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Abstract

In this paper we study the system of two falling balls in continuous time. We modell the system
by a suspension flow over a two dimensional, hyperbolic base map. By detailed analysis of the
geometry of the system we identify special periodic points and show that the ratio of certain periods
in continuous time is Diophantine for almost every value of the mass parameter in an interval. Using
results of Melbourne ([13]) and our previous achievements [1] we conclude that for these values of the
parameter the flow mixes faster than any polynomial. Even though the calculations are presented
for the specific physical system, the method is quite general and can be applied to other suspension
flows, too.

Introduction

One of the main motivations for studying the statistical properties of hyperbolic dynamical systems is
related to applications in physics. Yet, models with direct physics relevance are typically complicated, and
thus results concerning such systems are quite limited. A remarkable exception is the class of dispersing
billiards, see [6] for a detailed description of their theory.

The system of falling balls investigated in the present paper cannot be regarded as a small pertur-
bation of a dispersing billiard, especially as far as the dynamics in continuous time is concerned. This
model introduced by Wojtkowski in [17] describes the motion of n point masses along a vertical half-line
under the action of gravity, which collide elastically with each other and the floor. This system can
be considered both in discrete and in continuous time. The first results were on hyperbolicity, i.e. non-
vanishing of all relevant Lyapunov exponents. In [17] Wojtkowski proved hyperbolicity in case the masses
of the particles are strictly decreasing up the line. Later Simányi weakened this assumption, in [16] he
showed hyperbolicity, when the masses of the particles decrease (but not necessarily strictly) up the

1

ar
X

iv
:1

50
6.

01
88

8v
1 

 [
m

at
h.

D
S]

  5
 J

un
 2

01
5



line and there are at least two different masses. Aiming at finer chaotic properties, in [12] Wojtkowski
and Liverani developed a general method to show ergodicity for Hamiltonian systems and this could
be used to show ergodicity of the system of two falling balls, in case the lower ball is heavier. Earlier
Chernov showed a similar result in [4]. However, for three or more particles ergodicity is still an open
question. In the ergodic regime of the two falling balls a detailed geometric description of the system and
a quantitative analysis of the discrete time map lead to the verification of fine statistical properties in
[1], in particular polynomial decay of correlations and the central limit theorem for Hölder observables.

In this paper we investigate the system of two falling balls in continuous time. Studying statisti-
cal properties of hyperbolic flows is a technically involved task which is mostly related to the lack of
hyperbolic behavior in the flow direction. In the past two decades there has been substantial activity
in this field, here we summarize some results that are closely related to our work. An essential break-
through was initiated by Chernov in [5], where, using Markov approximations, he obtained a stretched
exponential bound on time correlations for 3-dimensional Anosov flows that verify the so called ‘uniform
nonintegrability of foliations’ condition (UNI for short). Dolgopyat developed Chernov’s result in two
different directions. On the one hand, in [8] he showed that Anosov flows satisfying the UNI condition
and a high degree of regularity are exponentially mixing. In his later work he studied the more general
class of suspension flows over subshifts of finite type and in [7] he proved that such flows are typically
rapid mixing, meaning that time correlations for sufficiently regular observables decay faster than any
polynomial. Here the typicality condition is related to the presence of two periodic orbits such that
the ratio of their periods satisfies a Diophantine condition. This condition plays an important role in
our paper, thus we introduce the abbreviation DPO (Diophantine periodic orbits) for later reference.
Dolgopyat’s result on rapid mixing was extended by Melbourne ([13]) to suspensions over Gibbs-Markov
maps and also to suspensions over hyperbolic maps that can be modelled by a Young-tower ([18],[19])
with exponential tails.

The DPO condition is a much weaker form of non-integrability in the flow direction than the UNI
condition. Yet, in most applications, the verification of either UNI or DPO is based on the invariance
of a canonical contact form or a perturbation thereof (see [11] or [2] for example).1 Other than that,
we are only aware of results that prove DPO – and hence rapid mixing – for a class of flows that is
residual in an appropriate topology, and not for specific examples. Note that for Hamiltonian flows on
cotangent bundles the canonical contact form associated to the symplectic form is preserved only if the
Hamiltonian is a homogeneous function of the momenta (see [10], section 5.6). For the flow of two falling
balls by the presence of a non-infinitesimal external field the Hamiltonian cannot be regarded as a small
perturbation of a homogeneous function, hence we seek for alternative methods.

In the present paper we prove DPO for the system of two falling balls, for almost every value of the
mass ratio within a large interval (in the ergodic regime). To conclude that the system mixes rapidly in
continuous time, we rely on [13]. This requires some additional work, as the periodic points originally
constructed are a macroscopic distance apart, while for [13] it is essential that they are present on the
base of the same Young tower. To obtain periodic points that can be realized on the base of the same
Young tower, we apply a shadowing type argument, the details of which require most of the technical
work in this paper. Similar ideas have already appeared in the literature, see in particular the notion of
“periodic points with good asymptotics” in [9]. Nonetheless, in [9] good asymptotics is used to conclude
stability of mixing and rapid mixing in the Cr topology, while here we implement a shadowing type
argument for the specific system of falling balls.

As a consequence of our analysis we conclude that the system of two falling balls mixes rapidly in
continuous time, for a set of mass ratios that has positive Lebesgue measure (cf. Theorem 2.2). It is
worth pointing out that our analysis applies for almost every value of the mass ratio, as long as the
mass of the lower ball is at least one and a half times larger than the mass of the upper ball. The only
reason why we have to restrict to a smaller set of mass ratios is that in [1] the presence of a Young tower
is established only for a smaller, yet open set of mass ratios. See our remarks after Formula (4.1) for

1In that respect, dispersing billiard flows may be regarded as singular geodesic flows.
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further discussion.
The rest of this paper is organized as follows. In section 1 we summarize the necessary prerequisites

concerning the system of two falling falling balls, mostly from [1]. In section 2 we discuss suspension
flows and state our main results. Section 3 contains the core argument of the paper, the construction of
the periodic points satisfying DPO, along with the shadowing type argument, for mass ratios m ∈ ( 2

3 ,
3
4 ).

Finally, section 4 discusses the extension to other values of the mass ratio.

1 Setup and notations

In this section we introduce the system and recall the necessary notations and results from our earlier
paper [1]. The exposition is self contained, for further details about the dynamics and its properties we
refer to our previous work.

The system of two falling balls, introduced by Wojtkowski in [17], describes the motion of two point
particles of masses m1 and m2 that move along the vertical half-line, subject to constant gravitational
force, and collide elastically with each other and the floor. We consider the case when the lower ball is
heavier (i.e. m1 > m2), which corresponds to ergodic and hyperbolic dynamics (as shown in [12] and
[17]). As the action of ball to ball collisions depends only on the ratio of the two masses we rescale
these masses such that m1 +m2 = 1. We introduce our mass parameter m and from now on we use the
notation that m1 = m, m2 = 1−m, where m ∈ (1/2, 1) since we are in the ergodic case.

h2

h1

m2

m1

v2

v1

"+"

gravity

Figure 1: The system of two falling balls

We neglect air resistance and assume all collisions to be totally elastic, therefore the flow preserves
the total energy of the system, which we set to be 1/2 for practical reasons. We discretize time by
considering the outgoing Poincaré section corresponding to moments when the lower ball hits the floor
and the next collision will occur between the two balls (and not between the lower one and the floor).
Based on the work of Wojtkowski we use the coordinates

h =
1

2
mv2

1 and z = v2 − v1,

to describe the system, where vi is the signed velocity of the i’th ball. This means that h is the energy of
the lower ball (since it is on the floor it only has kinetic energy) and z is the difference of the velocities.
Note that these coordinates are invariant between collisions. The phase space is then
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M1 :=
{

(h, z) ∈ R2| 0 < h < 1/2, 1/2− h > 1

2
(1−m)

(
z +

√
2h

m

)2

,

m(1−m)z

(
2

√
2h

m
− z
)
− 2h+m < 0

}
,

where the conditions arise as follows.

1. The first condition says that the energy of the lower ball is positive, but not greater than the total
energy of the system, which we set to 1/2 previously.

