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Abstract

We study asymptotic properties of some (essentially conditional least squares) parameter estima-

tors for the subcritical Heston model based on discrete time observations derived from conditional

least squares estimators of some modified parameters.

1 Introduction

The Heston model has been extensively used in financial mathematics since one can well-fit them to

real financial data set, and they are well-tractable from the point of view of computability as well.

Hence parameter estimation for the Heston model is an important task.

In this paper we study the Heston model
{
dYt = (a− bYt) dt+ σ1

√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt

(
̺dWt +

√
1− ̺2 dBt

)
,

t > 0,(1.1)

where a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, ̺ ∈ (−1, 1), and (Wt, Bt)t>0 is a 2-dimensional

standard Wiener process, see Heston [7]. We investigate only the so-called subcritical case, i.e.,

when b > 0, see Definition 2.3, and we introduce some parameter estimator of (a, b, α, β) based

on discrete time observations and derived from conditional least squares estimators (CLSEs) of some

modified parameters starting the process (Y,X) from some known non-random initial value (y0, x0) ∈
(0,∞) × R. We do not estimate the parameters σ1, σ2 and ̺, since these parameters could—in

principle, at least—be determined (rather than estimated) using an arbitrarily short continuous time

observation (Xt)t∈[0,T ] of X, where T > 0, see, e.g., Barczy and Pap [1, Remark 2.6]. In Overbeck

and Rydén [15, Theorems 3.2 and 3.3] one can find a strongly consistent and asymptotically normal

estimator of σ1 based on discrete time observations for the process Y , and for another estimator of

σ1, see Dokuchaev [5]. Eventually, it turns out that for the calculation of the estimator of (a, b, α, β),

one does not need to know the values of the parameters σ1, σ2 and ̺. For interpretations of Y

and X in financial mathematics, see, e.g., Hurn et al. [8, Section 4].
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CLS estimation has been considered for the Cox-Ingersoll-Ross (CIR) model, which satisfies the

first equation of (1.1). For the CIR model, Overbeck and Rydén [15] derived the CLSEs and gave their

asymptotic properties, however, they did not investigate the conditions of their existence. Specifically,

Theorems 3.1 and 3.3 in Overbeck and Rydén [15] correspond to our Theorem 3.4, but they estimate

the volatility coefficient σ1 as well, which we assume to be known. Li and Ma [14] extended the

investigation to so-called stable CIR processes driven by an α-stable process instead of a Brownian

motion. For a more complete overview of parameter estimation for the Heston model see, e.g., the

introduction in Barczy and Pap [1].

It would be possible to calculate the discretized version of the maximum likelihood estimators

derived in Barczy and Pap [1] using the same procedure as in Ben Alaya and Kebaier [3, Section 4]

valid for discrete time observations of high frequency. However, this would be basically different from

the present line of investigation, therefore we will not discuss it further.

The organization of the paper is the following. In Section 2 we recall some important results

about the existence of a unique strong solution to (1.1), and study its asymptotic properties. In the

subcritical case, i.e., when b > 0, we invoke a result due to Cox et al. [4] on the unique existence

of a stationary distribution, and we slightly improve a result due to Li and Ma [14] and Jin et al.

[10, Corollary 2.7] and [11, Corollaries 5.9 and 6.4] on the ergodicity of the CIR process (Yt)t>0, see

Theorem 2.4. We also recall some convergence results for square-integrable martingales. In Section

3 we introduce the CLSE of a transformed parameter vector based on discrete time observations,

and derive the asymptotic properties of the estimates – namely, strong consistency and asymptotic

normality, see Theorem 3.2. Thereafter, we apply these results together with the so-called delta

method to obtain the same asymptotic properties of the estimators for the original parameters, see

Theorem 3.4. The point of the parameter transformation is to reduce the minimization in the CLS

method to a linear problem, because our objective function depends on the original parameters through

complicated functions. The covariance matrices of the limit normal distributions in Theorems 3.2 and

3.4 depend on the unknown parameters a, b and β, as well (but somewhat surprisingly not on α).

They also depend on the volatility parameters σ1, σ2 and ρ, but, again, we will assume these to be

known. Since the considered estimators of a, b and β are proved to be strongly consistent, using

random normalization, one may derive counterparts of Theorems 3.2 and 3.4 in a way that the limit

distributions are four-dimensional standard normal distributions (having the identity matrix I4 as

covariance matrices).

2 Preliminaries

Let N, Z+, R, R+, R++, and R−− denote the sets of positive integers, non-negative integers, real

numbers, non-negative real numbers, positive real numbers, and negative real numbers, respectively.

For x, y ∈ R, we will use the notation x ∧ y := min(x, y). By ‖x‖ and ‖A‖, we denote the

Euclidean norm of a vector x ∈ R
d and the induced matrix norm of a matrix A ∈ R

d×d, respectively.

By Id ∈ R
d×d, we denote the d× d unit matrix. The Borel σ-algebra on R is denoted by B(R).

Let
(
Ω,F ,P

)
be a probability space equipped with the augmented filtration (Ft)t∈R+

corresponding

to (Wt, Bt)t∈R+
and a given initial value (η0, ζ0) being independent of (Wt, Bt)t∈R+

such that

P(η0 ∈ R+) = 1, constructed as in Karatzas and Shreve [12, Section 5.2]. Note that (Ft)t∈R+
satisfies

the usual conditions, i.e., the filtration (Ft)t∈R+
is right-continuous and F0 contains all the P-null
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sets in F .

The next proposition is about the existence and uniqueness of a strong solution of the SDE (1.1),

see, e.g., Barczy and Pap [1, Proposition 2.1].

2.1 Proposition. Let (η0, ζ0) be a random vector independent of (Wt, Bt)t∈R+
satisfying P(η0 ∈

R+) = 1. Then for all a ∈ R++, b, α, β ∈ R, σ1, σ2 ∈ R++, and ̺ ∈ (−1, 1), there is a (pathwise)

unique strong solution (Yt,Xt)t∈R+
of the SDE (1.1) such that P((Y0,X0) = (η0, ζ0)) = 1 and

P(Yt ∈ R+ for all t ∈ R+) = 1. Further, for all s, t ∈ R+ with s 6 t,

{
Yt = e−b(t−s)Ys + a

∫ t
s e

−b(t−u) du+ σ1
∫ t
s e

−b(t−u)
√
Yu dWu,

Xt = Xs +
∫ t
s (α− βYu) du+ σ2

∫ t
s

√
Yu d(̺Wu +

√
1− ̺2Bu).

(2.1)

Next we present a result about the first moment of (Yt,Xt)t∈R+
. For a proof, see, e.g., Barczy

and Pap [1, Proposition 2.2] together with (2.1) and Proposition 3.2.10 in Karatzas and Shreve [12].

2.2 Proposition. Let (Yt,Xt)t∈R+
be the unique strong solution of the SDE (1.1) satisfying P(Y0 ∈

R+) = 1 and E(Y0) < ∞, E(|X0|) < ∞. Then for all s, t ∈ R+ with s 6 t, we have

E(Yt | Fs) = e−b(t−s)Ys + a

∫ t

s
e−b(t−u) du,(2.2)

E(Xt | Fs) = Xs +

∫ t

s
(α− β E(Yu | Fs)) du(2.3)

= Xs + α(t− s)− βYs

∫ t

s
e−b(u−s) du− aβ

∫ t

s

(∫ u

s
e−b(u−v) dv

)
du,

and hence
[
E(Yt)

E(Xt)

]
=

[
e−bt 0

−β
∫ t
0 e

−bu du 1

][
E(Y0)

E(X0)

]
+

[ ∫ t
0 e

−bu du 0

−β
∫ t
0

(∫ u
0 e−bv dv

)
du t

] [
a

α

]
.

