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We discuss the abstract structure of sequential weak measurement (WM) of general observables.
In all orders, the sequential WM correlations without post-selection yield the corresponding corre-
lations of the Wigner function, offering direct quantum tomography through the moments of the
canonical variables. Correlations in spin-% sequential weak measurements coincide with those in
strong measurements, they are constrained kinematically, are equivalent with single measurements.
In sequential WMs with post-selection, a new anomaly occurs, different from the weak value anomaly
of single WMs. In particular, the spread of polarization &, as measured in double WM of &, will
diverge for certain orthogonal pre- and post-selected states.

PACS numbers: 03.65.Ta, 03.65.Wj

From textbooks on quantum mechanics we learn that
the ideal measurement of observable A collapses the pre-
measurement state p into an eigenstate of A hence eras-
ing all memory of p. If the measurement is non-ideal
(i.e.: unsharp, imprecise) the collapse still happens al-
though it may keep some well-defined features of p. On
one hand, the larger the unsharpness the more faithfully
the pre-measurement state will be preserved. On the
other hand, the imprecision of the measurement can be
compensated by measuring on a larger ensemble of iden-
tically prepared pre-measurement states. The concept
of weak measurement (WM) corresponds to the asymp-
totic limit of zero precision and infinite statistics [1] when
the pre-measurement state p would invariably survive the
measurement. WM was used by Aharonov, Albert and
Vaidman [2] as a non-invasive quantum measurement be-
tween pre-selection (preparation) and post-selection of
the pre- and post-measurement states, respectively. Non-
invasiveness of WM is a remarkable feature both with and
without post-selection, and this non-invasiveness can be
maintained for a succession of WMs on a single quantum
system. General features of such sequential WMs form
the subject of the present work.

WMs without post-selection — We outline WM of a
single observable A at the abstract level of generalized
(unsharp, imprecise) measurements [3]. Consider the
pre-measurement state p and the unsharp measurement
of A, with precision a. Let G4(A) stand for a Gaussian
function of standard width a. The unnormalised post-
measurement state conditioned on the outcome A takes
this form:

pulA) = \/GalA= Dy JGata- ) ()
where the outcome probability satisfies
Pa(A) = trpa(A) = (Ga(A - A)); . (2)

If we calculate the stochastic mean MA of A we get

MA = [ pu(4)AdA = (d); (3)

We are interested in the WM limit of infinite imprecision
a — 00, i.e., when a is so large that the difference between
pre- and post-measurement states is negligible. In prac-
tice it means a > AA where (AA)? = (A2); — ((A);)2.
While the relationship M A is independent of a the proba-
bility distribution p,(A) diverges so that p(A) does not
exist. Note with ref. [1] the WM limit of the unsharp
measurement (2] had been used earlier for theory of
time-continuous measurement [4].
Before constructing sequential WMs, let us write the
post-measurement state (1) into the equivalent form:
_ A2 R
pa(A) = exp < &LQA) Go(A—AL)p (4)

where Aa, A, are commuting superoperators [5] defined
by ArO = [/1,(5] and A0 = %{A,O} As an example
of sequential WMs, we consider the sequence of three
independent WMs of fl, B, C', in this order. In the WM
limit, we can apply eq. (@) without the exponential factor
to construct the unnormalized post-measurement state:

pa(A, B, C) = Go(C — C)Ga(B— B)Ga(A—A)p. (5)
The joint probability distribution of the three outcomes
is determined by the trace of the post-measurement state:

pa(A,B,C) =trp.(A,B,C) = (6)

= tr{Gu(C — Co)Gu(B — B.)Go(A— A)p},
which, as we said already, diverges in the WM limit and
Poo(A, B, C) does not exist. Nonetheless, the stochastic

average of the product ABC is independent of a in the
WM limit. Using eq. (6), we obtain

MABC = / pa(A, B,C)ABC dAdBAC =

LA (BN, Q

This important result was obtained by Bednorz and
Belzig [6] assuming a quasi-distribution which this time
we justify as follows.
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Since the r.h.s. of the above expression is indepen-
dent of a therefore we can calculate it for a = 0. This
means, we get the following quasi-distribution from the
true pq(4, B, C):

pO(Av Bv C) = tI‘{(S(O - C«C)a(B - Bc)5(A - AC)/;} (8)

This quasi-distribution can have negative domains. (For
the true distribution p,(A, B,C) > 0 holds in the WM
limit.) The merit of this quasi-distribution is that it
does not contain the diverging parameter a and yields
correctly the mean for the product ABC exactly like
pa(4, B, C) did:

MABC

(A (B,CY), =
_ / po(A, B,C)ABC dAdBdC.  (9)

The same is true for the means of A, B,C, AB, AC, BC,
respectively. But all other means diverge in reality, i.e.:
with p, (A, B, C') in the WM limit, whereas po(ABC') sug-
gests incorrect finite values for them.

