

s

)
=

∫ tT

0

[
1

−Xs

](
âT − a− (̂bT − b)Xs

)
ds

=

∫ tT

0

[
1

−Xs

][
1

−Xs

]⊤ [
âT − a

b̂T − b

]
ds = QtTQ

−1
T d̃T ,

with the notations from (3.1) and (3.3). In the following, E2 denotes the 2-dimensional

identity matrix. From the preceding calculations it follows that, for every t ∈ [0, 1],

M̂
(T )

t = I
−1/2
T

(
d̃tT −QtTQ

−1
T d̃T

)

= I
−1/2
T

(
d̃tT − td̃T

)
+ I

−1/2
T (tE2 −QtTQ

−1
T )d̃T

= (TI)−1/2
(
d̃tT − td̃T

)
+ ((T−1IT )

−1/2 − I−1/2)T−1/2
(
d̃tT − td̃T

)

+ I
−1/2
T (tE2 −QtTQ

−1
T )d̃T ,

where

I := σ2

[
E(X∞) −E(X2

∞)

−E(X2
∞) E(X3

∞)

]
.

It is a simple consequence of the ergodic theorem that T−1IT
a.s.−→ I as T → ∞. Conse-

quently, Theorem 4.1 will follow from

(4.2) sup
06t61

(tE2 −QtTQ
−1
T )

P−→ 0 as T → ∞,

and

(4.3)
(
T−1/2 d̃tT

)
t∈[0,1]

D−→ (I1/2
W t)t∈[0,1] as T → ∞,

where (W t)t∈[0,1] is a 2-dimensional standard Wiener process.

We begin by the proof of (4.3). The convergence is a simple consequence of Theorem 2.5.

d̃t is a locally square-integrable martingale, therefore we only need to check the pointwise

convergence of the quadratic variation. Using (iii) from Theorem 2.2 it is easy to show that,
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for every t ∈ [0, 1],

1

T
σ2

∫ tT

0

[
Xs −X2

s

−X2
s X3

s

]
ds

a.s.−→ t

[
E(X∞) −E(X2

∞)

−E(X2
∞) E(X3

∞)

]
= tI, as T → ∞.

For (4.2), introduce

Q :=

[
1 −E(X∞)

−E(X∞) E(X2
∞)

]

and note that due to Theorem 2.2 we have T−1QT
a.s.−→ Q. Now, first observe that

‖tE2 −QtTQ
−1
T ‖ 6 t

∥∥∥∥
QT

T
− QtT

tT

∥∥∥∥

∥∥∥∥∥

(
QT

T

)−1
∥∥∥∥∥ .

For this transformation to be sensible, we needed to extend Qs

s
continuously to s = 0, but

this can be done since all components of Is
s
has a finite upper limit at 0 almost surely (i.e.,

the powers of X0). Since the last factor converges to ‖Q−1‖ almost surely, for (4.2) it is

sufficient to show that

(4.4) sup
06t61

t

∥∥∥∥
QT

T
− QtT

tT

∥∥∥∥
P−→ 0.

In order to exploit the almost sure convergence of QT

T
, we note that QT

T

a.s.−→ Q implies

sups>T

∥∥∥Qs

s
−Q

∥∥∥ a.s.−→ 0 as T → ∞ and thus sups>T

∥∥∥Qs

s
−Q

∥∥∥ P−→ 0 as T → ∞. Now let us

introduce

K := sup
s>0

∥∥∥∥
Qs

s

∥∥∥∥ .

This limit is finite almost surely since Qs

s
is continuous on R+ and has a finite limit at infinity

almost surely. Now we observe, for an arbitrary ǫ > 0,

P

(
sup
06t61

t

∥∥∥∥
QT

T
− QtT

tT

∥∥∥∥ > ǫ

)

6 P

(
sup

06t6 ǫ
4K

∧1

t

∥∥∥∥
QT

T
− QtT

tT

∥∥∥∥ > ǫ

)
+ P

(
sup
ǫ

4K
6t61

t

∥∥∥∥
QT

T
− QtT

tT

∥∥∥∥ > ǫ

)

6 P

( ǫ

4K
2K > ǫ

)
+ P

(
sup
ǫ

4K
6t61

(
t

∥∥∥∥
QT

T
−Q

∥∥∥∥+
∥∥∥∥
QtT

tT
−Q

∥∥∥∥
)
> ǫ

)

6 0 + P

(∥∥∥∥
QT

T
−Q

∥∥∥∥ >
ǫ

2

)
+ P

(
sup
ǫT
4K

6s

∥∥∥∥
Qs

s
−Q

∥∥∥∥ >
ǫ

2

)
.
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Dividing the last probability according to the value of K, we have

P

(
sup
06t61

t

∥∥∥∥
QT

T
− QtT

tT

∥∥∥∥ > ǫ

)

6 P

(∥∥∥∥
QT

T
−Q

∥∥∥∥ >
ǫ

2

)
+ P

({
sup
ǫT
4K

6s

∥∥∥∥
Qs

s
−Q

∥∥∥∥ >
ǫ

2

}⋂{
K 6

√
T
})

+ P(K >
√
T )

6 P

(∥∥∥∥
QT

T
−Q

∥∥∥∥ >
ǫ

2

)
+ P


 sup

ǫ
√

T
4

6s

∥∥∥∥
Qs

s
−Q

∥∥∥∥ >
ǫ

2


+ P

(
K >

√
T
)
.