Consequently, if b ∈ R++, then

lim
t→∞

E(Yt) =
a

b
, lim

t→∞
t−1

E(Xt) = α− βa

b
,

if b = 0, then

lim
t→∞

t−1
E(Yt) = a, lim

t→∞
t−2

E(Xt) = −1

2
βa,

if b ∈ R−−, then

lim
t→∞

ebt E(Yt) = E(Y0)−
a

b
, lim

t→∞
ebt E(Xt) =

β

b
E(Y0)−

βa

b2
.

Based on the asymptotic behavior of the expectations (E(Yt),E(Xt)) as t → ∞, we introduce a

classification of the Heston model given by the SDE (1.1).

2.3 Definition. Let (Yt,Xt)t∈R+
be the unique strong solution of the SDE (1.1) satisfying P(Y0 ∈

R+) = 1. We call (Yt,Xt)t∈R+
subcritical, critical or supercritical if b ∈ R++, b = 0 or b ∈ R−−,

respectively.

3



In the sequel
P−→,

L−→ and
a.s.−→ will denote convergence in probability, in distribution and

almost surely, respectively.

The following result states the existence of a unique stationary distribution and the ergodicity for

the process (Yt)t∈R+
given by the first equation in (1.1) in the subcritical case, see, e.g., Cox et al. [4,

Equation (20)], Li and Ma [14, Theorem 2.6], Theorem 3.1 with α = 2 and Theorem 4.1 in Barczy

et al. [2], or Jin et al. [11, Corollaries 5.9 and 6.4]. Only (2.7) of the following Theorem 2.4 can be

considered as a slight improvement of the existing results.

2.4 Theorem. Let a, b, σ1 ∈ R++. Let (Yt)t∈R+
be the unique strong solution of the first equation

of the SDE (1.1) satisfying P(Y0 ∈ R+) = 1. Then

(i) Yt
L−→ Y∞ as t → ∞, and the distribution of Y∞ is given by

E(e−λY∞) =

(
1 +

σ2
1

2b
λ

)−2a/σ2
1

, λ ∈ R+,(2.4)

i.e., Y∞ has Gamma distribution with parameters 2a/σ2
1 and 2b/σ2

1 , hence

E(Y∞) =
a

b
, E(Y 2

∞) =
(2a+ σ2

1)a

2b2
, E(Y 3

∞) =
(2a+ σ2

1)(a+ σ2
1)a

2b3
.(2.5)

(ii) supposing that the random initial value Y0 has the same distribution as Y∞, the process

(Yt)t∈R+
is strictly stationary.

(iii) for all Borel measurable functions f : R → R such that E(|f(Y∞)|) < ∞, we have

(2.6)
1

T

∫ T

0
f(Ys) ds

a.s.−→ E(f(Y∞)) as T → ∞,

(2.7)
1

n

n−1∑

i=0

f(Yi)
a.s.−→ E(f(Y∞)) as n → ∞.

Proof. Based on the references given before the theorem, we only need to show (2.7). By Corollary 2.7

in Jin et al. [10], the tail σ-field
⋂

t∈R+
σ(Ys, s > t) of (Yt)t∈R+

is trivial for any initial distribution,

i.e., the tail σ-field in question consists of events having probability 0 or 1 for any initial distribution

on R+. But since the tail σ-field of (Yt)t∈R+
is richer than that of (Yi)i∈Z+

, the tail σ-field of (Yi)i∈Z+

is also trivial for any initial distribution.

Denoting the distribution of Y0 and Y∞ by ν and µ, respectively, let us introduce the

distribution η := (µ + ν)/2. Let us introduce the following processes: (Zt)t∈R+
, which is the

pathwise unique strong solution of the first equation in (1.1) with initial condition Z0 = ζ0, where

ζ0 has the distribution µ; and (Ut)t∈R+
, which is the pathwise unique strong solution of the same

SDE with initial condition U0 = ξ0, where ξ0 has the distribution η.

We use Birkhoff’s ergodic theorem (see, e.g., Theorem 8.4.1 in Dudley [6]) in the usual setting:

the probability space is (RZ+ ,B(RZ+),L((Zi)i∈Z+
)), where L((Zi)i∈Z+

) denotes the distribution of

(Zi)i∈Z+
, and the measure-preserving transformation T is the shift operator, i.e., T ((xi)i∈Z+

) :=

4



(xi+1)i∈Z+
for (xi)i∈Z+

∈ R
Z+ (the measure preservability follows from (ii)). All invariant sets of

T are included in the tail σ-field of the coordinate mappings πi, i ∈ Z+, on R
Z+ , since for any

invariant set A we have A ∈ σ(π0, π1, . . .), but as T k(A) = A for all k ∈ N, it is also true that

A ∈ σ(πk, πk+1, . . .) for all k ∈ N. This implies that T is ergodic, since the tail σ-field is trivial.

Hence we can apply the ergodic theorem for the function

g : RZ+ → R, g((xi)i∈Z+
) := f(x0), (xi)i∈Z+

∈ R
Z+ ,

where f is given in (iii), to obtain

1

n

n−1∑

i=0

f(xi) →
∫

R+

f(x0)µ(dx0) as n → ∞

for almost every (xi)i∈Z+
∈ R

Z+ with respect to the measure L((Zi)i∈Z+
), and consequently

(2.8)
1

n

n−1∑

i=0

f(Zi)
a.s.−→ E(f(Y∞)) as n → ∞,

because, clearly, the distribution of Y∞ does not depend on the initial distribution. We introduce

the following event, which is clearly a tail event of (Zi)i∈Z+
and has probability 1 by (2.8):

CZ :=

{
ω ∈ Ω :

1

n

n−1∑

i=0

f(Zi(ω)) → E(f(Y∞)) as n → ∞
}
.

The events CY and CU are defined in a similar way and are clearly tail events of (Yi)i∈Z+
and

(Ui)i∈Z+
, respectively. Clearly,

P(CU ) =

∫ ∞

0
P(CU |U0 = x) dη(x) =

1

2

∫ ∞

0
P(CU |U0 = x) dµ(x) +

1

2

∫ ∞

0
P(CU |U0 = x) dν(x)

>
1

2

∫ ∞

0
P(CU |U0 = x) dµ(x) =

1

2

∫ ∞

0
P(CZ |Z0 = x) dµ(x)

=
1

2
P(CZ) =

1

2
.

Here we used that P(CU |U0 = x) = P(CZ |Z0 = x) µ-a.e. x ∈ R+, since the conditional probabilities

on both sides depend only on the transition probability kernel of the CIR process given by the first

SDE of (1.1) irrespective of the initial distribution. Further, we note that P(CU |U0 = x) is defined

uniquely only η-a.e. x ∈ R+, but, by the definition of η, this means both µ-a.e. x ∈ R+, and

ν-a.e. x ∈ R+, and similarly P(CZ |Z0 = x) is defined µ-a.e. x ∈ R+, so our equalities are valid.

