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Abstract

In the case of three quark flavors, (pseudo)scalar diquarks transform as antiquarks under chiral transfor-
mations. We construct four spin-1/2 baryonic multiplets from left- and right-handed quarks as well as left-
and right-handed diquarks. The fact that two of these multiplets transform in a “mirror” way allows for
chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the so-called
extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs.
Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to
produce four experimentally observed states with definite parity: the positive-parity nucleon N(939) and
Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine
the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the
aforementioned states. Studying the limit of vanishing quark condensate, we conclude that N(939) and
N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.

1 Introduction

The strong interaction determines the masses of the baryons and their interactions with mesons. At low energies,
chiral effective approaches play an important role to describe these phenomena [1]. Most notably, one can use
chiral perturbation theory, which is based on the non-linear realization of chiral symmetry [2, 3, 4], or σ-like
models, which are based on the linear realization of chiral symmetry [5, 6, 7, 8, 9, 10].

An effective model based on linearly realized chiral symmetry as well as dilatation invariance has been
constructed in Refs. [9, 10, 11, 12, 13, 14]. This so-called extended Linear Sigma Model (eLSM) also contains
anomalous, explicit, and spontaneous symmetry breaking (SSB) terms in order to reproduce known features
of the strong interaction. The mesonic sector of the eLSM, first developed for two flavors (Nf = 2) [11] and
further extended to Nf = 3 [12, 13] and Nf = 4 [14], includes scalar and pseudoscalar as well as vector and
axial-vector degrees of freedom. It is able to describe mesonic masses and decays of quark-antiquark mesons
up to 1.7 GeV within reasonable accuracy [for precursory models including (axial-)vector degrees of freedom
see Ref. [15]]. Moreover, in agreement with results from other approaches [16], the model implies that the
scalar quark-antiquark states are heavier than 1 GeV and that f0(1710) is predominantly gluonic [13]. As a
consequence, the chiral partner of the pion is the resonance f0(1370) and not the light scalar state f0(500)
[which, together with the other light scalar mesons, is a state made from (at least) four quarks, either a
resonance dynamically generated in the pseudoscalar scattering continuum or a diquark-diquark configuration,
see e.g. Refs. [17, 18, 19, 20, 21]].

In the standard linear sigma model with nucleons only, chiral symmetry requires that the mass of the
nucleon is (apart from explicit symmetry breaking effects from the current quark masses), solely generated by
the chiral condensate, mN ∝ 〈q̄q〉. However, when one includes the chiral partner of the nucleon, one can
either assume that the partner transforms as the nucleon under chiral transformations (the so-called “naive”
assignment), or that it transforms in a “mirror” way (the so-called “mirror” assignment) [22, 23, 24, 25, 26]. The
latter one allows for an additional chirally invariant mass term, which physically parametrizes the contribution
to the nucleon mass that arises from sources other than the chiral condensate (e.g. a gluon or a four-quark
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condensate). Nucleons and their chiral partners have been studied within the eLSM in the mirror assignment
in Refs. [9, 10, 27], indicating that the contribution to the nucleon mass from these other sources is sizable.

In this work, we extend the work of Refs. [9, 10] to the case of baryons with Nf = 3 flavors. This extension
will enable us to address in future work important problems in hadron physics, such as scattering processes
involving strange hadrons [28, 29, 30, 31], and in astrophysics, e.g. the hyperon puzzle for compact stars [32, 33].

For baryons, the extension to the Nf = 3 case is not as straightforward as for mesons. In the Nf = 2 case,
the nucleon multiplet is described by a spinor isodoublet, ψN = (p, n)T , where p and n are the proton and the

neutron, respectively. However, in the Nf = 3 case the JP = 1
2

+
baryon octet is given by a 3× 3 matrix,







Λ√
6
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Ξ− Ξ0 − 2Λ√
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. (1)

Adding the chiral partner JP = 1
2

−
multiplet is also not as straightforward as in the Nf = 2 case. Here, we

utilize a quark-diquark “quasi-particle” picture for the baryonic substructure. We assume that the diquark is
a (pseudo)scalar and lives in the color- and flavor-antitriplet representation [a so-called “good” diquark in the

nomenclature of Jaffe [17]], such that it transforms as an antiquark. Then, it is quite natural that JP = 1

2

±

baryonic fields, just like quark-antiquark mesonic fields, are parametrized by 3 × 3 matrices. In a chirally
symmetric approach, it is also natural to construct baryons from quarks and diquarks with definite behavior
under chiral transformations, i.e., from left- and right-handed quarks and diquarks. If we want to include
states that transform in the mirror assignment, such that we can construct chirally invariant mass terms in
the Lagrangian, we will show that we are then necessarily lead to consider four distinct baryonic multiplets.
The possibility to have four multiplets of chiral partners in the mirror assignment was already discussed in the
outlook of Ref. [9]. Then, instead of only the ground-state baryon (the nucleon doublet for Nf = 2) and its chiral
partner, two positive-parity baryons (the nucleon and the Roper N(1440) for Nf = 2) and two negative-parity
states (N(1535) and N(1650) for Nf = 2) occur.

This paper is organized as follows. In Sec. 2 we present our model and its implications. Namely, in Sec. 2.1
we introduce the baryonic fields for Nf = 3 and in Sec. 2.2 the corresponding Lagrangian. A full Nf = 3 analysis
with 32 = 8 × 4 baryonic resonances is very difficult. Therefore, for the present work we decided to study a
simplified scenario by considering a reduction of the Nf = 3 Lagrangian to the Nf = 2 case. This reduction is
discussed in Sec. 2.3. In Sec. 2.4 the mass matrix involving the four nucleonic states N(939), N(1440), N(1535),
and N(1650) is determined and diagonalized. In Sec. 3 we perform a fit of the parameters of our model to
experimental data [34] for the masses, decay widths, and axial coupling constants. In Sec. 4 we discuss our
results and give an outlook to future work. Technical details are relegated to various appendices.

We use natural units, ~ = c = 1, and the metric tensor is (gµν) = diag(+,−,−,−).

2 The Model and its Implications

In this section we first construct the baryonic fields in a chiral quark-diquark picture. We account for the fact
that two of the four baryonic fields transform in a “mirror” way as compared to the other two. We then present
the complete Lagrangian of the eLSM for Nf = 3 flavors. A reduction to Nf = 2 flavors is performed and finally
the mass matrix for the four nucleonic states N(939), N(1440), N(1535), and N(1650) is given.

2.1 Baryonic Fields for Nf = 3

In the two-flavor case one works with isospin doublets ψi, where the upper field is proton-like, i.e., of the type
uud, and the lower field is neutron-like, i.e., of the type udd. The right- and left-handed components ψiR and ψiL

behave either in a “naive” or in a mirror way under chiral transformations. The naive transformation behavior
implies ψiR → URψiR and ψiL → ULψiL, while the mirror one implies ψiR → ULψiR and ψiL → URψiL, where
the index i labels the nucleonic doublets and the quantities UR and UL are 2× 2 matrix representations of the
chiral group U(2)R × U(2)L.

As mentioned in the Introduction, for three flavors JP = 1
2

+
baryons are described by 3 × 3 matrices. In

order to construct these fields we use a chiral quark-diquark model [see Ref. [35] and in particular Ref. [36]],
i.e., baryons are considered to be made of a quark and a diquark, where a diquark is a (colored) state consisting
of two quarks. We are interested in so-called “good” diquarks [17, 18, 36] which are (pseudo)scalar objects
with antisymmetric color- and flavor-wave function. For Nf = 3 there are three scalar, JP = 0+, and three
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pseudoscalar diquarks, JP = 0−. Mathematically they can be expressed as follows [36]:

JP = 0+ : Dij =
1√
2

(

qTj Cγ
5qi − qTi Cγ

5qj
)

≡
3

∑

k=1

Dkǫkij with Dk =
1√
2
ǫklmq

T
mCγ

5ql ,

JP = 0− : D̃ij =
1√
2

(

qTj Cqi − qTi Cqj
)

≡
3

∑

k=1

D̃kǫkij with D̃k =
1√
2
ǫklmq

T
mCql , (2)

where Dk is the scalar diquark current and D̃k is the pseudoscalar diquark current. The indices i, j, k, l, and
m are flavor indices. The color structure of these objects is formally identical to the flavor structure and
thus suppressed here. From the scalar and pseudoscalar diquarks (2) we can construct left- and right-handed
diquarks,

DR :=
1√
2

(

D̃ +D
)

=

3
∑

i=1

DR
i A

i with DR
i ≡ 1√

2

(

D̃i +Di

)

,

DL :=
1√
2

(

D̃ − D
)

=

3
∑

i=1

DL
i A

i with DL
i ≡ 1√

2

(

D̃i −Di

)

,

where (Ai)jk = ǫijk. Under U(3)L × U(3)R chiral transformations they behave as

DL
i → DL

i U
†
L , DR

i → DR
i U

†
R , (3)

where UL and UR are unitary 3× 3 matrices. Thus, D
L(R)
i transforms as a left-(right-)handed antiquark.