2. The second condition is the inequality that implies that the upper ball has positive height.

3. Finally, the third condition is to ensure that the two balls will collide before the lower ball returns
to the floor.

Recall that our Poincaré section M1 corresponds to situations in which

1. the lower ball is on the floor and

2. it will collide with the upper one before returning to the floor.

Hence, starting from a configuration (h, z) ∈M1, first the two balls collide, and then the lower one will
hit the floor several times before getting back to M1. Let us denote by R(h, z) the number of bumps of
the lower ball on the floor before returning to M1, starting from the configuration (h, z). Then for any
n ∈ N we introduce

Rn := {(h, z) ∈M1|R(h, z) = n}.
It is shown in [1] that none of these sets are empty. They are of course disjoint, moreover, even the
closures of any two of them are disjoint provided their indices differ by more than 1. This way, in fact,
the domains of continuity for the dynamics are identified, which provide a partition of the phase space
M1.

R0

R1

R2

0.1 0.2 0.3 0.4 0.5
h

-2.0

-1.5

-1.0

-0.5

z

Figure 2: The phase space of the dynamics

Indeed, let us denote the dynamics of the system by T : M1 → M1. Then using the classical
Newtonian laws of mechanics one can calculate that
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T (h, z) = (mF,−(2n+ 2)
√

2F − z) for (h, z) ∈ Rn, (1.1)

where

F = 1− h/m+ αz2, and α = 1− 3m+ 2m2. (1.2)

The latter quantities often occur in the formulas, that is why we introduced extra notation on them. It
can be seen from (1.1) that T is continuous, moreover C2 on each Rn, but the crucial dependence of T
on n shows that T is discontinuous on ∪∞n=0∂Rn. The discontinuities occur at the curves

rn := ∂Rn ∩ ∂Rn+1. (1.3)

These correspond to configurations starting from which the two balls collide, then the lower one hits
the floor n times and finally they land on the ground at the same time, on top of each other. Hence it
is not clear whether the lower one reached the floor before their collision, or if it was the other way
around. The two possible cases correspond to two different limits, one where the initial point (h, z) ∈ rn
is approached from inside Rn+1 and the other where it is approached from inside Rn.
As we pointed out T maps each Rn diffeomorphically onto its image. The jacobian of the dynamics is

DT |Rn(h, z) =

(
−1 2mαz√

2(n+1)

m
√
F

−1− (2n+2)
√

2αz√
F

)
. (1.4)

An important consequence of this formula is that det(DT (h, z)) = 1 and hence the normalized Lebesgue
measure on M1 is an absolutely continuous invariant probability measure of the dynamics, which, by
ergodicity, is unique. It can also be derived that DT (h, z) is a hyperbolic matrix at every point and that
it contains a rotation by 180 degrees.
Figure 3 demonstrates how T maps the set Rn onto its image. For further details about the regularity
properties of T [1], section 3 is referred. The important fact that we will use in this paper is that T is
uniformly hyperbolic (proved in [1] subsection 3.3), in the sense that there exists a forward invariant
unstable, and a backward invariant stable cone field (Cux and Csx respectively) and these cone fields are
uniformly transversal to each other. Curves γ such that the tangent line Txγ lies in the unstable cone
Cux for every x ∈ γ, are referred to as unstable curves. Stable curves are defined in an analogous way.
Again in [1] it is shown that stable curves are increasing, while unstable curves are decreasing in the
(h, z) coordinates.

Figure 3: The action of the dynamics on Rn

Concerning terminology it is important to distinguish stable manifolds as special stable curves. The
stable manifold of a point x ∈ M1 is defined as the curve W s(x) such that for y ∈ W s(x) we have
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d(Tnx, Tny) → 0 exponentially as n → ∞. Equivalently, W s is a stable manifold if TnW s is a smooth
stable curve for any n ≥ 0. By the general theory of hyperbolic systems with singularities, a unique
stable manifold of positive length passes through almost every x ∈ M1 (see eg. [6] and references
therein). Unstable manifolds are special unstable curves with analogous properties.

In our previous paper we proved the following statements (cf. [1], subsection 1.2 and section 5.)

Theorem 1.1. There exists an open interval I ⊆ (1/2, 1) such that for any mass ratio m ∈ I the discrete
time map T :M1 →M1 can be modelled by a Young-tower with exponential tails.

Theorem 1.2. If the system has subexponential complexity for some m ∈ (1/2, 1), then the discrete
time map T :M1 →M1 can be modelled by a Young-tower with exponential tails for this m ∈ (1/2, 1).

We also recall from our previous work that there is an involution for the map T , i.e. there is a smooth
map I :M1 →M1 such that

T−1 = I ◦ T ◦ I, (1.5)

on every smoothness component of T−1. This corresponds to the natural time reflection in the continuous
time system and its action in the coordinates (h, z) is given by

I(h, z) = (m(1− h/m+ αz2), z) = (mF, z). (1.6)

It can be deduced that I maps each Rn to T (Rn), and it follows from (1.5) that I maps stable curves
into unstable curves and vice versa, moreover it maps stable manifolds into unstable manifolds and vice
versa. Also, the curves I(rn) are the singularities of the inverse dynamics. Finally, let us recall from
[1] the notations for the corner points of the sets Rn and T (Rn). These are the intersections of the
singularities rn, or the inverse singularities I(rn) with the boundary of the phase space. All the curves
rn are stable curves, in particular they are increasing and hence it makes sense to talk about their left
and right endpoints. They are given, respectively, by the formulas

Bxn(m) = (Bxhn(m), Bxzn(m))

=
(m(−2m(n+ 2) + 2n+ 3)2

2(1−m)n(n+ 2) + 2
,− n+ 2√

1− (m− 1)n(n+ 2)

)
,

Xn(m) = (Xhn(m), Xzn(m))

=
( m(3 + 2n− 2m(n+ 1))2

2(n+ 2)2 − 2m(n+ 1)(n+ 3)
,− n+ 1√

(n+ 2)2 −m(n+ 1)(n+ 3)

)
.

(1.7)

The curves I(rn) are decreasing and so their left and right (or in this case rather top and bottom)
endpoints are well defined, too. They are given, respectively, by the formulas

Ixn(m) = (Ixhn(m), Ixzn(m))

=
( m

2(n+ 2)2 − 2m(n+ 1)(n+ 3)
,− n+ 1√

(n+ 2)2 −m(n+ 1)(n+ 3)

)
,

Ibxn(m) = (Ibxhn(m), Ibxzn(m))

=
( m

2(1−m)n(n+ 2) + 2
,− n+ 2√

1− (m− 1)n(n+ 2)

)
.

(1.8)
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Figure 4: The corners of the sets Rn and T (Rn)

2 Statement of results

To state our results we model the continuous time dynamics of the system of two falling balls by a
suspension flow over the uniformly hyperbolic base map T , discussed in the previous section. Using the
classical laws of Newtonian mechanics one can calculate how much time is needed for the flow to return
to the Poincaré section M1 starting from the point (h, z) ∈M1. It is given as

τ :M1 → R+,

τ(h, z) = (2n+ 1)
√

2F +

√
2h

m
− 2(m− 1)z for (h, z) ∈ Rn. (2.1)

It can be shown that τ is piecewise C2 with the same discontinuities as the discrete time dynamics T
(see [1], subsection 3.7 for details). The flow is then isomorphic to the following suspension.

The phase space for the suspension flow is defined to be

M̃ = {(x, t)|x ∈M1, 0 ≤ t < τ(x)}, (2.2)

and, after setting the equivalence relation (x, τ(x)) ∼ (T (x), 0), the continuous time action of the dy-
namics is given by

Φt : M̃ → M̃, Φt(x, s) = (x, s+ t)/ ∼ . (2.3)

Finally, the normalized Lebesgue measure on M̃ is an ergodic invariant measure for this suspension flow.
We define a class of observables in the following way. For a function v : M̃ → R we set its η-norm to

be
‖v‖η := ‖v‖∞ + sup

x6=y
|v(x, u)− v(y, u)|/d(x, y)η.

