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ABSTRACT

All the available information and uncertainties should be taken into account in a model to give correct
answer to a stated problem and evaluate the performance of a structure. This study deals with the
impact of parameter estimation uncertainty in extreme wind speeds on the assessed reliability index
using frequentist approach. The peak-over-threshold approach with an automated threshold selection
method is applied and bootstrapping is used to determine the 95% confidence interval of the estimated
reliability index. Based on the results practical recommendations, i.e., a framework of this procedure are
derived on how to handle peak-over-threshold in extreme wind speed models for the application of
the proposed performance-based wind engineering design.
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1. INTRODUCTION

1.1. Motivation

Uncertainties are unavoidable in the design of engineering structures; therefore the analysis
should include the proper treatment and effects of uncertainties. Accordingly, different level
of modeling can be distinguished: deterministic, semi-probabilistic (level I), First Order
Reliability Method (FORM), (level II) and full probabilistic method (level III). The Eurocode
has primarily been based on the deterministic method and the semi-probabilistic (level I)
method has been used for further development [1]. Hence, the uncertainties of both load
effects and structural resistance model are taken into account in the structural design process
nowadays. Although, generally, various assumptions and simplifications are made in the
probabilistic model and these uncertainties are included implicitly, e.g., represented by partial
factors and characteristic values of actions, material-, geometrical properties, in non-linear
models, the precise probabilistic models (level III) provide the only unbiased estimate of the
probability failure. In the partial factor method (level I), a verification is made to ensure that
no relevant limit state will be exceeded. Nevertheless, if one would like to evaluate the
performance of a structure, all the available information should be taken into account and full
probabilistic method should be applied [2]. This is the goal of the Performance-Based Design
(PBD). While the Performance-Based Earthquake Engineering (PBEE) is well accepted by
now, the Performance-Based Wind Engineering (PBWE) is also becoming increasingly
available and desirable [3–8] for those structures where the wind is the governing load.

1.2. Problem statement

Extreme wind speed is the dominant component in the reliability of many structures, i.e., the
uncertainty in the probabilistic model of the extreme wind speed contributes the most to
the failure probability [6, 9]. Therefore, it is of utmost importance to examine the related
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modeling assumptions and to make sure that the model
aptly describes reality. Despite its importance, Parameter
Estimation Uncertainty (PEU) in extreme wind speed
models is rarely considered. PEU comes from the model
parameters whose exact values are unknown and whose
values cannot be exactly inferred by statistical methods. Yet,
some studies have shown that PEU in the modeling of
extreme environmental actions can play a considerable role
[10-14], e.g., Rózsás and S�ykora, [12] show that neglecting of
PEU can lead to a 10% underestimation of the 1000-year
return period wind speed value. Other study of Rózsás and
S�ykora, [13] shows that the 1000-year return period value
might be underestimated by 20% due to the neglect of PEU
for ground snow load.

However, Meinen and Steenbergen [14] have focused on
the influence of PEU in extreme wind speeds in the context
of PBWE. Hence this paper aims to fill this gap and answer
the following research question: What is the impact of PEU
in extreme wind speed models on structural reliability? The
question is broken into smaller sub-questions and answers,
which are answered accordingly.

1.3. Approach

Briggs et al. [15] make recommendation on the reporting of
uncertainty, in terms of both probabilistic methods and
deterministic sensitivity analysis techniques. In this study,
the Probabilistic Sensitivity Analysis (PSA) is used to
quantify the level of confidence in the structural reliability.
Input parameter values are the parameters of the extreme
value distribution, which are fitted to realizations. Fragility
curves are developed and further integrated with the hazard
functions to estimate structural failure probabilities. The
output is the empirical distribution histogram of the reli-
ability index and it is represented by its point estimate and
the 95% confidence interval.

Based on the following results practical recommenda-
tions are derived on how to handle PEU in extreme wind
speed models.

2. WIND SPEED DATA SET

A 3.5-year record of wind speed data with a sampling in-
terval of 0.9 s, measured at 50 m height above ground level
in Sződliget, Hungary is used for the analysis. The data was
provided by Hungarian Telekom Telecommunications Plc.
Several approaches exist to determine the extreme value
distribution of wind speed [16, 17]. In this study Peak-
Over-Threshold (POT) method is used, which assumes
mutually independent and identically distributed (i.i.d.)
random variables. To ensure independence of the obser-
vations, an autocorrelation analysis is adopted. The analysis
reveals a slight periodicity in case of maxima for 1 and
3 days, though 7-day maxima can be considered as statis-
tically independent events. Therefore, maxima for 1, 3 and
7 days are analyzed in this study to check the impact of
weakly dependent observations. These selections comprise
1,326, 441 and 189 samples, respectively.