In order to construct baryonic fields as quark-diquark pairs, we have to combine DR
j or DL

j with a quark,
qi,

N1 ≡ (N1)ij =̂ DR
j qi =

1√
2

(

D̃j +Dj

)

qi ,

N2 ≡ (N2)ij =̂ DL
j qi =

1√
2

(

D̃j −Dj

)

qi .

These two fields are obviously 3× 3 matrices in flavor space.
We now compute the left- and right-handed components of these fields. To this end, one has to take into

account that the chiral projection operators act only on the quark fields qi, because they carry a spinor index,
while the diquarks are scalars in Dirac space,

N1(2)R = PRN1(2) =̂ DR(L)qR , N1(2)L = PLN1(2) =̂ DR(L)qL .

Using the transformation behavior of a quark spinor and Eq. (3), the chiral transformation of the baryonic fields
can be computed as

N1R → URN1RU
†
R , N1L → ULN1LU

†
R ,

N2R → URN2RU
†
L , N2L → ULN2LU

†
L . (4)

One observes that the chiral transformation from the left follows the naive assignment, while the one from the
right results from the transformation of the diquark field (1 ↔ R, 2 ↔ L). Thus, the presence of two multiplets
which transform in a naive way (from the left) is quite natural in the Nf = 3 framework.

The behavior under parity and charge-conjugation transformations is given by

parity charge conjugation

N1R −γ0N2L(t,−x) −iγ2 (N2L)
⋆

N1L −γ0N2R(t,−x) −iγ2 (N2R)
⋆

N2R −γ0N1L(t,−x) −iγ2 (N1L)
⋆

N2L −γ0N1R(t,−x) −iγ2 (N1R)
⋆

(5)

which shows that the fields N1 and N2 are not parity eigenstates and cannot be directly associated with existing
resonances (even in the limit of vanishing mixing).

Furthermore, we introduce two baryonic matrices M1 and M2 whose chiral transformation from the left is
“mirror-like”. These fields can be constructed in the same way as N1 and N2, however, we need to include an
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additional Dirac matrix so that a left-(right-)handed projection operator is converted into a right-(left-)handed
one (due to the commutation relation [γ5, γµ] = 0). Only then one can act with a right-(left-)handed chiral
transformation UR(L) from the left onto MiR(L). To contract the additional Lorentz index we also include a
partial derivative. Consequently, the mathematical structure of the “mirror-like” fields is given by

M1 ≡ (M1)ij =̂ DR
j γ

µ∂µqi =
1√
2

(

D̃j +Dj

)

γµ∂µqi ,

M2 ≡ (M2)ij =̂ DL
j γ

µ∂µqi =
1√
2

(

D̃j −Dj

)

γµ∂µqi .

Their chiral transformations are given by

M1R → ULM1RU
†
R , M1L → URM1LU

†
R ,

M2R → ULM2RU
†
L , M2L → URM2LU

†
L , (6)

where the left-transformation is now mirror-like while the one from the right results from the transformation of
the diquark field (1 ↔ R, 2 ↔ L). Under parity they transform just as N1 and N2, but under charge conjugation
they transform with a reversed sign:

parity charge conjugation

M1R −γ0M2L(t,−x) iγ2 (M2L)
⋆

M1L −γ0M2R(t,−x) iγ2 (M2R)
⋆

M2R −γ0M1L(t,−x) iγ2 (M1L)
⋆

M2L −γ0M1R(t,−x) iγ2 (M1R)
⋆

(7)

The transformation laws (4) – (7) allow us to write down a baryonic Lagrangian with chirally invariant mass
terms, see next section and Appendix B.

Baryonic fields with definite behavior under parity transformations are introduced as:

BN =
N1 −N2√

2
, BN∗ =

N1 +N2√
2

, BM =
M1 −M2√

2
, BM∗ =

M1 +M2√
2

, (8)

where now BN and BM have positive parity and BN∗ and BM∗ have negative parity. In the limit of zero mixing,
BN describes the ground-state baryonic fields of Eq. (1), i.e., {N(939), Λ(1116), Σ(1193), Ξ(1338)}, BM the
positive-parity fields {N(1440),Λ(1600),Σ(1660),Ξ(1690)}, BN∗ can be assigned to the negative-parity fields
{N(1535), Λ(1670),Σ(1620),Ξ(?)} and, finally, BM∗ to {N(1650),Λ(1800),Σ(1750),Ξ(?)}. The detailed study
of the mixing will be performed below for the two-flavor case.

2.2 The eLSM Lagrangian for Nf = 3

The mesonic part of the Lagrangian of the eLSM reads [12]:

Lmeson =Tr
{

(DµΦ)†DµΦ)
}

−m2
0 Tr

{

Φ†Φ
}

− λ1
(

Tr
{

Φ†Φ
})2 − λ2 Tr

{

(

Φ†Φ
)2
}

− 1

4
Tr {LµνL

µν +RµνR
µν}+ Tr

{(

m2
1

2
+ ∆

)

(LµL
µ +RµR

µ)

}

+Tr
{

H
(

Φ+ Φ†)}+ c
(

detΦ− detΦ†)2

+ i
g2
2
(Tr {Lµν [L

µ, Lν ]}+Tr {Rµν [R
µ, Rν ]})

+
h1
2

Tr
{

Φ†Φ
}

Tr {LµL
µ +RµR

µ}+ h2 Tr
{

(LµΦ)
†(LµΦ) + (ΦRµ)

†(ΦRµ)
}

+ 2h3 Tr
{

ΦRµΦ†Lµ
}

+ g3 (Tr {LµLνL
µLν}+Tr {RµRνR

µRν})
+ g4 (Tr {LµL

µLνL
ν}+Tr {RµR

µRνR
ν}) + g5 Tr {LµL

µ}Tr {RνR
ν}

+ g6 (Tr {LµL
µ}Tr {LνL

ν}+Tr {RµR
µ}Tr {RνR

ν}) , (9)

with the covariant derivative DµΦ = ∂µΦ − ig1 (L
µΦ− ΦRµ) and the field-strength tensors Rµν = ∂µRν −

∂νRµ, Lµν = ∂µLν − ∂νLµ. The matrices Φ, Rµ, and Lµ represent the (pseudo)scalar and (axial-)vector
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nonets:

Φ =

8
∑

i=0

(Si + iPi)Ti =
1√
2







σN+a0

0
+i(ηN+π0)√

2
a+0 + iπ+ K∗+

0 + iK+

a−0 + iπ− σN−a0

0
+i(ηN−π0)√

2
K∗0

0 + iK0

K∗−
0 + iK− K̄∗0

0 + iK̄0 σS + iηS






,

Rµ =
8

∑

i=0

(V µ
i −Aµ

i )Ti =
1√
2









ωµ

N
+ρ0µ

√
2

− fµ

1N
+a0µ

1√
2

ρ+µ − a+µ
1 K∗+µ −K+µ

1

ρ−µ − a−µ
1

ωµ
N−ρ0µ

√
2

− fµ
1N−a0µ

1√
2

K0∗µ −K0µ
1

K∗−µ −K−µ
1 K̄∗0µ − K̄0µ

1 ωµ
S − fµ

1S









,

Lµ =

8
∑

i=0

(V µ
i +Aµ

i )Ti =
1√
2









ωµ

N
+ρ0µ

√
2

+
fµ

1N
+a0µ

1√
2

ρ+µ + a+µ
1 K∗+µ +K+µ

1

ρ−µ + a−µ
1

ωµ

N
−ρ0µ

√
2

+
fµ

1N
−a0µ

1√
2

K∗0µ +K0µ
1

K∗−µ +K−µ
1 K̄∗0µ + K̄0µ

1 ωµ
S + fµ

1S









. (10)

Here, Si (i = 0, . . . , 8) represents the scalar, Pi the pseudoscalar, Vi the vector, and Ai the axial-vector mesonic
fields. The quantities Ti are the generators of U(3). Under U(Nf )R×U(Nf )L chiral transformations Φ behaves

as Φ → ULΦU
†
R and the left- and right-handed vector fields as Rµ → URR

µU †
R and Lµ → ULL

µU †
L.