All three terms in the last expression tend to zero as T → ∞, therefore (4.2) is proved. ✷

4.1 Testing procedures

Based on Theorem 4.1, we can develop the following tests with a significance level of α:

Test 1 (one-sided): if it is clear that, in case of a change, a′ < a′′, reject H0 if the minimum

of (M̂
(1)

t )t∈[0,T ] is greater than C1(α), where C1(α) can be obtained from the distribution of

the minimum of a standard Brownian bridge. The same test can be applied to the maximum

(for a′ > a′′) and to (M̂
(2)

t )t∈[0,T ] (for a change in b).

Test 2 (two-sided): reject H0 if the maximum of |M̂(1)

t |t∈[0,T ] is greater than C2(α), where

C2(α) can be obtained from the distribution of the maximum of the absolute value of standard

Brownian bridge. The same test can be applied to |M̂(2)

t |t∈[0,T ] (for a change in b).

Naturally, the test for a and b can be applied simultaneously, in which case the significance

levels for the individual tests have to be modified accordingly, in order to produce an overall

significance level of α.

5 Asymptotic consistence of the test

Before stating our results under the alternative hypothesis, we need to examine the ergodicity

results that we can use more closely. Let us take two parameter vectors: θ′ and θ′′ (in the

formulation of the theorem, θ′ = (a′, b)⊤ and θ′′ = (a′′, b)⊤, but for the time being, we can

work more generally). Furthermore, we take two random variables, X ′
∞ and X ′′

∞, such that

they are distributed according to the stationary distributions corresponding to θ′ and θ′′,

respectively. Let us take a process (Xt)t∈R+
such that it evolves according to (1.1) with

parameters θ′ until t = ρT and with parameters θ′′ thereafter. We would like to apply the

12



ergodic theorem (i.e., Theorem 2.2) separately to the process before and after the change-

point (i.e., ρT ). However, we cannot do this directly for the second part because the initial

distribution may depend on T . However, we do have

(5.1)
1

T − ρT

∫ T

ρT

g(Xt) dt
P−→ E(g(X̃ ′′)),

where g : R+ → R with E(|g(X̃)|) <∞. Indeed, for an arbitrary ε > 0

P

(∣∣∣∣
1

T − ρT

∫ T

ρT

g(Xt) dt− E(g(X̃ ′′))

∣∣∣∣ > ε

)

=

∫

R+

P

(∣∣∣∣
1

T − ρT

∫ T

ρT

g(Xt) dt− E(g(X̃ ′′))

∣∣∣∣ > ε

∣∣∣∣∣XρT = x

)
dP ρT

X (x)

6

∥∥∥P ρT
X − P ∗

∥∥∥+
∫

R+

P

(∣∣∣∣
1

T − ρT

∫ T

ρT

g(Xt) dt− E(g(X̃ ′′))

∣∣∣∣ > ε

∣∣∣∣∣XρT = x

)
dP ∗(x),

where P ∗ is the distribution of X̃ ′, P ρT
X is the distribution of XρT and ‖·‖ is the total

variation norm. The first term converges to zero because the CIR process is positive Harris

recurrent (Jin et al., 2013, Theorem 2.5). This implies ergodicity by Meyn and Tweedie

(1993, Theorem 6.1), since in this case the 1-skeleton (i.e., the process (Xi)i∈Z+
) is clearly

irreducible because the support of the distribution of X1 conditionally on X0 is R+. In the

second term the measure is finite, while the integrand is bounded by 1 and converges to

zero pointwise, therefore (5.1) is proved by the Lebesgue Dominated Convergence Theorem.

The same line of reasoning can be used to apply Theorem 2.4 (with weak convergence) and

Theorem 2.5 after the point of change. Let us now introduce

d[a,b] :=



∫ b
a
1dXs

−
∫ b
a
XsdXs


 , Q[a,b] :=



∫ b
a
1 ds −

∫ b
a
Xs ds

−
∫ b
a
Xs ds

∫ b
a
X2
s ds


 .

With these notations,

θ̂T =
(
Q[0,τ ] +Q[τ,T ]

)−1
(d[0,τ ] + d[τ,T ]).

With the help of the ergodic theorem, we can see that this quantity has a finite weak limit:

θ̃ :=

[
ã

b̃

]
:= (ρQ′ + (1− ρ)Q′′)−1 (ρQ′θ′ + (1− ρ)Q′′θ′′) ,

where

Q′ :=

[
1 −E(X ′

∞)

−E(X ′
∞) E((X ′

∞)2)

]
, Q′′ :=

[
1 −E(X ′′

∞)

−E(X ′′
∞) E((X ′′

∞)2)

]
.
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5.1 Theorem. If a changes from a′ > 0 to a′′ > 0 at time τ = ρT , where ρ ∈ (0, 1), then

for any γ ∈
(
0, 1

4

)
we have

sup
06t6T

M̂
(T )
t = Tψ +OP(T

1−γ),

with ψ = (a′ − a′′)1⊤
1 ((ρQ

′)−1 + ((1− ρ)Q′′)−1)−111. Here 11 = (1, 0)⊤, the first unit vector.

5.2 Remark. Note how the sign of the principal term depends on the direction of change:

it is negative in case of an upwards change and positive in case of a downwards change. This

gives us the possibility to design one-sided tests.

Proof. First we show how the estimates behave in this case. Clearly,

θ′ − θ̃ = (1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′).

We have [
1

−E(X ′
∞)

]
= Q′

[
1

0

]
,

and hence

(5.2) (θ′ − θ̃)⊤

[
1

−E(X ′
∞)

]
=
ψ

ρ
.

In the same way we can conclude that

(5.3) (θ′′ − θ̃)⊤

[
1

−E(X ′′
∞)

]
= − ψ

1− ρ
.

