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ABSTRACT

A sequence search method was developed to search regular frequency spacing in δ Scuti stars by vi-
sual inspection and algorithmic search. We searched for sequences of quasi-equally spaced frequencies,
containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an
unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from
1 to 8 sequences) in the non-asymptotic regime. We introduce the sequence search method presenting
the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search.
Four sequences (echelle ridges) were found in the 5-21 d−1 region, where the pairs of the sequences are
shifted (between 0.5-0.59 d−1) by twice the value of the estimated rotational splitting frequency (0.269
d−1). The general conclusions for the whole sample are also presented in this paper. The statistics of
the spacings derived by the sequence search method, by FT and that of the shifts are also compared.
In many stars, more than one almost equally valid spacing appeared. The model frequencies of FG Vir
and their rotationally split components were used to reveal a possible explanation that one spacing
is the large separation, while the other is a sum of the large separation and the rotational frequency.
In CoRoT 102675756, the two spacings (2.249 and 1.977 d−1) agree better with the sum of a possible
1.710 d−1 large separation and two or one times, respectively, the value of the rotational frequency.
Subject headings: stars: oscillations — stars: variables: Delta Scuti — techniques: photometric —

space vehicles

1. INTRODUCTION

Delta Scuti stars could be very important targets of
asteroseismology once mode identification is successfully
performed. They lie on and above the main sequence
with intermediate mass and spectral types between A2
and F5. Both radial and non-radial p-type and g-type
modes are excited covering a wide range of frequencies
between 5-50 d−1, or even wider that was revealed in
Kepler data by Balona & Dziembowski (2011). The ap-
pearance of the convective core introduces poorly known
physical processes in the stellar interiors, such as con-
vective overshoot, mixing of chemical elements and re-
distribution of angular momentum (Zahn 1992). The in-
vestigation of the latter processes has nowadays become
an observational science (Kurtz et al. 2014; Saio et al.
2015). Both in KIC 1145123 and KIC 9244992 slightly
different surface-to-core rotation velocities were found
using g-mode triplets and even p-mode triplets and mul-
tiplets. The successful investigation of the δ Sct/γ Dor
hybrids relies on the very slow rotation of these stars.
The equatorial rotation velocity is found to be about
1 kms−1 and the mean rotational splitting is 0.0138 d−1.
However, most of the δ Scuti stars are intermediate or

fast rotators with ≈ 100-200 kms−1 equatorial rotational
velocity. Due to the complexity of the oscillation spectra,
their pulsation behavior is not fully understood, espe-
cially the rotation-pulsation interaction. The problems
and prospects were reviewed before the CoRoT and Ke-
pler space missions by Goupil et al. (2005). Mostly the
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perturbative theory was used in the interpretations. De-
spite the problems, in the last 20 years several attempts
have been made to interpret the observed spectra of δ
Scuti stars (see references in Fox Machado et al. 2006).
Lignières et al. (2006) showed that the rotation-

pulsation interaction cannot be described using the per-
turbation theory for rapidly rotating stars. At the same
time Roxburgh (2006) presented self-consistent two-
dimensional models of main-sequence stars. Reese et al.
(2006) and Suárez et al. (2010) pointed out that the most
severe problems appear in stars that show very high sur-
face velocities, such as δ Scuti and Be stars, or in stars
where the surface rotates slowly, but in which the pulsa-
tion periods are of the same order as the rotation period,
such as for SPB and γ Doradus stars.
After solving a basic convergence problem

(Jackson et al. 2004; McGregor et al. 2007), the
modeling of rapidly rotating stars greatly improved.
The models revealed four families of modes (low
frequency modes, whispering gallery modes, chaotic
modes and island modes). The frequency spectrum
of rotating stars is interpreted as the superposition
of subspectra of different mode families. The island
modes with a new definition of quantum numbers are
predicted to have regular patterns in rapidly rotating
stars (Lignières et al. 2008, 2009, 2010; Reese et al.
2008, 2009). Nowadays echelle diagrams have been
derived for model calculations by Deupree (2011) and
Ouazzani et al. (2015).
A much higher signal to noise ratio of the space mis-

sions (CoRoT – Baglin et al. 2006; Auvergne et al. 2009
and Kepler – Borucki et al. 2010) has yielded the de-
tection of a much larger set of modes in δ Scuti stars,
in some cases hundreds of modes. There is, however,
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still a discrepancy between the number of actually de-
tected and theoretically predicted modes. A direct com-
parison of the detected and model frequencies does not
give a unique solution for mode identification. The tra-
ditional mode identification methods using the color am-
plitude ratio and the phase differences (Garrido 2000;
Viskum et al. 1998) can only be applied to a few of the
detected frequencies and limits the advantage of space
missions by ground-based possibilities.
Although the frequencies of the low radial order modes

are out of the asymptotic regime so that solar-type reg-
ular frequency spacings are not expected, some under-
lying regularities in the frequency spectra have been
found even from ground-based international campaigns
(Handler et al. 1997; Breger et al. 1999). In the era of
great expectation of space missions, (Dziembowski et al.
1998) wondered whether mode identification will not
be even more difficult to obtain for δ Scuti stars.
Barban et al. (2001) published their effort to develop an
alternative method which does not involve any knowledge
of a model in its first steps and uses very precise data, i.e.
frequencies, rather than amplitudes and phases. Model
frequencies were used with realistic amplitude distribu-
tion based on visibility effects. Their echelle diagram is
nicely regular in the high frequency region (f > 35 d−1)
but the echelle ridges are mixed in the low frequency re-
gion (f < 35 d−1). Using a different ∆ν value, some reg-
ularity appeared in the low frequency region, too, show-
ing one straight and two highly inclined echelle ridges.
After introducing the rotational splitting, the frequency
spacing histogram no longer shows the peak at the large
separation frequency, unless only the high amplitude and
high frequencies are used.
Based on MOST data (Matthews 2007), CoRoT data