3. PROPOSED METHODS AND TOOLS

3.1. Hazard and fragility curves

The hazard function is defined as the probability of ex-
ceedance within the reference time interval. In the present
hazard functions, only the uncertainties associated with
the wind speed values are taken into account and the un-
certainties of e.g., roughness factor, gust factor, aerodynamic
shape factor, etc., are neglected.

Fragility curves represents the probability of exceeding
the given limit state, i.e., damage state as a function of the
chosen intensity measure parameter, i.e., wind speed. The
Log-Normal Distribution (LND) is chosen for the repre-
sentation of the resistance as proposed by EN 1990:2002 C.6
[18]. Adopting a log-normal distribution for this variable
has the advantage that no negative values can occur.

3.2. Parameter estimation

All models have parameters that need to be estimated.
Therefore, the estimation of point estimates and uncertainty
in parameters is part of the modeling process and the rela-
tionship between the parameter uncertainty and the uncer-
tainty of the decision variable should be determined [15]. In
this study, maximum likelihood method is used to evaluate
the parameters of the different distributions. Three sources
of uncertainty can be taken into account during modeling:

i. aleatory uncertainty, which cannot be eliminated (arising
from the unpredictable nature of a variable);

ii. epistemic uncertainty, which can be reduced by gath-
ering more data or by refining the model (resulted by the
incompleteness and errors of measurements);

iii. model uncertainties (due to the limitations of our
knowledge).

In this study, the impact of the epistemic and model
uncertainty in the proposed extreme wind speed model on
the reliability index is assessed.

As it was mentioned in Section 2, the applied POT
method is based on a conditional distribution (Eq. 1),
i.e., exceedances over a specified threshold. The Generalized
Pareto Distribution (GPD) is used to model the behavior of
the wind speed exceedances over the specified threshold
[19–23]. The Cumulative Distribution Function (CDF)
of GPD:

Fξ;σ;ηðxÞ ¼ P X � u≤ xjX>uf g

¼

8>>><
>>>:

1� 1þ ξ x � ηð Þ
σ

� �−1
ξ

; for ξ≠ 0;

1� exp �x � μ

σ

� �
; for ξ ¼ 0;

(1)

where u is the selected threshold; ξ, σ and η are the shape,
scale and location parameters, respectively. The shape
parameter ξ of the GPD is the same as for the Generalized
Extreme Value (GEV) distribution [19]. According to the
recommendation of Thompson et al. [24], for the automated
threshold selection, suitable values of equally spaced
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candidate thresholds should be chosen between the median
and the 98% quantile of the dataset, unless fewer than 100
values exceed this value, in which case the upper bound
should be set to the 100th data value in descending order.

The procedure of the applied analysis is discussed in
detail in Section 3.3. As the 95% confidence interval of the
estimated reliability index is not necessarily symmetric, it is
assessed using bootstrapping.

3.3. Framework of the procedure

Since this study focuses on the influence of parameter esti-
mation uncertainty on the estimated reliability index, the
failure probability is quantified in terms of functions char-
acterizing the wind effect and a general structure corre-
sponding to a level of safety for reliability class RC2 with
reliability index β of 3.8 [18] (Eq. 2). Figure 1 shows the
framework of the analysis, which can be summarized in the
following steps:

1. For the representation of the action side, GEV distribu-
tion or GPD is applied for synthetic data or for real
observation, respectively;

2. For the representation of the resistance side, the LND is
applied. The Coefficient of Variation (CoV) of the LND
is chosen and the mean is calculated with the intention to
reach the recommended minimum value of the reliability
index 3.8 for ultimate limit state verification;

3. In order to investigate the impact of a large number of
wind speed realizations on the assessed uncertainty, syn-
thetic data is generated using a pseudorandom number
generator. However, for other calculations, real observa-
tions are used;

4. A bootstrapping technique with 1,000 resamples is
applied for the estimation of the distribution of the
reliability index. A particular sample is randomly chosen
with replacement from the data;

5. The POT approach with an automatic threshold selection
method [24] is used to determine parameters of the
Probability Density Function (PDF) of the wind speed.

This automated technique is computationally inexpensive
and simple;

6. The probability of failure and the corresponding reli-
ability index are calculated according to the following
equations (Eq. (2) for GEV, Eq. (3) for GPD):

Pf ¼
Z ∞

0
fEðvÞFRðvÞdv; (2)

Pf ¼
Z ∞

0
fEðvjv>uÞPðv>uÞFRðvÞdv; (3)

β ¼ −Φ−1
�
Pf
�
; (4)

where fE(v) is the PDF of the GEV distribution, FR(v) is the
CDF of LND, fE(v|v > u) is the probability density function
(PDF) of GPD, Pr(v > u) is approximated by the ratio of
number of exceedances to the number of observations and Ф
is the standard normal distribution function. After that, the
bootstrapped 95% confidence interval of the reliability index
is produced.

