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Hückel–Hubbard-Ohno modeling of π-bonds in ethene and ethyne

with application to trans-polyacetylene
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Quantum chemistry calculations provide the potential energy between two carbon atoms in ethane
(H3C−CH3), ethene (H2C=CH2), and ethyne (HC≡CH) as a function of the atomic distance. Based
on the energy function for the σ-bond in ethane, Vσ(r), we use the Hückel model with Hubbard–
Ohno interaction for the π electrons to describe the energies Vσπ(r) and Vσππ(r) for the σπ double
bond in ethene and the σππ triple bond in ethyne, respectively. The fit of the force functions
shows that the Peierls coupling can be estimated with some precision whereas the Hubbard-Ohno
parameters are insignificant at the distances under consideration. We apply the Hückel-Hubbard-
Ohno model to describe the bond lengths and the energies of elementary electronic excitations of
trans-polyacetylene, (CH)n, and adjust the σ-bond potential for conjugated polymers.

PACS numbers: 71.20.Rv,36.20.Kd,31.15.vn

I. INTRODUCTION

Electronic structure calculations for small molecules
can be performed with very good accuracy using quan-
tum chemistry methods.1,2 However, the computational
cost rises strongly with the number of valence electrons,
and macromolecules with hundreds of delocalized valence
electrons cannot be treated using accurate ab-initio quan-
tum chemistry methods. In such a situation, models
with adjustable parameters are analyzed to describe the
ground state and excited states approximately.3,4

An example are π-conjugated polymers such as poly-
acetylene (PA) or polydiacetylene (PDA). Typically, the
backbone made of σ-bonds is treated in the adiabatic
approximation, and only the π-electrons are included ex-
plicitly in the many-particle model.3,4 The electrons’ itin-
eracy is described by the Hückel (tight-binding) Hamil-
tonian, and their Coulomb repulsion is approximated by
the Pariser-Parr-Pople (PPP) interaction. Recently, we
reproduced the optical properties of PDA using a tight-
binding model with a Hubbard-Ohno parameterization of
the PPP interaction between the π electrons.5 However,
the applicability of Hückel-PPP models for π-conjugated
systems has been put into question6 because the PPP
model only includes density-type interactions and ignores
bond-charge repulsion terms that could be important for
polymers; for a thorough discussion, see Refs. [3,7].

Another point at issue in conjugated polymers is the
size of the ‘spring constant’ KPA

σ that parameterizes the
strength of the σ-bond. In Ref. [8], the value KPA,1

σ =
31 eV/Å2 was proposed for PA, close to the value for the
carbon-carbon bond in ethane, Dσ,exp

1 = 27.2 eV/Å2 at
bond length rexpσ = 1.536 Å.9,10 In contrast, in Ref. [11]
a substantially larger value, KPA,2

σ = 46 eV/Å2, was put
forward, closer to empirical values for benzene, Kben

σ =
41.3 eV/Å2 with bond length r0 = 1.4 Å.12 The larger

value is related to the tendency of bonds to become
stiffer at smaller atomic distances,13 and the average
bond length in polyacetylene is the same as that in ben-
zene.14

Apparently, Hückel-PPP models can also be applied
to small molecules with π bonds so that the applicabil-
ity and accuracy of the model description can be tested
against results from quantum chemistry. In this work,
we use the two-site Hubbard model to describe the π-
bonds in ethene (H2C=CH2), and ethyne (HC≡CH). We
find that the Hückel approach provides a reasonably ac-
curate description of the π-bonds. The application to
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FIG. 1. (Color online) Ground-state energy in electron volts
of ethane (H3C−CH3), Vσ(r), ethene (H2C=CH2, ethylene),
Vσπ(r), and ethyne (HC≡CH, acetylene), Vσππ(r), as a func-
tion of the carbon-carbon distance r in units of Å. The ener-
gies are shifted by their values at the energy minimum. The
carbon-hydrogen bonds are fixed at their positions for the
equilibrium structure.
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(a) (b)

H3C−CH3

r/Å Vσ(r)/eV

1.0000 10.8084
1.0500 7.89061

1.2000 2.68283

1.2500 1.74053
1.3000 1.06070

1.3500 0.58770
1.4000 0.27742
1.4500 0.09475
1.5000 0.01163
1.5290 0
1.5500 0.00563
1.6000 0.05877
1.6500 0.15668
1.7000 0.28788
1.7500 0.44322
1.8000 0.61542
1.8500 0.79872
1.9000 0.98856
1.9500 1.18131
2.0000 1.37414

H2C=CH2

r/Å Vσπ(r)/eV

1.0000 6.56351
1.0500 4.25500
1.1000 2.60229
1.1500 1.45774
1.2000 0.70626

1.2500 0.25796
1.3000 0.04249
1.3372 0
1.3500 0.00464
1.4000 0.10095
1.4500 0.29714
1.5000 0.56612

1.5500 0.88651
1.6000 1.24145

HC≡CH

r/Å Vσππ(r)/eV

1.0000 3.42482
1.0500 1.78346
1.1000 0.75783
1.1500 0.20269
1.2000 0.00484
1.2097 0
1.2500 0.07592
1.3000 0.34680

1.3500 0.76329
1.4000 1.28284
1.4500 1.87198

H3C−CH3

r/Å Vσ(r)/eV

1.0000 11.3730
1.0500 8.31871

1.2000 2.84798

1.2500 1.85257
1.3000 1.13216

1.3500 0.62916
1.4000 0.29792
1.4500 0.10209
1.5000 0.01258
1.5290 0
1.5500 0.00609
1.6000 0.06391
1.6500 0.17101
1.7000 0.31534
1.7500 0.48722
1.8000 0.67891
1.8500 0.88423
1.9000 1.09820
1.9500 1.31686
2.0000 1.53703