Now we apply the following decomposition (which is useful for t < τ ; for t > τ it has to be

modified in a straightforward manner):

∫ t

0

1dM̂ (T )
u =

∫ t

0

1dMu +

∫ t

0

[
(̃b− b′)E(Xu) + (a′ − ã)

]
du

+

∫ t

0

(̂bT − b′)(Xu − E(Xu)) du+

∫ t

0

[
(̂bT − b̃)E(Xu) + (ã− âT )

]
du

=

∫ t

0

1dMu +

∫ t

0

(θ′ − θ̃)⊤

[
1

−E(Xu)

]
du

+

∫ t

0

(θ′ − θ̂T )

[
0

E(Xu)−Xu

]
du+

∫ t

0

(θ̃ − θ̂T )

[
1

−E(Xu)

]
du.

(5.4)
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This leads to
∣∣∣∣ sup
06t6T

∫ t

0

1dM̂ (T )
u − Tψ

∣∣∣∣

6 sup
06t6T

∣∣∣∣
∫ τ∧t

0

1dM ′
u +

∫ t

τ∧t

1dM ′′
u

∣∣∣∣ + sup
06t6T

∣∣∣∣∣

∫ t

0

(θ̃ − θ̂T )

[
1

−E(Xu)

]
du

∣∣∣∣∣

+

∣∣∣∣∣ sup06t6T

(∫ τ∧t

0

(θ′ − θ̃)⊤

[
1

−E(Xu)

]
du+

∫ t

τ∧t

(θ′′ − θ̃)⊤

[
1

−E(Xu)

]
du− Tψ

)∣∣∣∣∣

+ sup
06t6T

∣∣∣∣∣

∫ τ∧t

0

(θ′ − θ̂)⊤

[
0

E(Xu)−Xu

]
du+

∫ t

τ∧t

(θ′′ − θ̂)⊤

[
1

E(Xu)−Xu

]
du

∣∣∣∣∣ .

The first term is OP(T
γ−1) according to Lemma 8.4, the fourth term by Lemma 8.3 and the

second term by Lemma 8.5. For the third term, we write

∣∣∣∣∣ sup06t6T

(∫ τ∧t

0

(θ′ − θ̃)⊤

[
1

−E(Xu)

]
du+

∫ t

τ∧t

(θ′′ − θ̃)⊤

[
1

−E(Xu)

]
du− Tψ

)∣∣∣∣∣

6 sup
06t6T

∣∣∣∣∣

∫ τ∧t

0

(θ′ − θ̃)⊤

[
0

E(X∞)− E(Xu)

]
du

∣∣∣∣∣

+ sup
06t6T

∣∣∣∣∣

∫ t

τ∧t

(θ′′ − θ̃)⊤

[
1

E(X∞)− E(Xu)

]
du

∣∣∣∣∣+
∣∣∣∣ sup
06t6T

(
τ ∧ t
ρ

− (t− τ)+

1− ρ
− T

)
ψ

∣∣∣∣ .

The first two terms in this decomposition are bounded by (2.7) and the last one is obviously

zero, with the supremum attained at t = τ . This completes the proof. ✷

6 Estimation of the change point

The natural estimate of the change point if a′ > a′′, i.e., when a downward change in a is

being tested, is

τ̂T := inf{t ∈ R+ : M̂
(T )
t = sup

06t6T
M̂

(T )
t }.

Clearly, this is a well-defined, finite quantity, since M̂
(T )
t has continuous trajectories almost

surely. Regarding this estimate, we state the following result:

6.1 Theorem. Under the asumptions of Theorem 5.1, if a′ > a′′, then we have

τ̂T − ρT = OP(1).
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Proof. We remind the reader that, according to the assumptions, τ = ρT . We need to show

that

lim
K→∞

sup
T∈R

P(|τ̂T − ρT | > K) = 0 a.s.,

or, equivalently,

lim
K→∞

lim sup
T∈R

P(|τ̂T − ρT | > K) = 0 a.s.

For this, it is sufficient to show that

(6.1) lim
K→∞

lim sup
T→∞

P

(
sup

ρT−K<t<ρT+K
M̂

(T )
t 6 sup

06t6ρT−K
M̂

(T )
t

)
= 0

and that

(6.2) lim
K→∞

lim sup
T→∞

P

(
sup

ρT−K<t<ρT+K
M̂

(T )
t 6 sup

ρT+K6t6T
M̂

(T )
t

)
= 0.

First we prove (6.1). We observe

P

(
sup

ρT−K<t<ρT+K
M̂

(T )
t 6 sup

06t6ρT−K
M̂

(T )
t

)
6 P

(
M̂

(T )
ρT 6 sup

06t6ρT−K
M̂

(T )
t

)

= P

(
inf

06t6ρT−K
(M̂

(T )
ρT − M̂

(T )
t ) 6 0

)
= P

(
inf

K6t6ρT
t−1

∫ ρT

ρT−t

1 dM̂ (T )
s 6 0

)

We apply the decomposition (5.4) to show that

P

(
inf

K6t6ρT
t−1

∫ ρT

ρT−t

1 dM̂ (T )
s 6 0

)

6 P

(
inf

K6t6ρT
t−1

∫ ρT

ρT−t

(θ′ − θ̃)⊤

[
1

−E(Xs)

]
ds 6

ψ

2

)

+ P

(
sup

K6t6ρT

∣∣t−1(MρT −MρT−t)
∣∣ > ψ

6

)

+ P

(
sup

K6t6ρT

∣∣∣∣∣t
−1

∫ ρT

ρT−t

(θ′ − θ̂T )
⊤

[
0

E(Xs)−Xs

]
ds

∣∣∣∣∣ >
ψ

6

)

+ P

(
sup

K6t6ρT

∣∣∣∣∣t
−1

∫ ρT

ρT−t

(θ̃ − θ̂T )
⊤

[
1

−E(Xs)

]
ds

∣∣∣∣∣ >
ψ

6

)
.

