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Abstract

It is a common method for proving weak convergence of a sequence of time-

homogeneous Markov processes towards a time-homogeneous Markov process first to show

convergence of the corresponding infinitesimal generators and then to check some addi-

tional conditions. The aim of the present paper is to investigate convergence properties

of discrete infinitesimal generators of appropriately scaled random step functions formed

from a multi-type continuous state and continuous time branching process with immi-

gration. We also present a convergence result for usual infinitesimal generators of the

branching processes in question appropriately normalized.

1 Introduction

Studying weak convergence of Markov processes has a long tradition and history. It is a common

method for proving weak convergence of a sequence of time-homogeneous Markov processes

towards a time-homogeneous Markov process first to show convergence of the corresponding

infinitesimal generators and then to check some additional conditions, see, e.g., Ethier and Kurtz

[9, Chapter 4, Section 8]. In a recent paper, we proved that, under some fourth order moment

assumptions, a sequence of scaled random step functions (n−1X⌊nt⌋)t>0, n > 1, formed from

a critical, irreducible multi-type continuous state and continuous time branching process with

immigration (CBI process) X converges weakly towards a squared Bessel process supported

by a ray determined by the Perron vector of a matrix related to the branching mechanism of X ,

see Barczy and Pap [6, Theorem 4.1], and Section 2, as well. This convergence result has been

shown not by infinitesimal generators, that is why we consider in Section 3 the sequences of
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discrete infinitesimal generators of (n−1X⌊nt⌋)t>0, n > 1, and of usual infinitesimal generators

of (n−1Xnt)t>0, n > 1, formed from a (not necessarily critical or irreducible) multi-type CBI

process X. Adding some additional extra terms to these sequences of infinitesimal generators,

under some second order moment assumptions, we show their convergence, see Propositions 3.4

and 3.7. As a consequence, the sequences of infinitesimal generators (without the additional

extra terms) do not converge in general. We also apply Proposition 3.4 to irreducible and

critical multi-type CBI processes, see Corollary 3.5 and Remark 3.6. In Remark 3.8 we specialize

Proposition 3.7 to single-type irreducible and critical CBI processes.

In Section 2, for completeness and better readability, from Barczy et al. [2] and [6], we recall

some notions and statements for multi-type CBI processes such as the form of their infinitesimal

generator, a formula for their first moment, the definition of irreducible CBI processes and a

classification of them, namely we recall the notion of subcritical, critical and supercritical

irreducible CBI processes, see Definitions 2.7 and 2.8, respectively.

Finally, we note that our main motivation for studying limit theorems for (n−1X⌊nt⌋)t>0,

n > 1, relies on the fact that these limit theorems are well-applicable in describing asymp-

totic behaviour of conditional least squares estimators of some parameters of multi-type CBI

processes, see Barczy et al. [4] and [5].

2 Multi-type CBI processes

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive integers, real

numbers, non-negative real numbers and positive real numbers, respectively. For x, y ∈ R, we

will use the notations x∧y := min{x, y} and x+ := max{0, x}. By ‖x‖ and ‖A‖, we denote

the Euclidean norm of a vector x ∈ R
d and the induced matrix norm of a matrix A ∈ R

d×d,

respectively. The natural basis in Rd will be denoted by e1, . . . , ed. By C2
c (R

d
+,R) we

denote the set of twice continuously differentiable real-valued functions on Rd
+ with compact

support.

2.1 Definition. A matrix A = (ai,j)i,j∈{1,...,d} ∈ Rd×d is called essentially non-negative if

ai,j ∈ R+ whenever i, j ∈ {1, . . . , d} with i 6= j, i.e., if A has non-negative off-diagonal

entries. The set of essentially non-negative d× d matrices will be denoted by R
d×d
(+) .

2.2 Definition. A tuple (d, c,β,B, ν,µ) is called a set of admissible parameters if

(i) d ∈ N,

(ii) c = (ci)i∈{1,...,d} ∈ Rd
+,

(iii) β = (βi)i∈{1,...,d} ∈ Rd
+,

(iv) B = (bi,j)i,j∈{1,...,d} ∈ R
d×d
(+) ,
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(v) ν is a Borel measure on Ud := R
d
+ \ {0} satisfying

∫
Ud
(1 ∧ ‖z‖) ν(dz) <∞,

(vi) µ = (µ1, . . . , µd), where, for each i ∈ {1, . . . , d}, µi is a Borel measure on Ud satisfying

∫

Ud


‖z‖ ∧ ‖z‖2 +

∑

j∈{1,...,d}\{i}

zj


µi(dz) <∞.(2.1)

2.3 Remark. Our Definition 2.2 of the set of admissible parameters is a special case of Def-

inition 2.6 in Duffie et al. [7], which is suitable for all affine processes, see Barczy et al. [2,

Remark 2.3]. Roughly speaking, affine processes are characterized by their characteristic func-

tions which are exponentially affine in the state variable. Note that, for all i ∈ {1, . . . , d},

condition (2.1) is equivalent to

∫

Ud


(1 ∧ zi)2 +

∑

j∈{1,...,d}\{i}

(1 ∧ zj)


µi(dz) <∞ and

∫

Ud

‖z‖1{‖z‖>1} µi(dz) <∞,

see Barczy et al. [2, Remark 2.3]. ✷

2.4 Theorem. Let (d, c,β,B, ν,µ) be a set of admissible parameters. Then there exists a

unique conservative transition semigroup (Pt)t∈R+ acting on the Banach space (endowed with

the supremum norm) of real-valued bounded Borel-measurable functions on the state space R
d
+

such that its (usual) infinitesimal generator is

(2.2)