H2C=CH2

r/Å Vσπ(r)/eV

1.0000 6.68729
1.0500 4.33523
1.1000 2.65165
1.1500 1.48570
1.2000 0.72002

1.2500 0.26309
1.3000 0.04336
1.3372 0
1.3500 0.00474
1.4000 0.10310
1.4500 0.30366
1.5000 0.57893

1.5500 0.90718
1.6000 1.27127

HC≡CH

r/Å Vσππ(r)/eV

1.0000 3.42561
1.0500 1.78388
1.1000 0.75802
1.1500 0.20275
1.2000 0.00485
1.2097 0
1.2500 0.07594
1.3000 0.34691

1.3500 0.76358
1.4000 1.28340
1.4500 1.87290

TABLE I. Ground-state energy of ethane (H3C−CH3), Vσ(r), ethene (ethylene, H2C=CH2), Vσπ(r), and ethyne (acetylene,
HC≡CH), Vσππ(r), in units of eV as a function of the carbon-carbon distance r in units of Å. The energies are shifted by a
constant so that the potential is zero at the equilibrium distance. (a) The whole molecule is relaxed; (b) The carbon-hydrogen
bonds are fixed at their positions for the equilibrium structure.

trans-PA shows, however, that some adjustments in the
σ-bond spring constant are necessary to reproduce the
experimentally observed bond lengths.
Our work is organized as follows. In Sect. II we use

data from quantum chemistry calculations to express
the ground-state energies Vσ(r), Vσπ(r), and Vσππ(r)
for σ-bonds and π-bonds in ethane, ethene, and ethyne.
In Sect. III we use the Hückel–Hubbard-Ohno Hamilto-
nian to model the energy of the π-bonds in ethene and
ethyne. We shall see that this is possible with an ac-
curacy of about 5%. However, the Hubbard-Ohno pa-
rameters for the Coulomb interaction remain essentially
undetermined. In Sect. IV, to test and adjust our param-
eter set, we determine the bond lengths and the energies
of elementary electronic excitations in trans-PA. Short
conclusions, Sect. V, close our presentation.

II. ENERGY OF CARBON SINGLE, DOUBLE,

AND TRIPLE BONDS

A. Data from quantum chemistry

We employ the quantum chemistry codeMolpro
15 us-

ing the CCSD(T) method with the cc-pVTZ basis.16 We
calculate the energy of the molecules ethane (H3C−CH3),

ethene (a.k.a. ethylene, H2C=CH2), and ethyne (a.k.a.
acetylene, HC≡CH) as a function of the carbon-carbon
distance r. The data for the energies are listed in Ta-
ble I. Similar calculations have been done recently for
ethyne,17 and for C2H2n for n = 0, 1, 2, 3.18,19 We can
(a) choose to relax the whole molecule, or (b) to fix the
carbon-hydrogen bonds at their positions for the equi-
librium structure. The data from quantum chemistry in
Table I show that the changes are marginal for ethyne
and still very small for ethene. This could be expected
because the carbon-hydrogen bonds in the corresponding
linear/planar structures do not interfere when we stretch
or shrink the carbon-carbon bond. For ethane with its
three-dimensional structure, however, the discrepancies
in energy are noticeable. Since we are interested in the
properties of the σ-bond, we later use the data for fixed
carbon-hydrogen bonds and plot the corresponding ener-
gies from Table I(b) as a function of distance in Fig. 1.

B. Polynomial parameterization

First, we compare the bond lengths with the experi-
mental data. We find for ethane (one σ-bond), ethene
(one σ-bond plus one π-bond), and ethyne (one σ-bond
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(a) (b)

H3C−CH3

Dσ
l [eV/Ål+1]

Dσ
1 26.3496

Dσ
2 −69.9253

Dσ
3 104.1792

Dσ
4 −119.1238

Dσ
5 105.2503

Dσ
6 −70.7506

Dσ
7 135.5519

Dσ
8 −146.0841

Dσ
9 −86.5683

H2C=CH2

Dσπ
l [eV/Ål+1]

Dσπ
1 57.4115

Dσπ
2 −162.4340

Dσπ
3 259.2015

Dσπ
4 −336.1312

Dσπ
5 284.6613

Dσπ
6 −116.8712

Dσπ
7 816.7895

HC≡CH

Dσππ
l [eV/Ål+1]

Dσππ
1 101.0452

Dσππ
2 −294.7982

Dσππ
3 482.5564

Dσππ
4 − 656.0314

Dσππ
5 664.8695

H3C−CH3

Dσ
l [eV/Ål+1]

Dσ
1 28.5307

Dσ
2 −72.8851

Dσ
3 106.8931

Dσ
4 −122.0097

Dσ
5 111.0721

Dσ
6 −81.3086

Dσ
7 131.5314

Dσ
8 −136.7223

Dσ
9 −63.3005

H2C=CH2

Dσπ
l [eV/Ål+1]

Dσπ
1 58.5984

Dσπ
2 −164.9132

Dσπ
3 263.5307

Dσπ
4 −342.9333

Dσπ
5 296.9368

Dσπ
6 −141.5545

Dσπ
7 815.7742

HC≡CH

Dσππ
l [eV/Ål+1]

Dσππ
1 101.0741

Dσππ
2 −294.8085

Dσππ
3 482.7707

Dσππ
4 −656.2767

Dσππ
5 664.6464

TABLE II. Parameters Dl (l ≤ 9) for the force fields Fσ(r), Fσπ(r), and Fσππ(r), of ethane, ethene, and ethyne, respectively.
(a) The whole molecule is relaxed; (b) The carbon-hydrogen bonds are fixed at their positions for the equilibrium structure.