The above results can trivially be extended for an arbi-
trary long sequence of WMs. Let us consider a sequence
of observables Ay, As, ..., A, which are weakly measured
in the given order on the pre-measurement state p. If
Ay, As, ..., A, denote the corresponding measurement
outcomes then

MA Ay ... A, = 2%<{A1, {Ag,{.. ., {An—1,An} ... }}}>p .
(10)
The stochastic mean of the product of sequential WM
outcomes coincides with the quantum expectation value
of the stepwise-symmetrized (also called time-symmetric
[7]) product of quantum observables. This is the central
result for sequential WMs without post-selection. If we
regard a subset of the n outcomes and discard the rest of
them then the similar identity holds, e.g.: M A3 A7 Ag =
%<{/A12, {A7,Ag}}>ﬁ. In general,
MA,;, ... A, ...

(11)
holds for (i1,42,...,4) € (1,2,...,n), i.e., for any or-
dered subsets of indices from 1 to n, as it follows easily
from the derivation of eq. (I0). Also we can derive all
the above stochastic means from the quasi-distribution:

po(Al,AQ, e ,An) =
= tr{0(An — A1)0(Az — Ay) ..

(12)
8(Ap — Apc)p}

Generalization of the relationship (@) holds:

MA Ay .. A, = 2%({211,{...,{An,l,fxn}...}}y =

p

= /pQ(Al,Ag,...,An)AlAQ...An dAldAgdAn(l?))

The last two WMs in a stepwise-symmetrized sequence
are always interchangeable but the rest of them are not:
order of WMs matters in general. There is, however, a
remarkable class when all WMs are interchangeable. Let
us discuss the example of the sequence A,B,C. To find
a simplest sufficient condition of complete interchange-
ability, we require that the superoperators flc, B., C. in
eq. ([@) all commute. Take, e.g., the identity [AC, BC]O =
i[[/l, BJ, O] which says that A, and B. commute if [A, B]
is a c-number. Therefore the interchangeability of the
three WMs is ensured if all three commutators [A, B],
[A,C] and [B,C] are c-numbers. In the general case,

the order of WMs within the sequence Aj, As, ..., A,
becomes irrelevant if
[Ap, A)] = cnumber (k1 =1,2,...,n). (14)

This is not necessary just a sufficient condition of com-
plete interchangeability of the n WMs. Under this con-
dition, the stepwise-symmetrization on the r.h.s. of eq.
(I0) reduces to symmetrization:

MA Az .. Ay = (SA1Ay . Ay) (15)
where S stands for symmetrization of the operator prod-
uct behind it.

Canonical observables — The conditions (I4]) hold typ-
ically for the linear combination of canonical variables,
e.g., for the choice

Ay =upg+op  (E=1,2,... (16)
where [§,p] = i. Then symmetrization S is nothing else
than Weyl ordering. Since the Weyl-ordered correlation
functions of canonical variables ¢,p, or of their linear
combinations like on r.h.s. of eq. ([IE) coincide with
the corresponding correlation functions (moments) cal-
culated from the Wigner function W(q,p) of p, we con-
clude that the r.h.s. can be re-written in terms of Wigner
function correlations:

MA1A2 . An = /W(q,p)AlAg . .Andqdp =

This means that for sequential WMs of canonical ob-
servables the generic quasi-distribution (I2]) is redundant
for n > 2, its role is taken over by the Wigner quasi-
distribution. The coincidence po(q,p) = W(q,p) in the
special case n = 2, A; = §, Ay = p was recognized in [6].

Suppose, for instance, we perform two WMs of ¢ with
outcomes ¢1, g2 and two WMs of p with outcomes p1, ps.
Then independently of the orders of the four WMs, a
sufficiently large statistics of outcomes allows us to de-
termine all second order moments of the Wigner function

(*)w =Maqiqz, (p*)w = Mp1po, (18)

(qp)w = Mqip1 = Mqip2 = Mg@ap1 = Mgap



as well as a few higher order ones (¢*p)w, (qp*)w,
(@®p*)w and, of course, the first order moments (q)w,
(P)w , too.