ForH = ∆ = c = 0 the Lagrangian Lmeson is invariant under global chiral U(3)R×U(3)L (= U(3)V × U(3)A)
transformations. The U(1)A anomaly of QCD is parametrized by c 6= 0. The explicit breaking of U(3)A
due to the nonzero quark masses in the (pseudo)scalar and (axial-)vector sector is implemented by the terms
proportional to H and ∆, respectively. We assume isospin symmetry for the u and d quarks to be exact. As a
consequence, only the pure nonstrange scalar-isoscalar field σN and the pure strange scalar-isoscalar field σS ,
carrying the same quantum numbers as the vacuum, condense and have nonzero vacuum expectation values
(VEVs), for more details and for the values of all relevant parameters, see Ref. [11].

To describe the baryonic degrees of freedom and their interactions with mesons, we use the following La-
grangian which is invariant under global chiral U(3)R × U(3)L as well as parity and charge-conjugation trans-
formations:

LNf=3 = Tr
{

N̄1LiγµD
µ
2LN1L + N̄1RiγµD

µ
1RN1R + N̄2LiγµD

µ
1LN2L + N̄2RiγµD

µ
2RN2R

}

+Tr
{

M̄1LiγµD
µ
4RM1L + M̄1RiγµD

µ
3LM1R + M̄2LiγµD

µ
3RM2L + M̄2RiγµD

µ
4LM2R

}

− gN Tr
{

N̄1LΦN1R + N̄1RΦ
†N1L + N̄2LΦN2R + N̄2RΦ

†N2L

}

− gM Tr
{

M̄1LΦ
†M1R + M̄1RΦM1L + M̄2LΦ

†M2R + M̄2RΦM2L

}

−m0,1 Tr
{

N̄1LM1R + M̄1RN1L + N̄2RM2L + M̄2LN2R

}

−m0,2 Tr
{

N̄1RM1L + M̄1LN1R + N̄2LM2R + M̄2RN2L

}

− κ1 Tr
{

N̄1RΦ
†N2LΦ + N̄2LΦN1RΦ

†}− κ′1 Tr
{

N̄1LΦN2RΦ+ N̄2RΦ
†N1LΦ

†}

− κ2 Tr
{

M̄1RΦM2LΦ+ M̄2LΦ
†M1RΦ

†}− κ′2 Tr
{

M̄1LΦ
†M2RΦ + M̄2RΦM1LΦ

†}

− ǫ1
(

Tr
{

N̄1LΦ
}

Tr {N2RΦ}+Tr
{

N̄2RΦ
†}Tr

{

N1LΦ
†})

− ǫ2
(

Tr
{

M̄1RΦ
}

Tr {M2LΦ}+Tr
{

M̄2LΦ
†}Tr

{

M1RΦ
†})

− ǫ3 Tr
{

Φ†Φ
}

Tr
{

N̄1LM1R + M̄1RN1L + N̄2RM2L + M̄2LN2R

}

− ǫ4 Tr
{

Φ†Φ
}

Tr
{

N̄1RM1L + M̄1LN1R + N̄2LM2R + M̄2RN2L

}

, (11)

where the covariant derivatives are given by

Dµ
kR = ∂µ − ickR

µ , Dµ
kL = ∂µ − ickL

µ , k = 1, . . . , 4 ,

with dimensionless coupling constants c1, . . . , c4, which determine the strength of baryon-baryon-(axial-)vector
interactions. The interactions of the baryonic fields with (pseudo)scalar mesons are parametrized by gN and gM ,
which are also dimensionless. The terms proportional to κ1, κ2, κ

′
1, κ

′
2 (and ǫi) are included because otherwise the

baryonic fields become pairwise degenerate in mass (see Appendix A). Terms parametrized by ǫi are proportional
to a product of two traces. Such terms are large-Nc suppressed (OZI rule) and will be neglected in the following
discussion. The explicit form of the Lagrangian in terms of the parity eigenstates BN , BN∗, BM , and BM∗ is
given in Appendix B.

Note that the terms in the first four lines of Eq. (11) have naive scaling dimension four, and are thus
dilatation-invariant. The terms in the fifth and sixth lines have naive scaling dimension three. Thus, they
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formally break dilatation symmetry, but can be made dilation-invariant assuming that m0,1 and m0,2 are
proportional to a gluon and/or a four-quark condensate (with a dimensionless proportionality constant). Such
terms arise from the (dilatation-invariant) interaction of a glueball and/or a four-quark state with baryons,
assuming that a spontaneous or explicit symmetry breaking mechanism induces a non-vanishing VEV for the
gluon and/or the four-quark field. For a more detailed description of how one can render the mass term
dilation-invariant by including a tetraquark see e.g. Ref. [18].

The terms in the seventh to twelfth line of Eq. (11) have naive scaling dimension five and therefore also break
dilatation symmetry. However, in this case the coupling constants κi, κ

′
i, and ǫi would need to be proportional

to inverse powers of a gluon and/or a four-quark condensate. Such terms can only arise from non-analytic
interaction terms between baryons and glueballs/four-quark states, which should be avoided in a Lagrangian
prescription. Nevertheless, these terms may also be considered as effective four-point interactions arising from
two (dilatation-invariant) three-point interaction vertices between a meson, a baryon, and a heavier baryonic
resonance, where the vertices are connected by a propagator of the latter. If the mass of the baryon resonance
is much larger than the typical energy scale where the Lagrangian (11) is applicable, its propagator may be
considered to be static and homogeneous, resulting in the four-point interactions proportional to κi, κ

′
i, and ǫi

in Eq. (11).

2.3 The Lagrangian for Nf = 2

In this section we reduce the Nf = 3 Lagrangian (11) to Nf = 2 flavors. In order to achieve this reduction, we
set all strange quark fields s to zero. Only the (1 3)- and (2 3)-elements of the baryonic matrices remain:

BN
s=0−−→





0 0 Ψ1
N

0 0 Ψ2
N

0 0 0



 , BN∗
s=0−−→





0 0 Ψ1
N∗

0 0 Ψ2
N∗

0 0 0



 , (12)

BM
s=0−−→





0 0 Ψ1
M

0 0 Ψ2
M

0 0 0



 , BM∗
s=0−−→





0 0 Ψ1
M∗

0 0 Ψ2
M∗

0 0 0



 , (13)

where Ψ
1(2)
i (i = N,N∗,M,M∗) are fields with quark content Ψ1

i =̂ uud and Ψ2
i =̂ udd. Applying the same to

the meson matrix Φ and to the left- and right-handed (axial-)vector fields, Lµ and Rµ, we obtain

Φ
S=0−−−→ 1√

2







(σN+ϕN+a0

0
)+i(ηN+π0)√
2

a+0 + iπ+ 0

a−0 + iπ− (σN+ϕN−a0

0
)+i(ηN−π0)√
2

0

0 0 ϕS






≡





(

ΦNf=2

) 0
0

0 0 1√
2
ϕS



 , (14)

Rµ S=0−−−→ 1√
2









ωµ

N
+ρµ0

√
2

− fµ

1N
+aµ0

1√
2

ρµ+ − aµ+1 0

ρµ− − aµ−1
ωµ

N−ρµ0

√
2

− fµ
1N−aµ0

1√
2

0

0 0 0









≡





(

Rµ
Nf=2

)

0
0

0 0 0



 , (15)

Lµ S=0−−−→ 1√
2









ωµ

N
+ρµ0

√
2

+
fµ

1N
+aµ0

1√
2

ρµ+ + aµ+1 0

ρµ− + aµ−1
ωµ

N
−ρµ0

√
2

+
fµ

1N
−aµ0

1√
2

0

0 0 0









≡





(

Lµ
Nf=2

)

0
0

0 0 0



 . (16)

Note that it is crucial to first consider the condensation of both scalar fields σN and σS and only then set the
mesons with s quarks to zero, otherwise one would lose the VEV ϕS of the field σS . For Nf = 2 it is common
to write the 2 × 2 meson matrices in the basis of the three SU(2) generators T = τ/2, where τ are the Pauli
matrices, and T 0 = 12x2/2:

ΦNf=2 = (σN + ϕN + iηN )T 0 + (a0 + iπ) · T ,

Rµ
Nf=2 = (ωµ − fµ

1 )T
0 + (ρµ − a

µ
1 ) · T ,

Lµ
Nf=2 = (ωµ + fµ

1 )T
0 + (ρµ + a

µ
1 ) · T .