(Garćıa Hernández et al. 2009, 2013; Mantegazza et al.
2012) and Kepler data (Breger et al. 2011; Kurtz et al.
2014) successful investigations were done for individual
δ Scuti stars. Recently Garćıa Hernández et al. (2015)
reported investigation of frequency spacing on a sample
of 15 Kepler δ Scuti stars, obtaining a large separation
for 11 stars. Their work flow shows that they use the
Fourier Transform (FT) to find the large separation and,
in ambiguous cases, they make a decision based on the
histogram of the frequency differences. Knowing the fre-
quency spacing, the echelle diagram is derived. In the
echelle diagram for their sample case, KIC 1571717, two
echelle ridges contain 6 and 4 frequencies, while on the
other echelle ridges only three or even fewer frequencies
are located.
We aimed to find a complementary method for search-

ing for series of regular frequency spacing in a large sam-
ple of δ Scuti stars and for finding similarities or differ-
ences between the individual targets. We intended to
use only the frequencies of high precision obtained by
the space mission(s) similar to Barban et al. (2001), but
finally we also used the amplitudes at the starting point.

2. SEARCH FOR SEQUENCES

The motivation for searching for sequences among the
frequencies is twofold. Neither the histogram of fre-
quency differences nor the FT give information on the
connections between the frequencies. Only the most fre-
quent spacing can be given, although the echelle diagram
plotted later with the spacing shows which frequencies

are located on the same ridge. Published examples show
that the highest peak of the FT sometimes agrees with
half of the large separation and not with the large separa-
tion itself that was obtained by modeling. On the other
hand, avoiding any additional ground-based requirement
for mode identification (nowadays we have too many tar-
gets but limited telescope time) we must know which fre-
quencies are related to each other, for example, as in the
sequence of eigenmodes with the same l value.
A personal motivation was our result on the δ Scuti

star CoRoT 102749568 (Paparó et al. 2013). The fre-
quency difference of the dominant modes and the period
ratio, consistent with the radial fundamental and first
overtone, yielded a relative identification of 12 frequen-
cies having three different degrees, l. They did not show
a comb-like structure, as in the asymptotic regime, but
they were regularly interwoven. A paper by Chen & Li
(2015) recently appeared on astro-ph that gave an inter-
pretation with rotationally split modes, but there is no
doubt about the regular spacing.
The large databases of space missions (CoRoT, Kepler)

allow us great possibilities to search for any regularity in
the frequency distribution that could help to derive the
large separation or to resolve the interaction of rotation
and pulsation in the non-asymptotic regime. We intro-
duce in this paper the visual inspection and algorithmic
approaches of the sequence search method.

2.1. Visual inspection (VI)

Visual inspection of the frequencies uses the abil-
ity of the human brain for searching for structure(s)
in a seemingly unstructured sample. Both observa-
tional (Breger et al. 2009) and theoretical investigations
(Suárez et al. 2014) have reported that the frequency dif-
ferences between successive radial orders are not con-
stant, but form a quasi-periodic structure at low ra-
dial order. A standard deviation of such a structure
is roughly 2.5 µHz (0.216 d−1) (Garćıa Hernández et al.
2009), which allowed us to look for non-strictly equidis-
tant structures.
Visual inspection of the frequencies in the target stars

proved to be a time-consuming but flexible way of search-
ing for sequences with quasi-equidistant frequencies. The
goal was to find criteria for an algorithmic search. In the
asymptotic regime the theoretically predicted equidis-
tancy in frequency (solar-type oscillations), or in periods
(g modes) serves as a good basis, although with short-
comings (Van Reeth et al. 2014) for algorithmic search
(Unno et al. 1981; Aerts et al. 2010). For the low order
p modes we do not have such definite guidelines given by
the theory.
As a basic idea, we checked the frequency difference be-

tween the frequencies of highest amplitude pairs. When
the pairs had a similar spacing and one member of the
pair appeared in the other pair(s), we regarded them
as a starting point of a sequence. Finding frequencies of
lower amplitude with a similar spacing, the sequence was
extended to higher and lower direction of the frequency
range. The frequency pairs that did not connect to the
first sequence were used as the starting point for another
sequence. We found 1, 2, 3 and 4 sequences for 19, 18,
17 and 10 stars, respectively. For 4 stars, 5 sequences
were identified, while for 3 stars, 6 sequences were iden-
tified, by visual inspection. The sequences are shifted
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4 6 8 10 12 14 16 18 20 224 6 8 10 12 14 16 18 20 224 6 8 10 12 14 16 18 20 224 6 8 10 12 14 16 18 20 22