plus two π-bonds),

rσ = 1.5290 Å ,
rσπ = 1.3372 Å ,
rσππ = 1.2097 Å ,

rexpσ = 1.5360 Å [9] ,
rexpσπ = 1.3390 Å [9] ,
rexpσππ = 1.203 Å [20] ,

(1)

in very good agreement with the experimental values,
with deviations of less than 0.5%.
Next, we express the energies Ve(r) as a Taylor series

around the equilibrium distances re,

Ve(r) = V e
0 +

10
∑

n=2

De
n−1

n
(r − re)

n , (2)

where e = σ, σπ, σππ for the three molecules, and V e
0 is

independent of r. In the following, we focus on the force
fields Fe(r) = −V ′

e (r),

Fe(r) = −

9
∑

n=1

De
n(r − re)

n , (3)

because they enter the optimization equations. The pa-
rameter sets for ethane, ethene, and ethyne are collected
in Table II.
One of the vibrational modes in ethane, ethene, and

ethyne with reciprocal wave length (wave number) 1/λe

can be assigned to a bare carbon-carbon stretch mode.
They can be compared to the values from quantum-
chemistry calculations,

1/λσ = 1013 cm−1 ,
1/λσπ = 1671 cm−1 ,
1/λσππ = 2000 cm−1 ,

1/λexp
σ = 992.9 cm−1 [10] ,

1/λexp
σπ = 1623 cm−1 [21] ,

1/λexp
σππ = 1974 cm−1 [22] .

(4)
The experimental values in eq. (4) are in very good agree-
ment with the results from quantum chemistry, with de-
viations of less than 3%. This is the desired accuracy of
the fit to a Hückel–Hubbard-Ohno model.
The normal-mode frequencies given in eq. (4) corre-

spond to vibrational modes that involve the movement
of all atoms in the molecule. Instead, one may want

to invoke a simpler oscillator model with fixed carbon-
hydrogen bonds, a single force constant D̃e

1, and an
effective mass me = (12 + n)u/2 (atomic mass unit:
u = 1.66054 · 10−27 kg; n = 1, 2, 3 for ethane, ethene,
ethyne).11 Then, the force constant obeys

D̃e
1 = mec2

(

2π

λe
CC

)2

. (5)

A fit to the experimental data for ethane, ethene, and
ethyne then leads to

D̃σ
1 = 27.2 eV/Å2 ,

D̃σπ
1 = 67.8 eV/Å2 ,

D̃σππ
1 = 93.1 eV/Å2 ,

Dσ
1 = 26.3 eV/Å2 ,

Dσπ
1 = 57.4 eV/Å2 ,

Dσππ
1 = 101.0 eV/Å2 ,

(6)

where we used 1N/m = 0.01mdyn/Å = 1/16.022 eV/Å2

for the conversion of units. The comparison shows that
oscillator models with a single ‘spring constant’ shall em-
ploy values D̃1 that deviate from the bare values D1 from
quantum chemistry calculations by 10%–15%.

III. HÜCKEL–HUBBARD-OHNO MODEL

A. Hamiltonian for a π-bond

We model a π-bond by a two-site single-orbital Hückel–
Hubbard-Ohno model,

Ĥπ(r) = −t(r)
(

ĉ†1,↑ĉ2,↑ + ĉ†2,↑ĉ1,↑ + ĉ†1,↓ĉ2,↓ + ĉ†2,↓ĉ1,↓

)

+U (n̂1,↑n̂1,↓ + n̂2,↑n̂2,↓)

+V (r) (n̂1 − 1) (n̂2 − 1) , (7)

where ĉ†l,σ (ĉl,σ) creates (annihilates) an electron with

spin σ = {↑, ↓} on carbon atom l = 1, 2. Moreover,

n̂l,σ = ĉ†l,σ ĉl,σ counts the number of σ-electrons on carbon
atom l and n̂l = n̂l,↑ + n̂l,↓. We assume that the σ-bond
is rigid and contributes the potential Vσ(r) to the energy.
The Hamiltonian parametrically depends on the dis-

tance r between the carbon atoms. The electron transfer
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parameter decreases exponentially as a function of dis-
tance,

tα(r) = t0 exp (−α(r − r0)/t0) , (8)

with tα(r0) = t0 ≡ 2.5 eV at distance r = r0 ≡ 1.4 Å.
The strength of the Peierls coupling α and the values for
the Coulomb interaction U and V are fit parameters. The
distance-dependence of the density-density interaction is
given by the Ohno expression3,4

V (r) =
V

√

1 + β(r/Å)2
, β =

(

V

14.397 eV

)2

. (9)

The Ohno form guarantees that, at large distances, the
electrons interact via their unscreened Coulomb interac-
tion, e2 = 14.397 eVÅ.
The ground-state energy of the Hückel–Hubbard-Ohno

model is denoted by Eπ(r, α, U, V ). The two-site model
is readily diagonalized,5

Eπ(r, α, U, V ) =
U − V (r)

2
−

√

(U − V (r))2

4
+ 4[tα(r)]2 .

(10)
Up to a constant energy shift, Vσ(r) +Eπ(r, α, U, V ) de-
fines the Hückel–Hubbard-Ohno approximation to the
energy function for ethene, Vσπ(r).
For ethyne, we further assume that the two π-bonds

are independent of each other. An explicit calculation
of the ground-state energy of a two-site model with four
orbitals per site shows that, for moderate Coulomb inter-
actions, the ground-state energy can indeed be approxi-
mated as the sum of two independent two-orbital models.

1.2 1.3 1.4

r/Å

-12

-11

-10

-9

-8

-7

 F
(r

)/
(e

V
/Å

) 
 

Fσπ(r)-Fσ(r)

Fσππ(r)-Fσπ(r)

F
H

(r)

F
HHO

(r)

1.2 1.3 1.4
r/Å

-0.2

-0.1

0

[∆
F

1(r
)-

∆F
2(r

)]
/(

eV
/Å

)

FIG. 2. (Color online) Force function differences ∆F1(r) =
Fσπ(r) − Fσ(r), ∆F2(r) = Fσππ(r) − Fσπ(r) due to the π-
bonds in ethene and in ethyne for carbon distances 1.15 Å <
r < 1.45 Å. The force function differences are not the same,
they deviate from each other by about 0.2 eV for 1.15 Å <
r < 1.45 Å, as seen in the inset. The dashed lines show the
fit from the Hückel model, FH(r) = −E′

π(r, 4.035 eV/Å, 0, 0)
and from the Hückel–Hubbard-Ohno model, FHHO(r) =
−E′

π(r, 4.119 eV/Å, 6 eV, 3 eV).