As already indicated in the notation the fields are identified with the mesons listed in Ref. [34] in the fol-
lowing way. The scalar resonances σ and a0 are assigned to f0(1370) and a0(1450). The second possibility
{σ,a0}=̂{f0(500), a0(980)} has to be excluded, because then our model cannot describe the scattering lengths
and the decay σ → ππ at the same time, for more details see Ref. [11]. The pseudoscalar ηN ≡ (ūu + d̄d)/

√
2
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is the SU(2) counterpart of the η meson, and π corresponds to the pion triplet. The vectors ωµ and ρµ repre-
sent the resonances ω(782) and ρ(770) and the axial-vector fields fµ

1 and a
µ
1 are identified with the resonances

f1(1285) and a1(1260).

The resulting Lagrangian for the case Nf = 2 reads (for details see Appendix B):

LNf=2 = Ψ̄NRiγµD
µ
NRΨNR + Ψ̄NLiγµD

µ
NLΨNL + Ψ̄N∗RiγµD

µ
NRΨN∗R + Ψ̄N∗LiγµD

µ
NLΨN∗L

+Ψ̄MRiγµD
µ
MLΨMR + Ψ̄MLiγµD

µ
MRΨML + Ψ̄M∗RiγµD

µ
MLΨM∗R + Ψ̄M∗LiγµD

µ
MRΨM∗L

+cAN

(

Ψ̄NRiγµR
µΨN∗R + Ψ̄N∗RiγµR

µΨNR − Ψ̄NLiγµL
µΨN∗L − Ψ̄N∗LiγµL

µΨNL

)

+cAM

(

Ψ̄MRiγµL
µΨM∗R + Ψ̄M∗RiγµL

µΨMR − Ψ̄MLiγµR
µΨM∗L − Ψ̄M∗LiγµR

µΨML

)

−gN
(

Ψ̄NLΦΨNR + Ψ̄NRΦ
†ΨNL + Ψ̄N∗LΦΨN∗R + Ψ̄N∗LΦ

†ΨN∗R
)

−gM
(

Ψ̄MLΦ
†ΨMR + Ψ̄MRΦΨML + Ψ̄M∗LΦ

†ΨM∗R + Ψ̄M∗LΦΨM∗R
)

−m0,1 +m0,2

2

(

Ψ̄NLΨMR + Ψ̄NRΨML + Ψ̄N∗LΨM∗R + Ψ̄N∗RΨM∗L
+ Ψ̄MLΨNR + Ψ̄MRΨNL + Ψ̄M∗LΨN∗R + Ψ̄M∗RΨN∗L

)

−m0,1 −m0,2

2

(

Ψ̄NLΨM∗R − Ψ̄NRΨM∗L − Ψ̄MLΨN∗R + Ψ̄MRΨN∗L
− Ψ̄N∗LΨMR + Ψ̄N∗RΨML + Ψ̄M∗LΨNR − Ψ̄M∗RΨNL

)

−κ
′
1 + κ1
2

ϕS√
2

(

−Ψ̄NLΦΨNR − Ψ̄NRΦ
†ΨNL + Ψ̄N∗LΦΨN∗R + Ψ̄N∗RΦ

†ΨN∗L
)

−κ
′
1 − κ1
2

ϕS√
2

(

Ψ̄NLΦΨN∗R − Ψ̄NRΦ
†ΨN∗L − Ψ̄N∗LΦΨNR + Ψ̄N∗RΦ

†ΨNL

)

−κ
′
2 + κ2
2

ϕS√
2

(

−Ψ̄MLΦ
†ΨMR − Ψ̄MRΦΨML + Ψ̄M∗LΦ

†ΨM∗R + Ψ̄M∗RΦΨM∗L
)

−κ
′
2 − κ2
2

ϕS√
2

(

Ψ̄MLΦ
†ΨM∗R − Ψ̄MRΦΨM∗L − Ψ̄M∗LΦ

†ΨMR + Ψ̄M∗RΦΨML

)

, (17)

where we suppressed the subscript “Nf = 2” of the mesonic fields and introduced the isovectors Ψk = (Ψ1
k,Ψ

2
k)

T ,
k = N,N∗,M,M∗. The covariant derivatives are

Dµ
NR = ∂µ − icNR

µ , Dµ
NL = ∂µ − icNL

µ ,

Dµ
MR = ∂µ − icMR

µ , Dµ
ML = ∂µ − icML

µ ,

with

cN =
c1 + c2

2
and cM =

c3 + c4
2

.

These two constants parametrize the coupling between baryons of equal parity. The constants

cAN
=
c1 − c2

2
and cAM

=
c3 − c4

2

describe the coupling of two baryons with different parity to (axial-)vector mesons.

Interestingly, the number of parameters of this Nf = 2 Lagrangian obtained as a reduction of the more
general Nf = 3 Lagrangian is smaller than what one would obtain by directly writing down the corresponding
two-flavor Lagrangian with four multiplets. This is due to the fact that some terms are not allowed because
of the more complex parity and charge-conjugation transformations of the baryonic fields in the Nf = 3 case
[some terms which in principle have different coupling constants in the Nf = 2 case [9], have now the same, as
they transform into each other under parity or charge conjugation].
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2.4 The Mass Matrix

After SSB in the meson sector (see Appendix C), the following terms contribute to the mass matrix of the four
fields ΨN , ΨN∗, ΨM , and ΨM∗:

Lmass = −
(

gNϕN

2
− κ′1 + κ1

4
√
2

ϕNϕS

)

Ψ̄NΨN −
(

gNϕN

2
+
κ′1 + κ1

4
√
2

ϕNϕS

)

Ψ̄N∗ΨN∗

−
(

gMϕN

2
− κ′2 + κ2

4
√
2

ϕNϕS

)

Ψ̄MΨM −
(

gMϕN

2
+
κ′2 + κ2

4
√
2

ϕNϕS

)

Ψ̄M∗ΨM∗

− κ′1 − κ1

4
√
2

ϕNϕS

(

Ψ̄Nγ
5ΨN∗ − Ψ̄N∗γ

5ΨN

)

− κ′2 − κ2

4
√
2

ϕNϕS

(

Ψ̄Mγ
5ΨM∗ − Ψ̄M∗γ

5ΨM

)

− m0,1 +m0,2

2

(

Ψ̄NΨM + Ψ̄N∗ΨM∗ + Ψ̄MΨN + Ψ̄M∗ΨN∗

)

− m0,2 −m0,1

2

(

Ψ̄Nγ
5ΨM∗ + Ψ̄N∗γ

5ΨM − Ψ̄Mγ
5ΨN∗ − Ψ̄M∗γ

5ΨN

)

, (18)

where ϕN and ϕS are the VEVs of the σN and σS meson, respectively. In order to determine the physical fields
N939, N1535, N1440, and N1650 corresponding to the resonances N(939), N(1525), N(1535), and N(1640), we
have to diagonalize the Lagrangian. To this end, we define the vector

Ψ = (ΨN , γ
5ΨN∗,ΨM , γ

5ΨM∗)
T =⇒ Ψ̄ = (Ψ̄N ,−Ψ̄N∗γ

5, Ψ̄M ,−Ψ̄M∗γ
5) . (19)

The additional γ5 matrices are introduced in order to avoid such matrices in the mass matrix (20). As a
consequence, all four components of the vector Ψ have the same parity.

Rewriting Eq. (18) in matrix form, Lmass = −Ψ̄MΨ, we obtain the mass matrix

M ≡ 1

2















gNϕN − κ′

1
+κ1

2
√
2
ϕNϕS

κ′

1
−κ1

2
√
2
ϕNϕS m0,1 +m0,2 m0,1 −m0,2

κ′

1
−κ1

2
√
2
ϕNϕS −gNϕN − κ′

1
+κ1

2
√
2
ϕNϕS m0,2 −m0,1 −m0,1 −m0,2

m0,1 +m0,2 m0,2 −m0,1 gMϕN − κ′

2
+κ2

2
√
2
ϕNϕS

κ′

2
−κ2

2
√
2
ϕNϕS

m0,1 −m0,2 −m0,1 −m0,2
κ′

2
−κ2

2
√
2
ϕNϕS −gMϕN − κ′

2
+κ2

2
√
2
ϕNϕS















.