Thus, we have P(CU ) >
1
2 . But since CU is a tail event of (Ui)i∈Z+

, its probability must be either

0 or 1 (since the tail σ-field is trivial), hence P(CU ) = 1. Hence

2 =

∫ ∞

0
P(CU |U0 = x) dµ(x) +

∫ ∞

0
P(CU |U0 = x) dν(x) 6 µ([0,∞)) + ν([0,∞)) = 2,

yielding that ∫ ∞

0
P(CU |U0 = x) dµ(x) =

∫ ∞

0
P(CU |U0 = x) dν(x) = 1,

5



and the second equality is exactly (2.7) after we note that, by the same argument as above,
∫ ∞

0
P(CU |U0 = x) dν(x) =

∫ ∞

0
P(CY |Y0 = x) dν(x) = P(CY ).

With this our proof is complete. ✷

In what follows we recall some limit theorems for (local) martingales. We will use these limit

theorems later on for studying the asymptotic behaviour of (conditional) least squares estimators for

(a, b, α, β).

First, we recall a strong law of large numbers for discrete time square-integrable martingales.

2.5 Theorem. (Shiryaev [16, Chapter VII, Section 5, Theorem 4]) Let
(
Ω,F , (Fn)n∈N,P

)

be a filtered probability space. Let (Mn)n∈N be a square-integrable martingale with respect to the

filtration (Fn)n∈N such that P(M0 = 0) = 1 and P(limn→∞〈M〉n = ∞) = 1, where (〈M〉n)n∈N
denotes the predictable quadratic variation process of M . Then

Mn

〈M〉n
a.s.−→ 0 as n → ∞.

Next, we recall a martingale central limit theorem in discrete time.

2.6 Theorem. (Jacod and Shiryaev [9, Chapter VIII, Theorem 3.33]) Let {(Mn,k,Fn,k) :

k = 0, 1, . . . , kn}n∈N be a sequence of d-dimensional square-integrable martingales with Mn,0 = 0

such that there exists some symmetric, positive semi-definite non-random matrix D ∈ R
d×d such

that
kn∑

k=1

E((Mn,k −Mn,k−1)(Mn,k −Mn,k−1)
⊤ | Fn,k−1)

P−→ D as n → ∞,

and for all ε ∈ R++,

kn∑

k=1

E(‖Mn,k −Mn,k−1‖21{‖Mn,k−Mn,k−1‖>ε} | Fn,k−1)
P−→ 0 as n → ∞.(2.9)

Then
kn∑

k=1

(Mn,k −Mn,k−1) = Mn,kn
L−→ Nd(0,D) as n → ∞,

where Nd(0,D) denotes a d-dimensional normal distribution with mean vector 0 and covariance

matrix D.

In all the remaining sections, we will consider the subcritical Heston model (1.1) with a non-

random initial value (y0, x0) ∈ R+ ×R. Note that the augmented filtration (Ft)t∈R+
corresponding

to (Wt, Bt)t∈R+
and the initial value (y0, x0) ∈ R+ × R, in fact, does not depend on (y0, x0).

3 CLSE based on discrete time observations

Using (2.2) and (2.3), by an easy calculation, for all i ∈ N,

(3.1) E

([
Yi

Xi

] ∣∣∣∣Fi−1

)
=

[
e−b 0

−β
∫ 1
0 e−bu du 1

][
Yi−1

Xi−1

]
+

[ ∫ 1
0 e−bu du 0

−β
∫ 1
0

(∫ u
0 e−bv dv

)
du 1

][
a

α

]
.

6



Using that σ(X1, Y1, . . . ,Xi−1, Yi−1) ⊆ Fi−1, i ∈ N, by tower rule for conditional expectations, we

have

E

([
Yi

Xi

] ∣∣∣∣∣σ(X1, Y1, . . . ,Xi−1, Yi−1)

)
= E

(
E

([
Yi

Xi

] ∣∣∣∣∣Fi−1

)∣∣∣∣∣ σ(X1, Y1, . . . ,Xi−1, Yi−1)

)

=

[
e−b 0

−β
∫ 1
0 e−bu du 1

][
Yi−1

Xi−1

]
+

[ ∫ 1
0 e−bu du 0

−β
∫ 1
0

(∫ u
0 e−bv dv

)
du 1

][
a

α

]
, i ∈ N,

and hence a CLSE of (a, b, α, β) based on discrete time observations (Yi,Xi)i∈{1,...,n} could be

obtained by solving the extremum problem

argmin
(a,b,α,β)∈R4

n∑

i=1

[
(Yi − dYi−1 − c)2 + (Xi −Xi−1 − γ − δYi−1)

2
]
,(3.2)

where

d := d(b) := e−b, c := c(a, b) := a

∫ 1

0
e−bu du,

δ := δ(b, β) := −β

∫ 1

0
e−bu du, γ := γ(a, b, α, β) := α− aβ

∫ 1

0

(∫ u

0
e−bv dv

)
du.

(3.3)

First, we determine the CLSE of (c, d, γ, δ) by minimizing the sum on the right hand side of (3.2)

with respect to (c, d, γ, δ) ∈ R
4.

We get



ĉCLSE
n

d̂CLSE
n

γ̂CLSE
n

δ̂CLSE
n



=


I2 ⊗

[
n

∑n
i=1 Yi−1∑n

i=1 Yi−1
∑n

i=1 Y
2
i−1

]−1






∑n
i=1 Yi∑n

i=1 YiYi−1

Xn − x0∑n
i=1(Xi −Xi−1)Yi−1




(3.4)

provided that n
∑n

i=1 Y
2
i−1 > (

∑n
i=1 Yi−1)

2, where ⊗ denotes Kronecker product of matrices. Indeed,

with the notation

f(c, d, γ, δ) :=
n∑

i=1

[
(Yi − dYi−1 − c)2 + (Xi −Xi−1 − γ − δYi−1)

2
]
, (c, d, γ, δ) ∈ R

4,

we have

∂f

∂c
(c, d, γ, δ) = −2

n∑

i=1

(Yi − dYi−1 − c),

∂f

∂d
(c, d, γ, δ) = −2

n∑

i=1

Yi−1(Yi − dYi−1 − c),

∂f

∂γ
(c, d, γ, δ) = −2

n∑

i=1

(Xi −Xi−1 − γ − δYi−1),

∂f

∂δ
(c, d, γ, δ) = −2

n∑

i=1

Yi−1(Xi −Xi−1 − γ − δYi−1).

7



Hence the system of equations consisting of the first order partial derivates of f being equal to 0

takes the form

(
I2 ⊗

[
n

∑n
i=1 Yi−1∑n

i=1 Yi−1
∑n

i=1 Y
2
i−1

])



c

d

γ

δ



=




∑n
i=1 Yi∑n

i=1 Yi−1Yi

Xn − x0∑n
i=1(Xi −Xi−1)Yi−1



.

This implies (3.4), since the 4×4-matrix consisting of the second order partial derivatives of f having

the form

2I2 ⊗
[

n
∑n

i=1 Yi−1∑n
i=1 Yi−1

∑n
i=1 Y

2
i−1

]

is positive definite provided that n
∑n

i=1 Y
2
i−1 > (

∑n
i=1 Yi−1)

2. In fact, it turned out that for the

calculation of the CLSE of (c, d, γ, δ), one does not need to know the values of the parameters σ1, σ2
and ̺.

The next lemma assures the unique existence of the CLSE of (c, d, γ, δ) based on discrete time

observations.

3.1 Lemma. If a ∈ R++, b ∈ R, σ1 ∈ R++, and Y0 = y0 ∈ R+, then for all n > 2, n ∈ N, we

have

P


n

n∑

i=1

Y 2
i−1 >

(
n∑

i=1

Yi−1

)2

 = 1,

and hence, supposing also that α, β ∈ R, σ2 ∈ R++, ̺ ∈ (−1, 1), there exists a unique CLSE

(ĉCLSE
n , d̂CLSE

n , γ̂CLSE
n , δ̂CLSE

n ) of (c, d, γ, δ) which has the form given in (3.4).