Then for m ∈ N and η > 0, let Cm,η(M̃) the collection of v : M̃ → R such that ‖v‖m,η := ‖v‖η +
‖∂tv‖η + · · ·+ ‖∂mt v‖η <∞, where ∂t denotes differentiation in the flow direction.
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Definition 2.1. The suspension flow Φt is rapid mixing if for any n ≥ 1 there exist m ≥ 1, C ≥ 0 such
that ∣∣∣∣∫

M̃

v · w ◦ Φt dLeb−
∫
M̃

v dLeb ·
∫
M̃

w dLeb

∣∣∣∣ ≤ C‖v‖m,η‖w‖m,ηt−n,
for every v, w ∈ Cm,η(M̃) and t > 0.

Here we state our results.

Theorem 2.2. The continuous time dynamics of the system of two falling balls is rapid mixing for
almost every m ∈ I, where I ⊂ (1/2, 1) is the interval from Theorem 1.1.

Theorem 2.3. Assuming subexponential complexity for the base map T (so that Theorem 1.2 can be
applied), the continuous time dynamics of the system of two falling balls is rapid mixing for almost every
m ∈ [2/3, 1).

3 Periodic orbits

3.1 Outline of our strategy

As already mentioned in the introduction, the core of our argument concerns the existence of periodic
orbits with sufficiently diverse periods in the following sense. If a point x ∈ M1 is periodic for T
with discrete period k (ie. T kx = x) then it is also periodic for the suspension flow with flow period
τk(x) = τ(x) + τ(Tx) + ...+ τ(T k−1x). Given two periodic points x and y with the same discrete period

k, their (flow) period ratio is defined as τk(x)
τk(y) . Furthermore, recall (eg. from [3]) that a number ω ∈ R is

Diophantine if it is badly approximable by rationals, ie. if there exist K > 0 and β > 1 such that for any
p, q ∈ Z, q 6= 0 we have |ωq − p| ≥ K|q|−β . The set of Diophantine numbers is of full Lebesgue measure.

We will say that two periodic points have a Diophantine period ratio if τk(x)
τk(y) is Diophantine.

In his work [7], Dolgopyat showed that mixing suspension flows over subshifts of finite type are rapid
mixing if there exist two periodic orbits for the flow with Diophantine period ratio. Later in [13] Mel-
bourne extended the approach to a large class of nonuniformly hyperbolic flows using operator renewal
theory (see also [15]). These flows are the continuous time analogue of the nonuniformly hyperbolic maps
studied in [18]. He showed that if the system is not rapid mixing, then there must be some resonance in
the roof function. In particular if there exist four periodic points with periods satisfying a Diophantine
type relation, then the suspension flow is rapid mixing (see [13] Theorem 2.6). The proof of this result
contains ”double inducing”, first reducing from the flow to a nonuniformly hyperbolic diffeomorphism
and then from this to a uniformly hyperbolic one. However one could do this in one go, immediately
reducing to a uniformly hyperbolic base map at the cost of having a larger roof function. The advantage
is that by having only one inducing, there is only one complex variable to appear in the proofs ([14]).
Therefore, if one can find two periodic orbits on the base of the Young tower with Diophantine period
ratio, then one can conclude rapid mixing for the flow (cf. [13], Remark 2.7).

We recall the formulas for the induced dynamics T :M1 →M1 and for the roof function τ :M1 → R.
They are given by

T (h, z) = (mF,−(2n+ 2)
√

2F − z) for (h, z) ∈ Rn

τ(h, z) = (2n+ 1)
√

2F +

√
2h

m
− 2(m− 1)z for (h, z) ∈ Rn

(3.1)

where F = 1− h/m+αz2 and α = 1− 3m+ 2m2. We emphasize their dependence on the parameter m.
When searching for periodic points the easiest attempt is to look for fixed points. Simply by solving

the equation T (h, z) = (h, z) we get the candidates
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Fn(m) =

(
m

2(1− α(n+ 1)2)
,

−(n+ 1)√
1− α(n+ 1)2

)
. (3.2)

Even though these are solutions for the fixed point equation, not all of them are physical solutions, i.e.
some of the Fn(m)’s may lie outside of the phase space and hence do not correspond to a valid physical
configuration. However one can check that F0(m) and F1(m) are always physical solutions. Indeed both
relations F0(m) ∈ R0 and F1(m) ∈ R1 are satisfied for every m ∈ (1/2, 1). We calculate the periods of
these points in continuous time

τ(F0(m),m) =
2m√

3m− 2m2
τ(F1(m),m) =

2m√
−3/4 + 3m− 2m2

, (3.3)

and consider the ratio of the two periods

τ(F1(m),m)

τ(F0(m),m)
=

√
3m− 2m2√

−3/4 + 3m− 2m2
. (3.4)

This function is C1 on [1/2, 1], strictly decreasing on [1/2, 3/4] and strictly increasing on [3/4, 1]. As
a consequence the ratio (3.4) is Diophantine for almost every m ∈ (1/2, 1). Yet, to conclude that the
continuous time system mixes rapidly we can not just directly apply the results of Melbourne, because
the points F0 and F1 have a macroscopic distance in the phase space and so they might not be represented
on the base of the same tower as required in [13].

Our strategy will be as follows. With the help of the natural partition of the phase space we switch
to a symbolic space. Using the geometric properties of the map and the partition elements, for certain
values of the mass parameter we guarantee the existence of a subsystem, which is a two-sided full shift
on the two symbols 0 and 1. We construct a sequence of periodic points {Pn(m)} that accumulates on
F0(m), but in a way that the trajectory of Pn(m) spends more and more time in the vicinity of F1(m) as
n increases. We also show that all points F0(m) and {Pn(m)} have sufficiently long stable and unstable
manifolds, hence a tower can be built such that for large enough n both F0(m) and Pn(m) are on the
base of it. In terms of [13], for rapid mixing it is then enough to show that the ratio of the continuous
periods of Pn(m) and F0(m) is Diophantine.

3.2 The full shift as a symbolic subsystem

For a point P ∈ M1 we adjust the two-sided infinite sequence x = {xi} as its symbolic representation,
where xi = n iff T i(P ) ∈ Rn. We denote the natural projection from the symbolic space to M1 by π,
set the past and future separation time for two sequences x and y as

s−(x, y) = min{|k| : k < 0, xk 6= yk},
s+(x, y) = min{k : k ≥ 0, xk 6= yk},

and also the separation time as

s(x, y) = min{|k| : xk 6= yk} = min{s−(x, y), s+(x, y)}.

We define the symbolic distance as
dsym(x, y) = θs(x,y),

where θ ∈ (0, 1) is chosen in such a way that the distance on M1 and in the symbolic space are related
as

d(π(x), π(y)) ≤ C · dsym(x, y), (3.5)

9
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(c) 2/3 ≤ m < 1

Figure 5: The geometry of the sets Ri ∩ T (Rj) for i, j ∈ {0, 1}.

for some constant C > 0. By uniform hyperbolicity of the discrete time system (proved in [1]) there
exists such a θ ∈ (0, 1).

We now show the existence of the two-sided infinite, full shift subsystem.

Lemma 3.1. For every m ∈ [2/3, 3/4] the projection of any sequence x ∈ {0, 1}Z is realised as a physical
configuration, i.e. as a point in M1. Any such point has local stable and unstable manifolds that fully
cross the phase space.

Proof. We will call a region quadrangular if it is diffeomorphic to a square and we will refer to such a
region as a (curvilinear) rectangle if it is bounded by two stable (increasing) and two unstable (decreasing)
curves. These will be referred to as the stable and the unstable sides of the rectangle, respectively.

Consider the geometry of the sets Ri ∩ T (Rj) for i, j ∈ {0, 1}. While R0 ∩ T (R0) is quadrangular
for every m ∈ [1/2, 1) this does not necessarily hold for the other three sets. They can be triangular,
quadrangular or pentagonal (in the previous topological sense) depending on the value of the mass
parameter m. The different possible cases are shown on Figure 5. We will work only with the case 5(c),
when 2/3 ≤ m and hence all four regions are quadrangular. The sets of points that correspond to the
symbolic representations {x : x0 = 0} and {x : x0 = 1} are of course R0 and R1. We go one step
further and identify the sets corresponding to symbolic representations {x : x0, x1 ∈ {0, 1}}. Formally
they are Ri ∩ T−1(Rj) for i, j ∈ {0, 1}, i.e. the preimages of the four quadrangular regions we have just
discussed, but what is important is again the geometry of these sets, see Figure 6. They form (curvilinear)
subrectangles within R0 or R1, fully crossing them in the stable direction.