Frequency [d−1]

2.113 2.345 2.421 2.149 2.283 2.443

2.304 2.257 2.213 2.394 2.314

2.286 2.314 2.184 2.279

2.265 2.280 2.257 2.168

1.197 1.341 1.209 1.182 1.347

1.108 0.916 1.005 1.212 0.967 0.936

0.540 0.714 0.682 0.445 0.575

1.573 1.631 1.739 1.704 1.708

1.744 1.911 1.821 1.569

0.521 0.369 0.434 0.600 0.580

Fig. 1.— Sequences with quasi-equal spacing, and shifts of the sequences for CoRoT 102675756. 1st – black dots, average spacing
2.292±0.138 d−1; 2nd – red squares, 2.296±0.068 d−1; 3rd – green triangles, 2.265±0.057 d−1; 4th – blue stars, 2.242±0.051 d−1 average
spacing was obtained. The mean spacing of the star is 2.277±0.088 d−1. The shifts of the 2nd, 3rd and 4th sequences relative to the first
one are also given in the same color as the sequences.

with respect to each other.
We present here only one case. Fig. 1 shows the four se-

quences of similar regular spacing for CoRoT 102675756.
The sequences consist of 7, 6, 5 and 5 members, re-
spectively, altogether including more than 50% of the
filtered frequencies. In this case, each consecutive mem-
ber of a sequences is excited with amplitude above the
accepted limit (in general 0.1 mmag. The amplitude lim-
itation was introduced to avoid the increasing complexity
of the frequency distribution at lower amplitude levels.)
In other cases, however, we allowed to skip one member
of the sequence, if we did not find it, but if half of the
second consecutive member’s spacing matched the regu-
lar spacing. Fig. 1 also displays the independent spacing
values between the successive members of the sequence.
The mean value of the spacing is independently given for
each sequence in the figure caption. The mean values dif-
fer only in the second digits. The general spacing value,
which is the average of the sequences, is 2.277±0.088 d−1.
The deviation of the individual spacings from the mean
value in CoRoT 102675756 and in other targets suggests
that we may use ±0.1 d−1 tolerance in the algorithmic

search. With this knowledge we could reduce the stan-
dard deviation of the spacing to half of the value given
by Garćıa Hernández et al. (2009).
The shift of the sequences does not seem to be ran-

domly distributed, but represents characteristic values.
For CoRoT 102675756, we present the shifts of the appro-
priate members of the shifted sequences to the appropri-
ate member (before and after) of the first sequence, used
as a reference. The frequencies of the second sequence
are almost mid-way between those of the first sequence,
what we expect in a comb-like structure of stars pulsat-
ing in the asymptotic regime. Exactly, the averaged shift
of the second sequence relative to the first is 1.024 d−1

to the left. However, the differences do not steadily in-
crease when we move to the higher radial orders. The
most plausible explanation at this level would be that
we directly see the large separation, and the different
echelle ridges have a different order, l, but the situation
is probably more complicated, due to the rotation. The
members of the two other sequences are asymmetric, one
of them is closer to the nth, the other to the n + 1th
member of the first sequence. We derived the shifts for
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Fig. 2.— Echelle diagram of star CoRoT 102675756, consistent
with the sequences of Fig. 1 result of the visual inspection). The
mean spacing of the star was used as a modulo frequency. The
whole frequency content of the star is plotted (small and large
dots). The larger dots show the vertical representation of the se-
quences, the echelle ridges.

our all targets in this concept for finding any regularity
in it and comparing them to the frequency spacings. In
our present case, however, even more regularity appears
in the shifts. The fourth sequence is also shifted to mid-
way compared to the third sequence. If we calculate the
averaged shift of the fourth sequence relative to the third
one, we get a 1.092 d−1 shift to the left. The third se-
quence relative to the first one and the second relative
to the fourth one are on average shifted to the right by
0.591 and 0.539 d−1, respectively. In addition, the fourth
sequence is shifted relative to the first one by 0.501 d−1

to the left.
The echelle diagram (a vertical representation of the

sequences) is nowadays extensively used in asteroseis-
mology as a valuable way of displaying periodic spac-
ing. The echelle diagram (frequency versus frequency
modulo 2.277 d−1) is presented in Fig 2. for CoRoT
102675756, in agreement with the result of the visual in-
spection. The first, second, third and fourth sequences
correspond to the echelle ridges at 0.85, 0.38, 0.1 and
0.65 d−1 modulo values. The curvature of the echelle
ridges shows the slightly smaller or larger value of the
actual spacing between the successive frequencies, but it
shows a high level of regularity. It is especially worth-
while to emphasize that the echelle ridges start from the
low frequency region of the generally accepted frequency
region of δ Scuti stars (Balona & Dziembowski 2011).
They cover 4-5-6 large separation regions if we interpret
the spacing between the frequencies as the large separa-
tion. The ridge with the highest frequency is still well
below the asymptotic regime of the p modes. We found
four rather straight echelle ridges in the regime where
only 1-2 echelle ridges were found by Barban et al. (2001)
and Garćıa Hernández et al. (2015). Never have been so
many frequencies arranged along the echelle ridges in a
δ Scuti star as we found for CoRoT 102675756.
The small dots represent frequencies that are not lo-

