
RIGID IDEAL SHEAVES AND MODULAR FORMS

ÁDÁM GYENGE

Abstract. Let X be a complex smooth quasi-projective surface acted upon by
a finite group G such that the quotient X/G has singularities only of ADE type.
We obtain an explicit expression for the generating series of the Euler character-
istics of the zero-dimensional components in the moduli space of zero-dimensional
subschemes on X invariant under the action of G. We show that this generating
series (up to a suitable rational power of the formal variable) is a holomorphic
modular form.

1. Introduction

We investigate modular properties of a family of generating functions arising from
certain enumerative invariants associated with complex smooth quasi-projective sur-
face X acted upon by a finite group G such that the quotient X/G has singularities
only of ADE type. To put our results in context, denote by Hilbm([X/G]) the moduli
space of G-invariant 0-dimensional subschemes of X of length m. This is the invari-
ant part of the Hilbert scheme Hilbm(X) of points1 on X under the lifted action of
G. This Hilbert scheme is variously called the orbifold Hilbert scheme [13] or the
equivariant Hilbert scheme [4].

Let RHilbm([X/G]) ⊂ Hilbm([X/G]) be the rigid part of the orbifold Hilbert
scheme. This consists of those G-invariant ideal sheaves whose connected component
in the orbifold Hilbert scheme is zero dimensional. Will will call this the rigid Hilbert
scheme2 of the global quotient orbifold [X/G].

We collect the topological Euler characteristics of these moduli spaces into gener-
ating functions. The G-fixed generating series of [X/G] is defined as

Z[X/G](q) := 1 +
∞∑
m=1

χ(Hilbn([X/G]))qm.

The rigid G-fixed generating series is defined as

R[X/G](q) := 1 +

∞∑
m=1

χ(RHilbn([X/G]))qm.

In both series q is a formal variable.

1.1. The local case. The simplest example of a pair (X,G) as above is a Kleinian
(or simple) surface singularity orbifold [C2/G∆] where G∆ < SL(2,C) is a finite
subgroup. This follows from the known fact that finite subgroups of SL(2,C) as
well as the quotients C2/G∆ have an ADE classification; the index ∆ refers to the
corresponding root system. This setup will have a distinguished role in our treatment;

1Another common notation for this object is Hilbm(X)G. A justification for the two notations
comes from the fact that a G invariant, zero-dimensional subscheme of X may equivalently be
regarded as a zero-dimensional substack of [X/G].

2Similarly, the rigid Hilbert scheme can also be denoted as RHilbm(X)G.
1
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we will call it the local setting. Then we have the local G∆-fixed (resp. local rigid
G∆-fixed) generating series

Z[C2/G∆](q) = 1 +

∞∑
m=1

χ(Hilbn([C2/G∆]))qm

and

R[C2/G∆](q) = 1 +
∞∑
m=1

χ(RHilbn([C2/G∆]))qm.

Let C̃2/G∆ be the minimal resolution of the Kleinian singularity C2/G∆, which
is known to be a smooth quasi-projective variety. Let Z

C̃2/G∆
(q) be the generating

series of the Euler characteristics of the Hilbert scheme of points on C̃2/G∆ (see [3]).
Our first result might be known to experts, but we have not found it explicitly in
the literature (however, see the closely related [1, Lemma 5.2 (1)]).

Theorem 1.1. Let [C2/G∆] be a Kleinian orbifold, and let k = |G∆|, the order of
G∆. Then

R[C2/G∆](q) =
Z[C2/G∆](q)

Z
C̃2/G∆

(qk)
.

Therefore, the series R[C2/G∆](q) can be thought of as the function measuring the
extra information appearing in the Hilbert scheme when one replaces the classical
resolution C̃2/G with the stack resolution [C2/G].

1.2. Modularity. We will investigate modular properties of R[X/G](q). Consider
first the local setting. It is worth to consider a slightly corrected version of the
generating series introduced above. Let

Z∆(q) := q−
1
24 (Z[C2/G∆](q))

and
R∆(q) := q

(n+1)k−1
24 (R[C2/G∆](q))

so that

R∆(q) = Z∆(q) ·
(
q

(n+1)k
24

(
Z
C̃2/G∆

(qk)
)−1

)
.