Actually, in what follows we prove a somewhat stronger claim.
Claim The stable sides of the rectangles Ri ∩ T−1(Rj) for i, j ∈ {0, 1} cross both unstable sides of

both of the rectangles T (R0) and T (R1).
In fact this holds automatically in case of the regions R1 ∩ T−1(R0) and R1 ∩ T−1(R1), because

their stable sides are the preimages of segments of certain singularity curves – r0, r1 and the segment
of ∂M1 that forms the top edge of T (R1) – which connect the two unstable sides of T (R1). Under the
action of the inverse dynamics these unstable sides map onto the unstable sides of R1, which are bits of
the boundary of the phase space. Consequently, the above mentioned segments of the singularities map
onto stable curves stretching from side to side inM1 and crossing the unstable sides of both T (R0) and
T (R1).

The situation for the regions R0∩T−1(R0) and R0∩T−1(R1) is slightly more complicated, essentially
because R0 is topologically a triangle and so we can not talk about its stable and unstable sides. Actually
it may happen that the top edge of R0 ∩ T−1(R1) does not intersect the left side of T (R1) as required.
To identify the cases when this happens we calculate the left endpoint of this top edge and compare it
to the top left corner of T (R1). As follows from our discussion in section 1, Formulas (1.7), (1.8) and

(1.1), the upper left corner of R0 ∩ T−1(R1) is the point T−1(X1(m)), its second coordinate is 8(m−1)√
9−8m

.

The upper left corner of T (R1) is the point Ix1(m), it has second coordinate −2√
9−8m

. It follows then
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Figure 6: The green rectangle with index (i, j) is the set Ri ∩ T−1(Rj).

that for m < 3/4 the point T−1(X1(m)) falls outside the region T (R1). Since R0 ∩ T−1(R1) lies above
the region R0 ∩ T−1(R0) this implies that for 2/3 ≤ m ≤ 3/4 the stable sides of both regions cross the
unstable sides of both T (R0) and T (R1). This completes the proof of the Claim.

If we want to proceed one more digit and identify the set of points corresponding to sequences
with the first three digits arbitrarily chosen from {0, 1}, we should consider the preimages of the sets
T (Ri) ∩ Rj ∩ T−1(Rk) for i, j, k ∈ {0, 1}. Note that due to our previous argument these sets form
subrectangles in T (R0) and T (R1) fully crossing them in the stable direction, but narrower in the
unstable direction (see again Figure 6). This, together with the previous geometric observations, implies
that the preimage of any of these subrectangles is a subrectangle in one of the regions Ri ∩ T−1(Rj) for
i, j ∈ {0, 1} fully crossing it in the stable direction. It follows that the process can be iterated showing
that for any m ∈ [2/3, 3/4] and any given one-sided infinite sequence x0, x1, · · · ∈ {0, 1} the projection
of the set {y : yi = xi ∀i ∈ N} is not empty. It is actually a curve, moreover a fairly long local stable
manifold, that crosses the phase space.

To complete the proof it is enough to take into account that the involution I :M1 →M1 maps the
set ∪i,j∈{0,1}Ri∩T (Rj) to itself and stable manifolds into unstable ones. The action of I (more precisely
the action of it lifted up) on the symbolic space is given by

I(x)i = x−i−1.

Hence for any sequence x ∈ {0, 1}Z the projection π(x) is realised as a physical configuration. More than
that it has long local stable and unstable manifolds

W s(π(x)) = π({y : yi = xi ∀i ∈ N}), Wu(π(x)) = π({y : yi = xi ∀i < 0}),

crossing the phase space.

11



3.3 Convergence of period ratios

With the help of this symbolic subsystem constructed in the previous subsection we can find the periodic
points needed for our purposes. First of all consider the two special sequences, one consisting of all zeroes
the other of all ones. Let us denote them by 0 and 1, respectively. Their projections are

π(0) = F0(m) π(1) = F1(m), (3.6)

where the Fi(m)’s are the fixed points identified in (3.2). We now define our sequence of periodic points
for any m ∈ [2/3, 3/4] as

Pn(m) := π(pn) ,where pni = 0 for − n ≤ i ≤ n− 1,

pni = 1 for n ≤ i ≤ n+ n2 − 1

and p is periodic otherwise.

(3.7)

Defined in this way Pn(m) has discrete time period n2 + 2n and since

s(F0(m), Pn(m)) = n

it is exponentially close to F0(m) by Formula (3.5). The local stable manifold of Pn(m) intersects the
local unstable manifold of F0(m) and the same holds with stable and unstable roles exchanged (this is
actually true for any two points with symbolic representations from {0, 1}Z). From this, together with
the second half of Lemma 3.1, it follows that for n large enough the points Pn(m) and F0(m) can be
represented on the base of the same Young-tower. What remains is to show that in terms of period in
continuous time Pn(m) behaves more and more like F1(m) as n increases. We make this precise in the
next two propositions.

Proposition 3.2. Let τk denote the k-th Birkhoff sum of τ . Then for any m ∈ [2/3, 3/4] we have

τn2+2n(Pn(m),m)

(n2 + 2n)τ(F0(m),m)
→ τ(F1(m),m)

τ(F0(m),m)

as n→∞ and the convergence is uniform in m.

Proof. First we show that τ is uniformly bounded on the set (R0 ∪ R1) ∩ (T (R0) ∪ T (R1)), cf. (3.8).
Recall the formula for τ given in (3.1). On the phase space we have the following trivial bounds

h ≤ 1/2 z ≤ 0.

The relation between the first coordinate of the involution and the quantity F (see (1.6)), together with
the previous bound on h implies that F ≤ 1/(2m). Finally on the set we are working on n = 0 or 1.
Substituting the previous bounds into (3.1) gives that

τ(h, z,m) ≤ 4√
m
≤ 4
√

3√
2
. (3.8)

We want to relate the value of the roof function τ along the trajectory of Pn(m) to τ(F1(m),m).
By construction the trajectory of Pn(m) gets exponentially close to F1(m) and stays close to this fixed
point for an order of n2 iterations. Hence to compare the two values we are going to perform a first order
expansion of τ in the space variables (not in the parameter m).

The relevant partial derivatives are

∂τ

∂h
=

1√
2mh

+ (2n+ 1)
−1

m
√

2F
∂τ

∂z
= 2(1−m) + (2n+ 1)

2αz√
2F

,

(3.9)
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where again F and α are as in (1.2). To estimate these quantities on the set (R0∪R1)∩(T (R0)∪T (R1)) we
use again that n = 0 or 1. Furthermore, we need lower bounds on h and F (because they appear in some
denominators) and also on z (because α ≤ 0 for m ∈ [1/2, 1]). Now a lower bound on h can be the first
coordinate of the leftmost point of our domain, which is Ixh1(m) = m

2(9−8m) . Using again the relation

in (1.6), together with the fact that our domain is mapped onto itself by I, we get that F ≥ 1
2(9−8m) .

Finally the minimum of z is given by the second coordinate of the lowest point of the domain. Since
this is a point of r1, which is an increasing curve, it can be further estimated by the second coordinate
of the left endpoint of r1, which is Bxz1(m) = −3√

4−3m
. It is then clear that all estimates are continuous

functions of m on [2/3, 3/4] (actually on the whole parameter domain [1/2, 1]) and all denominators in
(3.9) are separated from 0, hence there is a uniform bound on ‖∇h,zτ‖. Let us denote this bound by
G∞.

Now by the mean value theorem the continuous time period of Pn(m) can be expressed as

τn2+2n(Pn(m),m) =τn(Pn(m),m) + τn(Tn
2+nPn(m),m) + n2τ(F1(m),m)+

+

n2+n−1∑
i=n

Dvi
τ(ξi,m) · d(F1(m), T iPn(m)).