Proof. By an easy calculation,

n

n∑

i=1

Y 2
i−1 −

(
n∑

i=1

Yi−1

)2

= n

n∑

i=1


Yi−1 −

1

n

n∑

j=1

Yj−1




2

> 0,

and equality holds if and only if

Yi−1 =
1

n

n∑

j=1

Yj−1, i = 1, . . . , n ⇐⇒ Y0 = Y1 = · · · = Yn−1.

Then, for all n > 2,

P(Y0 = Y1 = · · · = Yn−1) 6 P(Y0 = Y1) = P(Y1 = y0) = 0,

since the law of Y1 is absolutely continuous, see, e.g., Cox et al. [4, formula 18]. ✷

Note that Lemma 3.1 is valid for all b ∈ R, i.e., not only for the subcritical Heston model.

Next, we describe the asymptotic behaviour of the CLSE of (c, d, γ, δ).
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3.2 Theorem. If a, b ∈ R++, α, β ∈ R, σ1, σ2 ∈ R++, ̺ ∈ (−1, 1) and (Y0,X0) = (y0, x0) ∈
R++ × R, then the CLSE (ĉCLSE

n , d̂CLSE
n , γ̂CLSE

n , δ̂CLSE
n ) of (c, d, γ, δ) given in (3.4) is strongly

consistent and asymptotically normal, i.e.,

(ĉCLSE
n , d̂CLSE

n , γ̂CLSE
n , δ̂CLSE

n )
a.s.−→ (c, d, γ, δ) as n → ∞,

and

√
n




ĉCLSE
n − c

d̂CLSE
n − d

γ̂CLSE
n − γ

δ̂CLSE
n − δ




L−→ N4 (0,E) as n → ∞,

with some explicitly given symmetric, positive definite matrix E ∈ R
2×2 given in (3.14).

Proof. By (3.4), we get

[
ĉCLSE
n

d̂CLSE
n

]
=




n∑

i=1

[
1

Yi−1

] [
1

Yi−1

]⊤


−1(
n∑

i=1

[
1

Yi−1

]
Yi

)

=




n∑

i=1

[
1

Yi−1

] [
1

Yi−1

]⊤


−1


n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤

[
c

d

]

+




n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1
n∑

i=1

[
1

Yi−1

]
(Yi − c− dYi−1)

=

[
c

d

]
+


 1

n

n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1

1

n

n∑

i=1

[
1

Yi−1

]
εi,

(3.5)

where εi := Yi − c− dYi−1, i ∈ N, provided that n
∑n

i=1 Y
2
i−1 > (

∑n
i=1 Yi−1)

2. By (3.1) and (3.3),

E(Yi | Fi−1) = dYi−1 + c, i ∈ N, and hence (εi)i∈N is a sequence of martingale differences with

respect to the filtration (Fi)i∈Z+
. By (2.1), we have

Yi = e−bYi−1 + a

∫ i

i−1
e−b(i−u) du+ σ1

∫ i

i−1
e−b(i−u)

√
Yu dWu

= dYi−1 + c+ σ1

∫ i

i−1
e−b(i−u)

√
Yu dWu, i ∈ N,

hence, by Proposition 3.2.10 in Karatzas and Shreve [12] and (2.2), we have

E(ε2i | Fi−1) = σ2
1 E

((∫ i

i−1
e−b(i−u)

√
Yu dWu

)2 ∣∣∣∣Fi−1

)
= σ2

1

∫ i

i−1
e−2b(i−u)

E(Yu | Fi−1) du

= σ2
1

∫ i

i−1
e−2b(i−u)e−b(u−i+1)Yi−1 du+ σ2

1

∫ i

i−1
e−2b(i−u)a

∫ u

i−1
e−b(u−v) dv du

= σ2
1Yi−1

∫ 1

0
e−b(2−v) dv + σ2

1a

∫ 1

0

∫ u

0
e−b(2−v−u) dv du =: C1Yi−1 + C2.
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Now we apply Theorem 2.5 to the square-integrable martingale M
(c)
n :=

∑n
i=1 εi, n ∈ N, which has

predictable quadratic variation process 〈M (c)〉n =
∑n

i=1 E(ε
2
i | Fi−1) = C1

∑n
i=1 Yi−1 + C2n, n ∈ N,

see, e.g., Shiryaev [16, Chapter VII, Section 1, formula (15)]. By (2.5) and (2.7),

〈M (c)〉n
n

a.s.−→ C1 E(Y∞) + C2 as n → ∞,

and since C1, C2 ∈ R++, 〈M (c)〉n a.s.−→ ∞ as n → ∞. Hence, by Theorem 2.5,

(3.6)
1

n

n∑

i=1

εi =
M

(c)
n

〈M (c)〉n
〈M (c)〉n

n

a.s.−→ 0 · (C1 E(Y∞) + C2) = 0 as n → ∞.

Similarly,

E(Y 2
i−1ε

2
i | Fi−1) = Y 2

i−1 E(ε
2
i | Fi−1) = C1Y

3
i−1 + C2Y

2
i−1, i ∈ N,

and, by essentially the same reasoning as before, 1
n

∑n
i=1 Yi−1εi

a.s.−→ 0 as n → ∞. By (2.5) and

(2.7),


 1

n

n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1

=

[
1 1

n

∑n
i=1 Yi−1

1
n

∑n
i=1 Yi−1

1
n

∑n
i=1 Y

2
i−1

]−1

a.s.−→
[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1

(3.7)

as n → ∞, where we used that E(Y 2
∞) − (E(Y∞))2 =

aσ2
1

2b2 ∈ R++, and consequently, the limit is

indeed non-singular. Thus, by (3.5), (ĉCLSE
n , d̂CLSE

n )
a.s.−→ (c, d) as n → ∞.

Further, by (3.4),

[
γ̂CLSE
n

δ̂CLSE
n

]
=




n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1(
n∑

i=1

[
1

Yi−1

]
(Xi −Xi−1)

)

=




n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1


n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤

[
γ

δ

]

+




n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1
n∑

i=1

[
1

Yi−1

]
(Xi −Xi−1 − γ − δYi−1)

=

[
γ

δ

]
+


 1

n

n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1

1

n

n∑

i=1

[
1

Yi−1

]
ηi,

(3.8)

where ηi := Xi − Xi−1 − γ − δYi−1, i ∈ N, provided that n
∑n

i=1 Y
2
i−1 > (

∑n
i=1 Yi−1)

2. By

(3.1) and (3.3), E(Xi | Fi−1) = Xi−1 + δYi−1 + γ, i ∈ N, and hence (ηi)i∈N is a sequence of

martingale differences with respect to the filtration (Fi)i∈Z+
. By (2.1) and (2.2), with the notation
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W̃t := ̺Wt +
√