(6.3)

In the first term we take the probability of a deterministic event, therefore it is either 0 or

1; we show that for sufficiently large K,N it is 0.
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Actually, this is the same statement in continuous time as Lemma 7.7 in Pap and Szabó

(2013), and the proof is also the same. First we note that, as has been shown before,

f(t) := (θ′ − θ̃)⊤

[
1

−E(Xt)

]
→ ψ, t→ ∞.

For an arbitrary ε > 0, let us introduce ν(ε) := supt:f(t)<ψ−ε <∞. Furthermore, let

κ(ε) := inf
06t6ν(ε)

f(t) > −∞.

Then we have, for a sufficiently large T ,

inf
06t6ρT

t−1

∫ ρT

ρT−t

f(s) ds

> min

(
inf

06t6ρT−ν(ε)
t−1

∫ ρT

ρT−t

f(s) ds,
1

ρT − ν(ε)

(
κ(ε)ν(ε) + (ρT − ν(ε)) inf

ν(ε)6s6ρT
f(s)

))

> min

(
ψ − ε,

κ(ε)ν(ε)

ρT − ν(ε)
+ ψ − ε

)
.

As κ(ε)ν(ε)
ρT−ν(ε)

→ 0 as T → ∞, we conclude that the second term in (6.3) is 0 for sufficiently

large T , irrespective of K.

The fourth term in (6.3) converges to zero as T → ∞ for any K, as

sup
06t6ρT

∥∥∥∥∥t
−1

∫ ρT

ρT−t

[
1

−E(Xs)

]
ds

∥∥∥∥∥ 6 sup
06t6ρT

∥∥∥∥∥

[
1

−E(Xt)

]∥∥∥∥∥ ,

and the right hand side is bounded as T → ∞. Meanwhile, θ̃ − θ̂T → 0 a.s., which suffices

for the fourth term in (6.3). For the third term we use Lemma 8.6 and for the second one

we can use Lemma 8.4. ✷

7 Detecting a change in b

In Theorems 5.1 and 6.1 we postulated a change in a. However, this was only done to keep

the resulting calculations tractable. Straightforward modifications allow us to prove the

same results for a change in b – following the same thoughts as in 4.1. In this case, we would

have

7.1 Theorem. If b changes from b′ > 0 to b′′ > 0 at time τ = ρT , where ρ ∈ (0, 1), then
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for any γ ∈
(
0, 1

4

)
we have

sup
06t6T

∫ t

0

(−Xs)dM̂
(T )
s = Tφ+OP(T

1−γ),

with φ = (b′−b′′)1⊤
2 (((1−ρ)Q′′)−1+(ρQ′)−1)−112. Here 12 = (0, 1)⊤, the second unit vector.

In place of (5.4) we have, then,

∫ t

0

XudM̂
(T )
u =

∫ t

0

XudMu +

∫ t

0

[
(̃b− b′)E(X2

u) + (a′ − ã)E(Xu)
]
du

+

∫ t

0

[
(̂bT − b′)(X2

u − E(X2
u)) + (a′ − ã)(Xu − E(Xu))

]
du

+

∫ t

0

[
(̂bT − b̃)E(X2

u) + (ã− âT )E(Xu)
]
du

=

∫ t

0

XudMu +

∫ t

0

(θ′ − θ̃)⊤

[
−E(Xu)

E(X2
u)

]
du

+

∫ t

0

(θ′ − θ̂T )

[
E(Xu)−Xu

X2
u − E(X2

u)

]
du+

∫ t

0

(θ̃ − θ̂T )

[
−E(Xu)

E(X2
u)

]
du.

(7.1)

The second term is approximately

t(θ′ − θ̃)⊤

[
−E(X ′

∞)

E((X ′′
∞)2)

]
= t(θ′ − θ̃)⊤Q′

[
0

1

]
= t

φ

ρ

as in (5.2). From here the proofs proceed as for a change in a, with the only added difficulty

that we will require (8.2) and as well as (8.1), but the proof of that result is merely a matter

of algebra.

8 Details of the proofs

In this section we detail the necessary lemmata for the proofs of our main theorems. Some

of them, especially Lemma 8.1, are rather technical and depend essentially on tedious but

straightforward calculations. Others, while using more sophisticated tools, are also tailored

to the specific needs of the proofs and their proofs are not particularly insightful themselves,

hence they were relegated to this section. The one exception to this is Lemma 8.2, which is

an analogue of Lemma 8.8 and may deserve independent interest.
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8.1 Lemma. For the model described by (1.1) we have

(8.1) Var

(∫ t

0

Xsds

)
= O(t), t→ ∞,

and

(8.2) Var

(∫ t

0

X2
sds

)
= O(t), t→ ∞.

Proof. For (8.1) we note

Var

(∫ t

0

Xsds

)
= E

(∫ t

0

(Xu − EXu)du

∫ t

0

(Xv − EXv)dv

)
=

∫∫

[0,t]2

Cov(Xu, Xv)dudv.