cated on any ridges. According to the ray dynamic ap-
proach of rapidly rotating stars these modes are not is-

land modes.
According to the AAO spectral classification

(Guenther et al. 2012; Sebastian et al. 2012), CoRoT
102675756 has Teff=7350±300 K, log g=3.2±0.5 and
A7III spectral type and a variable star classification as a
γ Dor type star (Debosscher et al. 2009). Following the
process used by Balona et al. (2015) for Kepler stars,
we derived a possible equatorial rotational velocity (100
kms−1). Using the formula of Torres et al. (2010) for
the radius, we derived a first order rotational splitting
(0.269 d−1).
The three shifts of the four sequences (the second rel-

ative to the fourth, the fourth relative to the first and
the first relative to the third are 0.539, 0.501 and 0.591
d−1, respectively) could be interpreted as twice the value
of the rotational splitting. The appearance of twice the
value of the rotational frequency is predicted by theory
(Lignières et al. 2010). We wonder whether the shifts of
the second sequence relative to the first (1.024 d−1) and
the fourth relative to the third (1.092 d−1) represent a
higher multiple of the rotational frequency or are instead
connected to the odd and even parity in the ray dynamic
approach.
The echelle ridges start at 5 d−1, near the γ Dor fre-

quency range. However, these regularities appear in fre-
quencies, and not in periods as we would expect for g
modes of γ Dor stars. The star could be a p-mode/g-
mode hybrid like those discovered by space missions
(Uytterhoeven et al. 2011); however, Hareter (2013) clas-
sified it as a pure δ Scuti stars with no hybrid character.
The regular structure of the shifted sequences is so

obvious (at least for one of us) that already the visual
inspection recognized sequence(s) in most of our targets.

2.2. Algorithmic search (SSA)

Of course, the visual inspection of a larger sample is
very time-consuming. However, detecting non-uniform
period spacing can be rather complicated, especially if
two different series with a different average spacing over-
lap, as Van Reeth et al. (2014) discuss for γ Doradus
stars. Based on the constraints of the visual inspec-
tion (possible range of spacing, value of tolerance) we
developed an algorithm (SSA) to automate the process.
The main steps of the algorithm are illustrated by the
schematic flow chart in Fig. 3.
The SSA uses the same frequency lists as input data

as we use for VI. (1) First, if incidentally some too-close
frequency pairs remained (viz. within the range of toler-
ance ∆f = ±0.1 d−1) in the filtered frequency lists, we
remove the lower amplitude compliments. This means
few (1-5) frequencies for a couple of stars. (2) We calcu-
late the mutual distances between each pair for the ten
highest amplitude frequencies. Then we omit those dis-
tances which are out of the possible spacing range deter-
mined by VI (1.35-8 d−1). (3) The algorithm constructs
a spacing grid consisting of the proper distances and fine
grids around each such distance. The fine grid allows
us to find those sequences in which the average spacing
is slightly different from any of the exact distances be-
tween the frequency pairs within the sequence. (4) The
core process of the algorithm searches for sequences at
each grid point. (i) The search starts with the highest
amplitude frequency (basis frequency) and tries to find
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Fig. 3.— Schematic flow diagram of our Sequence Search Al-
gorithm (SSA). The convention in this plot is that the rightwards
pointing arrows of the conditional boxes show the ‘yes’ destinations
and the downward pointing ones show the ‘no’ conditions. See the
text for the details.

an at least four element frequency sequence, where the
elements of the sequence are located at the actual spacing
within the value of tolerance. If the SSA find a sequence
it calculates some parameters such as the deviation of
the sequence from the exact equidistant spacing, and the
sum of the amplitude of the component frequencies. (ii)
The search continues with the closest neighbor frequency
to the previously used ones, except it is farther on the
basis frequency than the actual spacing. In the first case
we can find additional (shifted) sequences for the given
spacing. In the latter case we change the basis frequency
to the second highest amplitude frequency and re-start

the search. According to the results of the VI we do not
use the lower amplitude frequency as the basis one. (5)
At the end, we compare the parameters of the found se-
quences and determine the dominant spacing, where we
found the most number of sequences and/or the most fre-
quencies in sequences. If we have similar results for some
different spacings we take into account additional param-
eters (amplitude sums, standard deviation) for choosing
the dominant spacing.
Using all frequencies in the algorithmic search, we

found slightly more sequences (even 7 or 8), although
the requirements were more severe than in the visual in-
spection, but the search is more systematic. For CoRoT
102675756 the SSA determined five sequences compared
to the four sequences obtained by VI, showing that SSA
does not exactly reproduce the results of the visual in-
spection. In many cases SSA found more than one almost
equally valid dominant spacing. For CoRoT 102675756
both 2.249 and 1.977 d−1 spacings were found. The
difference of the two spacings (0.272 d−1) numerically
agrees with the rotation frequency (0.269 d−1). Calcu-
lating the modulo value for the 2.249 d−1 spacing, the
echelle ridges appear at 0.14, 0.42, 0.55, 0.69 and 0.90
values, while the echelle ridges calculated with 1.977 d−1

are at 0.03, 0.13, 0.37, 0.55 and 0.90. This means that
four of them appear at the same modulo value, and only
one ridge is different. 17 frequencies appear in ridges
for both spacing but they are located on different ridges.
In the echelle diagram we do not see the rotationally
split frequencies as parallel ridges as is the case for the
asymptotic regime for a sequence of consecutive radial
orders. This suggests that none of the ridges represent
frequencies with the same l value and cannot be trivially
interpreted as the large separation.