(Af)(x) =

d∑

i=1

cixif
′′
i,i(x) + 〈β +Bx, f ′(x)〉+

∫

Ud

(
f(x+ z)− f(x)

)
ν(dz)

+
d∑

i=1

xi

∫

Ud

(
f(x+ z)− f(x)− f ′

i(x)(1 ∧ zi)
)
µi(dz)

for f ∈ C2
c (R

d
+,R) and x ∈ Rd

+, where f ′
i and f ′′

i,i, i ∈ {1, . . . , d}, denote the first

and second order partial derivatives of f with respect to its i-th variable, respectively, and

f ′(x) := (f ′
1(x), . . . , f

′
d(x))

⊤. Moreover, the Laplace transform of the transition semigroup

(Pt)t∈R+ has a representation

(2.3)

∫

Rd
+

e−〈λ,y〉Pt(x, dy) = e−〈x,v(t,λ)〉−
∫ t

0 ψ(v(s,λ)) ds, x ∈ R
d
+, λ ∈ R

d
+, t ∈ R+,

where, for any λ ∈ R
d
+, the continuously differentiable function R+ ∋ t 7→ v(t,λ) =

(v1(t,λ), . . . , vd(t,λ))
⊤ ∈ Rd

+ is the unique locally bounded solution to the system of differential

equations

∂tvi(t,λ) = −ϕi(v(t,λ)), vi(0,λ) = λi, i ∈ {1, . . . , d},

with

ϕi(λ) := ciλ
2
i − 〈Bei,λ〉+

∫

Ud

(
e−〈λ,z〉 − 1 + λi(1 ∧ zi)

)
µi(dz)
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for λ ∈ R
d
+ and i ∈ {1, . . . , d}, and

ψ(λ) := 〈β,λ〉 −

∫

Ud

(
e−〈λ,z〉 − 1

)
ν(dz), λ ∈ R

d
+.

Further, the function R+ × Rd
+ ∋ (t,λ) 7→ v(t,λ) is continuous.

2.5 Remark. This theorem is a special case of Theorem 2.7 of Duffie et al. [7] with m = d,

n = 0 and zero killing rate. ✷

2.6 Definition. A conservative Markov process with state space Rd
+ and with transition

semigroup (Pt)t∈R+ given in Theorem 2.4 is called a multi-type CBI process with parame-

ters (d, c,β,B, ν,µ). The function Rd
+ ∋ λ 7→ (ϕ1(λ), . . . , ϕd(λ))

⊤ ∈ Rd is called its

branching mechanism, and the function Rd
+ ∋ λ 7→ ψ(λ) ∈ R+ is called its immigration

mechanism.

Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ) such that

E(‖X0‖) <∞ and the moment condition

(2.4)

∫

Ud

‖z‖1{‖z‖>1} ν(dz) <∞

holds. Then, by (3.3) in Barczy et al. [2],

(2.5) E(X t |X0 = x) = etB̃x+

∫ t

0

euB̃β̃ du, x ∈ R
d
+, t ∈ R+,

where

B̃ := (̃bi,j)i,j∈{1,...,d}, b̃i,j := bi,j +

∫

Ud

(zi − δi,j)
+ µj(dz),(2.6)

β̃ := β +

∫

Ud

z ν(dz),(2.7)

with δi,j := 1 if i = j, and δi,j := 0 if i 6= j. Note that B̃ ∈ R
d×d
(+) and β̃ ∈ Rd

+, since

(2.8)

∫

Ud

‖z‖ ν(dz) <∞,

∫

Ud

(zi − δi,j)
+ µj(dz) <∞, i, j ∈ {1, . . . , d},

see Barczy et al. [2, Section 2].

Next we recall a classification of multi-type CBI processes. For a matrix A ∈ Rd×d, σ(A)

will denote the spectrum of A, i.e., the set of the eigenvalues of A. Then r(A) :=

maxλ∈σ(A) |λ| is the spectral radius of A. Moreover, we will use the notation

s(A) := max
λ∈σ(A)

Re(λ).
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A matrix A ∈ R
d×d is called reducible if there exist a permutation matrix P ∈ R

d×d and an

integer r with 1 6 r 6 d− 1 such that

P⊤AP =

[
A1 A2

0 A3

]
,

where A1 ∈ Rr×r, A3 ∈ R(d−r)×(d−r), A2 ∈ Rr×(d−r), and 0 ∈ R(d−r)×r is a null matrix. A

matrix A ∈ Rd×d is called irreducible if it is not reducible, see, e.g., Horn and Johnson [11,

Definitions 6.2.21 and 6.2.22]. We do emphasize that no 1-by-1 matrix is reducible.

2.7 Definition. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that the moment condition (2.4) holds. Then (X t)t∈R+ is called irreducible if B̃ is

irreducible.

2.8 Definition. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that E(‖X0‖) < ∞ and the moment condition (2.4) holds. Suppose that (X t)t∈R+ is

irreducible. Then (X t)t∈R+ is called





subcritical if s(B̃) < 0,

critical if s(B̃) = 0,

supercritical if s(B̃) > 0.

For motivations of Definitions 2.7 and 2.8, see Barczy et al. [6, Section 3]. To shed some

light, we note that formula (2.4) in Barczy and Pap [6] shows that the semigroup (etB̃)t∈R+

of matrices plays a crucial role in the asymptotic behavior of the expectations E(X t) as

t → ∞ described in Proposition B.1 in Barczy and Pap [6]. Namely, under the conditions of

Definition 2.8, if s(B̃) < 0, then limt→∞ E(X t); if s(B̃) = 0, then limt→∞ t−1 E(X t); and

if s(B̃) > 0, then limt→∞ e−s(B̃)t E(X t) exists, respectively. We point out that the notion of

criticality given in Definition 2.8 depends only on the branching mechanism of the CBI process

in question, but not on its immigration mechanism.