Therefore, the Hückel–Hubbard-Ohno approach predicts

Vσπ(r)− Vσ(r) + C1 = Vσππ(r) − Vσπ(r) + C2 . (11)

The quality of this hypothesis can be tested by com-
paring the corresponding differences in the force func-
tions, ∆F1(r) = Fσπ(r)−Fσ(r) and ∆F2(r) = Fσππ(r)−
Fσπ(r).
In Fig. 2 we show the two force function differences

∆Fi(r) for carbon-carbon distances 1.15 Å < r < 1.45 Å.
As is seen from the inset, they differ by about 0.2 eV/Å.
Similarly, the Hückel force field FH(r) at α = 4.035 eV
and the Hückel–Hubbard-Ohno force field FHHO(r) at
α = 4.119 eV and U = 2V = 6 eV deviate from ∆Fi(r)
by several tenth of an eV/Å. Since ∆Fi(r) is of the or-
der of 10 eV/Å, the Hückel–Hubbard-Ohno description
of the π-bonds in ethene and ethyne is accurate within
a few percent which is of the same order of magnitude
as the accuracy of the quantum chemistry data for the
vibrational frequencies. Therefore, the Hückel–Hubbard-
Ohno description is accurate enough to match the quality
of the quantum chemistry data. For a further improve-
ment, one may refine the expression (8) for the distance-
dependence of the electron transfer parameter.23

B. Parameter optimization

Since the force functions ∆Fi(r) differ, we cannot de-
termine Eπ(r, α, U, V ) from eq. (11) as the difference be-
tween Vσ(r) and Vσπ(r). Instead, we have to set up an
optimization scheme. We define the cost function (all
lengths in Å, all energies in eV)

W (α,U, V ) =

∫ 1.45

1.15

dr (Fσπ(r) − Fσ(r) + E′
π(r))

2

+

∫ 1.45

1.15

dr (Fσππ(r) − Fσπ(r) + E′
π(r))

2
,

(12)

where E′
π(r) = (dEπ(r, α, U, V ))/(dr) is the negative

force field due to the π-bond in the Hückel–Hubbard-
Ohno description. Using this cost function for the param-
eter optimization, the Hückel–Hubbard-Ohno model will
provide a suitable description of the π-bonds in ethene
and ethyne.
As a first step, we seek the optimal value for the bare

Hückel model, i.e., we optimize W (α, 0, 0). The result is
αH = 4.035 eV/Å. The Hückel model with αH provides
a good description of the π-bonds, see Fig. 2. The bare
Hückel force field, FH(r) = −E′

π(r, 4.035 eV/Å, 0, 0) de-
viates from the force fields ∆F1,2(r) by only a few tenth

of an eV/Å. As a consequence, the Hückel model repro-
duces the bond lengths rσπ and rσππ and the parame-
ters Dσπ

1 and Dσππ
1 from quantum chemistry calculations

with good accuracy, see Table III.
The success of the bare Hückel model indicates that

the Hubbard-Ohno interaction cannot improve the re-
sults very much. More importantly, for moderate values
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rσπ

Å

Dσπ
1

eV/Å2

rσππ

Å

Dσππ
1

eV/Å2

Experiment 1.3390 1.203
Quantum Chemistry 1.3372 58.60 1.2097 101.07

Hückel model (U = V = 0) 1.3403 57.28 1.2079 100.10
Hückel–Hubbard-Ohno model 1.3417 55.66 1.2071 99.28

TABLE III. Equilibrium distances and force parameters for
ethene and ethyne from experiment, quantum chemistry
CCSD(T)/cc-pVTZ, the Hückel model with α = 4.035 eV/Å,
and the Hückel–Hubbard-Ohno model with α = 4.119 eV/Å,
U = 6 eV, V = 3 eV.

for V (V < 6 eV) and for r of the order of one Angstrøm,
the dependence of V (r) on r is fairly small, and the range
of acceptable values for U and V is quite large for the
optimization functions chosen. Correspondingly, short-
range parameterizations of the PPP potential can give
parameter values very different from ours.24 Given the
finite accuracy of the quantum chemistry data, it is there-
fore difficult to derive reliable values for U and V from
our fits.
We note, however, that U and V strongly influence

the size of the single-particle gap and the exciton bind-
ing energy in polymers. Therefore, we argue that the
Coulomb parameters for short molecules should not dif-
fer much from the parameter set (U = 6 eV, V = 3 eV)
as obtained from our analysis of the PDA spectra.5 For
this reason, we restrict ourselves to the optimization of
W (α, 6 eV, 3 eV), and obtain αHHO = 4.119 eV/Å as the
optimal value. As for the bare Hückel model, the Hückel–
Hubbard-Ohno model reproduces the bond lengths and
force parameters from quantum chemistry calculations
with good accuracy, see Table III. The overall agree-
ment with the force functions is also quite good for all
carbon-carbon distances 1.15 Å < r < 1.45 Å, see Fig. 2.