Throughout this paper we set
q = e2πiτ ,

and therefore we may regard Z∆ and R∆(q) as a function of τ ∈ H where H is the
upper half-plane.

For G < SL(2,C) an arbitrary finite subgroup, at least two explicit expressions are
known for Z∆(τ). First, in [5, Theorem 1.3] we obtained an expression involving a
sum over a rank n lattice (see Theorem 2.2 below). This expression can be rewritten
as

Z∆(τ) =
θ∆(τ)

η(kτ)n+1

where θ∆(τ) is a shifted theta function over the root lattice of ∆ (see [1, Section 4]
for a detailed treatment and for an expression for θ∆(τ)). Second, in [1, Theorem
1.2] the same generating series was expressed as

Z∆(τ) =
η∆(τ)

η(kτ)n+1
.
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Here η∆(τ) is a product of scaled Dedekind eta functions with (possibly negative)
integer powers. Such expressions are generally called eta products [7].

Using the classical formula of Göttsche [3],

q
(n+1)k

24

(
Z
C̃2/G∆

(qk)
)−1

= q
(n+1)k

24

( ∞∏
m=0

(1− qkm)n+1

)−1

= η(kτ)n+1

where η(τ) is the Dedekind eta function. Combining this with Theorem 1.1, we have
two expressions for R∆(τ):

R∆(τ) = θ∆(τ), and R∆(τ) = η∆(τ).

The equality of the two expressions on the right sides was already observed in [1,
Section 4].

The function Z∆(τ) is known to be a meromorphic modular form [11, 5]. This fact
can be interpreted as a counterpart of the S-duality conjecture of Vafa–Witten [12]
to ADE orbifolds. One can verify that η(kτ)n+1 appearing in the denominator of
Z∆(τ) is a holomorphic modular form (see Section 3). It follows that R∆(τ) is also
a meromorphic modular form. Our second aim is to investigate in-depth its modular
properties. Surprisingly, it turns out to be holomorphic in each ADE case. While
the proof of Theorem 1.1 is based on the identity R∆(τ) = θ∆(τ), the modular
properties of R∆(τ) will be determined using the identity R∆(τ) = η∆(τ). The
relevant congruence subgroup will turn out to be

Γ0(N) =

{(
a b
c d

)
∈ SL(2,Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
.

Theorem 1.2. Let ∆ be an ADE type root system of rank n and let k = |G∆|. The
function η∆(τ), and hence also R∆(τ), is a holomorphic modular form of weight n/2
for Γ0(k) with the multiplier system χ∆(A) given in Corollary 3.16 below.

1.3. The global case. Using the motivic property of Hilbert schemes we can glob-
alize the results above. Let now X be an arbitrary smooth quasi-projective surface
acted upon by a finite group G such that the quotient X/G has only ADE singu-
larities. Let p1, . . . , pr ∈ X/G be the collection of singular points of the quotient.
These determine a collection of ADE type root systems ∆1, . . . ,∆r. Let k = |G|,
ki = |G∆i | and ni be the rank of ∆i.

Theorem 1.3. With the above notation we have

R[X/G](q) =
r∏
i=1

R[C2/G∆i
](q

k/ki).

As
R∆i(τ) = q

(ni+1)ki−1

24 R[C2/G∆i
](q)

is a holomorphic modular form for Γ0(ki), it follows from Lemma 3.4 below that

R∆i

(
k

ki
τ

)
= q

k((ni+1)ki−1)

24ki R[C2/G∆i
](q

k/ki)

is a holomorphic modular form for

Γ0

(
ki ·

k

ki

)
= Γ0(k).

Since the product of modular forms for Γ0(k) is a modular form for Γ0(k) [2, p. 17],
we obtain the following global modularity result.
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Corollary 1.4. With the above notation the function

q
∑r
i=1

k((ni+1)ki−1)

24ki ·R[X/G](q) =
r∏
i=1

q
k((ni+1)ki−1)

24ki R[C2/G∆i
](q

k/ki)

=
r∏
i=1

R∆i

(
k

ki
τ

)
is a holomorphic modular form for Γ0(k) of weight 1

2

∑r
i=1 ni.