By using (2.1), we can write

Cov(Xu, Xv) = E[(Xu − EXu)(Xv − EXv)] =

= E

[(
e−bu(X0 − EX0) + σ

∫ u

0

e−b(u−w)
√
XwdWw

)

× ·
(
e−bv(X0 − EX0) + σ

∫ v

0

e−b(v−z)
√
XzdWz

)]

= e−b(u+v) Var(X0) + σ2

∫ u∧v

0

e−b(u+v−2w)
E(Xw)dw

6 e−b(u+v) Var(X0) + (E(X0) +
a

b
)σ2

∫ u∧v

0

e−b(u+v−2w)dw,

(8.3)

since

E(Xw) = e−bw E(X0) + a

∫ w

0

e−bsds

by (2.1). Furthermore,

∫∫

[0,t]2

(∫ u∧v

0

e−b(u+v−2w)dw

)
dudv =

∫∫

[0,t]2

[
e−b(u+v−2w)

2b

]w=u∧v

w=0

dudv

=

∫∫

[0,t]2

[
1

2b

(
e−b|u−v| − e−b(u+v)

)]
dudv 6

1

b

∫∫

[0,t]2

e−b|u−v|dudv = O(t).

(8.4)
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We combine this with the last line of (8.3) and note that

(8.5)

∫∫

[0,t]2

e−b(u+v)dudv = O(t),

which completes the proof of (8.1).

For (8.2) we use the same approach. By (2.2),

Cov(X2
u, X

2
v ) = E[(X2

u − E(X2
u))(X

2
v − E(X2

v ))] =

= E

[(
e−2bu(X2

0 − E(X0)
2) +

∫ u

0

(2a+ σ2)e−b(2u−w)(X0 − E(X0)) dw

+ (2a + σ2)σ

∫ u

0

e−2b(u−w)

∫ w

0

e−b(w−z)
√
Xz dWz

+σ

∫ u

0

e−2b(u−w)X3/2
w dWw

)

×
(
e−2bv(X2

0 − E(X0)
2) +

∫ v

0

(2a+ σ2)e−b(2v−w)(X0 − E(X0)) dw

+ (2a + σ2)σ

∫ v

0

e−2b(v−w)

∫ w

0

e−b(w−z)
√
Xz dWz

+σ

∫ u

0

e−2b(v−w)X3/2
w dWw

)]

= e−2b(u+v) Var(X2
0 ) + (2a+ σ2)2e−b(u+v)

∫ u

0

e−bw dw

∫ v

0

e−bw dwVar(X0)

+ 2e−3b(u+v)(2a+ σ2)

∫ u

0

e−bw dw

∫ v

0

e−bw dwCov(X0, X
2
0 )

+ (2a+ σ2)2σ2

∫ u

0

∫ v

0

E

(∫ w

0

e−b(2u−w−z)
√
XzdWz

×
∫ r

0

e−b(2v−r−q)
√
XqdWq

)
drdw

+ (2a+ σ2)σ2

∫ u

0

E

(∫ w

0

e−b(2u−w−z)
√
XzdWz

∫ v

0

e−2b(v−q)X3/2
q dWq

)
dw

+ (2a+ σ2)σ2

∫ v

0

E

(∫ w

0

e−b(2v−w−z)
√
XzdWz

∫ u

0

e−2b(u−q)X3/2
q dWq

)
dw

+

∫ u∧v

0

e−2b(u+v−2w)
E(X3

w)dw.
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Proceeding with the calculations, we have

Cov(X2
u, X

2
v ) 6 e−2b(u+v) Var(X2

0 ) + (2a+ σ2)2
1

b2
e−b(u+v) Var(X0)

+ 2e−3b(u+v)(2a+ σ2)
1

b2
Cov(X0, X

2
0 )

+ (2a+ σ2)2σ2

∫ u

0

∫ v

0

∫ w∧r

0

e−b(2u+2v−w−r−2z)
E(Xz)dzdrdw

+ (2a+ σ2)σ2

∫ u

0

∫ w∧v

0

e−b(2u+2v−w−3z)
E(X2

z )dzdw

+ (2a+ σ2)σ2

∫ v

0

∫ w∧u

0

e−b(2u+2v−w−3z)
E(X2

z )dzdw

+

∫ u∧v

0

e−2b(u+v−2w)
E(X3

w)dw.

Referring to (8.4) and (8.5) we see that we need only concern ourselves about the fourth,

fifth and sixth terms. For the fifth term, we have, for u < v,

∫ u

0

∫ w∧v

0

e−b(2u+2v−w−3z)dzdw =

∫ u

0

∫ w

0

e−b(2u+2v−w−3z)dzdw

=

∫ u

0

1

3b
(e−b(2u+2v−4w) − e−b(2u+2v−w))dw

=
1

12b2
(e−2b(v−u) − e−2b(v+u))− 1

3b2
(e−b(u+2v) − e−2b(u+v)),

and for u > v,

∫ u

0

∫ w∧v

0

e−b(2u+2v−w−3z)dzdw =

∫ v

0

∫ w

0

e−b(2u+2v−w−3z)dzdw

+

∫ u

v

∫ v

0

e−b(2u+2v−w−3z)dzdw

=

∫ v

0

1

3b
(e−b(2u+2v−4w) − e−b(2u+2v−w))dw

+

∫ u

v

1

3b
(e−b(2u−v−w) − e−b(2u+2v−w))dw

=
1

12b2
(
e−2b(u−v) − e−2b(u+v)

)
− 1

3b2
(
e−b(2u+v) − e−2b(u+v)

)

+
1

3b2
(
e−b(u−v) − e−2b(u−v) −

(
e−b(u+2v) − e−b(2u+v)

))
.
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The same results, with u and v exchanged, hold for the sixth term. All the exponential

expressions in question can be estimated from above by e−b|u−v|, whence we can invoke (8.4)

again to conclude that the fifth and sixth terms, integrated over [0, t]2, are O(t).