4. ANALYSIS RESULTS

PSA is carried out and statistical uncertainty due to the use
of limited wind speed samples during the application of
POT method is determined and presented below.

4.1. The effect of the number of realizations

First, the effect of number of realizations on the estimated
reliability index is investigated on synthetic data. For the
representation of the action side, GEV distribution with
shape parameter �0.1706, scale parameter 2.7 and location
parameter 11.69 is chosen (based on real observation). For
the representation of the resistance side, LND with CoV of
0.1 is chosen and the mean of this log-normal distribution is
28.16 m s�1.

The expected value of the estimate converges to the true
value as the number of realizations increases and the
bandwidth shrinks accordingly (Fig. 2). The horizontal line
represents the target reliability index β of 3.8. The associated
95% confidence interval is reduced by about 70% when the
number of realizations is increased from 100 to 1,000.
Further reduction (∼50%) can be achieved when the number
of realizations is increased by an order of magnitude.

Fig. 1. Framework of the procedure
Fig. 2. 7-day maxima, various record length and upper bound of

suitable threshold
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Empirical distribution histograms of the reliability index β
can differ from normal distribution, especially in case of
small number of realizations (less than 100 realizations).

4.2. Short time series

With the advancement of technology, the installation of
monitoring systems is becoming the norm in the industry.
Site-specific probability distribution of wind can be taken
into account for the performance-based wind design of
structures. Therefore, from a practical point of view, the
influence of short time series length available for the analysis
on the final results can be interesting to determine a mini-
mum observation-length, i.e., minimum number of re-
alizations or exceedances.

In case of the abovementioned 7-day maxima and
shorter dataset, 198 data or fewer are given, which is not
sufficient for the recommendation of Thompson et al. [24].
Hence, some modification should be made to prevent the
fitting of parameters based on low number of observations.
Since reliable results are obtained in the range of 8.5 m s�1

and 12.5 m s�1 for 3-day maxima (40–80% quantiles),
10.5 m s�1 and 13 m s�1 for 7-day maxima (40–70%
quantiles), lower bound should be still the median, and the
chosen upper bound is the 70% quantile for shorter (than
200 data) dataset. Maximum numbers of exceedances of
the potential upper bounds are shown in Table 1.

Realizations are resampled from the observation with
replacement to obtain the reliability indices and assess the
bootstrapped confidence interval. The exact discrepancy
between results using different maxima can be seen in Fig. 3.

According to the expectation, the case of 7-day maxima
carries a higher level of uncertainty due to fewer data points.
The 95% confidence interval of β is reduced by about
30–40% using 3-day maxima and 20–44% using 1-day
maxima. Moreover, the associated confidence interval is
reduced by ∼40, 30 and 40% when the observation length is
increased from 1 to 3.5 year for 1-, 3- and 7-day maxima,
respectively. The accuracy may not increase with the fre-
quency of observation due to the different threshold.

4.3. Various CoV of the resistance side

Parameters of the GPD are fitted on the real 3.5-year wind
velocity record. The probability density function (PDF) of
the GPD and various LND are shown in Fig. 4. Realizations
are resampled from the observation with replacement.

The confidence interval of the reliability index is
decreasing with increasing CoV of the LND due to spread
of the distribution function. In other words, uncertainties
of the action side have smaller impact on the assessed
uncertainty of the reliability index when there is a larger
uncertainty associated with the resistance side (Fig. 5). For
example, the CoV of the distribution of tensile strength of
concrete can be assumed to be 0.3, while the CoV corre-
sponding to material properties of structural steel is about
0.03–0.07 [25].

4.4. Mean and short-term velocity

Ideally, 10min mean of a continuously measured wind speed
is required for the Eurocode standard [26], but in practice
this is rarely achieved. Therefore, results of two cases are
compared to see its effect; extreme value analysis is carried
out on:

i. 10 min averaged wind data points;
ii. instantaneous wind speed (sampling interval of 0.9 s).

In Fig. 6, the large influence of extreme events on the
final result can be seen. Taking into account these extremes
in the analysis may lead to different inference results and
this behavior causes the increased statistical uncertainty of

Table 1. Range of numbers of exceedances

1 year 2 year 3 year 3.5 year

1-day-maxima 113–189 227–378 341–568 398–663
2-day-maxima 38–63 75–126 113–189 132–220
3-day-maxima 16–27 32–54 48–81 57–94

Fig. 3. Assessed β of 1–3 and 7-day maxima, various record length

Fig. 4. The PDF of the GPD and various LND representing the
resistance

Fig. 5. Assessed β associating with various CoV of the LND
function
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the 0.9-s gust dataset. If one would like to examine 10-min
mean wind speeds, then this uncertainty should be included
in the exposure factor.