It is worth to compare this with [1, Theorem 1.1], which shows that q(Z[X/G](q))
−1

is a holomorphic modular form provided that X is a K3 surface (a similar statement
for abelian surfaces was obtained recently in [10]). Note however that in Corollary 1.4
we do not take reciprocal.

1.4. Further remarks and the structure of the paper. As the moduli of rigid
ideal sheaves consists of isolated points, the Euler numbers χ(RHilbn([X/G])) count
actually the points in RHilbn([X/G]). Hence, all rigid generating series also enu-
merate the appropriate classes (multiples of the point) in the Grothendieck ring of
varieties (over C).

The structure of the paper is the following. In Section 2, we analyze the local
and global rigid generating series. In particular, we prove Theorems 1.1 and 1.3. In
Section 3, after reviewing the basics of eta products, we prove Theorem 1.2. In the
Appendix the orders of R∆(τ) are collected when ∆ is of type E.

Acknowledgement. The author would like to thank to Jim Bryan for helpful com-
ments and discussions.
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2. Rigid ideal sheaves

2.1. Local calculations: the proof of Theorem 1.1. Let G∆ < SL(2,C) be a
finite subgroup such that ∆ is a root system of rank n. Let k = |G∆|, the order of
G∆.

It is known that Hilb([C2/G∆]) decomposes into disjoint subvarieties

Hilb([C2/G∆]) =
⊔

ρ∈Rep(G∆)

Hilbρ([C2/G∆]),

where
Hilbρ([C2/G∆]) = {I ∈ Hilb([C2/G∆]) : H0(OC2/I) 'G∆

ρ}
for any finite-dimensional representation ρ ∈ Rep(G∆) of G∆ (see [5]). Denote

RHilbρ([C2/G∆]) := RHilb([C2/G∆]) ∩Hilbρ([C2/G∆]).

There correspond multivariable generating series to these varieties:

Z[C2/G∆](q0, . . . , qn) :=

∞∑
m0,...,mn=0

χ
(
Hilbm0ρ0+...+mnρn([C2/G∆])

)
qm0

0 · . . . · qmnn ,

R[C2/G∆](q0, . . . , qn) :=
∞∑

m0,...,mn=0

χ
(
RHilbm0ρ0+...+mnρn([C2/G∆])

)
qm0

0 · . . . · qmnn
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where {ρ0, . . . , ρn} are the irreducible representations of G∆ with ρ0 the trivial rep-
resentation. We note that n is also the rank of ∆.

One recovers the one variable (rigid or non-rigid) G∆-fixed generating series of
from the above multivariable generating series as follows.

Lemma 2.1. (1)

Z[C2/G∆](q) = Z[C2/G∆](q0, . . . , qn)
∣∣∣
qi=qdimρi

.

(2)

R[C2/G∆](q) = R[C2/G∆](q0, . . . , qn)
∣∣∣
qi=qdimρi

.

Proof. Let I be an equivariant ideal such that H0(OC2/I) 'G∆
ρ, where ρ ' m0ρ0 +

. . .+mnρn. This implies that

dimH0(OC2/I) =

n∑
i=0

midimρi,

when I is considered as a non-equivariant ideal of C2. �

The orbifold generating series of a simple singularity orbifold is given explicitly by
the following result.

Theorem 2.2 ([9, 5]). Let [C2/G∆] be a Kleinian orbifold. Then

Z[C2/G∆](q0, . . . , qn) =

( ∞∏
m=1

(1− qm)−1

)n+1

·
∑

m=(m1,...,mn)∈Zn
qm1

1 . . . qmnn (q1/2)m
>·C∆·m,

where q =
∏n
i=0 q

dim ρi
i and C∆ is the finite type Cartan matrix corresponding to ∆.

Göttsche’s formula [3] applied on the resolution C̃2/G∆ shows that when we sub-
stitute qi = qdimρi for each 0 ≤ i ≤ n, the first term of this expression gives precisely
Z
C̃2/G∆

(qk) due to the fact that

n∑
i=0

(dimρi)
2 = |G∆| = k.

It turns out from the next result that the second term in Theorem 2.2 gives ex-
actly the rigid generating series. From this and the previous observation we obtain
Theorem 1.1.