(3.10)

Here vi is the unit vector parallel to the line connecting F1(m) and T iPn(m), Dvi
denotes differentiating

in the vi direction and ξi is the point on the segment specified by the mean value theorem. Apart from
the bounds (3.8) and those given on the gradient of τ we will also estimate d(F1(m), T iPn(m)) using
(3.5). For this note that

s(F1(m), T iPn(m)) = min{i− n, n2 + n− i} for n ≤ i ≤ n2 + n,

so the sum of the distances in (3.10) can be estimated by segments of two convergent geometric series
(one for the indices n ≤ i ≤ n2/2 + n and the other one for n2/2 + n ≤ i ≤ n2 + n − 1), both with
quotient θ. Hence we have the overall estimate

∣∣∣∣ τn2+2n(Pn(m),m)

(n2 + 2n)τ(F0(m),m)
− τ(F1(m),m)

τ(F0(m),m)

∣∣∣∣ ≤
≤
∣∣∣∣ n2τ(F1(m),m)

(n2 + 2n)τ(F0(m),m)
− τ(F1(m),m)

τ(F0(m),m)

∣∣∣∣+
+

2n · 4
√

3/2

(n2 + 2n)τ(F0(m),m)
+

G∞2C(1− θn2/2+1)

(n2 + 2n)τ(F0(m),m)(1− θ)
,

from which the statement of the proposition immediately follows.

To complete our argument we have to show that not only the ratio of the two periods converge but
also its derivative with respect to the parameter m, as expressed in the following Proposition.

Proposition 3.3. For any m ∈ [2/3, 3/4] we have

d

dm

(
τn2+2n(Pn(m),m)

(n2 + 2n)τ(F0(m),m)

)
→ d

dm

(
τ(F1(m),m)

τ(F0(m),m)

)
as n→∞ and the convergence is uniform in m.

The proof of Proposition 3.3 requires more work, hence we move it to subsection 3.4.
Now we are in a position to prove our first result.
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Proof of Theorem 2.2. We have the sequence of special periodic points Pn(m) converging to F0(m) for
every m ∈ [2/3, 3/4]. As stated in Theorem 1.1, in [1] we showed the existence of an open interval in
(1/2, 3/4) such that for every m ∈ I the discrete time map T :M1 →M1 can be modelled by a Young
tower with exponential tails. The size of such a tower is determined by certain constants of the system,
for example uniform bounds on the curvatures of unstable manifolds and of singularity curves, and also
the minimum rates of expansion and contraction. What is important is that for m ∈ [2/3, 3/4] these
constants can be chosen independently of m, since the dynamics is C2 and the dependence on m is
continuous. Then we have a tower with uniform size, hence for n large enough Pn(m) and F0(m) are
close enough to each other and so, as we have shown, they can be represented on the same Young-tower
for any value of m. Applying the result of Melbourne ([13]) it is then enough to prove that the ratio of
the continuous time periods of Pn(m) and F0(m) (the latter considered under (n2 + 2n) iterations of T )
is Diophantine. Propositions 3.2 and 3.3 imply that this ratio as a function of m converges in the C1

topology to the function in (3.4). The limit is a C1, strictly decreasing function for m ∈ [2/3, 3/4], hence
by further increasing the value of n (if necessary) the ratio τn2+2n(Pn(m),m)/((n2 + 2n)τ(F0(m),m))
will also be strictly decreasing and therefore indeed Diophantine for almost every m in this interval.

3.4 Proof of Proposition 3.3

Differentiating the fractions appearing in the statement of the Proposition we get

d

dm

(
τn2+2n(Pn(m),m)

(n2 + 2n)τ(F0(m),m)

)
=

=
τ(F0(m),m) d

dmτn2+2n(Pn(m),m)− τn2+2n(Pn(m),m) d
dmτ(F0(m),m)

(n2 + 2n)τ2(F0(m),m)

d

dm

(
τ(F1(m),m)

τ(F0(m),m)

)
=

=
τ(F0(m),m) d

dmτ(F1(m),m)− τ(F1(m),m) d
dmτ(F0(m),m)

τ2(F0(m),m)
.

Hence, by Proposition 3.2 it is enough to prove that

Proposition 3.4.
1

n2 + 2n

d

dm
τn2+2n(Pn(m),m)→ d

dm
τ(F1(m),m),

as n→∞.

To show this we first derive a useful formula for the derivative. Before that let us introduce some
notations for brevity. For any k ∈ {0, . . . , n2 + 2n− 1} let

P kn (m) := T kPn(m),

so that for any integer j we have T jPn(m) = P ln(m), where l ≡ j (mod n2 + 2n). Also we will refer to
the two dimensional vector obtained by differentiating the coordinates of P in(m) with respect to m as
d
dmP

i
n(m), and

(
d
dmP

i
n(m), 1

)
will denote the three dimensional vector that has first two coordinates

identical to d
dmP

i
n(m) and 1 as the third coordinate. Using this notation we can write
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d

dm
τn2+2n(Pn(m),m) =

n2+2n−1∑
i=0

d

dm
τ(P in(m),m)

=

n2+2n−1∑
i=0

〈
(∇h,z,mτ)(P in(m),m),

( d

dm
P in(m), 1

)〉
,

(3.11)

where 〈., .〉 denotes the usual scalar product in R3. While we have an explicit formula for τ and hence
also for ∇h,z,mτ , calculating the two dimensional vector d

dmP
i
n(m) is slightly more difficult. For this we

use that
Tn

2+2nP kn (m) = P kn (m),

and we perform implicit differentiation with respect to m keeping in mind that the dynamics T also
depends on m. Let us denote by ∂T

∂m (P k+i
n ) the two dimensional vector obtained by first differentiating

T with respect to m and then evaluating the result at the point P k+i
n . As we perturb the parameter we

have to take into account that not just every point of the trajectory varies with m, but the dynamics
also chenges. These two effects jointly appear in the calculations leading to the formula

d

dm
P kn (m) =

=

I − n2+2n−1∏
i=0

DT (P k+i
n (m))

−1
n2+2n−1∑

i=0

n2+2n−1∏
j=i+1

DT (P k+j
n (m)) · ∂T

∂m
(P k+i
n (m))

=
(
I −DTn

2+2n(P kn (m))
)−1 n

2+2n−1∑
i=0

DTn
2+2n−(i+1)(P k+i+1

n (m)) · ∂T
∂m

(P k+i
n (m))

=

n2+2n−1∑
i=0

(DT (i+1)−(n2+2n)(P kn (m))−DT i+1(P kn (m)))−1 · ∂T
∂m

(P k+i
n (m)), (3.12)

where in the last line we used the inverse differentiation rule and again the fact that the point P kn (m) is
periodic with period n2 + 2n. In the next step we show that this sum is bounded.

Lemma 3.5. For each k ∈ {0, . . . , n2 + 2n− 1} the quantity
∣∣∣ ddmP kn (m)

∣∣∣ is uniformly bounded.

Proof. To make the notations simpler in this proof we will suppress the dependence of the objects on
the parameter m. Let us denote the i-th term in the sum (3.12) by vi(n, k), so

∂T

∂m
(P k+i
n ) = (DT (i+1)−(n2+2n)(P kn )−DT i+1(P kn )) · vi(n, k). (3.13)

Observe that because P kn is a periodic point the tangent spaces of its stable and unstable manifolds can

be calculated as the stable and unstable eigendirections of the tangent map DTn
2+2n(P kn ), respectively.