Next we will recall a convergence result for irreducible and critical multi-type CBI processes.

A function f : R+ → Rd is called càdlàg if it is right continuous with left limits. Let

D(R+,R
d) and C(R+,R

d) denote the space of all Rd-valued càdlàg and continuous functions

on R+, respectively. Let D∞(R+,R
d) denote the Borel σ-field in D(R+,R

d) for the metric

characterized by Jacod and Shiryaev [13, VI.1.15] (with this metric D(R+,R
d) is a complete

and separable metric space). For Rd-valued stochastic processes (Y t)t∈R+ and (Yn
t )t∈R+ ,

n ∈ N, with càdlàg paths we write Y
n D
−→ Y as n → ∞ if the distribution of Y

n on

the space (D(R+,R
d),D∞(R+,R

d)) converges weakly to the distribution of Y on the space

(D(R+,R
d),D∞(R+,R

d)) as n→ ∞.

The proof of the following convergence theorem can be found in Barczy and Pap [6, Theorem

4.1].
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2.9 Theorem. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that E(‖X0‖
4) <∞ and

(2.9)

∫

Ud

‖z‖41{‖z‖>1} ν(dz) <∞,

∫

Ud

‖z‖41{‖z‖>1} µi(dz) <∞, i ∈ {1, . . . , d}.

Suppose that (X t)t∈R+ is irreducible and critical. Then

(X
(n)
t )t∈R+ := (n−1X⌊nt⌋)t∈R+

D
−→ (X t)t∈R+ := (Xturight)t∈R+ as n→ ∞

in D(R+,R
d), where uright ∈ Rd

++ is the right Perron vector of eB̃ corresponding to the

eigenvalue 1 with
∑d

i=1 e
⊤
i uright = 1 (see Barczy and Pap [6, Lemma A.3]), (Xt)t∈R+ is the

unique strong solution of the stochastic differential equation (SDE)

dXt = 〈uleft, β̃〉 dt+

√
〈Culeft,uleft〉X

+
t dWt, t ∈ R+, X0 = 0,

where uleft ∈ Rd
++ is the left Perron vector of eB̃ corresponding to the eigenvalue 1 with

u⊤
lefturight = 1 (see Barczy and Pap [6, Lemma A.3]), (Wt)t∈R+ is a standard Brownian

motion, β̃ is given in (2.7), and

C :=
d∑

k=1

〈ek,uright〉Ck ∈ R
d×d
+

with

(2.10) Ck := 2ckeke
⊤
k +

∫

Ud

zz⊤µk(dz) ∈ R
d×d
+ , k ∈ {1, . . . , d}.

For a motivation of studying limit theorems for (X
(n)
t )t∈R+ , n ∈ N, see the end of Intro-

duction.

3 Non-convergence of infinitesimal generators

We will need some differentiability properties of the functions ψ and v introduced in Theorem

2.4.

3.1 Lemma. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that the moment condition (2.4) holds. Then

∂λiψ(λ) = 〈β̃, ei〉 −

∫

Ud

(−zi)(e
−〈λ,z〉 − 1) ν(dz), λ ∈ R

d
++,(3.1)

lim
λ↓0

∂λiψ(λ) = 〈β̃, ei〉(3.2)

for all i ∈ {1, . . . , d}, where the function ψ : Rd
+ → R+ is defined in Theorem 2.4.
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Proof. Under the moment condition (2.4) together with part (v) of Definition 2.2 we can write

the function ψ in the form

(3.3) ψ(λ) = 〈β̃,λ〉 −

∫

Ud

(
e−〈λ,z〉 − 1 + 〈λ, z〉

)
ν(dz), λ ∈ R

d
+.

Indeed, by (2.8),

〈β̃,λ〉 −

∫

Ud

(
e−〈λ,z〉 − 1 + 〈λ, z〉

)
ν(dz)− ψ(λ)

= 〈β̃ − β,λ〉 −

∫

Ud

〈λ, z〉 ν(dz) =

〈∫

Ud

z ν(dz),λ

〉
−

∫

Ud

〈λ, z〉 ν(dz) = 0.

By the dominated convergence theorem one can derive

∂λiψ(λ) = lim
h↓0

h−1(ψ(λ+ hei)− ψ(λ)) = 〈β̃, ei〉 − lim
h↓0

∫

Ud

(
e−〈λ,z〉 e

−hzi − 1

h
+ zi

)
ν(dz)

= 〈β̃, ei〉 −

∫

Ud

(−zi)(e
−〈λ,z〉 − 1) ν(dz)

for all λ ∈ Rd
++ and i ∈ {1, . . . , d}, since

∣∣e−〈λ,z〉 e−hzi−1
h

∣∣ 6 zi 6 ‖z‖,
∫
Ud

‖z‖ ν(dz) <

∞ and limh↓0
e−hzi−1

h
= −zi. Again by the dominated convergence theorem, we have

limλ↓0

∫
Ud
(−zi)(e

−〈λ,z〉 − 1) ν(dz) = 0. ✷

In order to derive differentiability properties of the function v, we need the following simple

observation; for the 1-dimensional case, see, e.g., Feller [10, page 435].