All that remains is the fourth term: for u < v,

∫ v

0

∫ v

0

∫ w∧r

0

e−b(2u+2v−w−r−2z)dzdrdw

=

∫ u

0

∫ w

0

∫ r

0

e−b(2u+2v−w−r−2z)dzdrdw +

∫ u

0

∫ r

w

∫ r

0

e−b(2u+2v−w−r−2z)dzdrdw

=

∫ u

0

∫ w

0

1

2b

(
e−b(2u+2v−w−3r) − e−b(2u+2v−w−r)

)
drdw

+

∫ u

0

∫ v

w

1

2b

(
e−b(2u+2v−3w−r) − e−b(2u+2v−w−r)

)
drdw

=

∫ u

0

[
1

6b2
(
e−b(2u+2v−4w) − e−b(2u+2v−w)

)
− 1

2b2
(
e−b(2u+2v−2w) − e−b(2u+2v−w)

)

+
1

2b2
(
e−b(2u+v−3w) − e−b(2u+2v−4w)

)
− 1

2b2
(
e−b(2u+v−w) − e−b(2u+2v−2w)

)]
dw

=
1

24b3
(
e−2b(v−u) − e−2b(u+v)

)
− 1

6b3
(
e−b(u+2v) − e−2b(u+v)

)

− 1

4b3
(
e−2bv − e−2b(u+v)

)
+

1

2b3
(
e−b(u+2v) − e−b(2u+2v)

)

+
1

6b3
(
e−b(v−u) − e−b(2u+v)

)
− 1

8b3
(
e−2b(v−u) − e−2b(u+v)

)

− 1

2b3
(
e−b(u+v) − e−b(2u+v)

)
+

1

4b3
(
e−2bv − e−2b(u+v)

)
,

and, u and v have to be interchanged for u > v (in this case, we exchange the two outer

integrals, and from there, the modifications are trivial). Again, we see that all the exponential

terms are dominated by e−b|u−v|, which, by invoking (8.4), completes the proof of the lemma,

noting that supt>0 E(X
3
t ) <∞. ✷

The following lemma is an analogue of Lemma 8.8, which is a Hájek–Rényi type inequal-

ity. With Lemma 8.8 one can estimate the tail probabilities of the maximum of a random

sequence, based solely on the joint moments of the elements and, critically, without the

assumption of independence. In our applications, not the supremum of a sequence but the

maximum of a function is considered, so we had to modify the statement accordingly.

It turns out that the proof can be constructed along the lines of Theorem 4.1 in Kokoszka

and Leipus (2000). In that paper, a slightly stronger result than Lemma 8.8 was formulated

and proven; however, it was impractical to use, hence the more useful corollary formulated

22



as Theorem 3.1 in Kokoszka and Leipus (1998), which is obtainable from Theorem 4.1 in

Kokoszka and Leipus (2000) by a simple application of the Cauchy–Schwarz theorem.

8.2 Lemma. Let Yt be a process with a.s. continuous trajectory, α, β ∈ R+ with α < β and

c a deterministic function. Then, for any ε > 0,

ε2 P

{
sup
s∈[α,β]

(
c(s)

∫ s

0

Yudu

)2

> ε2

}
6 c(α)2

∫ α

0

E(Y 2
u ) du

+

∫ β

α

(∫ s

0

∫ s

0

E(YuYv)dudv

)
d|c(s)2|+ 2

∫ β

α

c(s)2
[
E(Y 2

s )

∫ s

0

∫ s

0

E(YuYv)dudv

]1/2
ds

Proof. For any nonnegative process Zt with a.s. continuous trajectories and a.s. locally

bounded variation, let τε be the first hitting time of [ε,∞) in [α,∞), A be the event {τε < β}
and Ds be the event {supα6u6s Zu 6 ε}. Note that Dβ = AC . Then it is easy to check that

(8.6) ε1A 6 Zα +

∫ β

α

1DsdZs.

Indeed, if A occurs, the LHS is ε, and the RHS is ε, if Zα < ε and Zα if Zα > ε. If AC

occurs, the LHS is zero, while the RHS is Zβ > 0.

Let us apply this result with Zt = c(t)2
∣∣∣
∫ t
0
Ys ds

∣∣∣
2

. We take expectations on both sides:

ε2 P

(
sup
α6s6β

∣∣∣∣c(s)
∫ s

0

Yudu

∣∣∣∣ > ε

)

6 E

[
c(α)2

∫ α

0

Y 2
u du

]
+ E

[∫ β

α

1Dsd

((
c(s)

∫ s

0

Yudu

)2
)]

= c(α)2
∫ α

0

E(Y 2
u ) du+ E

[
2

∫ β

α

1Dsc(s)

∫ s

0

Yudu

((∫ s

0

Yudu

)
dc(s) + c(s)Ysds

)]

= c(α)2
∫ α

0

E(Y 2
u ) du

+ E

[
2

∫ β

α

1Ds

(∫ s

0

∫ s

0

YuYvdudv

)
d(c2(s)) + 2

∫ β

α

1Dsc
2(s)Ys

∫ s

0

Yududs

]

6 c(α)2
∫ α

0

E(Y 2
u ) du

+ E

[
2

∫ β

α

1Ds

(∫ s

0

∫ s

0

YuYvdudv

)
d|c2(s)|+ 2

∫ β

α

1Dsc
2(s)Ys

∫ s

0

Yududs

]
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In the last step we replaced the induced norm of c2(s) by its total variation norm. Indeed,

the inequality holds because
∫ s
0

∫ s
0
YuYvdudv =

(∫ s
0
Yudu

)2
for every ω in the probability

space where Y is defined, therefore the integrand is nonnegative. Now, we employ several

well-known inequalities and the replacement of the indicator function by 1 to obtain our

statement. ✷

8.3 Lemma. If the parameters a and b remain constant, we have, for any γ < 1
4
,

sup
06t6T

tγ−1

∫ t

0

|Xu − E(Xu)| du = OP(1).