Proposition 2.3 (Compare with [1, Lemma 5.2 (1)]).

R[C2/G∆](q0, . . . , qn) =
∑

m=(m1,...,mn)∈Zn
qm1

1 . . . qmnn (q1/2)m
>·C∆·m

Proof. Nakajima has shown [9, Section 2] that

Hilbv0ρ0+···+vnρn([C2/G∆]) = M(v,w)

where w = (1, 0, . . . , 0) and M(v,w) is the Nakajima quiver variety associated to
the affine Dynkin diagram of ∆ with framing vector w and dimension vector v.
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Let δ = (1,dim ρ0, . . . ,dim ρn) ∈ Nn+1, which can also be identified with the basic
imaginary root of the affine root system corresponding to ∆. Then every v ∈ Nn+1

decomposes uniquely as

(1) v = kδ +
1

2
(m|m)δ + (0,m)

where k ∈ Z, m ∈ Zn ∼= Z∆ is an element of the finite root lattice and (·|·) is the
inner product with respect to the finite Cartan matrix. For this, write v − v0δ as
(0,m). Then k = v0 − 1

2(m|m), because δ0 = 1 always.
By [8, (2.6)] we have

dimM(v,w) = 2v ·w − 〈v,v〉
= 2v0 − 〈v,v〉
= 2k + (m|m)− 〈v,v〉

where 〈·, ·〉 is the inner product given by the Cartan matrix associated with the affine
Dynkin diagram.

Moreover,

〈(0,m), (0,m)〉 = (m|m), 〈δ, δ〉 = 0, 〈(0,m), δ〉 = 0.

The first follows directly from our definitions, and the later two are well known
properties of the vector δ. Using these we compute the dimension of corresponding
component of the Hilbert scheme:

dimM(v,w)

= 2k + (m|m)−
〈(

k +
1

2
(m|m)

)
δ + (0,m),

(
k +

1

2
(m|m)

)
δ + (0,m)

〉
= 2k + (m|m)−

(
k +

1

2
(m|m)

)2

〈δ, δ〉

−2

(
k +

1

2
(m|m)

)
〈(0,m), δ〉 − 〈(0,m), (0,m)〉

= 2k.

Therefore, the component Hilbv0ρ0+···+vnρn([C2/G∆]) is of zero dimension if and
only if k = 0 in the decomposition (1). There is exactly one such component for each
m ∈ Zn ∼= Z∆, to which there corresponds the term

qm1
1 . . . qmnn (q1/2)(m|m) = qm1

1 . . . qmnn (q1/2)m
>·C∆·m

in the generating series. �

2.2. Global calculations: the proof of Theorem 1.3. To globalize our results
so far we perform a similar calculation as in [1, Section 2], but we replace the Hilbert
scheme with the rigid Hilbert scheme.

As in the introduction, let X be a smooth quasi-projective surface with a symplec-
tic action of a finite group G. Recall that p1, . . . , pr ∈ X/G are the singular points
of X/G. To these there correspond the stabilizer subgroups Gi ⊂ G of order ki and
ADE type ∆i. Let {x1

i , . . . , x
k/ki
i } be the orbit of G in X corresponding to the point

pi (recall that k = |G|). We may stratify RHilb([X/G]) according to the orbit types
of subscheme as follows.
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Suppose Z ⊂ X is a rigid G-invariant subscheme of length nk whose support lies
on free orbits. Then Z determines and is determined by a rigid length n subscheme
of

(X/G)o = X/G \ {p1, . . . , pr},
i.e. a point in RHilbn((X/G)o). But as (X/G)o is smooth, this implies that n = 0.
Hence, nk = 0 as well, and Z is empty.

On the other hand, suppose Z ⊂ X is a rigid G-invariant subscheme of length nk
ki

supported on the orbit {x1
i , . . . , x

k/ki
i }. Then Z determines and is determined by the

length n component of Z supported on a formal neighborhood of one of the points,
say x1

i . Choosing a Gi-equivariant isomorphism of the formal neighborhood of x1
i in

X with the formal neighborhood of the origin in C2, we see that Z determines and is
determined by a point in RHilbn0 ([C2/Gi]), the rigid Hilbert scheme parameterizing
rigid subschemes supported on a formal neighborhood of the origin in C2. As all
such rigid subschemes are supported on the origin itself,

RHilbn0 ([C2/Gi]) ∼= RHilbn([C2/Gi]).