We denote the normalized eigenvectors of this matrix by s(n, k) and u(n, k) where the letters u an s
refer to stable and unstable, respectively. Then by the invariance of these directions we have

DT (P kn )s(n, k) = µ(n, k)s(n, k + 1), DT (P kn )u(n, k) = λ(n, k)u(n, k + 1),

defining the quantities λ(n, k) < −1 < µ(n, k) < 0, (both are negative as the tangent map contains a
rotation by 180 degrees). Here and throughout the subsection the index k should be understood modulo

n2 + 2n. Note that
n2+2n−1∏
k=0

µ(n, k) and
n2+2n−1∏
k=0

λ(n, k) are the stable and unstable eigenvalues of the
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matrix DTn
2+2n(P kn ) and hence their product is 1, since DTn

2+2n(P kn ) has determinant 1. We consider
the decompositions

vi(n, k) = ais(n, k) + biu(n, k),
∂T

∂m
(P k+i
n ) = cis(n, k + i+ 1) + diu(n, k + i+ 1),

and substitute them into (3.13) to get

cis(n, k + i+ 1) + diu(n, k + i+ 1) =

= ai

n2+2n−(i+1)∏
j=1

1

µ(n, k − j)
s(n, k + i+ 1) + bi

n2+2n−(i+1)∏
j=1

1

λ(n, k − j)
u(n, k + i+ 1) −

− ai
i∏

j=0

µ(n, k + j)s(n, k + i+ 1)− bi
i∏

j=0

λ(n, k + j)u(n, k + i+ 1) =

= ai

i∏
j=0

µ(n, k + j)

(n2+2n∏
k=1

λ(n, k)− 1

)
s(n, k + i+ 1) +

+ bi

i∏
j=0

λ(n, k + j)

(n2+2n∏
k=1

µ(n, k)− 1

)
u(n, k + i+ 1).

This gives the relations between the coefficients

ai =
ci

i∏
j=0

µ(n, k + j)

1
n2+2n∏
k=1

λ(n, k)− 1

bi =
di

i∏
j=0

λ(n, k + j)

1
n2+2n∏
k=1

µ(n, k)− 1

.

(3.14)

First we show that both ci and di are uniformly bounded. To see this, by the uniform transversality of
stable and unstable cones it is enough to check that

∥∥ ∂T
∂m (P k+i

n )
∥∥ is itself bounded. We have the general

formula for the derivative of (3.1)

∂T

∂m
(h, z,m) =

(
1 + z2(1− 6m+ 6m2),

−(2n+ 2)√
2F

(
h

m2
+ z2(4m− 3))

)
,

and as we have already shown right after (3.9), on the domain (R0 ∪R1)∩ (T (R0)∪ T (R1)) and for the
parameter interval m ∈ [2/3, 3/4] the quantity F is bounded away from 0, while h and z2 is bounded,
hence the whole norm

∥∥ ∂T
∂m (P k+i

n )
∥∥ is bounded, too.

Finally, since the dynamics is uniformly hyperbolic for all fixed values of m (proved in [1]), there are
numbers µ and λ such that λ(n, k) ≤ λ < −1 < µ ≤ µ(n, k) < 0 for all k. Hence both sets of numbers

{an2+2n−1−i}n
2+2n−1
i=0 (i.e. the ai’s in reversed order) and {bi}n

2+2n−1
i=0 can be estimated by the initial

segment of a geometric series. Indeed this is immediate for the bi’s, and for the ai’s note that when

the index i is large and hence the denominator
i∏

j=0

µ(n, k + j) is very small, it is still compensated by

n2+2n∏
k=1

λ(n, k). Therefore these sequences are summable and so elementary inequalities imply that the

statement of the lemma is true.
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Now we are in the position to prove Proposition 3.4.

Proof of Proposition 3.4. Consider the formula (3.11) we gave for the derivative on the left hand side of
Proposition 3.4. By Lemma 3.5 we know that each vector ( d

dmP
i
n(m), 1) is bounded and we have already

shown after (3.9) that the gradient of τ is also bounded, however this was the gradient only in the spatial
variables. In (3.11) the gradient contains the derivative with respect to m, too. By (3.1)

∂τ

∂m
=

2n+ 1√
2F

( h

m2
+ (4m− 3)z2

)
−
√

h

2m3
− 2z,

and basically the same argument given after (3.9) shows that this quantity and hence the whole gradient
in each of the terms of (3.11) is bounded. Therefore each scalar product in (3.11) is bounded as well. In

(3.11) one can replace Pn(m) by F1(m) to obtain a similar formula for dτ(F1(m),m)
dm . After this

1

n2 + 2n

dτn2+2n(Pn(m),m)

dm
− dτ(F1(m),m)

dm
=

=
1

n2 + 2n

n2+2n−1∑
i=0

〈
(∇h,z,mτ)(P in(m),m),

(
d

dm
P in(m), 1

)〉
− dτ(F1(m),m)

dm
=

=
1

n2 + 2n

n2−n∑
i=3n

〈
(∇h,z,mτ)(P in(m),m)− (∇h,z,mτ)(F1(m),m),

(
d

dm
P in(m), 1

)〉
+

+
1

n2 + 2n

n2−n∑
i=3n

〈
(∇h,z,mτ)(F1(m),m),

(
d

dm
P in(m)− d

dm
F1(m), 0

)〉
+

+O
( 1

n

)
. (3.15)

Note that we compressed an order of n number of summands into the error term and so we are
left to deal only with the middle part of the original sum. The first sum is easy to handle. Basically
it is enough to check that ∇h,z,mτ is C1 in the variables (h, z), which turns out to be the case after
doing similar computations as before. After this an argument similar to the one used in the proof of
Proposition 3.2 shows that the first sum in (3.15) tends to 0 as n → ∞. Actually it is exponentially
small in n, because for 3n ≤ i ≤ n2 − n the sum of the distances between the points P in(m) and F1(m)
can be estimated by a segment of a geometric series with the largest term being exponentially small,
since s(P in(m), F1(m)) ≥ 2n for such indices.
What remains is to show that the quantity

1

n2 + 2n

n2−n∑
i=3n

〈
(∇h,z,mτ)(F1(m),m),

(
d

dm
P in(m)− d

dm
F1(m), 0

)〉
(3.16)

tends to 0 as n → ∞. We know that the gradient (∇h,z,mτ)(F1(m),m) is bounded so we estimate the
norm of the other vector, which is a difference of two derivatives. We use the explicit formula (3.12) for
these differentials to get

d

dm
P in(m)− d

dm
F1(m) =

=

n2+2n−1∑
j=0

(DT (j+1)−(n2+2n)(P in(m))−DT j+1(P in(m)))−1 · ∂T
∂m

(P j+in (m))−

− (DT (j+1)−(n2+2n)(F1(m))−DT j+1(F1(m)))−1 · ∂T
∂m

(F1(m)). (3.17)
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To estimate the middle part of this sum we use ideas from the proof of Lemma 3.5 (especially formula
(3.14)), which remains valid and actually is simpler, when P in(m) is replaced by F1(m). From there
it follows that for n ≤ j ≤ n2 + n − 1 the terms that form the j-th difference in (3.17) are already
exponentially small in n so we can omit them. Therefore it is enough to estimate the differences in (3.17)
for 3n ≤ i ≤ n2 − n, 0 ≤ j ≤ n − 1 and n2 + n ≤ j ≤ n2 + 2n − 1. Using the triangular inequality we
estimate the norm of the j-th term by

∥∥∥∥(DT (j+1)−(n2+2n)(F1(m))−DT j+1(F1(m)))−1 ·
(
∂T

∂m
(P j+in (m))− ∂T

∂m
(F1(m))

)∥∥∥∥+

+

∥∥∥∥[(DT (j+1)−(n2+2n)(P in(m))−DT j+1(P in(m)))−1−

− (DT (j+1)−(n2+2n)(F1(m))−DT j+1(F1(m)))−1

]
· ∂T
∂m

(P j+in (m))

∥∥∥∥. (3.18)

Let us denote the vector in the first term by wj,i. Note that ∂T
∂m is C1 on the domain we work on, so

after setting

vj,i :=
∂T

∂m
(P j+in (m))− ∂T

∂m
(F1(m))

we have

‖vj,i‖ ≤ C · d(P j+in (m), F1(m)) ≤ C̄θs(P
j+i
n (m),F1(m)). (3.19)

We denote the coordinates of vj,i and wj,i in the basis {s(F1(m)), u(F1(m))} by (aj,i, bj,i) and (cj,i, dj,i),
respectively. Then a calculation analogous to the one in the proof of Lemma 3.5 (c.f. (3.14)) gives

cj,i =
aj,i · λ(F1(m))j+1

λ(F1(m))n2+2n − 1

dj,i =
bj,i · µ(F1(m))j+1

µ(F1(m))n2+2n − 1
.