3.2 Lemma. Let ξ = (ξ1, . . . , ξd)
⊤ be a random vector such that P(ξ ∈ R

d
+) = 1. Consider

its Laplace transform g : Rd
+ → R++ defined by g(λ) := E(e−〈λ,ξ〉) for λ = (λ1, . . . , λd)

⊤ ∈

Rd
+. Then g is infinitely differentiable on Rd

++, and for all (k1, . . . , kd)
⊤ ∈ Zd+, we have

∂k1λ1 . . . ∂
kd
λd
g(λ) = (−1)k1+···+kd E(ξk11 · · · ξkdd e−〈λ,ξ〉), λ ∈ R

d
++,(3.4)

E(ξk11 · · · ξkdd ) = (−1)k1+···+kd lim
λ↓0

∂k1λ1 . . . ∂
kd
λd
g(λ) ∈ R+ ∪ {∞}.(3.5)

Consequently, E(ξk11 · · · ξkdd ) <∞ if and only if (−1)k1+···+kd limλ↓0 ∂
k1
λ1
. . . ∂kdλd g(λ) <∞.

Proof. First we prove (3.4) by induction. If k1 = . . . = kd = 0, then (3.4) holds trivially.

Suppose that (3.4) holds for (k1, . . . , kd)
⊤ ∈ Zd+. Then for all λ = (λ1, . . . , λd)

⊤ ∈ Rd
++,

i ∈ {1, . . . , d} and h ∈ R with h 6= 0 and h > −λi/2 we have

∂k1λ1 . . . ∂
kd
λd
g(λ+ hei)− ∂k1λ1 . . . ∂

kd
λd
g(λ)

h
= (−1)k1+···+kd E

(
ξk11 · · · ξkdd

(
e−〈λ,ξ〉−hξi − e−〈λ,ξ〉

h

))
,

where the mean value theorem and min{λi + h, λi} > λi/2 yields

E

(
ξk11 · · · ξkdd

∣∣∣∣
e−〈λ,ξ〉−hξi − e−〈λ,ξ〉

h

∣∣∣∣
)

6 E

(
ξk11 · · · ξ

ki−1

i−1 ξ
ki+1
i ξ

ki+1

i+1 · · · ξkdd e−〈λ,ξ〉+λiξi/2
)
<∞,

7



since the random variable ξk11 · · · ξ
ki−1

i−1 ξ
ki+1
i ξ

ki+1

i+1 · · · ξkdd e−〈λ,ξ〉+λiξi/2 is bounded. By the domi-

nated convergence theorem, we obtain (3.4) for λ∈Rd
++ and (k1, . . . , ki−1, ki+1, ki+1, . . . , kd)

⊤.

The monotone convergence theorem yields (3.5). ✷

3.3 Lemma. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ).

Then

v(t,λ) ↓ v(t, 0) = 0 as λ ↓ 0(3.6)

for all t ∈ R+, where the function v : R+ × Rd
+ → Rd

+ is defined in Theorem 2.4.

If E(‖X0‖) <∞ and the moment condition (2.4) holds, then for all t ∈ R+, the function

Rd
++ ∋ λ 7→ v(t,λ) is infinitely differentiable, and

lim
λ↓0

∂λivk(t,λ) = e⊤
i e

tB̃ek(3.7)

for all t ∈ R+ and i, k ∈ {1, . . . , d}. Moreover, if E(‖X0‖
2) <∞ and

(3.8)

∫

Ud

‖z‖21{‖z‖>1} ν(dz) <∞,

∫

Ud

‖z‖21{‖z‖>1} µi(dz) <∞, i ∈ {1, . . . , d},

then

lim
λ↓0

∂λi∂λjvk(t,λ) = −e⊤
k e

tB̃
⊤

∫ t

0

e−uB̃
⊤

d∑

ℓ=1

eℓe
⊤
i e

uB̃Cℓe
uB̃

⊤

ej du(3.9)

for all t ∈ R+, i, j, k ∈ {1, . . . , d} and λ ∈ Rd
+.

Proof. Let (Zt)t∈R+ be a multi-type CBI process with parameters (d, c, 0,B, 0,µ) (which

is, in fact, a continuous state and continuous time branching process without immigration).

Then, by (2.3), its Laplace transform takes the form

gt,z(λ) := E(e−〈λ,Zt〉 |Z0 = z) = e−〈z,v(t,λ)〉, λ, z ∈ R
d
+, t ∈ R+.

By Lemma 3.2, gt,z is infinitely differentiable on Rd
++ for each t ∈ R+ and z ∈ Rd

+, and

the limit limλ↓0(−1)k1+···+kd ∂k1λ1 · · ·∂
kd
λd
gt,z(λ) ∈ R+ ∪ {∞} exists for all (k1, . . . , kd)

⊤ ∈ Zd+,

t ∈ R+ and z ∈ Rd
+. Hence the function λ 7→ v(t,λ) is also infinitely differentiable on

Rd
++ for all t ∈ R+, and the limit limλ↓0 ∂

k1
λ1
· · ·∂kdλd v(t,λ) ∈ R ∪ {−∞,∞} exists for all

(k1, . . . , kd)
⊤ ∈ Z

d
+ and t ∈ R+.

We can express the functions vk, k ∈ {1, . . . , d}, as

vk(t,λ) = − log gt,ek(λ), t ∈ R+, λ ∈ R
d
+.

By monotone convergence theorem, gt,z(λ) ↑ gt,z(0) = 1 as λ ↓ 0 for all z ∈ Rd
+ and

t ∈ R+, hence v(t,λ) ↓ v(t, 0) = 0 as λ ↓ 0 for all t ∈ R+. Clearly,

(3.10) ∂λivk(t,λ) = −
∂λigt,ek(λ)

gt,ek(λ)
, t ∈ R+, λ ∈ R

d
++, i, k ∈ {1, . . . , d}.

8



With the notation Zt = (Zt,1, . . . , Zt,d)
⊤, under E(‖Z0‖) < ∞ and the moment condition

(2.4), formula (2.5) implies E(Zt |Z0 = z) = etB̃z, hence by Lemma 3.2,

lim
λ↓0

∂λivk(t,λ) = − lim
λ↓0

∂λigt,ek(λ) = E(Zt,i |Z0 = ek) = e⊤
i e

tB̃ek.