By decomposing an arbitrary G-invariant subscheme into components of the above
types, we obtain a stratification of RHilb([X/G]) into strata which are given by
products of RHilb([C2/G1]), . . . ,RHilb([C2/Gr]). Then using the fact that Euler
characteristic is additive under stratifications and multiplicative under products, we
obtain the following equation of generating functions:

∞∑
n=0

χ (RHilbn([X/G])) qn =

r∏
i=1

( ∞∑
n=0

χ
(
RHilbn([C2/Gi])

)
q
nk
ki

)
.

This proves Theorem 1.3.

3. Eta products

3.1. Review of modular forms and eta products. We will work with modular
forms of possibly half-integer weight. Fix a subgroup Γ of finite index in SL(2,Z),
a function χ : Γ → C∗ with |χ(A)| = 1 for A ∈ Γ, and a half-integer k. Then a
holomorphic function f : H→ C is said to transform as a modular form of weight k
with the multiplier system χ for Γ if

f

(
aτ + b

cτ + d

)
= χ(A)(cτ + d)kf(τ) for all A =

(
a b
c d

)
∈ Γ.

When k is not an integer, (cτ+d)k is understood to be a principal value. If moreover
f is holomorphic at all the cusps of Γ on Q ∪ {∞}, then f is said to be a modular
form. The space of modular forms of weight k and multiplier system χ for Γ is
denoted by Mk(Γ, χ).

An eta product is a finite product

(2) f(τ) =
∏
m

η(mτ)am

where m runs through a finite set of positive integers and the exponents am may
take values from Z. The least common multiple of all m such that am 6= 0 will be
denoted by N ; it is called the level of f(τ).

Eta products are known to transform as a modular form for Γ0(N) of weight
1

2

∑
m

am.
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The multiplier system of the eta function is given by a formula of Petersson. For
this we need some notation. Let sgn(x) = x

|x| be the sign of a real number x 6= 0. For
short, we will write e(z) for the function e2πiz with z ∈ C. Let c and d be integers
such that their greatest common divisor (c, d) = 1, d is odd and c 6= 0. Denote with(
c
d

)
their Legrende-Jacobi-Kronecker symbol. Then let( c

d

)∗
=

(
c

|d|

)
and

( c
d

)
∗

=

(
c

|d|

)
· (−1)

1
4

(sgn(c)−1)(sgn(d)−1).

Put furthermore(
0

1

)∗
=

(
0

−1

)∗
= 1,

(
0

1

)
∗

= 1,

(
0

−1

)
∗

= −1.

Then the multiplier system of the eta function is given in [6, Section 4.1], [7, Section
1.3]:

(3) vη(A) =

{(
d
c

)∗
e( 1

24((a+ d)c− bd(c2 − 1)− 3c)), if c is odd,(
c
d

)
∗ e(

1
24((a+ d)c− bd(c2 − 1) + 3d− 3− 3cd)), if c is even.

Using this, the multiplier system of the eta product (2) is (see [7, Section 2.1]):

vf (A) =
∏
m

(
vη

(
a mb
c/m d

))
.

For the eta product (2) we will denote by

(f)∗(A) :=
∏
m

((
d

c/m

)∗)am
and

(f)∗(A) :=
∏
m

((
c/m

d

)
∗

)am
the terms of the multiplier system vf (A) coming from the extended Kronecker symbol
when c is respectively odd or even. Using this notation and expression (3) the
multiplier system vf (A) of the eta product (2) can be written explicitly as follows.

Corollary 3.1.

vf (A) =



(f)∗(A)e

(
1

24

(
((a+ d)c− bdc2 − 3c)

(∑
m

am
m

)
+ bd

(∑
m

mam

)))
,

if c is odd,

(f)∗(A)e

(
1

24

(
((a+ d)c− bdc2 − 3cd)

(∑
m

am
m

)
+ bd

(∑
m

mam

)

+3(d− 1)

(∑
m

am

)))
,

if c is even.