(20)

At this point it is possible to compare to the Lagrangian of Ref. [9], which only describes the nucleon and
its chiral partner. If m0,1 = −m0,2 and κ1(2) = κ′1(2), the mass matrix is of the form,

Mdecoupled =
1

2











gNϕN − κ1√
2
ϕNϕS 0 0 2m0,1

0 −gNϕN − κ1√
2
ϕNϕS −2m0,1 0

0 −2m0,1 gMϕN − κ2√
2
ϕNϕS 0

2m0,1 0 0 −gMϕN − κ2√
2
ϕNϕS











.

Obviously, the fields ΨN and ΨM∗ completely decouple from the fields ΨN∗ and ΨM , and the diagonalization
of the two sets can be performed independently. However, it is not clear which of the two states ΨN∗ and
ΨM∗ should be identified with the chiral partner of ΨN (the putative nucleon field), because all states become
degenerate in mass (all masses are equal to m0,1) when chiral symmetry is restored (ϕN , ϕS → 0).

In order to diagonalize the mass matrix (20), we have to solve the eigenvalue problem

Muk = mkuk ,

M ijujk = mku
i
k , (21)

where uk (k ∈ {1, ..., dim(M) = 4}) are the eigenvectors and mk are the four eigenvalues of the mass matrix
M . Note that a sum over j (but not over k) is understood. By multiplying Eq. (21) with ul from the left-hand
side, we find

uilMiju
j
k = mku

i
lu

i
k ≡ mkδkl ,

for orthogonal eigenvectors, ul · uk = δlk. Hence the matrix

Uij = uij (22)

diagonalizes M :

U †MU = diag(m1,m2,m3,m4) ≡ diag(m939,−m1535,m1440,−m1650) .
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In the second equality we took into account that, due to the definitions (19) and (23), the masses of the negative-
parity states correspond to negative eigenvalues of M . Returning to the Lagrangian (18), we now realize that
it is diagonalized by

Lmass = −Ψ̄UU †MUU †Ψ = −Ψ̄physdiag(m1,m2,m3,m4)Ψ
phys ,

with the physical fields

Ψphys = U †Ψ ≡
(

N939, γ
5N1535, N1440, γ

5N1650

)T
. (23)

The eigenvalues of M , which (up to a sign) correspond to the masses of the physical fields N939, N1535, N1440,
and N1650, are determined by the roots of the equation

det
[

M −mi14×4

]

=0 .

In the general case, this will be done numerically, see Sec. 3. However, in the chiral limit, i.e., ϕN , ϕS → 0, one
can easily do this analytically. In this case, denoting M̄ ≡ (m0,1 +m0,2)/2 and µ ≡ (m0,1 −m0,2)/2, the mass
matrix reads

Mchiral limit ≡









0 0 M̄ µ
0 0 −µ −M̄
M̄ −µ 0 0
µ −M̄ 0 0









.

The eigenvalues of this matrix are λ1,2 = ±(M̄ + µ) = ±m0,1 and λ3,4 = ±(M̄ − µ) = ±m0,2. As expected, we
have two distinct sets of chiral partners. One set has the mass m0,1 and the other the mass m0,2, which is in
general different from m0,1. In order to decide which mass eigenstates are chiral partners, we need to compute
the transformation matrix U . Somewhat surprisingly,

U =
1

2









1 −1 1 1
−1 1 1 1
1 1 1 −1
1 1 −1 1









≡ U † ,

which means that the mass eigenstates are uniform mixtures of the fields ΨN , γ5ΨN∗,ΨM , and γ5ΨM∗. The
chiral partners with mass m0,1 are given by the linear combinations ΨN − γ5ΨN∗+(ΨM + γ5ΨM∗) and −ΨN +
γ5ΨN∗ + (ΨM + γ5ΨM∗), while the chiral partners with mass m0,2 are given by ΨN + γ5ΨN∗ + (ΨM − γ5ΨM∗)
and ΨN + γ5ΨN∗ − (ΨM − γ5ΨM∗), respectively. Therefore, it is impossible to decide whether N(1535) or
N(1650) is the chiral partner of the nucleon. The solution to this problem will be presented in the next section,
where we compute the eigenvalues as a function of ϕN to trace whether the mass of N(1535) or that of N(1650)
approaches the nucleon mass in the chiral limit.

3 Results

The Lagrangian of the model in the Nf = 2 case [cf. Eqs. (17) and (28)] contains the following twelve parameters
in the baryonic sector: the mass parameters m0,1 and m0,2, and the coupling constants cN , cM , cAN

, cAM
, gN ,

gM , κ1, κ2, κ
′
1, and κ′2. To determine these parameters, we use the experimental values of the masses of the

four baryonic states, the partial decay widths of the baryonic resonances into a nucleon and a pseudoscalar
meson, ΓN(1535)→Nπ, ΓN(1535)→Nη, ΓN(1650)→Nπ, ΓN(1650)→Nη, and ΓN(1440)→N(939)π , and the axial coupling

constant g
N(939)
A , as well as lattice results [37] for g

N(1440)
A , g

N(1535)
A , and g

N(1650)
A . In total, there are thirteen

experimental values, which are fitted to twelve parameters. The parameters Z, w, ϕN , and ϕS are already
determined by meson physics [11].

For the baryon masses we use the values given by the PDG [34]. Since our model does not contain isospin-
breaking effects it is not expected to describe the baryon masses to the (in some cases very high) experimental
precision. Therefore we assume a 5% uncertainty of the masses [a strategy that was already followed in the fit
of Ref. [12]].

The expressions for the decay widths into pseudoscalar mesons and the axial coupling constants are given in
Appendices D and E. The experimental values of the decay widths are obtained from the total width and the
branching ratios given by the PDG [34]. The nucleon axial coupling constant is also quoted by the PDG [34],
while all other axial coupling constants result from lattice-QCD calculations [37].

Using a standard χ2 procedure we find that three acceptable and almost equally deep minima exist. Their
corresponding parameter values are given in Table 1. It is interesting to note that the first two minima lead
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Table 1: The parameter values of the three χ2 minima and the comparison to experimental quantities.

minimum 1 minimum 2 minimum 3 experiment/lattice

m0,1 [GeV] 0.1393 ± 0.0026 0.14 ± 0.11 −1.078 ± 0.017 -
m0,2 [GeV] −0.2069 ± 0.0027 −0.18 ± 0.12 0.894 ± 0.019 -
cN −2.071 ± 0.023 −2.83 ± 0.39 −33.6 ± 2.2 -
cM 12.4 ± 1.3 11.7 ± 1.8 −19.1 ± 3.1 -
cAN

−1.00 ± 0.23 0.03 ± 0.40 −2.68 ± 0.80 -
cAM

−51.0 ± 2.8 80 ± 41 −71.7 ± 6.5 -
gN 15.485 ± 0.012 15.24 ± 0.36 10.58 ± 0.24 -
gM 17.96 ± 0.17 18.26 ± 0.52 13.07 ± 0.33 -
κ1 [GeV−1] 37.80 ± 0.26 59.9 ± 8.5 32.4 ± 4.2 -
κ′1 [GeV−1] 57.12 ± 0.29 29.8 ± 6.6 55.2 ± 4.0 -
κ2 [GeV−1] −20.7 ± 2.5 32 ± 13 −20 ± 13 -
κ′2 [GeV−1] 41.5 ± 3.2 −8 ± 13 48.9 ± 4.5 -