1− ̺2Bt, t ∈ R+, we compute

Xi −Xi−1 =

∫ i

i−1
(α− βYu) du+ σ2

∫ i

i−1

√
Yu dW̃u = α− β

∫ i

i−1
Yu du+ σ2

∫ i

i−1

√
Yu dW̃u

= α− β

∫ i

i−1

(
e−b(u−(i−1))Yi−1 + a

∫ u

i−1
e−b(u−v) dv + σ1

∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du

+ σ2

∫ i

i−1

√
Yu dW̃u

= α− βYi−1

∫ i

i−1
e−b(u−i+1) du− aβ

∫ i

i−1

(∫ u

i−1
e−b(u−v) dv

)
du

− βσ1

∫ i

i−1

(∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du+ σ2

∫ i

i−1

√
Yu dW̃u

= α− βYi−1

∫ 1

0
e−bv dv − aβ

∫ 1

0

(∫ u

0
e−bv dv

)
du

− βσ1

∫ i

i−1

(∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du+ σ2

∫ i

i−1

√
Yu dW̃u

= δYi−1 + γ − βσ1

∫ i

i−1

(∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du+ σ2

∫ i

i−1

√
Yu dW̃u,

and consequently,

E(η2i | Fi−1) = β2σ2
1 E

[(∫ i

i−1

∫ u

i−1
e−b(u−v)

√
Yv dWv du

)2 ∣∣∣∣Fi−1

]
+ σ2

2 E

[(∫ i

i−1

√
Yu dW̃u

)2 ∣∣∣∣Fi−1

]

− 2βσ1σ2 E

[(∫ i

i−1

∫ u

i−1
e−b(u−v)

√
Yv dWv du

)(
̺

∫ i

i−1

√
Yu dWu

) ∣∣∣∣Fi−1

]

− 2βσ1σ2 E

[(∫ i

i−1

∫ u

i−1
e−b(u−v)

√
Yv dWv du

)(√
1− ̺2

∫ i

i−1

√
Yu dBu

) ∣∣∣∣Fi−1

]
.

We use Equation (3.2.23) from Karatzas and Shreve [12] to the first, second and third terms, and

Proposition 3.2.17 from Karatzas and Shreve [12] to the fourth term (together with the independence

of W and B):

E(η2i |Fi−1) = β2σ2
1

∫ i

i−1

∫ i

i−1
E

(∫ u

i−1
e−b(u−w)

√
Yw dWw

∫ v

i−1
e−b(v−w)

√
Yw dWw

∣∣∣ Fi−1

)
dv du

+ σ2
2

∫ i

i−1
E(Yu | Fi−1) du

− 2βσ1σ2̺

∫ i

i−1
E

(∫ u

i−1
e−b(u−w)

√
Yw dWw

∫ i

i−1

√
Yw dWw

∣∣∣ Fi−1

)
du− 0

= β2σ2
1

∫ i

i−1

∫ i

i−1

∫ u∧v

i−1
e−b(u+v−2w)

E(Yw | Fi−1) dw dudv + σ2
2

∫ i

i−1
E(Yu | Fi−1) du

− 2βσ1σ2̺

∫ i

i−1

∫ u

i−1
e−b(u−v)

E(Yv | Fi−1) dv du.
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Using again (2.2), we get

E(η2i |Fi−1) = β2σ2
1Yi−1

∫ i

i−1

∫ i

i−1

∫ u∧v

i−1
e−b(u+v−w−(i−1)) dw dv du

+ aβ2σ2
1

∫ i

i−1

∫ i

i−1

∫ u∧v

i−1

∫ w

i−1
e−b(u+v−w−z) dz dw dv du+ σ2

2Yi−1

∫ i

i−1
e−b(u−(i−1)) du

+ aσ2
2

∫ i

i−1

∫ u

i−1
e−b(u−v) dv du− 2βσ1σ2̺Yi−1

∫ i

i−1

∫ u

i−1
e−b(u−(i−1)) dv du

− 2aβσ1σ2̺

∫ i

i−1

∫ u

i−1

∫ v

i−1
e−b(u−w) dw dv du

=

(
β2σ2

1

∫ 1

0

∫ 1

0

∫ u′∧v′

0
e−b(u′+v′−w′) dw′ dv′ du′ − 2βσ1σ2̺

∫ 1

0

∫ u′

0
e−bu′

dv′ du′ + σ2
2

∫ 1

0
e−bu′

du′
)
Yi−1

+ aβ2σ2
1

∫ 1

0

∫ 1

0

∫ u′∧v′

0

∫ w′

0
e−b(u′+v′−w′−z′) dz′ dw′ dv′ du′

+ aσ2
2

∫ 1

0

∫ u′

0
e−b(u′−v′) dv′ du′ − 2aβσ1σ2̺

∫ 1

0

∫ u′

0

∫ v′

0
e−b(u′−w′) dw′ dv′ du′ =: C3Yi−1 + C4.

Now we apply Theorem 2.5 to the square-integrable martingale M
(γ)
n :=

∑n
i=1 ηi, n ∈ N, which has

predictable quadratic variation process 〈M (γ)〉n =
∑n

i=1 E(η
2
i | Fi−1) = C3

∑n
i=1 Yi−1 + C4n, n ∈ N.

By (2.7),

〈M (γ)〉n
n

a.s.−→ C3 E(Y∞) + C4 as n → ∞.(3.9)

Note that C3 > 0 and C4 > 0, since E(η21 | F0) = C3y0 + C4 > 0 for all y0 ∈ R+. By setting

y0 = 0, we can see that C4 > 0, and then, by taking the limit y0 → ∞ on the right-hand side

of the inequality C3 > −C4

y0
, y0 > 0, we get C3 > 0 as well. Note also that 〈M (γ)〉n a.s.−→ ∞ as

n → ∞ provided that C3 + C4 > 0. If C3 = 0 and C4 = 0, then E(η2i | Fi−1) = 0, i ∈ N, and

consequently E(η2i ) = 0, i ∈ N, and, since E(ηi) = 0, i ∈ N, we have P(ηi = 0) = 1, i ∈ N,

implying that P(
∑n

i=1 ηi = 0) = 1 and P(
∑n

i=1 Yi−1ηi = 0) = 1, n ∈ N, i.e., in this case, by (3.8),

(γ̂CLSE
n , δ̂CLSE

n ) = (γ, δ), n ∈ N, almost surely. If C3 + C4 > 0, then, by Theorem 2.5,

(3.10)
1

n

n∑

i=1

ηi =
M

(γ)
n

〈M (γ)〉n
〈M (γ)〉n

n
a.s.−→ 0 · (C3 E(Y∞) + C4) = 0 as n → ∞.

Similarly,

E(Y 2
i−1η

2
i | Fi−1) = Y 2

i−1 E(η
2
i | Fi−1) = C3Y

3
i−1 + C4Y

2
i−1, i ∈ N,

and, by essentially the same reasoning as before, 1
n

∑n
i=1 Yi−1ηi

a.s.−→ 0 as n → ∞ (in the case

C3 +C4 > 0). Using (3.7) and (3.8), we have (γ̂CLSE
n , δ̂CLSE

n )
a.s.−→ (γ, δ) as n → ∞.

Since the intersection of two events having probability 1 is an event having probability 1, we get

(ĉCLSE
n , d̂CLSE

n , γ̂CLSE
n , δ̂CLSE

n )
a.s.−→ (c, d, γ, δ) as n → ∞, as desired.
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Next, we turn to prove that the CLSE of (c, d, γ, δ) is asymptotically normal. First, using (3.5)

and (3.8), we can write

√
n




ĉCLSE
n − c

d̂CLSE
n − d

γ̂CLSE
n − γ

δ̂CLSE
n − δ



=


I2 ⊗


n−1

n∑

i=1

[
1

Yi−1

][
1

Yi−1

]⊤


−1

n−1/2

n∑

i=1

[
εi

ηi

]
⊗
[

1

Yi−1

]
,(3.11)

provided that n
∑n

i=1 Y
2
i−1 > (

∑n
i=1 Yi−1)

2. By (3.7), the first factor converges almost surely to

I2 ⊗
[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1

as n → ∞.