IV. APPLICATION TO POLYACETYLENE

A. Parameters for trans-polyacetylene

The analysis of the bond energies in our di-carbon
molecules permits two conclusions. First, the Peierls cou-
pling should be α ≈ 4 eV/Å which is somewhat smaller
than the value proposed by Su, Schrieffer and Heeger,
αSSH = 4.7 eV/Å.3,25 Similar values, with a deviation
of ±20%, were generally used for the description of π-
conjugated polymers.4,8,11

Second, we can expand the σ-bond potential around
the average bond distance in trans-PA to determine the
spring constantKPA

σ . We Taylor expand the σ-bond force
field Fσ(r) around r = r0,

Fσ(r) = −

9
∑

n=1

Dσ
n(r−rσ)

n = −

9
∑

n=0

Kσ,n(r−r0)
n , (13)

and find (Kσ,n is in units of eV/Ån+1)

Kσ,0 = −5.16199 ,Kσ,1 = 53.8998 , Kσ,2 = −129.282 ,

Kσ,3 = 193.365 ,Kσ,4 = −226.216 , Kσ,5 = 234.224 ,

Kσ,6 = −252.402 ,Kσ,7 = 234.716 , Kσ,8 = −63.2203 ,

(14)

and Kσ,9 = −63.3005 eV/Å10 = Dσ
9 , see Table II(b).

The first term, −Kσ,0 = 5.2 eV/Å > 0, describes the
repulsive force of the σ-bond. It opposes the shrinking
of the σ-bonds in trans-PA from rσ = 1.529 Å down to
r0 = 1.4 Å. This repulsive force must be compensated by
the binding due to the itinerant π-electrons.
The second term describes the enhanced spring con-

stant due to the compressed σ-bond, Kσ,1 = 54 eV/Å2,
so that we should set KPA

σ = Kσ,1. This value can
be compared with the literature values used for trans-
polyacetylene.8,11 Our analysis of the σ-bond poten-
tial in ethane, Vσ(r), supports the larger value derived
in Ref. [11], KPA,2

σ = 46 eV/Å2. Moreover, we find
α/KPA

σ ≈ 0.08 Å which implies that the electron-phonon
coupling constant,

λ =
2α2

πt0KPA
σ

, (15)

is small, λ ≈ 0.08.3 Therefore, polaronic effects are pre-
dicted to be of minor importance for trans-polyacetylene,
in contrast to the SSH picture, λSHH = 0.2.25

B. Hückel model

The values for the electron-phonon coupling and the
σ-bond potential Vσ(r) are important for the theoretical
description of the bond lengths in PA. We find that the
simple Hückel model cannot account for the dimerization
in trans-polyacetylene.

1. Hamiltonian

We consider L unit cells with two carbon atoms each.
The spin-1/2 electrons move on sites l = 1, 2, . . . , 2L, and
periodic boundary conditions apply. The system is half
filled, i.e., the number of electrons equals the number
of sites, N↑ + N↓ = 2L; the system is paramagnetic,
N↑ = N↓ = L. In the Hückel description, the electrons
move between neighboring sites,

T̂ = −
∑

σ

L
∑

l=1

[

todd

(

ĉ†2l−1,σ ĉ2l,σ + ĉ†2l,σ ĉ2l−1,σ

)

+ teven

(

ĉ†2l,σ ĉ2l+1,σ + ĉ†2l+1,σ ĉ2l,σ

)]

,

(16)

where

todd = tα(rs) , teven = tα(rd) (17)
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are the electron transfer matrix elements for the single-
bonds and double-bonds, respectively. In this Ansatz we
take into account the bond dimerization (Peierls effect).
The lengths of the single and double bonds are given by

rs = rσ − s+∆ , rd = rσ − s−∆ . (18)

Here, s describes the average bond-length reduction from
rσ to rσ−s, and ∆ describes the bond-length alternation.
The total Hamiltonian is given by the sum of the elec-

trons’ kinetic energy and the potential energy contribu-
tion from Vσ(r),

ĤH(s,∆) = T̂ (s,∆) + LVbond(s,∆) ,

Vbond(s,∆) = Vσ(rσ − s+∆) + Vσ(rσ − s−∆).(19)

At the optimal values of s and ∆, the ground-state energy
of ĤH has its minimum. Experimentally,14 we have rs =
1.44 Å and rd = 1.36 Å with (rs + rd)/2 = r0 = 1.40 Å,
so that ∆exp

0 = (rs− rd)/2 = 0.04 Å and sexp0 = rσ− r0 =
0.136 Å.

2. Ground-state energy

To determine the ground-state energy as a function of
s and ∆, we introduce the dimensionless units

σ =
sα

t0
, δ =

∆α

t0
. (20)

The bare dispersion relation ǫ(k) and the hybridization
function ∆(k) are given by

ǫ(k) = −(todd + teven) cos(k) = −2t̃0 cos(k)e
σ cosh(δ) ,

∆(k) = (teven − todd) sin(k) = 2t̃0 sin(k)e
σ sinh(δ) . (21)

Here, we use the abbreviation t̃0 = t0 exp[−(rσ−r0)α/t0].
The Hückel-Peierls Hamiltonian is diagonal in reciprocal
space,25,26

T̂ =
∑

|k|≤π/2,σ

E(k)(â†k,σ,+âk,σ,+ − â†k,σ,−âk,σ,−) ,

E(k) =
√

[ǫ(k)]2 + [∆(k)]2

= 2t̃0e
σ
√

[cosh(δ)]2 − [sin(k)]2 . (22)

Here, ±E(k) is the dispersion relation for the upper (+)
and lower (−) Peierls band. The ground state is the
Peierls insulator,

|Ψ0〉 =
∏

σ

∏

|k|≤π/2

â†k,σ,−|vac〉 , (23)

where the lower Peierls band is completely filled. Note
that the wave numbers k are quantized in units of
2π/(2L) because the chain has 2L sites.
The sum of the electrons’ kinetic energy and of the

lattice potential energy per unit cell is given by

etot(σ, δ) = T (σ, δ)/L+ Vbond(t0σ/α, t0δ/α) ,

T (σ, δ)/L = −4t̃0e
σ

∫ π/2

−π/2

dk

π

√

[cosh(δ)]2 − [sin(k)]2 .