mN [GeV] 0.9389 ± 0.0010 0.9389 ± 0.0010 0.9389 ± 0.0010 0.9389 ± 0.001
mN(1440) [GeV] 1.430 ± 0.071 1.432 ± 0.073 1.429 ± 0.074 1.43 ± 0.07
mN(1535) [GeV] 1.561 ± 0.065 1.585 ± 0.069 1.559 ± 0.069 1.53 ± 0.08
mN(1650) [GeV] 1.658 ± 0.076 1.619 ± 0.071 1.663 ± 0.081 1.65 ± 0.08
ΓN(1440)→Nπ [GeV] 0.195 ± 0.087 0.195 ± 0.088 0.196 ± 0.087 0.195 ± 0.087
ΓN(1535)→Nπ [GeV] 0.072 ± 0.019 0.073 ± 0.019 0.072 ± 0.019 0.068 ± 0.019
ΓN(1535)→Nη [GeV] 0.0055 ± 0.0025 0.0062 ± 0.0024 0.0055 ± 0.0027 0.063 ± 0.018
ΓN(1650)→Nπ [GeV] 0.112 ± 0.033 0.114 ± 0.033 0.112 ± 0.033 0.105 ± 0.037
ΓN(1650)→Nη [GeV] 0.0117 ± 0.0038 0.0109 ± 0.0038 0.0119 ± 0.0038 0.015 ± 0.008
gNA 1.2670 ± 0.0025 1.2670 ± 0.0025 1.2670 ± 0.0025 1.267 ± 0.003

g
N(1440)
A 1.20 ± 0.20 1.19 ± 0.20 1.21 ± 0.21 1.2 ± 0.2

g
N(1535)
A 0.20 ± 0.30 0.21 ± 0.30 0.20 ± 0.31 0.2 ± 0.3

g
N(1650)
A 0.55 ± 0.20 0.55 ± 0.20 0.55 ± 0.20 0.55 ± 0.2

χ2 10.3 10.7 10.3 -

to small values of m0,1 and m0,2, while the third one features values of these constants which are close to the
vacuum mass of the nucleon. Thus, for the first two minima, the main contribution to all masses arises from
chiral symmetry breaking, while in the third minimum, most of the mass is generated by another source, e.g. a
gluon condensate.

The numerical results for the experimental quantities obtained using the above parameters are also given in
Table 1. Most of these quantities are described by all solutions of the model within one standard deviation. The
most important exception is the N(1535) → Nη decay width, which deviates by about an order of magnitude
from the experimental value for all scenarios explored (in fact, this deviation completely dominates the value
of χ2). Note that this quantity was also not well described in the study of Ref. [9]. Thus, including more
multiplets does not solve this problem, as was erroneously speculated in that reference. Other ideas towards a
solution are described in the next section.

It is interesting to discuss the numerical results for the mass matrix M and the mixing matrix U :

• MINIMUM 1: Using the parameters corresponding to minimum 1 the mass matrix (20) reads

Mmin1 =









0.926 0.071 −0.034 0.173
0.071 −1.623 −0.173 0.034

−0.034 −0.173 1.402 0.228
0.173 0.034 0.228 −1.555









GeV .

Furthermore, with the numerical value for the transformation matrix Uij defined in Eq. (22) and composed
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of the eigenvectors of the mass matrix, Eq. (23) can be written as









N939

γ5N1535

N1440

γ5N1650









=









−0.996 −0.025 −0.046 −0.074
0.075 −0.492 0.039 −0.867

−0.050 −0.057 0.995 0.073
0.010 0.869 0.086 −0.488

















ΨN

γ5ΨN∗
ΨM

γ5ΨM∗









. (24)

Here one can see that, to a first approximation,N939 ≈ ΨN , N1440 ≈ ΨM , N1535 ≈ ΨM∗, andN1650 ≈ ΨN∗.
Furthermore, the two negative-parity states N1535 and N1650 mix appreciably with each other; the mixing
angle is ∼ 30◦.

In order to decide which states form chiral partners, we also compute the masses as a function of ϕN ,
keeping ϕS at its vacuum value. This allows us to trace the masses when chiral symmetry is restored,
ϕN → 0. [Note that ϕS only appears together with a factor ϕN in the mass matrix (20)]. The result is
shown in Fig. 1, from which we unanimously conclude that N(939) and N(1535) are chiral partners, with
a common mass m0,1 = 139 MeV when chiral symmetry is restored. Consequently, N(1440) and N(1650)
are chiral partners with a mass |m0,2| = 207 MeV as ϕN → 0.
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Figure 1: Masses as a function of ϕN for minimum 1.

• MINIMUM 2: In this case, the mass matrix reads

Mmin2 =









0.925 −0.111 −0.017 0.161
−0.111 −1.583 −0.161 0.017
−0.017 −0.161 1.415 −0.146
0.161 0.017 −0.146 −1.590









GeV .

Furthermore, the second minimum has the following transformation matrix:









N939

γ5N1535

N1440

γ5N1650









=









−0.996 0.046 −0.039 −0.061
−0.002 0.806 0.072 0.587
−0.038 −0.052 0.997 −0.051
0.076 0.588 −0.007 −0.805

















ΨN

γ5ΨN∗
ΨM

γ5ΨM∗









. (25)

As for minimum 1, the negative-parity states mix strongly but the mixing matrix is different. Here, we
may conclude that N(1650) can be predominantly assigned to ΨM∗.

In order to decide which states form chiral partners, we again compute the masses as a function of ϕN ,
keeping ϕS at its vacuum value. The result is shown in Fig. 2, from which we again unanimously conclude
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that N(939) andN(1535) are chiral partners, with a common massm0,1 = 144 MeV when chiral symmetry
is restored. Consequently, N(1440) and N(1650) are chiral partners with a mass |m0,2| = 178 MeV as
ϕN → 0.
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Figure 2: Masses as a function of ϕN for minimum 2.

• MINIMUM 3: In this case, the mass matrix reads

Mmin3 =









0.549 0.084 −0.092 −0.986
0.084 −1.192 0.986 0.092

−0.092 0.986 0.970 0.253
−0.986 0.092 0.253 −1.181









GeV .

The transformation matrix of the third minimum has a form that is completely different from those of
the other two minima:









N939

γ5N1535

N1440

γ5N1650









=









−0.865 −0.163 −0.312 0.358
0.140 0.830 −0.359 0.404

−0.292 0.327 0.875 0.207
−0.384 0.422 −0.093 −0.816

















ΨN

γ5ΨN∗
ΨM

γ5ΨM∗









. (26)

In this case, all states mix strongly with each other.

In order to decide which states form chiral partners, we again compute the masses as a function of ϕN ,
keeping ϕS at its vacuum value. The result is shown in Fig. 3, from which we again unanimously conclude
that N(939) andN(1535) are chiral partners, with a common massm0,2 = 894 MeV when chiral symmetry
is restored. Consequently, N(1440) and N(1650) are chiral partners with a mass |m0,1| = 1078 MeV as
ϕN → 0.

4 Conclusions and Outlook

In this work we have studied the generalization of the eLSM to the three-flavor case, thus including baryons
with strangeness (Nf = 3). We have found that, in a chiral quark-diquark model for the baryons, we naturally
need to consider four baryonic multiplets, if we require the presence of chirally invariant mass terms like in the
mirror assignment. Subsequently, we have reduced the model to the case Nf = 2 and performed a fit of the
parameters of the model to the masses and decay widths as well as the axial coupling constants of the nucleonic
resonances N(939), N(1440), N(1535), and N(1650). Masses and decay widths as well as the axial coupling

12
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Figure 3: Masses as a function of ϕN for minimum 3.

constant of the nucleon are experimentally known [34], for the axial coupling constants of the other resonances
we used lattice-QCD data [37].

From this fit, we found three minima which, with the exception of the decay N(1535) → Nη, yield results
for the masses, for the decay widths, and for the axial coupling constants that are in very good agreement with
data, see Table 1. Studying the approach to chiral-symmetry restoration ϕN → 0, we were able to unanimously
identify which of the four nucleonic resonances form chiral partners. For all three minima, these are the pairs
N(939), N(1535), as well as N(1440), N(1650).

Finally, let us discuss the issue with the decay width N(1535) → Nη. Our result that the theoretical value
turns out to be too small when compared to the experimental value is stable under parameter variations. This
implies that further studies are needed to understand the resonance N(1535). Some authors have argued that
N(1535) may contain a sizable amount of ss̄ [38, 39, 40]. Another interesting possibility is to investigate the
role of the chiral anomaly in the baryonic sector [41], which can lead to an enhanced coupling to the resonances
η and η′.

In the very recent study of Ref. [42] a chiral baryonic model with three flavors was constructed by making
use of parity doublets. There, a large variety of baryonic fields was included (also the decuplet is present), but
no (axial-)vector degrees of freedom were considered in the mesonic sector. The chirally invariant contribution
to the nucleon mass is in the range 500− 800 MeV, in agreement with our result for minimum 3. Interestingly,
in Ref. [42] upper bounds for the axial coupling constants were derived which fit well to our results.