In a similar way,

∂λi∂λjvk(t,λ) = −
gt,ek(λ)∂λi∂λjgt,ek(λ)− ∂λigt,ek(λ)∂λjgt,ek(λ)

gt,ek(λ)
2

, t ∈ R+, λ ∈ R
d
++

for all i, j, k ∈ {1, . . . , d}. Under E(‖Z0‖
2) <∞ and the moment conditions (3.8), Theorem

4.3 and Proposition 4.8 in Barczy et al. [3] implies E(‖Zt‖
2 |Z0 = z) <∞ and

Var(Zt |Z0 = z) =

d∑

ℓ=1

∫ t

0

(e⊤
ℓ e

(t−u)B̃z)euB̃Cℓ e
uB̃

⊤

du,

hence, by Lemma 3.2,

lim
λ↓0

∂λi∂λjvk(t,λ) = − lim
λ↓0

(
∂λi∂λjgt,ek(λ)− ∂λigt,ek(λ)∂λjgt,ek(λ)

)
= −Cov(Zt,i, Zt,j |Z0 = ek)

= −

d∑

ℓ=1

∫ t

0

(e⊤
ℓ e

(t−u)B̃ek)e
⊤
i e

uB̃Cℓ e
uB̃

⊤

ej du,

and the proof is complete. ✷

Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ) such that

E(‖X0‖
2) <∞ and the moment conditions (3.8) hold. Note that (n−1Xk)k∈Z+ is a Markov

chain with state space Rd
+ for all n ∈ N. The discrete infinitesimal generator of the process

(X
(n)
t )t∈R+ = (n−1X⌊nt⌋)t∈R+ is defined by

(AX (n)f)(x) := n[E(f(n−1X1) |n
−1X0 = x)− f(x)], x ∈ R

d
+,(3.11)

for any bounded and Borel measurable function f : Rd
+ → R, see, e.g., Kato [14, Chapter IX,

Section 3, formula (3.1)]. For λ ∈ Rd
+, let us introduce the function

eλ(x) := e−〈λ,x〉, x ∈ R
d
+.

3.4 Proposition. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that E(‖X0‖
2) <∞ and the moment conditions (3.8) hold. Then

lim
n→∞

[
(AX (n)eλ)(x) + n

(
e−〈λ,x〉 − e−〈λ,eB̃x〉

)]

= eλ(e
B̃x)

[
1

2

d∑

ℓ=1

∫ 1

0

(e⊤
ℓ e

(1−s)B̃x)λ⊤esB̃Cℓe
sB̃

⊤

λ ds− λ⊤

∫ 1

0

esB̃β̃ ds

]

for all x ∈ Rd
+ and λ ∈ Rd

+, where X
(n)
t = n−1X⌊nt⌋, t ∈ R+, n ∈ N. Consequently,

given x ∈ Rd
+ and λ ∈ Rd

+, the sequence (AX (n)eλ)(x) converges as n → ∞ if and only

if 〈λ,x〉 = 〈λ, eB̃x〉.
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Proof. By (2.3), for each λ ∈ R
d
+ and x ∈ R

d
+, we obtain

(AX (n)eλ)(x) = n
[
E(eλ(n

−1X1) |X0 = nx)− eλ(x)
]
= n

[
E(e−〈λ, n−1X1〉 |X0 = nx)− e−〈λ,x〉

]

= n

[
exp

{
−〈nx, v(1, n−1λ)〉 −

∫ 1

0

ψ(v(s, n−1λ)) ds

}
− exp{−〈λ,x〉}

]
.

Applying (3.7) and L’Hôspital’s rule, we obtain

lim
h↓0

h−1〈x, v(1, hλ)〉 =
d∑

k=1

xk lim
h↓0

h−1vk(1, hλ) =
d∑

k=1

xk lim
h↓0

∂hvk(1, hλ)

=

d∑

k=1

xk

d∑

i=1

λi lim
h↓0

∂λivk(1, hλ) =

d∑

k=1

xk

d∑

i=1

λi e
⊤
i e

B̃ek = λ⊤eB̃x = 〈λ, eB̃x〉.

Applying (3.3), we have
∫ 1

0

ψ(v(s, hλ)) ds =

∫ 1

0

(
〈β̃, v(s, hλ)〉 −

∫

Ud

(
e−〈v(s,hλ),z〉 − 1 + 〈v(s, hλ), z〉

)
ν(dz)

)
ds→ 0

as h ↓ 0, since, by continuity of [0, 1] ∋ s 7→ v(s, hλ) ∈ Rd
+, h ∈ R+, by (3.6) and by

monotone convergence theorem, we have
∫ 1

0
v(s, hλ) ds ↓ 0 as h ↓ 0, and

0 6

∫ 1

0

(∫

Ud

(
e−〈v(s,hλ),z〉 − 1 + 〈v(s, hλ), z〉

)
ν(dz)

)
ds

6
1

2

∫ 1

0

(∫

Ud

〈v(s, hλ), z〉2 ν(dz)

)
ds 6

1

2

∫

Ud

‖z‖2 ν(dz)

∫ 1

0

‖v(s, hλ)‖2 ds ↓ 0

as h ↓ 0. Consequently,

(3.12) lim
h↓0

exp

{
−h−1〈x, v(1, hλ)〉 −

∫ 1

0

ψ(v(s, hλ)) ds

}
= exp

{
−〈λ, eB̃x〉

}
= eλ(e

B̃x).