(24)

A factor of two in the kinetic energy accounts for the spin
degeneracy. The minimization with respect to σ gives

−
T (σ0, δ0)

L
= 4t̃0e

σ0

∫ π/2

−π/2

dk

π

√

[cosh(δ0)]2 − [sin(k)]2

=
t0
α

[

Fσ(rσ − (t0/α)σ0 + (t0/α)δ0)

+ Fσ(rσ − (t0/α)σ0 − (t0/α)δ0)
]

. (25)

The minimization with respect to δ leads to

T ′(σ0, δ0)

L
= −4t̃0e

σ0

∫ π/2

−π/2

dk

π

cosh(δ0) sinh(δ0)
√

[cosh(δ0)]2 − [sin(k)]2

=
t0
α

[

Fσ(rσ − (t0/α)σ0 + (t0/α)δ0)

− Fσ(rσ − (t0/α)σ0 − (t0/α)δ0)
]

. (26)

The equations (25) and (26) must be solved simultane-
ously to obtain the values for the ground-state distortions
δ0 and σ0. This is done using Mathematica.27

When we use αH = 4.035 eV/Å and Vσ(r) from eq. (2)
with the parameters from Table II, we find that the σ-
bond shrinks by sH0 = 0.128 Å so that the average bond
length is rH0 = 1.401 Å, in good agreement with exper-
iment. However, the dimerization is ∆H

0 = 0.004 Å, an
order of magnitude smaller than in experiment. These
numbers do not change significantly when we use the lin-
ear approximation Fσ(r) ≈ −[Kσ,0 + Kσ,1(r − r0)] for
|r− r0| ≪ r0. This shows that the curvature of the force
field can be ignored when we optimize the structure in
the vicinity of the equilibrium distance, r ≈ r0. For given
s0 and ∆0, the Hückel-Peierls model requires the param-
eters Kσ,0 = −5.2 eV/Å and Kσ,1 = 34.3 eV/Å2, corre-
sponding to the much smaller spring constant KPA,1

σ =
31 eV/Å2 suggested for trans-polyacetylene.8

The comparison shows that additional terms must be
included in the Hamiltonian, e.g., the Coulomb inter-
action between the π-electrons, that must be responsi-
ble for a large part of the bond dimerization in trans-
polyacetylene.

3. Single-particle gap

Experimentally, it is very difficult to determine the
single-particle gap in trans-polyacetylene because high-
quality single-crystals as for PDA cannot be fabricated.
Therefore, Franz-Keldysh oscillations of unbound single-
particle excitations have not been detected in electro-
absorption experiments on trans-polyacetylene.
The optical absorption of polyacetylene films becomes

significant above Eonset = 1.5 eV and shows a peak at
Epeak = 1.9 eV; the electro-absorptionmeasurements dis-
play a strong signal at ~ω = 1.4 eV.28,29 Third-harmonic
generation is large at ~ωT = 0.6 eV which is evidence
for an excitonic state at Eexc = 1.8 eV,30 as also seen in
combined absorption/refraction measurements, Eexc =
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1.7 eV.31 Apparently, the linear absorption spectrum of
trans-polyacetylene results from disorder-broadening of
the exciton resonance.32

We assume that the exciton binding energy in trans-
polyacetylene is of the same order of magnitude as
in other conjugated polymers such as PDA, ∆s ≈
0.4 eV . . . 0.5 eV.33 Then, the single-particle gap is esti-
mated to be Egap ≈ 2.2 eV . . . 2.3 eV. These estimates
are supported by calculations of Mott-Wannier excitons
for correlated electrons in one dimension.34

We compare these numbers with the predictions from
the Hückel-Peierls model. The Peierls insulator has the
single-particle gap

EHP
gap = 2∆(π/2) = 4t̃0e

σ0 sinh(δ0)

= 4t0 exp[−(rσ − r0 − s0)α/t0] sinh(δ0)

≈ 4α∆0 . (27)

The approximation holds because we have rσ − r0 ≈ s0
and δ0 = ∆0α/t0 ≪ 1. From eq. (27) we see that
the combination of αH ≈ 4 eV/Å with the experimen-
tal value ∆0 = 0.04 Å leads to a Hückel-Peierls gap of
EHP

gap ≈ 0.64 eV. Apparently, the Peierls gap alone can-
not account for the observed single-particle gap in trans-
polyacetylene.

C. Hückel–Hubbard-Ohno model

1. Hamiltonian

The Hückel–Hubbard-Ohno Hamiltonian includes the
Coulomb interaction of the π-electrons in the Hubbard-
Ohno approximation,

ĤHHO = ĤH + U
∑

l

(n̂l,↑ − 1/2) (n̂l,↓ − 1/2)

+
1

2ǫd

∑

l 6=m

Vl,m (n̂l − 1) (n̂m − 1) (28)

with the Hückel part ĤH from eq. (19) and

Vl,m = V (|~rl − ~rm|) (29)

with V (x) from eq. (9). The carbon atoms are at the
positions ~rl of a zig-zag chain in the x-y-plane as is shown
in Fig. 3. We optimize such trans-polyacetylene geometry
numerically as will be discussed briefly below.

2. Numerical procedure

We employ the density-matrix renormalization group
(DMRG) method35,36 together with the dynamic block
state selection (DBSS) approach,37,38 to calculate the
ground-state energy and excited-state energies for the
Hückel–Hubbard-Ohno model for up to LC = 66 car-
bon atoms (LC = 2L+2) for fixed bond parameters. We

FIG. 3. Planar and unflexed trans-polyacetylene (CH)x in
the ideally dimerized zig-zag Lewis structure with alternating
double and single bonds between the carbon atoms (black
dots). Linked to each carbon atoms are the hydrogen atoms
(white circles) on alternating sides of the chain.

use a fixed-point recursion method to optimize the ge-
ometry.5 In this procedure, DMRG is called iteratively,
thus playing the role of a kernel function. The electronic
Hamiltonian for a fixed geometry is solved by the DMRG,
and expectation values of the required operators are de-
termined from the obtained wavefunction. These quan-
tities are used to minimize the total energy comprising
the electronic contribution and the lattice potential en-
ergy. This geometrical optimization terminates when the
energy difference between two subsequent iteration steps
gets below an a-priori defined threshold that we set to
10−4 eV. A more detailed description will be given in a
subsequent paper.39