Finally, in order to decide which of the three minima that resulted from our fit is preferable, we plan to
investigate the complete three-flavor case. Note that most of the parameters of the Lagrangian (11) are already
determined from the Nf = 2 fit, but many more experimental data, such as the masses of hyperons and their
decay widths, are available to discriminate between the three minima. The obtained values for the coupling
constants of hyperons to (pseudo)scalar and (axial-)vector mesons will be relevant for studies of scattering pro-
cesses in the vacuum [28, 29, 30, 31] as well as for neutron stars [32, 33]. In connection to the latter topic, one
can study nuclear matter at nonzero density and inhomogeneous chiral condensation, thus extending previous
investigations on the subjects [27, 43] in a more complete framework.
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A Mass Degeneracy in the Case of an Nf = 2 Lagrangian without κ

terms

In this Appendix we want to clarify why it is mandatory to include the κ and ǫ terms in the Lagrangian (11),
although they are not dilatation-invariant. Therefore, we consider the two-flavor case, given in Eq. (17) and in
Appendix C. Setting the constants κ1, κ2, κ

′
1, κ

′
2 (and ǫi with i = 1, 2, 3, 4) to zero, the part of the Lagrangian

which contains the terms contributing to the mass matrix of the four fields ΨN , ΨN∗, ΨM , and ΨM∗ reads
Lmass = −Ψ̄M ′Ψ. The definition of the vector Ψ is given in Eq. (19) and the mass matrix is given by

M ′ =
1

2









gNϕN 0 m0,1 +m0,2 m0,1 −m0,2

0 −gNϕN m0,2 −m0,1 −m0,1 −m0,2

m0,1 +m0,2 m0,2 −m0,1 gMϕN 0
m0,1 −m0,2 −m0,1 −m0,2 0 −gMϕN









.

Evaluating det
(

M ′ − mi14×4

)

= 0 and denoting Ω1/2 =
√

1
4 (m0,1 ±m0,2)2 +

1
16 (gN ∓ gM )2ϕ2

N , we find the

eigenvalues

m1 = Ω1 +Ω2 = −m2 ,

m3 = Ω1 − Ω2 = −m4 . (27)

Due to the definition of the vectors Ψ given in Eq. (19) and the definition of physical states in Eq. (23), the
physical masses correspond to the eigenvalues as follows: m939 = m1 and m1535 = −m2 as well as m1440 = m3

and m1650 = −m4. Having this in mind and considering the results for the eigenvalues given in Eq. (27)
it is clear that the masses of N(939) and N(1535) as well as the masses of N(1440) and N(1650) would be
degenerate. The only possibility to avoid a mass degeneracy but still keep chiral symmetry is to introduce the
κ (and ǫ) terms as shown in Eq. (11).
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B Explicit Lagrangian for Nf = 3 in Terms of Parity Eigenstates

From Eq. (8) and the Lagrangian (11) one obtains the following baryonic Lagrangian for Nf = 3 flavors as a
function of parity eigenstates:

LNf=3 =Tr
{

B̄NRiγµD
µ
NRBNR + B̄NLiγµD

µ
NLBNL + B̄N∗RiγµD

µ
NRBN∗R + B̄N∗LiγµD

µ
NLBN∗L

+ B̄MRiγµD
µ
MLBMR + B̄MLiγµD

µ
MRBML + B̄M∗RiγµD

µ
MLBM∗R + B̄M∗LiγµD

µ
MRBM∗L

}

+ cAN
Tr

{

B̄NRiγµR
µBN∗R + B̄N∗RiγµR

µBNR − B̄NLiγµL
µBN∗L − B̄N∗LiγµL

µBNL

}

+ cAM
Tr

{

B̄MRiγµL
µBM∗R + B̄M∗RiγµL

µBMR − B̄MLiγµR
µBM∗L − B̄M∗LiγµR

µBML

}

− gN Tr
{

B̄NLΦBNR + B̄NRΦ
†BNL + B̄N∗LΦBN∗R + B̄N∗LΦ

†BN∗R
}

− gM Tr
{

B̄MLΦ
†BMR + B̄MRΦBML + B̄M∗LΦ

†BM∗R + B̄M∗LΦBM∗R
}

− κ1
2

Tr
{

−B̄NLΦBNRΦ
† − B̄NRΦ

†BNLΦ+ B̄N∗LΦBN∗RΦ
† + B̄N∗RΦ

†BN∗LΦ

− B̄NLΦBN∗RΦ
† + B̄NRΦ

†BN∗LΦ+ B̄N∗LΦBNRΦ
† − B̄N∗RΦ

†BNLΦ
}

− κ′1
2

Tr
{

−B̄NLΦBNRΦ− B̄NRΦ
†BNLΦ

† + B̄N∗LΦBN∗RΦ+ B̄N∗RΦ
†BN∗LΦ

†

+ B̄NLΦBN∗RΦ− B̄NRΦ
†BN∗LΦ

† − B̄N∗LΦBNRΦ+ B̄N∗RΦ
†BNLΦ

†}

− κ2
2

Tr
{

−B̄MLΦ
†BMRΦ

† − B̄MRΦBMLΦ+ B̄M∗LΦ
†BM∗RΦ

† + B̄M∗RΦBM∗LΦ

− B̄MLΦ
†BM∗RΦ

† + B̄MRΦBM∗LΦ + B̄M∗LΦ
†BMRΦ

† − B̄M∗RΦBMLΦ
}

− κ′2
2

Tr
{

−B̄MLΦ
†BMRΦ− B̄MRΦBMLΦ

† + B̄M∗LΦ
†BM∗RΦ+ B̄M∗RΦBM∗LΦ

†

+ B̄MLΦ
†BM∗RΦ− B̄MRΦBM∗LΦ

† − B̄M∗LΦ
†BMRΦ+ B̄M∗RΦBMLΦ

†}

− m0,1 +m0,2

2
Tr

{

B̄NLBMR + B̄NRBML + B̄N∗LBM∗R + B̄N∗RBM∗L

+ B̄MLBNR + B̄MRBNL + B̄M∗LBN∗R + B̄M∗RBN∗L

}

− m0,1 −m0,2

2
Tr

{

B̄NLBM∗R − B̄NRBM∗L − B̄MLBN∗R + B̄MRBN∗L

− B̄N∗LBMR + B̄N∗RBML + B̄M∗LBNR − B̄M∗RBNL

}

,

where the covariant derivatives

Dµ
NR = ∂µ − icNR

µ , Dµ
NL = ∂µ − icNL

µ ,

Dµ
MR = ∂µ − icMR

µ , Dµ
ML = ∂µ − icML

µ ,

with

cN =
c1 + c2

2
and cM =

c3 + c4
2

.

These two constants parametrize the coupling between baryons of equal parity. The constants

cAN
=
c1 − c2

2
and cAM

=
c3 − c4

2

describe the coupling of two baryons with different parity to (axial-)vector mesons. The interaction of the
baryonic fields with the scalar and pseudoscalar mesonic fields are parametrized by gN and gM . The chirally

invariant mass terms are characterized by m0,1 and m0,2. The terms proportional to κ
(′)
1(2) are introduced to

avoid mass degeneracy (see Appendix A). In total the Lagrangian has twelve free parameters.
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C Explicit Lagrangian for Nf = 2 after SSB

After SSB in the meson sector (σN → σN + ϕN and σS → σS + ϕS), the full Lagrangian with two flavors
describing the nucleon, N(1440), and their chiral partners, as well as their interaction with scalar, pseudoscalar,
vector, and axial-vector mesons reads

L =Ψ̄N iγ
µ∂µΨN + Ψ̄N∗iγ

µ∂µΨN∗ + Ψ̄M iγ
µ∂µΨM + Ψ̄M∗iγ

µ∂µΨM∗

+ cN

(

Ψ̄N γµ
{[

ωµ − γ5 (fµ
1 + Zw∂µηN )

]

T 0 +
[

ρµ − γ5 (aµ
1 + Zw∂µπ)

]

· T
}

ΨN

+ Ψ̄N∗γµ
{[

ωµ − γ5 (fµ
1 + Zw∂µηN )

]

T 0 +
[

ρµ − γ5 (aµ
1 + Zw∂µπ)

]

· T
}

ΨN∗

)