Hence, applying again L’Hôspital’s rule, we obtain

(3.13)

lim
n→∞

[
(AX (n)eλ)(x) + n(e−〈λ,x〉 − e−〈λ,eB̃x〉)

]

= lim
n→∞

n

[
exp

{
−〈nx, v(1, n−1λ)〉 −

∫ 1

0

ψ(v(s, n−1λ)) ds

}
− exp{−〈λ, eB̃x〉}

]

= lim
h↓0

∂h exp

{
−h−1〈x, v(1, hλ)〉 −

∫ 1

0

ψ(v(s, hλ)) ds

}
.

For each h ∈ R++ and λ ∈ Rd
+, by dominated convergence theorem, we have

(3.14)

∂h

∫ 1

0

ψ(v(s, hλ)) ds = lim
∆→0

∫ 1

0

ψ(v(s, (h+∆)λ))− ψ(v(s, hλ))

∆
ds

=

∫ 1

0

∂hψ(v(s, hλ)) ds.
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Indeed, for all s, h ∈ R++ and ∆ ∈ (−h, h) with ∆ 6= 0, by mean value theorem,

∣∣∣∣
ψ(v(s, (h+∆)λ))− ψ(v(s, hλ))

∆

∣∣∣∣ 6 ‖λ‖ sup
δ∈[h−|∆|,h+|∆|]

|∂δψ(v(s, δλ))|,

where

∂δψ(v(s, δλ)) =

d∑

k=1

∂λkψ(v(s, δλ))∂δvk(s, δλ) =

d∑

k=1

∂λkψ(v(s, δλ))

d∑

i=1

λi∂λivk(s, δλ)

for all λ ∈ R
d
+ and δ ∈ R++. By (3.1),

(3.15) |∂λkψ(λ)| 6 ‖β̃‖+

∫

Ud

‖z‖ ν(dz), λ ∈ R
d
+, k ∈ {1, . . . , d}.

By (3.10) and Lemma 3.2,

0 6 ∂λivk(s, δλ) = −
∂λigs,ek(δλ)

gs,ek(δλ)
=

E(Zs,ie
−δ〈λ,Zs〉 |Z0 = ek)

E(e−δ〈λ,Zs〉 |Z0 = ek)

6
E(Zs,i |Z0 = ek)

E(e−(h+|∆|)〈λ,Zs〉 |Z0 = ek)
6

E(Zs,i |Z0 = ek)

E(e−2h〈λ,Zs〉 |Z0 = ek)
=

e⊤
i e

sB̃ek

gs,ek(2hλ)

for all δ ∈ (h− |∆|, h + |∆|) ⊂ R++, λ ∈ Rd
++ and i, k ∈ {1, . . . , d}, where (Zt)t∈R+ is a

multi-type CBI process with parameters (d, c, 0,B, 0,µ). Consequently,

∣∣∣∣
ψ(v(s, (h+∆)λ))− ψ(v(s, hλ))

∆

∣∣∣∣ 6 ‖λ‖

(
‖β̃‖+

∫

Ud

‖z‖ ν(dz)

) d∑

k=1

d∑

i=1

λie
⊤
i e

sB̃ek

gs,ek(2hλ)
,

where the functions R+ ∋ s 7→ e⊤
i e

sB̃ek ∈ R+ and R+ ∋ s 7→ gs,ek(2hλ) = e−vk(s,2hλ) ∈ R++

are continuous, hence we conclude (3.14).

Applying (3.13), (3.14) and (3.12), we have

lim
n→∞

[
(AX (n)eλ)(x) + n

(
e−〈λ,x〉 − e−〈λ,eB̃x〉

)]

= eλ(e
B̃x) lim

h↓0

[
h−2

d∑

k=1

xk

(
vk(1, hλ)− h

d∑

i=1

λi∂λivk(1, hλ)

)

−

d∑

k=1

d∑

i=1

λi

∫ 1

0

∂λkψ(v(s, hλ))∂λivk(s, hλ) ds

]
, λ ∈ R

d
++.
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By L’Hôspital’s rule and by (3.9),

lim
h↓0

h−2

d∑

k=1

xk

(
vk(1, hλ)− h

d∑

i=1

λi∂λivk(1, hλ)

)

=
d∑

k=1

xk lim
h↓0

∑d
i=1 λi∂λivk(1, hλ)−

∑d
i=1 λi∂λivk(1, hλ)− h

∑d
i=1

∑d
j=1 λiλj∂λi∂λjvk(1, hλ)

2h

= −

d∑

k=1

xk lim
h↓0

1

2

d∑

i=1

d∑

j=1

λiλj∂λi∂λjvk(1, hλ)

=
1

2

d∑

k=1

xk

d∑

i=1

d∑

j=1

λiλje
⊤
k e

B̃
⊤

∫ 1

0

e−uB̃
⊤

d∑

ℓ=1

eℓe
⊤
i e

uB̃Cℓe
uB̃

⊤

ej du

=
1

2

d∑

ℓ=1

∫ 1

0

x⊤eB̃
⊤

e−uB̃
⊤

eℓλ
⊤euB̃Cℓe

uB̃
⊤

λ du, λ ∈ R
d
++.

For each i, k ∈ {1, . . . , d} and λ ∈ R
d
++, by dominated convergence theorem, we have

(3.16) lim
h↓0

∫ 1

0

∂λkψ(v(s, hλ))∂λivk(s, hλ) ds =

∫ 1

0

lim
h↓0

∂λkψ(v(s, hλ))∂λivk(s, hλ) ds.