5. DISCUSSION

It should be noted that the reality of multiple observations
suggests that reliance on a single study probably underesti-
mate the actual uncertainty. This suggests a more extensive
uncertainty analysis than based on study data alone [15].
Moreover, adding one or two extreme events to the sample
may have significant influence on the final result. The pre-
sent statements are valid for the dataset under consideration
and for similar climatic conditions.

The traditional method to derive extreme wind speeds is
the Annual Maximum (AM) approach. The great advantage
of this approach is that few decisions are required during the
calculation of the distribution parameters. However, the
main drawback is the data reduction; therefore, the wind
measurement must be long. At least 10–20 extremes should
be used to determine reliable results according to [27]. This
drawback can be overcome through applying POT method,
which is based on a conditional distribution, i.e., the
exceedances over a specified threshold. In this way, more
events per year can be applied for the estimation. Therefore,
the POT approach is applied in this study to assess pa-
rameters of the extreme value distribution due to the rela-
tively short length of data series. The complexity of POT
method mainly is from the determination of both physical
and statistical threshold since variance decreases and the
bias increases with lower threshold, higher threshold results
that the bias decreases and the variance increases. Hence,
this decision may have strong impact on the estimated
values.

In this study, the contribution of uncertainty associated
with aerodynamic and aero-elastic phenomena to the
failure probability is not taken into account, since it is
focused on the epistemic uncertainties in the distribution
parameters and quantile estimates of extreme wind speeds.
Nevertheless, the interaction between the relevant properties
of the structure and the wind field are essential and cannot
be disregarded. Also, non-environmental actions and the
presence of nearby structures can influence the structural

response by modifying the aerodynamic and aero-elastic
characteristics of the structure.

6. SUMMARY AND CONCLUSIONS

During the application of the PBWE design, one main
source of epistemic uncertainty associated with the extreme
wind speed model is the statistical uncertainty due to the use
of limited samples. It can be reduced by using more relevant
data, i.e., longer measurement or alternative approaches,
e.g., POT method instead of the Annual Maximum (AM).
In this study the impact of the parameter estimation un-
certainty of the wind speed function using POT method
with automated threshold selection on the assessed reli-
ability index is evaluated.

The failure probability is quantified in terms of the GPD
PDF of wind speeds and the LND of a general structure
corresponding to a level of safety for reliability class RC2
with reliability index β of 3.8. In this study the POT
approach with an automated threshold selection method is
applied. The bootstrapping is used to determine the 95%
confidence interval of the estimated reliability index β.

Maxima for 1 and 3 days can be considered as weakly
dependent observations, and 7-day maxima can be treated
as statistically independent events. Weakly dependent re-
alizations do not cause considerable discrepancy, however
the increased amount of data can reduce the statistical
uncertainty. The 95% confidence interval can be reduced
by about 70 and 85% when the number of realizations
is increased from 100 to 1,000 and 10,000, respectively.
It was found that at least approx. 500 realizations, i.e.,
about two years of observation is needed for the analysis to
provide sufficiently reliable results when the CoV of the
LND of the resistance side is about 0.1. However, regression
techniques or simulation modeling should be used to
extend the available record for extreme value analysis by
comparison with neighboring stations or using synthetic
time series. If more than 3,000 realizations are available,
then the effect of PEU can be neglected. However,
increasing the uncertainty associated with the resistance
side, uncertainties of the action side have smaller impact on
the assessed uncertainty of the failure probability. More-
over, the available data type can have considerable influ-
ence on the final result. The confidence interval of the
reliability index calculated using gust wind speed, is wider
than the bandwidth corresponding to 10-min mean wind
speeds. Therefore, considering 10-min mean wind speed
records, this uncertainty should be taken into account in
the exposure factor.

In conclusion, the main drawback of the traditional AM
approach is the data reduction, which can be overcome
through applying other techniques, such as the proposed, but
not typically used in civil engineering, POT method pre-
sented in this paper. It may lead to more accurate return level
estimates, i.e., basic wind velocity with their uncertainty
properly qualified due to the increased number of samples
available for analysis from a given time series. This epistemic,

Fig. 6. 7-day maxima, measured and 10-min averaged wind speeds,
various record length
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statistical uncertainty is quantified, and the framework of
this analysis is demonstrated.
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