Spin—% observables — Sequential measurement of spin-
% observables is exceptional: eq. (0] is valid no matter
the measurements are weak, ideal (strong), or even al-
ternating within the sequence between the two extreme
strength. Consider the following choice of observables:

Ay =61, Ay =69, ..., A, =060n (19)
where 7}, is the polarization parallel to the unit vector €

for K = 1,2,...,n. Denote the measurement outcomes
by A1 = 01,As = 09, etc., and invoke eq. () form
them:

MO’10'2 . Op = 2%<{[71, {6'2, { cey {a'n,h &n} . }}}>ﬁ .

(20)
To confirm it for strong measurements as well, we in-
troduce the projectors Py = (1 £ 6) diagonalizing the
Pauli polarization matrix 6. Standard expression for se-
quential strong measurements reads:

Mooy ...0n =tr Zanﬁéf)- o ( 202P§§)< Zallf’é})ﬁlf’éf)>15§§> . Pg:)
on,=*1

ngil

Observe the identity > _ oP,0P, = +{s, O} valid for
auxiliary 2 x 2 matrices O, apply it n-times. We obtain
eq. ([20). Evaluating its r.h.s. yields

M Oy = (_’} _’2)(6:3‘34) : (én—lfzn) n even
oo { (61)5(€2€3) ... (En—1€6,)  m odd
(21)

Outcome correlations of n sequential WMs on a spin-
% system coincide exactly with the correlations obtained
from strong measurements of the same sequence. Cor-
relations are kinematically constrained by the chosen di-
rections of polarization measurements. For n even, cor-
relations are completely determined by the single mean
(01) and just independent of the pre-measurement state
p if n is even.

WMs with post-selection — So far we have established
the general features of outcome statistics in sequential
WDMs without post-selection. Including post-selection re-
quires straightforward modifications. For mixed state
post-selection [1, 8], the statistics (B) of the ABC-
sequential WM modifies like this:

palA, B, CIT) = ”{ﬁfjfﬂ’g -
tr{I1G,(C — C.)Gu(B — B.)Go(A — A)p}
tr{f[ﬁ} ’

where 0 < II < 1. Accordingly, the post-selected mean
([@), i.e., the mean restricted for the post-selected subset
ABC|pser of ABC, becomes

MABC';Dsel = <{A7 {év {év ﬁ}}}>ﬁ/<ﬂ>ﬁ : (23)

| =

Ulzﬂ:l

The general result must be the following:

<{A17 {A27 ce {Amﬂ} cet }}>,3

2n (M)

MA,, As, ..

. 7An|psel =

(24)
In the basic case, both initial and post-selected states
are pure states and we are going to take this option:
p = |i)(i|,IT = |f)(f|. Then, following Mitchison, Jozsa
and Popescu, we introduce the sequential weak values

(flAnAn_1 ... A1)

(A1, Ag, ..., Ap)w = . : (25)
(f17)
and re-write eq. (24)) in time-symmetric form [9]:
MA;, Aoy ..., Aplpsel = (26)
1 *
= 2_11 (AilvAlév'-'aAir)w(AjlvAjw"-aAjn—r)w

where summation is understood for all partitions
(i1,82, .y 8r) U (J1, 025« oy Jner) = (1,2,...,n) where i’s
and j’s remain ordered. Degenerate partitions r = 0, n,
too, must be counted. Certain options of reduction,
shown above for sequential WMs of canonical or spin-
% observables, may still survive post-selection, here we
are not going to discuss them. We show a particular
anomaly, not present in single post-selected WM but in
sequential WMs, even for simplest ones.

Re-selection — Consider the special case |i) = |f) of
post-selection, call it re-selection. In the case of a single
WM, re-selection is equivalent with no post-selection:

MA = MA| 50 = (A); . (27)

Since WMs are considered non-invasive, we expect that
the post-measurement state does not differ from the ini-
tial state |¢) in the WM limit, re-selection rate tends to 1



hence the discarded outcomes would not alter the statis-
tics. No doubt, this is the case for a single WM. As to
sequential WMs, however, a glance at (28] shows that re-
selection does not yield equivalent results with no post-
selection ([I0). Even the simplest sequential WM will il-
lustrate the anomaly. We consider two WMs, moreover,
we consider the case when A; = Ay = A i.e, we weakly
measure A twice in a row, yielding outcomes A; and As,
respectively. Without post-selection, eq. (I0) and with
re-selection eq. (20)) yield, respectively:

MA; Ay = (i|A%]i), (28)
1. . 1, . 4.
MA; Aglrser = §<1|A2|z)+§(<Z|A|z>)2. (29)

Re-selection decreases M A; As by half of the squared
quantum uncertainty (AA)? in state |i):

MA; Ay — MA; Ag|pser = %(AA)Q. (30)
This is an unexpected anomaly. The reason must lie in
the contribution of outcomes discarded by re-selection,
ie.: MA;As|gise X (discard rate) — %(AA)2 must be
satisfied.