(3.20)

Due to the uniform transversality of stable and unstable cones, estimates on the norm of wj,i are – up to
a constant – the same as estimates on the coordinates cj,i, dj,i. By the same reason (3.19) implies that

|aj,i| ≤ C · θs(P
j+i
n (m),F1(m)), |bj,i| ≤ C · θs(P

j+i
n (m),F1(m)),

in particular they are bounded and the estimates form segments of geometric series in j. Hence the sum
of cj,i’s for 0 ≤ j ≤ n − 1 and the sum of dj,i’s for n2 + n ≤ j ≤ n2 + 2n − 1 are both exponentially
small in n. To see that this holds also for the sum of cj,i’s for n2 + n ≤ j ≤ n2 + 2n− 1 and the sum of
dj,i’s for 0 ≤ j ≤ n − 1 use in addition that 3n ≤ i ≤ n2 − n and hence s(P j+in (m), F1(m)) ≥ n. These
observations altogether leads to the fact that for all i fixed between 3n and n2 − n

n−1∑
j=0

‖wj,i‖+

n2+2n−1∑
j=n2+n

‖wj,i‖ ≤ C · θn.

Therefore it remains only to estimate the second term in (3.18). For this we redefine the coefficients
aj,i, . . . , dj,i as

∂T

∂m
(P j+in (m)) = aj,is(P

i
n(m)) + bj,iu(P in(m))

∂T

∂m
(P j+in (m)) = cj,is(F1(m)) + dj,iu(F1(m)).

(3.21)
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In this notation, after a calculation analogous to the repeatedly referred one from Lemma 3.5, the second
term of (3.18) reads as

∥∥∥∥ a−1,i+j+1

j∏
k=0

µ(P i+kn (m))

1
n2+2n∏
k=1

λ(P kn (m))− 1

s(P in(m))+

+
b−1,i+j+1

j∏
k=0

λ(P i+kn (m))

1
n2+2n∏
k=1

µ(P kn (m))− 1

u(P in(m))−

− cj,i · λ(F1(m))j+1

λ(F1(m))n2+2n − 1
s(F1(m))− dj,i · µ(F1(m))j+1

µ(F1(m))n2+2n − 1
u(F1(m))

∥∥∥∥. (3.22)

To finish the proof we use the regularity of the stable and unstable directions stated in the following
lemma.

Lemma 3.6. Let x and y be two points with both stable and unstable directions well-defined. Further
assume that for all i for which −s−(x, y) < i < s+(x, y), the points T i(x) and T i(y) are either in R0 or
in R1. Then there exist constants Cs, Cu > 0 and γs, γu ∈ (0, 1) such that

‖s(x)− s(y)‖ ≤ Csγs(x,y)
s ‖u(x)− u(y)‖ ≤ Cuγs(x,y)

u .

This Lemma expresses the dynamical Hölder continuity of the stable/unstable directions, but we
were unable to find a good reference, so instead we give a proof of the Lemma in the Appendix. As a
consequence, using also that ‖DT‖ is bounded on our domain, this property holds for the functions µ(.)
and λ(.) as well. Finally note that all coefficients aj,i, . . . , dj,i can be expressed using scalar products
of the vectors u(.), s(.), their orthocomplements and ∂T

∂m . We have already shown that the latter is
uniformly bounded and this, together with the uniform transversality of stable and unstable cones, leads
to the fact that both differences a−1,i+j+1− cj,i and b−1,i+j+1− dj,i are exponentially small. It is then a
straightforward calculation, using several triangular inequalities, that (3.22) is exponentially small and
hence so is the second term in (3.18). This completes the proof of Propositions 3.4 and thus 3.3.

4 Extension of results

As the reader might have already noticed the calculations in Section 3 do not depend on the system in
hand crucially. The system specific parts of the argument were

1. to find a full shift subsystem based on the geometrical properties,

2. to give bounds on certain quantites like τ and its derivatives, or the expansion and contraction
rates of T ,

3. to show that the ratio of the continuous periods of the original fixed points for T is a C1 function
of the parameter m with nonzero derivative.

Appart from these the whole method works in full generality. Taking advantage of this observation, in
this section we extend our results for a larger set of parameters.
As for 2., without going into details or doing the actual calculations, we claim that whenever we work on
a domain of the form ∪i,j∈{k−1,k}(Ri ∩ T (Rj)), all the mentioned quantities will be uniformly bounded
for the corresponding interval of the parameter. This can be checked in an analogous way as we did in
Section 3 for k = 1.
In Lemma 3.1 we discussed the geometry of the sets Ri ∩ T (Rj) for i, j ∈ {0, 1} and showed that their
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preimages intersect the unstable sides of the sets T (R0) and T (R1) if m ∈ [2/3, 3/4]. From this we
could conclude the existence of a subsystem that is a full shift on the two symbols 0 and 1. Now we
can essentially repeat our argument for the stripes Rk−1, Rk with larger k giving a similar full shift
subsystem for different parameter intervals. This is even simpler than in Lemma 3.1, because for k ≥ 1
all stripes Rk are topologically squares, in contrast to R0 that is topologically a triangle, which required
special care.

Lemma 4.1. Given any k ≥ 1, for every m ∈
[

1+k
2+k ,

2k2+2k−1
2k2+2k

]
the projection of any sequence x ∈

{k − 1, k}Z is realised as a physical configuration, i.e. as a point in M1. Any such point has local stable
and unstable manifolds that fully cross the phase space.

Proof. The k = 1 case was proved in Lemma 3.1. To apply the same argument to the case k ≥ 2, one has
to check only that the sets Ri∩T (Rj) for i, j ∈ {k−1, k} are all quadrangular. The required intersections
and hence the whole iteration scheme is then automatic. Also, checking that all the previous four sets are
quadrangular is easy. The geometry of the system, in particular that the singularities are all increasing,
while the inverse singularities are all decreasing curves, implies that it is enough to show that I(rk)
intersects both rk and rk−2. A nonempty intersection rk ∩ I(rk) can be guaranteed, using the mentioned
monotonicity of the curves, by showing that the left endpoint of rk has smaller h coordinate than the
right endpoint of I(rk). Based on (1.7) and (1.8) this condition is equivalent to

Bxhk(m) ≤ Ibxhk(m)⇔

⇔ m(−2m(k + 2) + 2k + 3)2

2(1−m)k(k + 2) + 2
≤ m

2(1−m)k(k + 2) + 2
⇔

⇔ 1 + k

2 + k
≤ m.

For the intersection of rk−2 and I(rk) it suffices to check that the left endpoint of rk−2 has smaller z
coordinate than the left endpoint of I(rk). Using again (1.7) and (1.8) this leads to the formula

Bxz(m, k − 2) ≤ Ixz(m, k)⇔

⇔ − k√
1− (m− 1)k(k − 2)

≤ − k + 1√
(k + 2)2 −m(k + 1)(k + 3)

⇔

⇔ 2k2 + 2k − 1

2k2 + 2k
≥ m.

This completes the proof of the Lemma.

As a final step towards the extension of results we need to present fixed points depending on m, such
that their continuous period ratio is a C1 function of m with nonzero derivative. Luckily the fixed points
identified in (3.2) will do the job. Indeed, consider the k’th parameter interval from Lemma 4.1, i.e. let m

be in
[

1+k
2+k ,

2k2+2k−1
2k2+2k

]
. Then the fixed points Fk−1(m) and Fk(m) are realised as physical configurations,

they correspond to the projections π(k − 1) and π(k). The ratio of their periods is

τ(Fk(m),m)

τ(Fk−1(m),m)
=

(k + 1)
√

1− k2α

k
√

1− (k + 1)2α
, (4.1)

where α is as in (1.2). Recall that in Theorem 2.2 we stated rapid mixing for almost every value of
the parameter within the interval I ⊂ (1/2, 1) from Theorem 1.1, the existence of which was shown in
our earlier paper [1]. We do not have a quantitative description of I, we only know that it is an open
interval containing 0.74 (though computer assisted techniques could give bounds on the endpoints of
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I). In any case, the proof of [1] that the discrete time system can be modelled by a Young tower with
exponential tails works only for parameter values within I. On the other hand, as stated in Theorem 1.2,
if we knew that the singularity set has subexponential complexity, then we would have a Young tower
representation. Hence to extend our results we add the extra assumption of subexponential complexity (a
usual assumption in the literature ensuring that expansion prevails cutting), which in particular implies
the growth lemma and therefore the required tower representation.