For the second factor, we are going to apply the martingale central limit theorem (see Theorem 2.6)

with the following choices: d = 4, kn = n, n ∈ N, Fn,k = Fk, n ∈ N, k ∈ {1, . . . , n}, and

Mn,k = n− 1

2

k∑

i=1

[
εi

ηi

]
⊗
[

1

Yi−1

]
, n ∈ N, k ∈ {1, . . . , n}.

Then, applying the identities (A1⊗A2)
⊤ = A

⊤
1 ⊗A

⊤
2 and (A1⊗A2)(A3⊗A4) = (A1A3)⊗(A2A4),

E
(
(Mn,k −Mn,k−1)(Mn,k −Mn,k−1)

⊤
∣∣Fn,k−1

)

=
1

n
E



([

εk

ηk

]
⊗
[

1

Yk−1

])([
εk

ηk

]
⊗
[

1

Yk−1

])⊤ ∣∣∣∣Fk−1




=
1

n
E





[
εk

ηk

][
εk

ηk

]⊤
⊗



[

1

Yk−1

][
1

Yk−1

]⊤

∣∣∣∣Fk−1




=
1

n
E



[
εk

ηk

][
εk

ηk

]⊤ ∣∣∣∣Fk−1


⊗



[

1

Yk−1

][
1

Yk−1

]⊤
 , n ∈ N, k ∈ {1, . . . , n}.

Since E(ε2k | Fk−1) = C1Yk−1 + C2, k ∈ N, and E(η2k | Fk−1) = C3Yk−1 + C4, k ∈ N, it remains to

calculate

E(εkηk | Fk−1) = E
(
(Yk − c− dYk−1)(Xk −Xk−1 − γ − δYk−1)

∣∣Fk−1

)

= E

(
σ1

∫ k

k−1
e−b(k−s)

√
Ys dWs

(
−βσ1

∫ k

k−1

∫ u

k−1
e−b(u−v)

√
Yv dWv du+ σ2

∫ k

k−1

√
Yu dW̃u

)∣∣∣∣Fk−1

)

= −βσ2
1

∫ k

k−1
E

(∫ k

k−1
e−b(k−s)

√
Ys dWs

∫ u

k−1
e−b(u−v)

√
Yv dWv

∣∣∣∣Fk−1

)
du

+ σ1σ2 E

(∫ k

k−1
e−b(k−s)

√
Ys dWs

∫ k

k−1

√
Yu dW̃u

∣∣∣∣Fk−1

)
.
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Again, by Equation (3.2.23) and Proposition 3.2.17 from Karatzas and Shreve [12], we have

E(εkηk | Fk−1) = −βσ2
1

∫ k

k−1

∫ u

k−1
e−b(k+u−2v)

E(Yv | Fk−1) dv du

+ σ1σ2̺

∫ k

k−1
e−b(k−v)

E(Yv | Fk−1) dv.

Using (2.2), by an easy calculation,

E(εkηk | Fk−1)

= −βσ2
1

∫ k

k−1

∫ u

k−1
e−b(k+u−2v)

(
e−b(v−k+1)Yk−1 + a

∫ v

k−1
e−b(v−s) ds

)
dv du

+ σ1σ2̺

∫ k

k−1
e−b(k−v)

(
e−b(v−k+1)Yk−1 + a

∫ v

k−1
e−b(v−s) ds

)
dv

=

(
−βσ2

1

∫ 1

0

∫ u′

0
e−b(u′−v′+1) dv′ du′ + σ1σ2̺e

−b

)
Yk−1 − aβσ2

1

∫ 1

0

∫ u′

0

∫ v′

0
e−b(u′−v′−s′+1) ds′ dv′ du′

+ aσ1σ2̺

∫ 1

0

∫ v′

0
e−b(1−s′) ds′ dv′ =: C5Yk−1 + C6, k ∈ N.

Hence, by (2.5) and (2.7),

n∑

k=1

E
(
(Mn,k −Mn,k−1)(Mn,k −Mn,k−1)

⊤ | Fn,k−1

)

=
1

n

n∑

k=1

[
C1Yk−1 + C2 C5Yk−1 + C6

C5Yk−1 + C6 C3Yk−1 + C4

]
⊗
[

1 Yk−1

Yk−1 Y 2
k−1

]

=
1

n

n∑

k=1

[
C1 C5

C5 C3

]
⊗
[
Yk−1 Y 2

k−1

Y 2
k−1 Y 3

k−1

]
+

1

n

n∑

k=1

[
C2 C6

C6 C4

]
⊗
[

1 Yk−1

Yk−1 Y 2
k−1

]

a.s.−→
[
C1 C5

C5 C3

]
⊗
[
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

]
+

[
C2 C6

C6 C4

]
⊗
[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]
=: D as n → ∞,

where the 4× 4 limit matrix D is necessarily symmetric and positive semi-definite (indeed, the limit

of positive semi-definite matrices is positive semi-definite).

Next, we check Lindeberg condition (2.9). Since

‖x‖21{‖x‖>ε} 6
‖x‖4
ε2

1{‖x‖>ε} 6
‖x‖4
ε2

, x ∈ R
4, ε ∈ R++,

and ‖x‖4 = (x21+x22+x23+x24)
2 6 4(x41+x42+x43+x44), x1, x2, x3, x4 ∈ R, it is enough to check that

1

n2

n∑

k=1

(
E(ε4k | Fk−1) + Y 4

k−1 E(ε
4
k | Fk−1) + E(η4k | Fk−1) + Y 4

k−1E(η
4
k | Fk−1)

)

=
1

n2

n∑

k=1

E((1 + Y 4
k−1)(ε

4
k + η4k) | Fk−1)

P−→ 0 as n → ∞.
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Instead of convergence in probability, we show convergence in L1, i.e., we check that

1

n2

n∑

k=1

E((1 + Y 4
k−1)(ε

4
k + η4k)) → 0 as n → ∞.

Clearly, it is enough to show that

sup
k∈N

E((1 + Y 4
k−1)(ε

4
k + η4k)) < ∞.

By Cauchy–Schwarz inequality,

E((1 + Y 4
k−1)(ε

4
k + η4k)) 6

√
E((1 + Y 4

k−1)
2)E((ε4k + η4k)

2) 6
√
2
√

E((1 + Y 4
k−1)

2)E(ε8k + η8k)

for all k ∈ N. Since, by Proposition 3 in Ben Alaya and Kebaier [3],

sup
t∈R+

E(Y κ
t ) < ∞, κ ∈ R+,(3.12)

it remains to check that supk∈N E(ε8k + η8k) < ∞. Since, by the power mean inequality,

E(ε8k) = E(|Yk − dYk−1 − c|8) 6 E((Yk + dYk−1 + c)8) 6 37 E(Y 8
k + d8Y 8

k−1 + c8), k ∈ N,

using (3.12), we have supk∈NE(ε8k) < ∞. Using (2.1) and again the power mean inequality, we have

E(η8k) = E((Xk −Xk−1 − γ − δYk−1)
8)

= E

((
α− β

∫ k

k−1
Yu du+ σ2̺

∫ k

k−1

√
Yu dWu + σ2

√
1− ̺2

∫ k

k−1

√
Yu dBu − γ − δYk−1

)8
)

6 67 E

(
α8 + β8

(∫ k

k−1
Yu du

)8

+ σ8
2̺

8

(∫ k

k−1

√
Yu dWu

)8

+ σ8
2(1− ̺2)4

(∫ k

k−1

√
Yu dBu

)8

+ δ8Y 8
k−1 + γ8

)
, k ∈ N.