Proof. We will use Lemma 8.2 for the process Yt := Xt − E(Xt) and c(s) = sγ−1 and

α = 0, β = T . Then we can use Lemma 8.1 to conclude that

∫ s

0

∫ s

0

E(YuYv) dv du =

∫ s

0

∫ s

0

Cov(Xu, Xv) dv du 6 κs, s ∈ R+,

for some constant κ > 0. Hence, in this case,

∫ T

0

(∫ s

0

∫ s

0

E(YuYv)dudv

)
d|c(s)2|+ 2

∫ T

0

c(s)2
[
E(Y 2

s )

∫ s

0

∫ s

0

E(YuYv)dudv

]1/2
ds

6

∫ T

0

κ(2− 2γ)s2γ−2 ds + 2

∫ T

0

s2γ−2(Kκs)1/2 ds

= κ(2− 2γ)

∫ T

0

s2γ−2 ds + 2(Kκ)1/2
∫ T

0

s2γ−3/2 ds <∞.

This implies the desired statement immediately. ✷

8.4 Lemma. If the parameters a and b remain constant, we have, for any γ < 1
2
,

sup
06t6T

T γ−1|Mt| = OP(1).

Proof. First we note that (Mt)t∈R+
has an a.s. continuous trajectory on R+, therefore also

on [0, 1]. Thus we conclude that sup06t61 |Mt| = OP(1). Next, we use the law of the iterated

logarithm for continuous martingales. This can be put together from the Dambis–Dubins–

Schwarz theorem (Karatzas and Shreve, 1991, Theorem 3.4.6) and the law of the iterated

logarithm for the Wiener process (Karatzas and Shreve, 1991, Theorem 2.9.23).

lim sup
t→∞

|Mt|

σ2λ
(∫ t

0
Xu du

)λ 6 lim sup
t→∞

|Mt|
σ
√∫ t

0
Xu du

√
log log(σ2

∫ t
0
Xu du)

= 1 a.s., ∀λ > 1

2
,
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which means that the supremum on [1,∞] is finite a.s. (since the process in question has

a.s. continuous trajectories). Now we note that

σ2λ
(∫ t

0
Xu du

)λ

tλ
→ σ2λ

E(X∞)λ a.s..

Now the statement of the lemma is obtained straightforwardly since

sup
06t6T

T γ−1|Mt| = max( sup
06t61

T γ−1|Mt|, sup
16t6T

T γ−1|Mt|),

and both terms have been shown to be OP(1). ✷

8.5 Lemma. Under the conditions of Theorem 5.1 we have

θ̂ − θ̃ = OP(T
−1/2).

Proof.

T 1/2(θ̂ − θ̃) = (T−1QT )
−1T−1/2

[
d0,τ −QT Q̃

−1

(
ρQ′

[
a

b

])

+dτ,T −QT Q̃
−1

(
(1− ρ)Q′′

[
a′′

b′′

])]

The first factor converges almost surely, so we analyze

T−1/2

[
d0,τ −QT Q̃

−1

(
ρQ′

[
a

b

])]

= T−1/2d̃τ + T−1/2
(
Q[0,τ ] −QT Q̃

−1
ρQ′

)[a′

b′

]

The first term is OP(1) by (4.3). We need to show that the second term is also OP(1). For

this, we can neglect the vector of the parameters, which are constant, so we investigate

T−1/2
(
Qτ − ρQT Q̃

−1
Q′
)
= T−1/2 (Qτ − E(Qτ )) + T−1/2 (E(Qτ )− τQ′)

− T−1/2
(
ρ(QT − E(QT ))Q̃

−1
Q′
)

− T−1/2
(
ρ(E(QT )− T Q̃)Q̃

−1
Q′
)
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The first and third factors have a finite variance at the limit, by Lemma 8.1. Therefore,

by an application of Chebyshev’s inequality, we have that they are OP(1). The second and

fourth terms are deterministic and O(1) by (2.7). ✷

8.6 Lemma. Under the conditions of Theorem 5.1 we have

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6ρT

∣∣∣∣t−1

∫ ρT

ρT−t

(Xs − E(Xs)) ds

∣∣∣∣ >
ψ

6

)
= 0.

Proof. We use Lemma 8.2. We choose c(s) = s−1 and Ys = XρT−s − E(XρT−s) with α = K

and β = ρT . The estimate on the probability in question is then

K−2

∫ ρT

ρT−K

Var(Xu) du+

∫ ρT

K

(∫ ρT

ρT−s

∫ ρT

ρT−s

Cov(Xu, Xv)dudv

)
d
∣∣s−2

∣∣

+ 2

∫ ρT

K

s−2

[
Var(Xs)

∫ ρT

ρT−s

∫ ρT

ρT−s

Cov(Xu, Xv)dudv

]1/2
ds.

(8.7)

Now we make use of (8.3) and (8.4) to show that

∫ ρT

ρT−s

∫ ρT

ρT−s

Cov(Xu, Xv)dudv 6 Var(X0)

∫ ρT

ρT−s

∫ ρT

ρT−s

e−b(u+v)dudv

+ (E(X0) + ab−1)σ2b−1

∫ ρT

ρT−s

∫ ρT

ρT−s

e−b|u−v|dudv 6 µs,

for some positive constant µ. We introduce λ := supt∈R Var(Xt) < ∞, to continue the

estimation started in (8.7):

K−2Kλ+ 2

∫ ρ

K

Ts−3µs ds+ 2

∫ ρT

K

s−2(λµ)1/2s1/2 ds.

Clearly, as T → ∞ (and hence ρT → ∞), and then K → ∞, this expression tends to zero,

which completes our proof. ✷

8.7 Lemma. Under the conditions of Theorem 5.1 we have, for any ε > 0,

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6ρT

∣∣t−1(MρT −MρT−t)
∣∣ > ε

)
= 0.