Indeed, again by (3.10) and Lemma 3.2,

0 6 ∂λivk(s, hλ) = −
∂λigs,ek(hλ)

gs,ek(hλ)
=

E(Zs,ie
−h〈λ,Zs〉 |Z0 = ek)

E(e−h〈λ,Zs〉 |Z0 = ek)

6
E(Zs,i |Z0 = ek)

E(e−〈λ,Zs〉 |Z0 = ek)
=

e⊤
i e

sB̃ek

gs,ek(λ)

for all h ∈ (0, 1), λ ∈ Rd
++, s ∈ R+ and i, k ∈ {1, . . . , d}, hence, applying (3.15),

|∂λkψ(v(s, hλ))∂λivk(s, hλ)| 6

(
‖β̃‖+

∫

Ud

‖z‖ ν(dz)

)
e⊤
i e

sB̃ek

gs,ek(λ)
,

hence we conclude (3.16). Applying (3.2), (3.6) and (3.7), we have

d∑

k=1

d∑

i=1

λi

∫ 1

0

lim
h↓0

∂λkψ(v(s, hλ))∂λivk(s, hλ) ds

=
d∑

k=1

d∑

i=1

λi

∫ 1

0

β̃k(e
⊤
i e

sB̃ek) ds = λ⊤

∫ 1

0

euB̃β̃ du,

hence we obtain the statement. ✷
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3.5 Corollary. Let (X t)t∈R+ be an irreducible and critical multi-type CBI process with pa-

rameters (d, c,β,B, ν,µ) such that E(‖X0‖
4) < ∞ and the moment conditions (2.9) hold

and B̃ given in (2.6) is not 0 (implying d > 2). Then (X
(n)
t )t∈R+

D
−→ (Xturight)t∈R+ as

n→ ∞, and, given x ∈ Rd
+ and λ ∈ Rd

+, the sequence (AX (n)eλ)(x) converges as n→ ∞

if and only if 〈λ,x〉 = 〈λ, eB̃x〉, where (AX (n)eλ)(x) is defined in (3.11). In particular,

(i) there exist x ∈ Rd
+ and λ ∈ Rd

+ such that the sequence (AX (n)eλ)(x) does not converge

as n→ ∞,

(ii) the sequence (AX (n)eλ)(x) converges as n → ∞ for all λ ∈ Rd
+ if and only if

x = δuright with some δ ∈ R.

Proof. First, we note that there exists a multi-type CBI process which satisfies the conditions

of the corollary. Namely, every 2-type CBI process with parameters (2, c,β,B, ν,µ) satisfying

the moment conditions (2.9) with

B̃ =

[
−1 1

1 −1

]

serves us as an example. The convergence (X
(n)
t )t∈R+

D
−→ (Xturight)t∈R+ as n → ∞ follows

by Theorem 2.9. Proposition 3.4 yields that the sequence (AX (n)eλ)(x) converges as n→ ∞

if and only if 〈λ,x〉 = 〈λ, eB̃x〉. Next we prove that there exist x ∈ Rd
+ and λ ∈ Rd

+

such that the sequence (AX (n)eλ)(x) does not converge as n → ∞. By Proposition 3.4, if

〈λ,x〉 6= 〈λ, eB̃x〉 with some x ∈ R
d
+ and λ ∈ R

d
+, then the sequence (AX (n)eλ)(x) does

not converge as n → ∞. Using Dunford and Schwartz [8, Theorem VII.1.8], one can easily

check that the following statements are equivalent:

• 〈λ, eB̃x〉 = 〈λ,x〉 for all x ∈ Rd
+ and λ ∈ Rd

+;

• eB̃x = x for all x ∈ Rd
+;

• σ(eB̃) = {1};

• σ(B̃) = {0};

• B̃ = 0.

Since B̃ 6= 0, there exist some x ∈ R
d
+ and λ ∈ R

d
+ such that 〈λ, eB̃x〉 6= 〈λ,x〉, implying

(i). Given x ∈ R
d
+, we have 〈λ, eB̃x〉 = 〈λ,x〉 for all λ ∈ R

d
+ if and only if eB̃x = x,

which holds if and only if x = δuright with some δ ∈ R, yielding (ii). ✷

3.6 Remark. Rosenkrantz [15], [16] provided an example for a sequence of one-dimensional

diffusion processes given by SDEs which converges weakly to a Markov limit process, however

the drift coefficients of the corresponding SDEs do not converge, and consequently, the corre-

sponding sequence of (usual) infinitesimal generators does not converge either. He also provided
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an example for one-dimensional diffusion processes given by SDEs which converge weakly to a

Markov limit process, and the drift and diffusion coefficients of the corresponding SDEs con-

verge, but their limits are not the ones that are expected to appear in the infinitesimal generator

of the limit Markov process. On the one hand, Corollary 3.5 can be considered as a non-trivial

multi-dimensional example, which resembles the phenomena described by Rosenkrantz. On

the other hand, part (ii) of Corollary 3.5 is in accordance with Theorem 2.9, since there the

degenerate limit process is concentrated on the ray determined by uright. It is an open question

whether Theorem 2.9 might be proved by the help of infinitesimal generators. ✷

It is also interesting to investigate the sequence Y
(n)
t := n−1Xnt, t ∈ R+, n ∈ N, of

scaled CBI processes. Note that both processes X (n) and Y (n) have càdlàg sample paths

almost surely, however, Y (n) is no longer a step process, which gives the possibility of studying

convergence properties of their usual infinitesimal generators.

3.7 Proposition. Let (X t)t∈R+ be a multi-type CBI process with parameters (d, c,β,B, ν,µ)

such that the moment conditions (3.8) hold. Then

lim
n→∞

(
(AY(n)f)(x)− n〈B̃x, f ′(x)〉

)
=

1

2

d∑

i=1

xi

d∑

k=1

d∑

ℓ=1

e⊤
kCieℓf

′′
k,ℓ(x) + 〈β̃, f ′(x)〉(3.17)

for all f ∈ C2
c (R

d
+,R) and x ∈ Rd

+, where AY(n) denotes the usual infinitesimal generator

of Y
(n). Consequently, given f ∈ C2

c (R
d
+,R) and x ∈ Rd

+, the sequence (AY(n)f)(x)

converges as n→ ∞ if and only if 〈B̃x, f ′(x)〉 = 0.