2.3. Fourier Transform (FT)

At the introduction of a new method it is always de-
sirable to compare it to a previously used method. We
prepared the FT of our targets and derived the spacing
as the highest peak. We followed the way described by
Handler et al. (1997). The frequency content with unit
amplitudes is the input data for getting the spectral win-
dow of the frequency distribution. The time domain is
transferred again to the frequency domain and the ampli-
tudes to power. We applied the definition of the Nyquist
frequency omitting the low-frequency region of FT.
The highest peak of the FT of CoRoT 102675756, 2.137

d−1, is pretty much equal to the spacing of the visual
inspection, i.e. 2.277 d−1, or the spacing obtained by
the algorithmic search: 2.249 d−1. However, the two
methods (three approaches) do not always give as pre-
cise agreement as in the presented case. Mostly the visual
inspection and the algorithmic search resulted in similar
spacings. However, there is full agreement of the spacing
obtained by the different approaches only for 13 targets.
It is worthwhile to mention the 8 targets where the FT
spacing proved to be half of the visual inspection’s spac-
ing. These stars show the closest similarity to the spacing
in the asymptotic regime.
Fig. 4 summarizes the spacings obtained by the differ-

ent approaches. The individual spacings derived for 77 δ
Scuti stars were binned in 0.5 d−1 wide interval. To avoid
the overlapping of the histograms, the number in the bin
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Fig. 4.— Distributions of the spacing derived by visual inspection (dotted line), algorithmic search (continuous line), and Fourier
Transform (dashed line) are compared. The latter one has higher numbers at low spacing values. The distribution of the shifts are
overplotted by the large dashed line. One of the highest peaks coincides with the large numbers of spacings obtained by FT.

is plotted at the middle of the bin and the points are
connected. The total number under a certain type curve
gives the number of stars in our sample. The distribu-
tion of the spacings is only slightly different for the visual
inspection (dotted line) and algorithmic search (contin-
uous line) (1.5-3.8 d−1) but FT (dashed line) shows a
remarkably wider distribution (1.0-4.5 d−1), especially
in the lower spacing values. In these distributions we ap-
plied the spacing value resulting in echelle ridges with less
scatter, although in many targets more than one spacing
appeared, mostly around the two pronounced peaks of
the visual inspection’s spacing.
We conclude that the different approaches (with differ-

ent requirements) are able to catch different regularities
among the frequencies. The different spacing values are
not the mistake of any of the methods; rather the meth-
ods are sensitive to different regularities. The visual in-
spection and the algorithmic search concentrate on the
continuous sequences, while the FT is more sensitive to
the number of similar frequency differences. When we
have a second sequence with a mid-shift, then the FT
shows that, instead of the spacing of a single sequence,
the spacing will be twice the value of the highest peak in

the FT.
If the shifts of the sequences are asymmetric, the FT

shows a low and a larger value with equal probability.
When we have many peaks in the FT then we have many
echelle ridges with different shifts with respect to each
other. The sequence method helps to explain the fine
structure of the Fourier Transform.
The shifts derived between the sequences (if there is

more than one) are a fraction of the spacings. It could
be worthwhile to compare their distribution to that of
the spacing.
We overplotted the distribution of the shifts in Fig. 4

by the long dashed line. The shifts are more numerous
that the spacing. Their number depends on the number
of the echelle ridges. Although we averaged them in a
sequence, six shifts appears in the case of four echelle
ridges as Fig. 1 shows. The shifts are binned in 0.1 d−1

intervals. Only the numbers in a bin versus the center
frequencies of the bin are plotted, as in the case of the
spacings. The plot shows two dominant peaks at 0.35
and 1.25 d−1. The latter coincides with a peak of FT
spacing showing that in many cases the FT shows the
shift of the sequence instead of the spacing of a single
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10 15 20 25 30 3510 15 20 25 30 3510 15 20 25 30 35

Frequencies [c/d]

3.819 3.917 3.797 3.940 2x4.062 3.955

2x3.876 3.940 3.908 4.054

3.881 2x3.676 4.176 2x3.896

0.562 0.420 0.421 0.259

3.355 3.520 3.795 3.696

0.341 0.279 0.640 0.464 0.735

3.540 3.157 3.536

Fig. 5.— Sequences among the observed frequencies of FG Vir
that is one of the best-studied δ Scuti star. The sequences are
presented in black, red and blue colors. Some members are missing
and the small shifts of the sequences with respect to each other
strengthen the feeling of grouping of frequencies. The shifts of the
members of a sequence with respect to the first one are plotted
with the same color as the sequence.

sequence.