In addition, we employ the force field

Fσ(r) = −[Kσ,0 +Kσ,1(r − r0)] , (30)

and start our analysis with the parameter set motivated
in Sect. III, Kσ,0 = −4.7 eV/Å and Kσ,1 = 50 eV/Å2.
Moreover, we show data for an improved parameter set,
Kσ,0 = −4.8 eV/Å and Kσ,1 = 42 eV/Å2. For a com-
parison with our earlier study on polydiacetylene, we
fix U = 6 eV and V = 3 eV. Furthermore, the di-
electric screening of the surrounding medium is incor-
porated using the dielectric constant ǫd = 2.3 for the
long-range part of the Coulomb interaction. Moreover,
we use t0 = 2.5 eV, α = 4.0 eV.

3. Bond lengths

The results for the average bond length rHHO
0 are

shown in Fig. 4. As for the non-interacting case, the
Hückel–Hubbard-Ohno model almost perfectly describes
the bond-length reduction from rσ to r0. We find

rHHO,1
0 = 1.397 Å for our first parameter set (Kσ,0 =

−4.7 eV/Å, Kσ,1 = 50 eV/Å2) as motivated in Sect. III,

and rHHO,2
0 = 1.399 Å for the improved, second param-

eter set (Kσ,0 = −4.8 eV/Å, Kσ,1 = 42 eV/Å2), in very

good agreement with experiment, r0 = 1.40 Å. Now that

rH,1
0 = rH,2

0 = 1.391 Å for α = 4.0 eV/Å, we see that
the electron-electron interaction and the parameter Kσ,1
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FIG. 4. (Color online) Average bond length rHHO
0 (LC) in

Angstrøm as a function of the inverse system size 1/LC

in the Hückel–Hubbard-Ohno model with α = 4.0 eV/Å,
t0 = 2.5 eV, and a linear σ-bond force field Fσ(r) with
Kσ,0 = −4.7 eV/Å, Kσ,1 = 50 eV/Å2 (red circles), Kσ,0 =
−4.8 eV/Å, Kσ,1 = 46 eV/Å2 (blue squares), and Kσ,0 =
−4.8 eV/Å, Kσ,1 = 42 eV/Å2 (black crosses). The experi-
mental value r0 = 1.40 Å is shown by a horizontal line, the
quadratic extrapolation lines are included as a guide to the
eye.

0 0.01 0.02 0.03
1/L

C

0

0.005
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0.015

0.02
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0.035
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H

O
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C
)/
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Kσ,0
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)
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= 46
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= 50

  0.0249 +  2.71 (1/L
C
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2

FIG. 5. (Color online) Dimerization ∆HHO
0 (LC) in Angstrøm

as a function of the inverse system size 1/LC in the Hückel–
Hubbard-Ohno model with α = 4.0 eV/Å, t0 = 2.5 eV, and
a linear σ-bond force field Fσ(r) with Kσ,0 = −4.7 eV/Å,
Kσ,1 = 50 eV/Å2 (red circles), Kσ,0 = −4.8 eV/Å, Kσ,1 =
46 eV/Å2 (blue squares), and Kσ,0 = −4.8 eV/Å, Kσ,1 =
42 eV/Å2 (black crosses). The experimental value ∆0 =
0.04 Å is shown as a horizontal line, the quadratic extrap-
olation lines are included as a guide to the eye.

do not significantly influence the average bond length.
Moreover, the analysis of the bond potential Vσ(r) pro-
vides a good estimate of Kσ,0.

In contrast, the dimerization sensitively depends on
the parameter for the σ-bond spring constant Kσ,1, see

Fig. 5. Moreover, the estimate for Kσ,1 = 50 eV/Å2

as motivated in Sect. III leads to a too small dimer-
ization even in the presence of the electron-electron in-

teraction. Indeed, we find ∆HHO,1
0 = 0.025 Å for the

parameter set (Kσ,0 = −4.7 eV/Å, Kσ,1 = 50 eV/Å2),

as compared to ∆H,1
0 = 0.006 Å from the bare Hückel

model and ∆0 = 0.04 Å from experiment. Apparently,
the electron-electron interaction substantially increases
the dimerization. For the first parameter set, the dimer-
ization in presence of the Hubbard-Ohno interaction is by
a factor five larger than the Peierls contribution alone.
To obtain a better agreement with the experimentally

observed dimerization, we address the improved param-
eter set (Kσ,0 = −4.8 eV/Å, Kσ,1 = 42 eV/Å2). We find

∆HHO,2
0 = 0.037 Å, as compared to ∆H,2

0 = 0.016 Å and
∆0 = 0.04 Å. The value for the dimerization now agrees
with the experimental value within experimental error
bars. The electron-electron interaction still is decisive
for the dimerization in trans-polyacetylene because the
electronic contribution to the dimerization is a factor 1.4
larger than the Peierls contribution.

4. Band gaps

The Hückel–Hubbard–Ohno results for the exciton en-
ergy and the single-particle gap are shown in Figs. 6
and 7, respectively.
The exciton energies extrapolate to EHHO,1

exc = 1.64 eV
and EHHO,2

exc = 1.82 eV, within the experimental bounds
1.5 eV < Eexc < 1.9 eV. The value from the improved pa-
rameter set is in good agreement with the prediction from
third-harmonic generation.30 The position of the exci-
ton energy sensitively depends on the force-field parame-
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2
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= 46
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C
)
2