+ cM

(

Ψ̄M γµ
{[

ωµ + γ5 (fµ
1 + Zw∂µηN )

]

T 0 +
[

ρµ + γ5 (aµ
1 + Zw∂µπ)

]

· T
}

ΨM

+ Ψ̄M∗γµ
{[

ωµ + γ5 (fµ
1 + Zw∂µηN )

]

T 0 +
[

ρµ + γ5 (aµ
1 + Zw∂µπ)

]

· T
}

ΨM∗

)

+ cAN

{

Ψ̄N γµ
[(

−fµ
1 − Zw∂µηN + γ5ωµ

)

T 0 +
(

−a
µ
1 − Zw∂µπ + γ5ρµ

)

· T
]

ΨN∗

+ Ψ̄N∗γµ
[(

−fµ
1 − Zw∂µηN + γ5ωµ

)

T 0 +
(

−a
µ
1 − Zw∂µπ + γ5ρµ

)

· T
]

ΨN

}

+ cAM

{

Ψ̄Mγµ
[(

fµ
1 + Zw∂µηN + γ5ωµ

)

T 0 +
(

a
µ
1 + Zw∂µπ + γ5ρµ

)

· T
]

ΨM∗

+ Ψ̄M∗γµ
[(

fµ
1 + Zw∂µηN + γ5ωµ

)

T 0 +
(

a
µ
1 + Zw∂µπ + γ5ρµ

)

· T
]

ΨM

}

− gN

{

Ψ̄N

[(

σ + ϕN + iγ5ZηN
)

T 0 +
(

a0 + iγ5Zπ
)

· T
]

ΨN

+ Ψ̄N∗
[(

σ + ϕN + iγ5ZηN
)

T 0 +
(

a0 + iγ5Zπ
)

· T
]

ΨN∗

}

− gM

{

Ψ̄M

[(

σ + ϕN − iγ5ZηN
)

T 0 +
(

a0 − iγ5Zπ
)

· T
]

ΨM

+ Ψ̄M∗
[(

σ + ϕN − iγ5ZηN
)

T 0 +
(

a0 − iγ5Zπ
)

· T
]

ΨM∗

}

− κ′1 + κ1

2
√
2

ϕS

{

−Ψ̄N

[(

σ + ϕN + iγ5ZηN
)

T 0 +
(

a0 + iγ5Zπ
)

· T
]

ΨN

+ Ψ̄N∗
[(

σ + ϕN + iγ5ZηN
)

T 0 +
(

a0 + iγ5Zπ
)

· T
]

ΨN∗

}

− κ′1 − κ1

2
√
2

ϕS

{

Ψ̄N

[(

iZηN + γ5(σ + ϕN )
)

T 0 +
(

iZπ + γ5a0

)

· T
]

ΨN∗

− Ψ̄N∗
[(

iZηN + γ5(σ + ϕN )
)

T 0 +
(

iZπ + γ5a0

)

· T
]

ΨN

}

− κ′2 + κ2

2
√
2

ϕS

{

−Ψ̄M

[(

σ + ϕN − iγ5ZηN
)

T 0 +
(

a0 − iγ5Zπ
)

· T
]

ΨM

+ Ψ̄M∗
[(

σ + ϕN − iγ5ZηN
)

T 0 +
(

a0 − iγ5Zπ
)

· T
]

ΨM∗

}

− κ′2 − κ2

2
√
2

ϕS

{

−Ψ̄M

[(

iZηN − γ5(σ + ϕN )
)

T 0 +
(

iZπ − γ5a0

)

· T
]

ΨM∗

+ Ψ̄M∗
[(

iZηN − γ5(σ + ϕN )
)

T 0 +
(

iZπ − γ5a0

)

· T
]

ΨM

}

− m0,1 +m0,2

2

(

Ψ̄NΨM + Ψ̄N∗ΨM∗ + Ψ̄MΨN + Ψ̄M∗ΨN∗

)

− m0,2 −m0,1

2

(

Ψ̄Nγ
5ΨM∗ + Ψ̄N∗γ

5ΨM − Ψ̄Mγ
5ΨN∗ − Ψ̄M∗γ

5ΨN

)

. (28)

where the coupling to (axial-)vector mesons of two baryons with equal parity and a vector meson is parametrized
by cN = (c1 + c2)/2 and cM = (c3 + c4)/2 and of two baryons with opposite parity by cAN

= (c1 − c2)/2 and
cAM

= (c3 − c4)/2. All other constants are the same as in the Lagrangian (17). The factor w is introduced due
to the shift of the axial-vector fields in order to eliminate the mixing with the pseudoscalar fields, which occurs
after SSB, and Z is the so-called wave-function renormalization factor that takes care of the normalization of
the kinetic terms of the pseudoscalar mesonic fields after the shift, see Ref. [11] for more details.
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D Decay Widths

Because of the existing experimental data [34], we are especially interested in the decays of nucleon resonances
into the pseudoscalar mesons π and η. The Lagrangian describing the decay of a resonance N∗ into a nucleon
N and a pseudoscalar meson P = π, η has the general structure

L = gN∗→N∂P N̄ΓγµN∗∂
µP − igN∗→NP N̄ΓγµN∗P, (29)

where Γ = γ5 (1) for a positive-(negative-)parity N∗. The explicit expressions for the coupling constants
gN∗→N∂P and gN∗→NP can be obtained from the relevant terms of the Lagrangian (28), carrying out the
transformation (23). Using this the tree-level decay width can be calculated to be

ΓN∗→NP = λP
pf

8πm2
N∗

|iM|2 = κP
pf

4πmN∗

[

gN∗→NP − (mN∗
±mN)gN∗→N∂P

]2
(EN ∓mN ) , (30)

where the upper (lower) sign is valid for a positive-(negative-)parity N∗, EN is the nucleon energy in the rest
frame of the decaying N∗, while the magnitude of the three-momenta of the decay products is

pf =
1

2mN∗

√

(m2
N∗

−m2
N −m2

P )
2 − 4m2

Nm
2
P . (31)

Furthermore the factor λP is added by hand and should

• for P = π pay attention to the three possible isospin states of the pion, i.e.,

λπ = 3.

• and for P = η take into account that

η = ηN cosφP + ηS sinφP ,

where ηN ≡ (ūu+ d̄d)/
√
2 and ηS ≡ s̄s and φP is the mixing angle. Its value lies between −32◦ and −45◦

[44]. In this paper we have chosen φP = −44.6◦ obtained from Ref. [12]. It is assumed that the amplitude
of the decay N∗ → NηS is massively suppressed. This means that to good approximation

ΓN∗→Nη ≃ cos2 φPΓN∗→NηN
.

Thus:
λη = cos2 φP .

E Axial Coupling Constants

The Lagrangians in the Appendix B and Appendix C are invariant under UA = exp(−iθaγ5τa/2) ∈ U(Nf )A
axial transformations (θa are the parameters and τa/2 the generators). Due to Noether’s theorem [45] one gets
the following axial current

Aa,µ =g
(1)
A Ψ̄Nγ

µγ5
τa

2
ΨN + g

(1)
A Ψ̄N∗γ

µγ5
τa

2
ΨN∗ + g

(2)
A Ψ̄Mγ

µγ5
τa

2
ΨM + g

(2)
A Ψ̄M∗γ

µγ5
τa

2
ΨM∗

+ g
(12)
A Ψ̄Nγ

µ τ
a

2
ΨN∗ + g

(12)
A Ψ̄N∗γ

µ τ
a

2
ΨN + g

(34)
A Ψ̄Mγ

µ τ
a

2
ΨM∗ + g

(34)
A Ψ̄M∗γ

µ τ
a

2
ΨM , (32)

where

g
(1)
A = 1− cN

g1

(

1− 1

Z2

)

, g
(2)
A = −1 +

cM
g1

(

1− 1

Z2

)

,

are the axial coupling constants of the bare fields ΨN , ΨN∗, ΨM , and ΨM∗, and

g
(12)
A = −cAN

g1

(

1− 1

Z2

)

, g
(34)
A =

cAM

g1

(

1− 1

Z2

)

are the ‘mixed’ axial coupling constants of the bare fields ΨN with ΨN∗ and ΨM with ΨM∗.
The expressions for the axial coupling constants of the physical fields can be obtained from the relevant

terms of the axial current (32) after the transformation to parity eigenstates (23) has been carried out.
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