As an example, consider a spin—% system in upward
polarized initial state |i) = | 1). Let us begin with a
single WM of ¢ = 6, with outcome 1. The contribution
of the discarded outcomes reads

(L] (exp(=go2/a®)5e [ 1)(T]) [4)
(L] (exp(=goa/a)1){T]) 14)

where we use the exact expression of the post-WM state
with the exponential factor as in eq. () otherwise we
get 0 for the rate of discarded events. This rate is just
the denominator in the above fraction, yielding ~ ia’z
asymptotically. This rate goes to zero in the WM limit
but Mo |4ise vanishes anyway since the numerator is zero
identically. Now, let us weakly measure & = &, twice in
a sequence, yielding outcomes o1, 02. Since the quantum
spread Ao, = 1 in state |1), we have to prove that in re-
selection the contribution of the discarded events satisfies
Moi03|dise X (discard rate) — % Its analytic form can
be written as

(31)

MUI |disc =

(L] (exp(=302/a?)a2 1){11]) | 1)
(L (exp(=36% /a®) [ D)(T]) 1)

The denominator yields rate ~ %a’z of discards, it is

vanishing in the WM limit. The exponential factor in
the numerator can be neglected in the WM limit and we
get the following result:

Moolaie = 2031 (521){1]) [1) = (33)
= 2026, {6, DT = o2

As we see, the correlation of two subsequent &, po-
larization WMs diverges on the discarded events in re-
selection. This is in itself a different and stronger

Mo102|dise =

anomaly than the paradigmatic large but finite mean val-
ues obtained in single WMs with post-selection [2]. What
we wished to confirm here is that the divergent mean a?
compensates the vanishing rate %a” to yield the finite
contribution % of the discarded outcomes in re-selection.

Summary, discussion — Superoperator formalism has
helped us to determine the correlation functions of se-
quential WMs in terms of the quantum expectation val-
ues of the step-wise symmetric product of the corre-
sponding observables. Condition of interchangeability of
WDMs within the sequence has been found. Canonical
variables are interchangeable and, without post-selection,
their WM correlation functions coincide with the corre-
sponding correlation functions of the Wigner function.
It follows from our result how all n-th order correlation
functions (moments) of the Wigner function can, in prin-
ciple, be determined directly on the outcome statistics of
the sequence of n WMs. This makes sequential WMs a
tool of direct quantum state tomography (limited nor-
mally by the highest available order n in a given ex-
periment). Sequential WMs may demonstrate quantum
paradoxes since the negativity of the Wigner function
leads to non-classical statistics of sequential WMs, like
in ref. [6], see also [10]. Earlier suggestions associated
outcomes of single post-selected WMs with Bohmian ve-
locities [11]. As to the outcomes of sequential WM, our
result suggests Wigner phase space coordinates as the
natural interpretation. (This interpretation proves to be
universal if sequential WM of spln-— observables is re-
lated to Wigner function in Grassmann variables intro-
duced in ref. [12], an issue we leave open here.) Spin-
% observables behave very differently. Two polarization
WDMs yield no new information at all compared to single
measurements since the correlation is determined by the
angle between the two polarizers and independent of the
quantum state, just like for two strong (ideal) polariza-
tion measurements. This is more than resemblance. We
found that a sequence of n weak or, alternatively, strong
spin-% measurements yield identical n-order correlation
functions, respectively.

Finally, we studied the marginal case |f) = |i) of post-
selection which we called re-selection and found that in
sequential WMs it is not equivalent with lack of post-
selection. This means that in sequential WMs with re-
selection the discarded statistics matters however close
we are to ideal WMs. This unexpected effect roots in
a novel weak value anomaly this time referring to the
anomalous (divergent) value of the weakly measured (i.e.:
in sequential WM) auto-correlation on the statistics dis-
carded by re-selection. This phenomenon is a robust
feature of sequential WMs and it is not tractable in
terms of standard weak values. As an example, we have
shown that the correlation of outcomes in double WM
of 6, in pre-selected state |i) = |1) and post-selected on
|f) = |{) will diverge whereas any correlation larger than
loz|? = 1 is counter-intuitive.
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