3. DISCUSSION

The basic question is why we have so many sequences
in our targets. What is the origin of the different regu-
larities obtained in a star? We have found many reasons
for producing regularities in the frequencies of pulsating
stars.
The alias structure as a possible source of the regularity

was ruled out after detailed examination of the spectral
window of the light curves. The other possible source, the
linear combination, was also excluded, since only a few
linear combination appeared and they did not belong to
the echelle ridges. Only one target’s single echelle ridge
was excluded due to linear combination.
In a pulsating star, however, the consecutive radial or-

ders with an l value represent a sequence of frequencies
with a regular spacing (although not exactly equidis-
tant). The radial orders of different l value frequencies
can represent different sequences with the same spac-
ing. The simplest explanation would be that the dif-
ferent echelle ridges represent sequences with different l
value. However, in some cases we have seven or even
eight echelle ridges. Due to the geometrical cancellation,
it is not very probable that we can observe modes with
so high l value. We therefore conclude that regular spac-
ing can appear due to consecutive radial orders but it is
definitely not the only origin.
We tried to apply the theoretical period ratio of the

radial fundamental and first overtone for the identifi-
cation of a sequence with l=0. The appearance of the
radial period ratio depends on the spacing value, the
most popular being the 2.1-2.9 d−1 spacing regions with
(7.1-10.24)/(9.1-13.12) frequency region for possible ra-
dial fundamental and first overtone period ratio. How-
ever, these pairs did not agree with the first two members
of the echelle ridges, so we could not use them to localize
radial modes.
According to the perturbative theory, the rotational
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Fig. 6.— Echelle diagram of the observed frequencies of FG Vir
calculated by 3.86 d−1 (full large dots). The background points
are all the independent frequencies. Only 21% of the frequencies
are located on the echelle ridges. Open circles delineate the echelle
ridge calculated by the 4.47 d−1 spacing. A side peak of FG Vir
in the FT is shown in the next figure.
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Fig. 7.— FT of the observed modes in FG Vir. We prepared
five different subsets using a color code for compact presentation.
Black continuous line – all observed frequencies, black dashed line
– independent frequencies, blue continuous line – all frequencies
above 0.4 mmag, blue dashed line – independent frequencies above
0.4 mmag.

splitting modifies the regular sequence of eigenmodes.
At slow rotation the splitting value is lower and has
an equidistant structure. For fast rotators the splitting
structure is more complex, quintuplets are overlapped
and they are not equidistant due to the second-order
effects. The ray dynamic approach revealed different
classes of modes with different characteristics concerning
regularities. Fig. 6. of Ouazzani et al. (2015) presented
altogether nine echelle ridges (three for the non-rotating

case and six for the rotating case) for l̂ = 0, 1 and 2 is-
land modes (which are the counterparts of the low order
acoustic modes) with odd and even parity. With the odd
and even parity the number of the echelle ridges is dou-
bled. Some of the echelle ridges are overcrossed. Due to
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Fig. 8.— Echelle diagrams of model frequencies of FG Vir. Spacings were obtained independently for l=0, 1 and 2 modes (left, top panel)
and altogether (left, bottom panel). The actual spacings are labeled in the panels. Right panels show the rotationally split frequencies in
two representations: modulo values are shifted by ± 1 d−1, if it is necessary (top panel) and what we see in a real star (bottom panel).
Color code: red, blue and green colors are used for l=0, 1 and 2 modes, respectively. The rotationally split triplets are represented by light
blue, while the multiplet members by magenta.

the curvature in the low and high frequency region and
the overcrossing region, our tolerance limit could not rec-
ognize and resolve all echelle ridges in their model.
Of course, a final solution could be a pulsational model-

ing of a real star with their ACOR code (Ouazzani et al.
2012). It seems that we are close to this level of interpret-
ing intermediate and fast rotating stars. However, first,
we checked our sequence search method for the first or-
der rotationally split modes of the best observed δ Scuti
star, FG Vir.

3.1. FG Vir as a check star

A trivial check is the application of our sequence
search method for the observed frequencies of a well-
studied δ Scuti star and for l = 0, 1, 2 eigenmodes of
its modeling. FG Vir is one of the best studied δ Scuti
stars from both the observational (photometry and spec-
troscopy) and from the theoretical side. Our sequence
search method (both the visual inspection and algorith-
mic search) was applied for 75 observed frequencies were
taken from Breger et al. (2005). The sequences, using

the independent frequencies, were prepared by visual in-
spection. Fig. 5 shows 17 frequencies in three sequences
with 3.931±0.122 d−1 mean spacing. The second and
the third sequences are slightly shifted with respect to
the first one. Some of possible members of the sequences
are not excited over the amplitude limit. It is quite un-
derstandable that FG Vir was one example of a δ Scuti
star showing groups of frequencies. The shifts of the sec-
ond and third sequences relative to the first one on av-
erage are 0.414 and 0.491 d−1, respectively. Concerning
the 0.423 d−1 rotational frequency of FG Vir obtained
by Mantegazza et al. (1994), this shift should be inter-
preted as the rotational splitting of triplets. The triplets
introduce a spacing that is the sum of the large separa-
tion and the rotational splitting. Regarding the prograde
or retrograde component of a triplet, or the components
of a multiplet structure, another possible spacing is the
sum of the large separation and twice the value of the
rotational splitting.
The algorithmic search revealed 3.86 d−1 spacing for

the observed frequencies in good agreement with the 3.7
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Fig. 9.— Echelle diagrams of model frequencies of FG Vir modulo 4.36 d−1. The search for regular spacing resulted also in a second
spacing, that we used here. The color code shows that the echelle ridges contain frequencies with different degrees l and also the rotationally
split frequencies too. The second spacing is the sum of the first spacing (3.93 d−1) and the frot = 0.4234 d−1. The color code is the same
as in Fig. 4.