Kσ,0
= -4.7, Kσ,1

= 50

 1.64 + 208 (1/L
C
)
2

FIG. 6. (Color online) Exciton energy Eexc(LC) in eV as
a function of the inverse system size 1/LC in the Hückel–
Hubbard-Ohno model with α = 4.0 eV/Å, t0 = 2.5 eV, and
a linear σ-bond force field Fσ(r) with Kσ,0 = −4.7 eV/Å,
Kσ,1 = 50 eV/Å2 (red circles), Kσ,0 = −4.8 eV/Å, Kσ,1 =
46 eV/Å2 (blue squares), and Kσ,0 = −4.8 eV/Å, Kσ,1 =
42 eV/Å2 (black crosses). The quadratic extrapolation lines
are included as a guide to the eye.
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FIG. 7. (Color online) Single-particle gap Egap(LC) in eV
as a function of the inverse system size 1/LC in the Hückel–
Hubbard-Ohno model with α = 4.0 eV/Å, t0 = 2.5 eV, and
a linear σ-bond force field Fσ(r) with Kσ,0 = −4.7 eV/Å,
Kσ,1 = 50 eV/Å2 (red circles), Kσ,0 = −4.8 eV/Å, Kσ,1 =
46 eV/Å2 (blue squares), and Kσ,0 = −4.8 eV/Å, Kσ,1 =
42 eV/Å2 (black crosses). The quadratic extrapolation lines
are included as a guide to the eye.

terKσ,1. The corresponding results for the single-particle
gap are EHHO,1

gap = 1.94 eV and EHHO,2
gap = 2.20 eV. The

binding energy of the exciton ∆s = Egap − Eexc is pre-
dicted to be ∆HHO,1

s = 0.30 eV, and ∆HHO,2
s = 0.38 eV,

in agreement with experiment.33 Apparently, the binding
energy ∆s increases slowly with decreasing force-field pa-
rameter Kσ,1.

V. CONCLUSIONS

In this work we investigated the σ-bonds and π-
bonds in ethane (H3C−CH3), ethene (a.k.a. ethylene,
H2C=CH2), and ethyne (a.k.a. acetylene, HC≡CH) as
a function of the carbon-carbon distance r. We demon-
strated that the π-bonds in ethene and ethyne can be de-
scribed using the Hückel model with the potential Vσ(r)
from the σ-bond.
The bond lengths and spring constants in equilibrium

agree with the data from quantum chemistry within a
margin of a few percent. The comparison provides a
robust estimate for the value of the Peierls coupling,
α = 4 eV/Å, for a given electron transfer t0 = 2.5 eV at
carbon-carbon distance r0 = 1.4 Å. Unfortunately, the
parameters of the Hubbard-Ohno interaction cannot be
determined from dimers or short polyenes because the
Ohno interaction is essentially constant for small dis-
tances. Therefore, we choose U = 6 eV and V = 3 eV
as derived from the the analysis of excited states in poly-
diacetylene.5

We tested the Hückel–Hubbard-Ohno model for trans-
polyacetylene with Vσ(r) as backbone potential. Close

to the average bond length r0, we may linearize the σ-
bond force Fσ(r) = −V ′

σ(r) = −[Kσ,0 + Kσ,1(r − r0)]
when we determine the structure. The σ-bond repul-
sion balances the lattice contraction induced by the itin-
erant π-electrons. We find that the size of the aver-
age bond contraction is mostly determined by the con-
stant term Kσ,0 and the Peierls coupling α whereas the
Coulomb interaction and the linear term Kσ,1 are fairly
unimportant for the average bond length. Moreover,
the optimal value for Kσ,0 is very well predicted by

Vσ(r), K
(1)
σ,0 = −5.2 eV/Å while our analysis for trans-

polyacetylene suggests K
(2)
σ,0 = −4.8 eV/Å.

The dimerization ∆0 in trans-polyacetylene is trig-
gered to a large part by the Coulomb interaction. Nat-
urally, the dimerization strength sensitively depends on
the size of the ‘spring constant’ Kσ,1. We find that the
value obtained from the analysis of the σ-bond potential,

K
(1)
σ,1 = 54 eV/Å2, is too large. For an agreement with

experimental data in trans-polyacetylene, we propose to

use the smaller value K
(2)
σ,1 = 42 eV/Å2, in agreement

with empirical values for benzene, Kben
σ = 41.3 eV/Å2,

that has the same average bond length.12 Our value is
considerably larger than KPA,1

σ = 31 eV/Å2 proposed for
trans-polyacetylene in Ref. [8] and closer to the value
suggested in Ref. [11], KPA,2

σ = 46 eV/Å2.

Given these parameter sets, we calculated the energy
for elementary excitations in trans-polyacetylene. We
find an exciton with substantial binding energy, ∆s ≈
0.4 eV, in agreement with experiments for π-conjugated
materials.33 The parameter Kσ,1 mildly affects the ex-
citon binding energy but determines the energetic posi-
tion of the exciton. For our second, optimal parameter
set [t0 = 2.5 eV, α = 4.0 eV/Å, U = 6 eV, V = 3 eV,

K
(2)
σ,0 = −4.8 eV/Å, K

(2)
σ,1 = −42 eV/Å2], we find a good

agreement with experiment, Eexc = 1.8 eV.30,31 The
single-particle gap is found at Egap = 2.2 eV. Our values
for Eexc and Egap also agree with the predictions from re-
cent calculations of Mott-Wannier excitons for correlated
electrons in one dimension.34

In sum, the analysis of short molecules gives a rea-
sonable first estimate for the parameters necessary for
a Hückel–Hubbard-Ohno description of conjugated poly-
mers. To reproduce the experimental ground-state
conformation, some parameters, typically the ‘spring
constant’ at the optimal average bond length, must
be adjusted by some 20%. After the adjustment of
these parameters, the Hückel–Hubbard-Ohno model pro-
vides a fairly good description for π-electrons in trans-
polyacetylene, as can be seen from the good agreement
of theoretical and experimental data for the exciton en-
ergy and the exciton binding energy.

The measured optical phonon spectra provide another
testing case for the Hückel–Hubbard-Ohno model. In-
deed, this theoretical approach reproduces the optical
phonons in trans-polyacetylene with good accuracy, as
we shall show in a subsequent paper.39
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