Proof of Theorem 2.3. In view of our previous analysis the proof of Theorem 2.2 can be repeated for

any of the parameter intervals
[

1+k
2+k ,

2k2+2k−1
2k2+2k

]
once we show that (4.1) is a C1 function with nonzero

derivative. Since α is a polynomial in m and it is negative for m ∈ (1/2, 1) it follows that the denominator
in (4.1) can not be zero and hence the ratio is indeed C1 in m. A straightforward calculation shows
that it is strictly decreasing for m ∈ [1/2, 3/4] and strictly increasing for m ∈ [3/4, 1]. Therefore the
proof of Theorem 2.2 applies. To complete the proof we are left to verify that the parameter intervals[

1+k
2+k ,

2k2+2k−1
2k2+2k

]
cover the set [2/3, 1). We compare the right and left endpoints of consecutive intervals

to check if they overlap.

k + 2

k + 3
≤ 2k2 + 2k − 1

2k2 + 2k
⇔ 0 ≤ 2k2 + k − 3

This relation holds for k ≥ 1, therefore all the above parameter intervals overlap. Since both endpoints
of the k’th interval converge to 1 as k goes to infinity, the statement of the theorem follows.
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Appendix

Proof of Lemma 3.6. It is enough to prove the part of the statement on the unstable direction, the stable
part has the similar proof with T replaced by T−1. Let us first investigate the action of the tangent map
DT on unstable vectors. At every point the unstable cone is given by the union of the first and third
quadrants of the plane (as shown in [1]). We first prove that the angle between two unstable vectors,
lying in the same quadrant, is contracted by applying DT on the vectors. By (1.4) it is clear that at every
point DT has the form

(−1 a
b −1−ab

)
for some quantities a, b < 0. The image of a unit vector (cosα, sinα)

under the action of DT is (a sinα − cosα, b cosα − (1 + ab) sinα). If α ∈ (0, π/2) ∪ (π, 3π/2), then the
original vector is an unstable vector and so by uniform hyperbolicity there exists a constant Λ > 1 such
that

(a sinα− cosα)2 + (b cosα− (1 + ab) sinα)2 ≥ Λ > 1. (A.1)

The tangent map transforms the angles according to the function

α→ arctan
(b cosα− (1 + ab) sinα

a sinα− cosα

)
.

Differentiating this with respect to α many terms cancel out leaving

1

(a sinα− cosα)2 + (b cosα− (1 + ab) sinα)2

for the derivative, which is at most 1/Λ < 1 for α ∈ (0, π/2) ∪ (π, 3π/2) using (A.1). Therefore, by the
mean value theorem we get
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∠(DxTv1, DxTv2) ≤ 1

Λ
∠(v1, v2), (A.2)

for all x ∈ M1 and v1, v2 ∈ Cux with 〈v1, v2〉 > 0. Since we can write the difference of two unit vectors
v1 and v2 as |v1 − v2|2 = 2(1− cos∠(v1, v2)), using (A.2) we get the formula

∣∣∣∣ DxTv1

|DxTv1|
− DxTv2

|DxTv2|

∣∣∣∣2 =
1− cos∠(DxTv1, DxTv2)

1− cos∠(v1, v2)
|v1 − v2|2 ≤

≤ 1− cos(∠(v1, v2)/Λ)

1− cos∠(v1, v2)
|v1 − v2|2 ≤ γ2|v1 − v2|2,

(A.3)

with some constant γ ∈ (0, 1), because 1−cos(α/Λ)
1−cosα is strictly less then 1 for every α ∈ (0, π/2] and also

in the limit as α→ 0+.
We now turn (A.3) into an iterative formula for the unstable direction. Given u(x) and u(y) we estimate
the difference of the unstable directions in T (x) and T (y), assuming that x and y are in the same
smoothness component of the dynamics. By the invariance of unstable manifolds we know that the unit
vector tangent to the unstable manifold at T (x) is nothing but DxTu(x) normalized. Hence we do the
estimate

∣∣∣∣ DxTu(x)

|DxTu(x)|
− DyTu(y)

|DyTu(y)|

∣∣∣∣ ≤ ∣∣∣∣ DxTu(x)

|DxTu(x)|
− DyTu(x)

|DyTu(x)|

∣∣∣∣+

∣∣∣∣ DyTu(x)

|DyTu(x)|
− DyTu(y)

|DyTu(y)|

∣∣∣∣. (A.4)

We remark that for this to be precise we identified the tangent spaces at x and y. Also note that the
unstable cone field for the system is constant, so after the identification both u(x) and u(y) can be
viewed as unstable vectors in the same tangent space. Therefore, for the second term in (A.4) we can
apply (A.3) with x replaced by y and v1 = u(x), v2 = u(y).

For the first term we use our assumption of x, y being in the same smoothness component and the
assumption of Lemma 3.6 that this component is either R0 or R1. Within these circumstances we can
use the piecewise C2 property of the dynamics, in particular that there exists a constant C1 > 0 such
that

|DxTv −DyTv| ≤ C1d(x, y),

for every unit vector v. Hence for the first term of (A.4) we get

∣∣∣∣ DxTu(x)

|DxTu(x)|
− DyTu(x)

|DyTu(x)|

∣∣∣∣ ≤
≤ |DxTu(x)−DyTu(x)|

|DxTu(x)|
+
||DyTu(x)| − |DxTu(x)||

|DxTu(x)|
≤

≤ 2|DxTu(x)−DyTu(x)|
|DxTu(x)|

≤ 2

Λ
C1d(x, y).

This, together with our previous observation on the second term leads to∣∣∣ DxTu(x)

|DxTu(x)|
− DyTu(y)

|DyTu(y)|

∣∣∣ ≤ 2

Λ
C1d(x, y) + γ|u(x)− u(y)|,

which can be iterated as long as the image of x and y are in the same smoothness component, i.e. as
long as they are not separated by a singularity. This iteration results in∣∣∣∣ DxT

nu(x)

|DxTnu(x)|
− DyT

nu(y)

|DyTnu(y)|

∣∣∣∣ ≤ n−1∑
i=0

2C1

Λ
γid(T i(x), T i(y)) + γn|u(x)− u(y)|, (A.5)
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for any 0 < n < s+(x, y). To get an estimate on |u(x) − u(y)| (as required in Lemma (3.6)) we replace
in (A.5) x and y by T−n(x) and T−n(y) respectively and get

|u(x)− u(y)| ≤
n−1∑
i=0

2C1

Λ
γid(T i−n(x), T i−n(y)) + γn|u(T−n(x))− u(T−n(y))|. (A.6)

Now observe that

s+(T i−n(x), T i−n(y)) = s+(x, y) + n− i
s−(T i−n(x), T i−n(y)) = s−(x, y) + i− n,

as long as 0 ≤ n ≤ s−(x, y). Hence for all i ∈ {0, . . . , n− 1} we have

s(T i−n(x), T i−n(y)) ≥ min{s+(x, y) + 1, s−(x, y)− n},

so choosing n = s−(x, y)/2 the inequality

s(T i−n(x), T i−n(y)) ≥ 1

2
s(x, y)

holds. Therefore by (3.5) still for every i ∈ {0, . . . , n− 1} we have

d(T i−n(x), T i−n(y)) ≤ Cθ
s(x,y)

2

and since n ≥ s(x, y)/2 by our choice, we get the final estimate for (A.6)

|u(x)− u(y)| ≤ 2C1

Λ

1

1− γ
Cθ

s(x,y)
2 + 2γ

s(x,y)
2 ,

proving the lemma with γu = max{
√
θ,
√
γ}.
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