Proof. Let us take a backward partition of [0, ρT ] such that 0 = tn < tn−1 < tn−2 < . . . <

t1 < t0 = ρT. For t ∈ [ti+1, ti], we have

∣∣∣∣
MρT −Mt

ρT − t

∣∣∣∣ 6
∣∣∣∣
MρT −Mti+1

ρT − ti

∣∣∣∣+
∣∣∣∣
Mt −Mti+1

ρT − ti

∣∣∣∣ .
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Therefore, we have the following estimation:

P

(
sup

K6t6ρT

∣∣t−1(MρT −MρT−t)
∣∣ > ε

)
= P

(
sup

06t6ρT−K

∣∣(ρT − t)−1(MρT −Mt)
∣∣ > ε

)

6 P

(
max
i∗6i6n

∣∣(ρT − ti)
−1(MρT −Mti+1

)
∣∣ > ε

2

)

+
n∑

i=i∗

P

(
sup

ti+1<t<ti

∣∣(ρT − ti)
−1(Mt −Mti+1

)
∣∣ > ε

2

)
,

(8.8)

where i∗ = min{i : ti < ρT −K}. Let us use this estimate with ti := ρT −2i−1 for 0 < i < n,

so that n = ⌊log2 ρT ⌋ and i∗ = ⌊log2K⌋+ 1.

For the first term we can use the following lemma:

8.8 Lemma. (Kokoszka and Leipus, 1998, Theorem 3.1) Let (Yn)n∈N be a sequence of

random variables with finite second moments, and let (cn)n∈N be a sequence of nonnegative

constants. Then, for any a > 0,

a2 P

(
max
16k6n

ck

∣∣∣∣∣
k∑

j=1

Yj

∣∣∣∣∣ > a

)
6

n−1∑

k=1

|c2k+1 − c2k|
k∑

i,j=1

E(YiYj)

+ 2

n−1∑

k=1

c2k+1

(
E
(
Y 2
k+1

) k∑

i,j=1

E (YiYj)

)1/2

+ 2
n−1∑

k=0

c2k+1E(Y
2
k+1).

Let us set Y1 := Mti∗ − MρT , and Yk = Mti∗+k−1
− Mti∗+k−2

for 1 < k 6 n − i∗ + 1 and

ck = (ρT − ti∗+k−1)
−1. Let us note that due to the structure of the ti, we have ck = 2−(i∗+k−2)

for k 6 n− i∗ and 2−(n−1) < cn−i∗+1 < cn−i∗ . Consequently, we can use

|c2k+1 − c2k| 6 |c2k+1 − 4c2k+1| = 3c2k+1.

Also, notice that

k∑

i,j=1

E(YiYj) = E

(
k∑

i=1

Yi

)2

= E(Mti∗+k−1
−MρT )

2

= σ2

∫ ρT

ti∗+k−1

E(Xu) du 6 σ2µ(ρT − ti∗+k−1),
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with µ = supt∈R+
E(Xt) <∞, and that similarly,

E(Y 2
k+1) 6 σ2µ(ti∗+k − ti∗+k−1) = σ2µ2(i

∗+k−2).

All in all, with Lemma 8.8, we can estimate the first term in (8.8) by

4

ε2

(
3σ2µ

n−i∗+1∑

k=1

4−(i∗+k−1)2(i
∗+k−1) + 2σ2µ

n−i∗+1∑

k=1

4−(i∗+k−1)(2(i
∗+k−2)+(i∗+k−1))1/2

+2σ2µ

n−i∗+1∑

k=1

4−(i∗+k−1)2(i
∗+k−2)

)

6
4

ε2

(
3σ2µ2−i

∗

∞∑

k=1

2−(k−1) + 2σ2µ2−i
∗

∞∑

k=1

2−(k−1) + 2σ2µ2−i
∗

∞∑

k=1

2−(k−1)

)
=

56

ε2
σ2µ2−i

∗

.

This does not depend on n (hence, on T ), and since i∗ → ∞ as K → ∞, we have that the

first term in (8.8) converges to zero as ρT → ∞ and then K → ∞.

For the second term in (8.8) we will use Doob’s submartingale inequality (see, e.g.,

Karatzas and Shreve, 1991, Theorem 1.3.8. (i)) to the submartingales

Nt,i := (Mti+1+t −Mti+1
)2, t ∈ [0, ti − ti+1], i = i∗, . . . , n,

for which clearly

P

(
sup

ti+1<t<ti

∣∣(ρT − ti)
−1(Mt −Mti+1

)
∣∣ > ε

2

)
= P

(
sup

06t6ti−ti+1

Nt,i >
ε2(ρT − ti)

2

4

)
.

The inequality states that

P

(
sup

06t6ti−ti+1

Nt,i >
ε2(ρT − ti)

2

4

)
6

4E(Nti−ti+1
)

ε2(ρT − ti)2
=

4E(Mti −Mti+1
)2

ε2(ρT − ti)2
6

4σ2µ(ti − ti+1)

ε2(ρT − ti)2
.

Now, in our present setting,

ti − ti+1 6 (ρT − 2i−1)− (ρT − 2i) = 2i−1 and (ρT − ti)
2
> 22i−4.

Thus, the second term in (8.8) can be estimated from above by

σ2µε2

4

n∑

i=i∗

2−i+3
6
σ2µε2

4
2−i

∗+3
∞∑

i=0

2−i.

Again, clearly this does not depend on n (thus, T ) and converges to zero as i∗ → ∞ (and

thus, as K → ∞). This suffices for our statement. ✷
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