d−1 spacing published by Breger et al. (2009). Fig. 6
shows the echelle diagram with 3.86 d−1 spacing ob-
tained by SSA. The sporadic distribution (not more than
three members of a possible echelle ridge) does not ful-
fill our requirements for SSA. Three echelle ridges with
14 frequencies (full dots) are shown. Open circles show
an overplotted echelle ridge that was calculated using a
4.47 d−1 spacing, which is the second spacing obtained
by SSA. This spacing represents the sum of the large
separation and the rotational frequency, although it has
a slightly larger value than the 0.432 d−1 rotational fre-
quency obtained by Mantegazza et al. (1994).
We also applied the FT for the observed frequencies.

We checked two effects, the linear combination frequen-
cies and the effect of the lower amplitude frequencies, for
the FT. Fig. 7 gives a compact representation of our re-
sults. We prepared the FT for the following data sets:
all the observed frequencies of FG Vir (black continu-
ous line), only the independent frequencies (black dashed
line), all frequencies above 0.4 mmag amplitude (48 fre-
quencies, blue continuous line) and the independent fre-
quencies above 0.4 mmag amplitude (42 frequencies, blue

dashed line). The dominant features of the curves are the
dominant peaks at around 3.9 d−1 in all subsets. Con-
cerning the dominant peaks we can conclude that the
black lines (both continuous and dashed) reflect a sec-
ond lower peak at 4.56 d−1, in addition to the dominant
spacing. Comparing this value to the second spacing of
FG Vir obtained by SSA (4.47 d−1), we may interpret
this second spacing as the sum of the large separation
and the rotational frequency. Using only the high am-
plitude modes (blue lines) we miss the side peak of the
FTs, but the dominant peaks have a larger width cover-
ing the second peaks of the FT. It seems to be plausible
that the rotationally split modes have a lower amplitude.
The other effect is that the subsets using only the in-
dependent modes have a dominant peak with a higher
amplitude.
The FG Vir model that we used here (see Guzik et al.

2000 for modeling details) was evolved using the OPAL
opacities with Grevesse & Noels (1993) abundance mix-
ture, initial helium mass fraction Y=0.28, and mass frac-
tion of elements heavier than hydrogen and helium, Z,
of 0.02. It has Teff = 7419 K, L = 13.92 L⊙, and
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Fig. 10.— The location of the four possible large separation of
CoRoT 102675756 on the space density versus large separation di-
agram given by Suárez et al. (2014). The error bars are calculated
based on the error bars of Teff and log g. The ∆ν=1.710 d−1 is
the closest point to the straight line.

R=2.26 R⊙.
This model has a main-sequence age of 0.867 Gyr, and

a convective core with core hydrogen mass fraction 0.270.
Outside the convective core there is a composition gradi-
ent where a high Brunt-Väisälä frequency has developed
that forms a cavity in which the mode frequency is less
than both the Brunt-Väisälä frequency and the Lamb
frequency, and where gravity modes can propagate.
For the l = 1 modes, the ten calculated frequencies

range from pure p modes with 8 radial nodes at highest
frequency, to pure g modes (2 g-type nodes) at lowest
frequency. For l = 2, the twelve calculated frequencies
range from pure p modes with 7 radial nodes to pure
g modes (4 g-type nodes). At intermediate frequencies,
the modes may have a mixture of p and g-type nodes.
When the g-mode character of the modes begins to dom-
inate, nearly equidistant frequency spacing is altered.
For l = 1, this occurs for the lowest frequency modes.
For l = 2, this occurs both for the lowest frequencies
when the g-mode character dominates, and for the third
highest frequency when a g-type node first appears. For
l = 0, since these are radial modes, the modes cannot
have a nonradial g-mode character, and the calculated
frequency spacing follows a regular pattern.
The l=0 , l=1 and l=2 eigenmodes were independently

treated, resulting 3.7454, 4.0027 and 3.9573 d−1 spacing,
respectively. The corresponding echelle ridges are shown
in the left, top panel of Fig. 8. The l=0 eigenmodes have
a slightly smaller spacing than the l=1 and 2 modes.
Applying the method for all eigenmodes, we found a 3.91
d−1 spacing and only two echelle ridges (l=1 and 2),
presented in the left, bottom panel of Fig. 8. Due to the
smaller spacing value of l=0 frequencies, the curvature
of the l = 0 frequencies according to modulo 3.91 d−1,

did not fulfill the tolerance requirement of SSA.
The test shows that the consecutive radial orders of

an l value can represent echelle ridges in our sequence
method. However, not all of the eigenmodes (connected
by dotted lines) are situated on the echelle ridges and,
due to the slightly different spacing of the eigenmodes,
we do not find all l ridges at the same time.
The first order rotational splitting of l = 1 modes to

triplet and l = 2 modes to a quintuplet structure was
derived using a reliable frot=0.4234 d−1, obtained from
observation.
Application of the method for the 94 rotationally split