Proof. First note that, under the moment conditions (3.8), the infinitesimal generator (2.2) of

the process (X t)t∈R+ can also be written in the form

(AXf)(x) =
1

2

d∑

i=1

xi

d∑

k=1

d∑

ℓ=1

f ′′
k,ℓ(x)〈C ieℓ, ek〉+ 〈β + B̃x, f ′(x)〉+

∫

Ud

(f(x+ z)− f(x)) ν(dz)

+
d∑

i=1

xi

∫

Ud

(
f(x+ z)− f(x)− 〈z, f ′(x)〉 −

1

2
〈z, f ′′(x)z〉

)
µi(dz)

for f ∈ C2
c (R

d
+,R) and x ∈ Rd

+. Indeed, by Remark 4.3 in Barczy et al. [6],∫
Ud

‖z‖2 µi(dz) <∞, i ∈ {1, . . . , d}, and using (2.10),

(AXf)(x)−
1

2

d∑

i=1

xi

d∑

k=1

d∑

ℓ=1

f ′′
k,ℓ(x)〈Cieℓ, ek〉 − 〈β + B̃x, f ′(x)〉 −

∫

Ud

(f(x+ z)− f(x)) ν(dz)

−
d∑

i=1

xi

∫

Ud

(
f(x+ z)− f(x)− 〈z, f ′(x)〉 −

1

2
〈z, f ′′(x)z〉

)
µi(dz) = D1 +D2,
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where

D1 :=
d∑

i=1

cixif
′′
i,i(x) +

1

2

d∑

i=1

xi

d∑

k=1

d∑

ℓ=1

f ′′
k,ℓ(x)

∫

Ud

zkzℓ µi(dz)

−
1

2

d∑

i=1

xi

d∑

k=1

d∑

ℓ=1

f ′′
k,ℓ(x)e

⊤
kC ieℓ = 0

and

D2 :=
d∑

i=1

xi

∫

Ud

(
〈z, f ′(x)〉 − f ′

i(x)(1 ∧ zi)
)
µi(dz)− 〈(B̃ −B)x, f ′(x)〉

=

d∑

i=1

xi

∫

Ud

(
f ′
i(x)(zi − (1 ∧ zi)) +

∑

j∈{1,...,d}\{i}

zjf
′
j(x)

)
µi(dz)

−
d∑

i=1

d∑

j=1

xjf
′
i(x)

∫

Ud

(zi − δi,j)
+ µj(dz) = 0.

For each n ∈ N, the infinitesimal generator of the process (Y
(n)
t )t∈R+ is

(AY(n)f)(x) = n(AXfn)(nx), x ∈ R
d
+,

where fn(x) := f(n−1x), x ∈ Rd
+, for all f ∈ C2

c (R
d
+,R), see, e.g., Barczy et al. [1, Lemma

2.1]. Consequently, by (2.7),

(AY(n)f)(x) =
1

2

d∑

i=1

xi

d∑

k=1

d∑

ℓ=1

f ′′
k,ℓ(x)e

⊤
kCieℓ + 〈β̃ + nB̃x, f ′(x)〉

+ n

∫

Ud

(
f(x+ n−1z)− f(x)− 〈n−1z, f ′(x)〉

)
ν(dz)

+ n2
d∑

i=1

xi

∫

Ud

(
f(x+ n−1z)− f(x)− 〈n−1z, f ′(x)〉 −

1

2
〈n−1z, f ′′(x)n−1z〉

)
µi(dz).

One can show

lim
n→∞

sup
x∈Rd

+

∣∣∣∣n
∫

Ud

(
f(x+ n−1z)− f(x)− 〈n−1z, f ′(x)〉

)
ν(dz)

∣∣∣∣ = 0,

lim
n→∞

sup
x∈Rd

+

∣∣∣∣n
2xi

∫

Ud

(
f(x+ n−1z)− f(x)− 〈n−1z, f ′(x)〉 −

1

2
〈n−1z, f ′′(x)n−1z〉

)
µi(dz)

∣∣∣∣ = 0

for all i ∈ {1, . . . , d}, see the method of the proof of formulas (2.6) and (2.7) in Barczy et

al. [1]. Consequently, for each f ∈ C2
c (R

d
+,R), we obtain (3.17). ✷
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3.8 Remark. If we consider a single-type (hence irreducible) and critical (hence B̃ = 0) CBI

process with parameters (1, c, β, B, ν, µ) such that the moment conditions (3.8) hold, then, by

Proposition 3.7,

lim
n→∞

(AY(n)f)(x) =
1

2
xC1f

′′
1,1(x) + β̃f ′(x), f ∈ C2

c (R+,R), x ∈ R+.

Here the limit is nothing else but the infinitesimal generator of a squared Bessel process, which

is in accordance with the result of Huang et al. [12, Theorem 2.3]. In fact, Huang et al. [12]

proved that for a critical single-type CBI process (Xt)t∈R+ satisfying the moment conditions

(3.8), the sequence of scaled processes (n−1Xnt)t∈R+ , n ∈ N, converges weakly to a squared

Bessel process. Finally, we note that, to the best knowledge of the authors, it is not known,

whether the sequence of scaled processes (n−1Xnt)t∈R+ , n ∈ N, is convergent for an irreducible

and critical d-type CBI process with d > 2. ✷
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