By Jensen’s inequality and (3.12),

sup
k∈N

E

((∫ k

k−1
Yu du

)8
)

6 sup
k∈N

E

(∫ k

k−1
Y 8
u du

)
= sup

k∈N

∫ k

k−1
E(Y 8

u ) du

6

(
sup
t∈R+

E(Y 8
t )

)(
sup
k∈N

∫ k

k−1
1 du

)
= sup

t∈R+

E(Y 8
t ) < ∞.

(3.13)

By the SDE (1.1) and the power mean inequality,

E

((∫ k

k−1

√
Yu dWu

)8
)

6
1

σ8
1

E

((
Yk − Yk−1 − a− b

∫ k

k−1
Yu du

)8
)

6
47

σ8
1

E

(
Y 8
k + Y 8

k−1 + a8 + b8
(∫ k

k−1
Yu du

)8
)
, k ∈ N,
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and hence, by (3.13),

sup
k∈N

E

((∫ k

k−1

√
Yu dWu

)8
)

6
47

σ8
1

(
2 sup
t∈R+

E(Y 8
t ) + a8 + b8 sup

t∈R+

E(Y 8
t )

)
< ∞.

Further, using that the conditional distribution of
∫ k
k−1

√
Yu dBu given (Yu)u∈[0,k] is normal with

mean 0 and variance
∫ k
k−1 Yu du for all k ∈ N, we have

E

((∫ k

k−1

√
Yu dBu

)8 ∣∣∣ (Yu)u∈[0,k]

)
= 105

(∫ k

k−1
Yu du

)4

, k ∈ N,

and consequently

E

((∫ k

k−1

√
Yu dBu

)8
)

= 105E

((∫ k

k−1
Yu du

)4
)
, k ∈ N.

Hence, similarly to (3.13), we have

sup
k∈N

E

((∫ k

k−1

√
Yu dBu

)8
)

6 105 sup
t∈R+

E(Y 4
t ) < ∞,

which yields that supk∈N E(η8k) < ∞. All in all, by the martingale central limit theorem (see, Theorem

2.6),

Mn,n = n−1/2
n∑

k=1

[
εk

ηk

]
⊗
[

1

Yk−1

]
L−→ N4 (0,D) as n → ∞.

Consequently, by (3.11) and Slutsky’s lemma,

√
n




ĉCLSE
n − c

d̂CLSE
n − d

γ̂CLSE
n − γ

δ̂CLSE
n − δ




L−→ N4


0,

(
I2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

])−1

D

(
I2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

])−1



as n → ∞, where the covariance matrix of the limit distribution takes the form

(
I2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

])−1

D

(
I2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

])−1

=



[
C1 C5

C5 C3

]
⊗



[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

]




I2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1



+



[
C2 C6

C6 C4

]
⊗



[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]




I2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1
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=

[
C1 C5

C5 C3

]
⊗



[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

] [
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1



+

[
C2 C6

C6 C4

]
⊗



[

1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
1 E(Y∞)

E(Y∞) E(Y 2
∞)

][
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1



=
1

(E(Y 2
∞)− (E(Y∞))2)2

[
C1 C5

C5 C3

]

⊗
([

E(Y 2
∞) −E(Y∞)

−E(Y∞) 1

][
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

][
E(Y 2

∞) −E(Y∞)

−E(Y∞) 1

])

+
1

E(Y 2
∞)− (E(Y∞))2

[
C2 C6

C6 C4

]
⊗
[

E(Y 2
∞) −E(Y∞)

−E(Y∞) 1

]

=
1

(E(Y 2
∞)− (E(Y∞))2)2

[
C1 C5

C5 C3

]

⊗
[
−E(Y∞)((E(Y 2

∞))2 − E(Y∞)E(Y 3
∞)) (E(Y 2

∞))2 − E(Y∞)E(Y 3
∞)

(E(Y 2
∞))2 − E(Y∞)E(Y 3

∞) E(Y 3
∞)− 2E(Y∞)E(Y 2

∞) + (E(Y∞))3

]

+
1

E(Y 2
∞)− (E(Y∞))2

[
C2 C6

C6 C4

]
⊗
[

E(Y 2
∞) −E(Y∞)

−E(Y∞) 1

]

=

[
C1 C5

C5 C3

]
⊗




a(2a+σ2
1
)

bσ2
1

−2a+σ2
1

σ2
1

−2a+σ2
1

σ2
1

2b(a+σ2
1
)

aσ2
1


+

[
C2 C6

C6 C4

]
⊗




2a+σ2
1

σ2
1

− 2b
σ2
1

− 2b
σ2
1

2b2

aσ2
1


 := E.(3.14)

Indeed, by (2.5), an easy calculation shows that

(
E(Y∞)E(Y 3

∞)− (E(Y 2
∞))2

)
E(Y∞) =

a3σ2
1

4b5
(2a+ σ2

1),

E(Y∞)E(Y 3
∞)− (E(Y 2

∞))2 =
a2σ2

1

4b4
(2a+ σ2

1),

E(Y 3
∞)− 2E(Y∞)E(Y 2

∞) + (E(Y∞))3 =
aσ2

1

2b3
(a+ σ2

1),

E(Y 2
∞)− (E(Y∞))2 =

aσ2
1

2b2
.

Finally, we show that E is positive definite. To show this, it is enough to check that

(i) the matrix [
C1 C5

C5 C3

]

is positive definite,
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(ii) the matrices

[
C2 C6

C6 C4

]
,




a(2a+σ2
1 )

bσ2
1

−2a+σ2
1

σ2
1

−2a+σ2
1

σ2
1

2b(a+σ2
1 )

aσ2
1


 and




2a+σ2
1

σ2
1

− 2b
σ2
1

− 2b
σ2
1

2b2

aσ2
1




are positive semi-definite.

Indeed, the sum of a positive definite and a positive semi-definite square matrix is positive definite,

the Kronecker product of positive semi-definite matrices is positive semi-definite and the Kronecker

product of positive definite matrices is positive definite (as a consequence of the fact that the eigen-

values of the Kronecker product of two square matrices are the product of the eigenvalues of the two

square matrices in question including multiplicities). The positive semi-definiteness of the matrices




a(2a+σ2
1 )

bσ2
1

−2a+σ2
1

σ2
1

−2a+σ2
1

σ2
1

2b(a+σ2
1
)

aσ2
1


 and




2a+σ2
1

σ2
1

− 2b
σ2
1

− 2b
σ2
1

2b2

aσ2
1




readily follows, since
a(2a+σ2

1
)

bσ2
1

> 0,
2a+σ2

1

σ2
1

> 0, and the determinant of the matrices in question are

2a+σ2
1

σ2
1

> 0 and 2b
aσ2

1

> 0, respectively. Next, we prove that the matrices

[
C1 C5

C5 C3

]
and

[
C2 C4

C4 C6

]

are positive semi-definite. Since P(Y0 = y0) = 1, we have E(ε21 | F0) = C1y0 + C2, E(η21 | F0) =

C3y0 +C4, and E(ε1η1 | F0) = C5y0 + C6 P-almost surely, hence

E(ε21)E(η
2
1)−

(
E(ε1η1)

)2
= (C1C3 − C2

5 )y
2
0 + (C1C4 + C2C3 − 2C5C6)y0 + C2C4 − C2

6 .