modes leads to a more conclusive result for the unex-
pectedly large number of echelle ridges in our sample.
We found two dominant spacings, at 3.93 d−1 which is
similar in the observed frequencies. The other spacing is
4.36 d−1 which is the sum of the previous one and the
frot. Since we know how the rotationally split modes
were generated, we show two representations for the 3.93
d−1 spacing on the right side of Fig. 8. To follow the l=0,
1 and 2 eigenmodes and the rotational splitting clearly,
the modulo values were shifted by ±1 as necessary (top
panel). The bottom right panel gives the situation that
we can see in a real star. The echelle diagram modulo
4.36 d−1 spacing is given in Fig. 9. It is obvious that
in all cases we see many echelle ridges (8, 11 and 13).
The color code shows that the echelle ridge contains not
only the consecutive radial orders of an l value, but the
rotationally split modes, too. The severe constraint of
the tolerance shows that the complex echelle ridges have
quasi-equal spacing despite their origin.
We conclude that one spacing reflects the large sepa-

ration, while the other spacing represents the sum of the
large separation and the rotation. We found a good ar-
gument for the numerous echelle ridges in δ Scuti stars,
even using first order rotational splitting. The echelle
ridges do not overcross but we have closely spaced echelle
ridges. However, in this case we can resolve them with
our ±0.1 d−1 tolerance level.
What may we conclude for CoRoT 102675756 given the

results on the model frequencies of FG Vir? Although
the difference of the two spacings for CoRoT 102675756
(2.249 and 1.977 d−1) agrees with the estimated rota-
tional splitting (0.269 d−1) we may not be sure that one
of the spacings reflects the large separation, itself, or in-
stead a combination of the large separation and the ro-
tational frequency. Taking into account that the appear-
ance of the rotational frequency and/or double its value
have been found in the auto-correlation of the frequency
spectrum (Lignières et al. 2010), we have the following
possibilities as an explanation:

SP1=∆ν, and SP2 = ∆ν − Ωrot,

SP2=∆ν, and SP1 = ∆ν +Ωrot,

SP1=∆ν + 2 · Ωrot, and SP2 = ∆ν +Ωrot,

SP2=∆ν − 2 · Ωrot, and SP1 = ∆ν − Ωrot,

where, SP1 and SP2 are the larger and smaller values
of the spacings, respectively, found by SSA, ∆ν is the
large separation in the traditionally used sense, namely,
the differences between the consecutive radial orders with
the same spherical degree, and Ωrot is the estimated ro-
tational frequency.
In all cases SP1−SP2 = Ωrot, the estimated rotational
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frequency of CoRoT 102675756. Using SP1 = 2.249 d−1,
SP1 = 1.977 d−1 and Ωrot = 0.269 d−1, we get four
possible value for the large separation (∆ν) of CoRoT
101675756, namely 2.249, 1.977, 1.710 or 2.517 d−1.
Fig. 8 shows how these possible large separations are

related to the relation between the mean density and
the large separation given by Suárez et al. (2014). We
obtained the mean density of CoRoT 102675756 using
the formulas of Torres et al. (2010) for mass and radius,
given Teff and log g and their uncertainties, and assuming
solar metallicity. Since we do not have special single-star
oriented spectroscopy, the error bars are rather large.
Nevertheless, the ∆ν=1.710 d−1 is located at the closest
place to the relation. This means that the larger spacing
value gives the sum of the large separation and twice
the value of the rotational frequency, while the smaller
spacing represent the sum of the large separation and the
rotational frequency.

4. CONCLUSION

None of the three approaches, visual inspection, algo-
rithmic search or Fourier Transform, can give a unique
spacing for many stars. In the simplest cases (one or two
ridges) the spacing values are the same for all methods.
When we have a complex spacing structure, then it may
happen that any two of the three methods agrees, but
sometimes all of them produce a different spacing. This
seemingly contradictory result means that the methods
(with different requirements) are more sensitive to one of
the characteristic spacings.
The benefit of the sequence search method is that,

beside obtaining the spacing value(s), we immediately
know how many sequences are found in the star. The

shifts between sequences provide more insight into the
pulsation-rotation interaction, especially when the shifts
agree with the rotational frequency or twice its value.
High quality spectra providing accurate physical param-
eters (log g, Teff , metallicity, and rotation rate) would be
enough to interpret the spacings and obtain the seismic
parameters of any large sample of δ Scuti stars.
The application of the sequence search method for

the model frequencies of FG Vir was especially informa-
tive. For the rotationally split set of frequencies, the se-
quence search method revealed many echelle ridges show-
ing that frequencies of different origin (consecutive ra-
dial orders or rotationally split frequencies) are located
on the same echelle ridges with the same spacing. The
two spacings found, 3.93 and 4.36 d−1, proved to be
the large separation and the sum of the large separa-
tion and the rotational frequency. For our sample tar-
get, CoRoT 102675756, both spacings (2.249 and 1.977
d−1) seem to be the combination of the large separa-
tion and the rotational frequency. The explanation that
2.249 = ∆ν +2 ·Ωrot and 1.977 = ∆ν +Ωrot seems to be
more plausible, resulting in a 1.710 d−1 large separation,
because it fits better the Suárez et al. (2014) relation.
Our whole sample will be published in more detail

in Paparó et al. (2015). We have good hope to make
progress in the resolution of rotation and pulsation,
reaching the asteroseismology level, too, in the non-
asymptotic regime.
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