Clearly, by Cauchy–Schwarz’s inequality,

E(ε21)E(η
2
1)−

(
E(ε1η1)

)2
> 0,

hence, by setting an arbitrary initial value Y0 = y0 ∈ R+, we obtain C1C3 − C2
5 > 0 and

C2C4 − C2
6 > 0. Thus, both matrices

[
C1 C5

C5 C3

]
and

[
C2 C4

C4 C6

]

are positive semi-definite, since C1 > 0 and C2 > 0. Now we turn to check that

[
C1 C5

C5 C3

]

is positive definite. Since C1 > 0, this is equivalent to showing that C1C3 − C2
5 > 0. Recalling the
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definition of the constants, we have

C1 = σ2
1

∫ 1

0
e−b(2−v) dv = σ2

1e
−2b e

b − 1

b
,

C3 = β2σ2
1

∫ 1

0

∫ 1

0

∫ u′∧v′

0
e−b(u′+v′−w′) dw′ dv′ du′ − 2βσ1σ2̺

∫ 1

0

∫ u′

0
e−bu′

dv′ du′ + σ2
2

∫ 1

0
e−bu′

du′

= b−3
(
2e−bβ2σ2

1(sinh b− b) + 2bβ̺σ1σ2((1 + b)e−b − 1) + b2σ2
2(1− e−b)

)
,

C5 = −βσ2
1

∫ 1

0

∫ u′

0
e−b(u′−v′+1) dv′ du′ + σ1σ2̺e

−b = b−2σ1e
−b
(
−e−bβσ1(1 + (b− 1)eb) + ̺σ2b

2
)
,

thus we have

C1C3 − C2
5 = b−4e−2bσ2

1

(
2b(2 + b2)β̺σ1σ2 + 2(β2σ2

1 − 2bβ̺σ1σ2 + b2σ2
2) cosh b− (2 + b2)β2σ2

1

− b2(2 + b2̺2)σ2
2

)
.

Consequently, using that cosh b =
∑∞

k=0
b2k

(2k)! > 1 + b2

2 and that

β2σ2
1 − 2bβ̺σ1σ2 + b2σ2

2 = (βσ1 − b̺σ2)
2 + b2(1− ̺2)σ2

2 > 0,

we have

C1C3 − C2
5 > b−4e−2bσ2

1

(
4bβ̺σ1σ2 + 2b3β̺σ1σ2 + 2β2σ2

1 + b2β2σ2
1 − 4bβ̺σ1σ2 − 2b3β̺σ1σ2

+ 2b2σ2
2 + b4σ2

2 − 2β2σ2
1 − b2β2σ2

1 − 2b2σ2
2 − b4̺2σ2

2

)

= b−4e−2bσ2
1(b

4(1− ̺2)σ2
2) > 0.

With this our proof is finished. ✷

So far we have obtained the limit distribution of the CLSE of the transformed parameters

(c, d, γ, δ). A natural estimator of (a, b, α, β) can be obtained from (3.2) using relation (3.3) detailed

as follows. Calculating the integrals in (3.3) in the subcritical case, let us introduce the function

g : R2
++ × R

2 → R++ × (0, 1) × R
2,

(3.15) g(a, b, α, β) :=




ab−1(1− e−b)

e−b

α− aβb−2(e−b − 1 + b)

−βb−1(1− e−b)



=




c

d

γ

δ



, (a, b, α, β) ∈ R

2
++ ×R

2.

Note that g is bijective having inverse

(3.16) g−1(c, d, γ, δ) =




−c log d1−d

− log d

γ − cδ d−1−log d
(1−d)2

δ log d
1−d



=




a

b

α

β



, (c, d, γ, δ) ∈ R++ × (0, 1) × R

2.
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Indeed, for all (c, d, γ, δ) ∈ R++ × (0, 1) × R
2, we have

α = γ + aβb−2(e−b − 1 + b) = γ + (−c)
log d

1 − d
δ
log d

1 − d
(− log d)−2(d− 1− log d)

= γ − cδ
d − 1− log d

(1− d)2
.

Under the conditions of Theorem 3.2 the CLSE (ĉCLSE
n , d̂CLSE

n , γ̂CLSE
n , δ̂CLSE

n ) of (c, d, γ, δ) is strongly

consistent, hence in the subcritical case (ĉCLSE
n , d̂CLSE

n , γ̂CLSE
n , δ̂CLSE

n ) fall into the set R++×(0, 1)×R
2

for sufficiently large n ∈ N with probability one. Hence, in the subcritical case, one can introduce

a natural estimator of (a, b, α, β) based on discrete time observations (Yi,Xi)i∈{1,...,n} by applying

the inverse of g to the CLSE of (c, d, γ, δ), i.e.,

(3.17) (ân, b̂n, α̂n, β̂n) := g−1(ĉCLSE
n , d̂CLSE

n , γ̂CLSE
n , δ̂CLSE

n )

for sufficiently large n ∈ N with probability one.

3.3 Remark. We would like to stress the point that the estimator of (a, b, α, β) introduced in (3.17)

exists only for sufficiently large n ∈ N with probability of 1. However, as all our results are

asymptotic, this will not cause a problem. From the considerations before this remark, we obtain

(3.18)
(
ân, b̂n, α̂n, β̂n

)
= argmin

(a,b,α,β)∈R2
++

×R2

n∑

i=1

[
(Yi − dYi−1 − c)2 + (Xi −Xi−1 − γ − δYi−1)

2
]

for sufficiently large n ∈ N with probability one. We call the attention that
(
ân, b̂n, α̂n, β̂n

)
does

not necessarily provides a CLSE of (a, b, α, β), since in (3.18) one takes the infimum only on the

set R
2
++ × R

2 instead of R
4. Formula (3.18) serves as a motivation for calling

(
ân, b̂n, α̂n, β̂n

)

essentially conditional least squares estimator in the Abstract. ✷

3.4 Theorem. Under the conditions of Theorem 3.2 the sequence
(
ân, b̂n, α̂n, β̂n

)
, n ∈ N, is strongly

consistent and asymptotically normal, i.e.,

(ân, b̂n, α̂n, β̂n)
a.s.−→ (a, b, α, β) as n → ∞,

and

√
n




ân − a

b̂n − b

α̂n − α

β̂n − β




L−→ N4

(
0,JEJ

⊤
)

as n → ∞,

where E ∈ R
2×2 is a symmetric, positive definite matrix given in (3.14) and

J :=




− log d
1−d −c log d−1+d−1

(1−d)2
0 0

0 −1
d 0 0

δ log d+1−d
(1−d)2 cδ 2 log d−d+d−1

(1−d)3 1 c log d+1−d
(1−d)2

0 δ log d−1+d−1

(1−d)2
0 log d

1−d




with c, d and δ given in (3.3).
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Proof. The strong consistency of (ân, b̂n, α̂n, β̂n), n ∈ N, follows from the strong consistency of the

CLSE of (c, d, γ, δ) proved in Theorem 3.2 using also that the inverse function g−1 given in (3.16)

is continuous on R++× (0, 1)×R
2. For the second part of the theorem we use Theorem 3.2, and the

so-called delta method (see, e.g., Theorem 11.2.14 in Lehmann and Romano [13]). Indeed, one can

extend the function g−1 to be defined on R
4 not only on R++ × (0, 1) × R

2 (e.g., let it be zero

on the complement of R++ × (0, 1) × R
2), (ân, b̂n, α̂n, β̂n) takes the form given in (3.17) with this

extension of g−1 as well, and the Jacobian of g−1 at (c, d, γ, δ) ∈ R++× (0, 1)×R
2 is clearly J . ✷
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