Since η(τ) is nonzero on H, an eta quotient never has finite poles. The only issue
for an eta product to be a modular form is whether the numerator vanishes to at
least the same order as the denominator at each cusp. Recall that cusps of Γ0(N)
are in bijection with the orbits of Γ0(N) on the set Q ∪ {∞}.

Lemma 3.2 ([7, Chapter 2]). Let f be an eta product as in (2) and let N be its
level.
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(1) The order of f at the cusp ∞ is:

ord(f,∞) =
1

24

∑
m

mam.

(2) The order of f at the cusp r = −d
c ∈ Q, (c, d) = 1 is

ord(f, r) =
1

24

∑
m

(c,m)2

m
am.

As ord(f, r) at r = −d
c depends only on the denominator c, it is in fact enough

to check the order of vanishing at cusps of the form 1
c where c is a divisor of N . In

other words, the data of orders at all cusps can be reconstructed from the data of
orders at the cusps {1

c : c|N, c > 0}. Applying this observation, the following result
gives an explicit condition for an eta product to be a modular form.

Proposition 3.3 ([7, Corollary 2.3]). An eta product f as in (2) is holomorphic for
Γ0(N) if and only if the inequalities∑

m

(c,m)2

m
am ≥ 0

hold for all positive divisors c of N . It is a cuspidal eta product in and only if all
these inequalities hold strict.

We also need the following.

Lemma 3.4. Suppose that an eta product f(τ) as in (2) is holomorphic (resp. cus-
pidal) for Γ0(N). Then f(Lτ) is holomorphic (resp. cuspidal) for Γ0(NL) for any
integer L > 0.

Proof. Let c|NL be a divisor. It can be written as c = c1c2 where c1|N and c2|L
(this decomposition is not unique). Then the order of f(Lτ) at r = 1

c is

ord(f(Lτ), r) =
1

24

∑
m

(c, Lm)2

Lm
am =

1

24

∑
m

(c1c2, Lm)2

Lm
am

=
1

24

∑
m

(c1,m)2(c2, L)2

Lm
am =

1

24

∑
m

(c1,m)2c2
2

Lm
am

=

(
1

24

∑
m

(c1,m)2

m
am

)
· c

2
2

L
= ord

(
f(τ),

1

c1

)
· c

2
2

L
.

By the assumption on f(τ), this is nonnegative (positive). �

3.2. Modularity of the eta product expressions for Kleinian orbifolds. Re-
call the following result.

Theorem 3.5 ([1, Theorem 1.2]). The G∆-fixed partition functions can be expressed
as eta products as follows.

(1)

ZAn(τ) =
1

η(τ)
for n ≥ 1.

(2)

ZDn(τ) =
η2(2τ)η((4n− 8)τ)

η(τ)η(4τ)η2((2n− 4)τ)
for n ≥ 4.
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(3)

ZE6(τ) =
η2(2τ)η(24τ)

η(τ)η2(8τ)η(12τ)
.

(4)

ZE7(τ) =
η2(2τ)η(48τ)

η(τ)η(12τ)η(16τ)η(24τ)
.

(5)

ZE8(τ) =
η2(2τ)η(120τ)

η(τ)η(24τ)η(40τ)η(60τ)
.

Remark 3.6. The coefficients in the eta products of Theorem 3.5 can be interpreted
in terms of combinatorial numbers associated with the finite subgroupG∆ < SL(2,Z)
corresponding to ∆. For the details see [1, Section 3.2].

Corollary 3.7 ([1, Theorem 1.3]). The generating function Z∆(τ) can be written as

Z∆(τ) =
η∆(τ)

ηn+1(kτ)

where
(1)

ηAn(τ) =
ηn+1((n+ 1)τ)

η(τ)
for n ≥ 1,

(2)

ηDn(τ) =
η2(2τ)ηn+2((4n− 8)τ)

η(τ)η(4τ)η2((2n− 4)τ)
for n ≥ 4,

(3)

ηE6(τ) =
η2(2τ)η8(24τ)

η(τ)η2(8τ)η(12τ)
,

(4)

ηE7(τ) =
η2(2τ)η9(48τ)

η(τ)η(12τ)η(16τ)η(24τ)
,

(5)

ηE8(τ) =
η2(2τ)η10(120τ)

η(τ)η(24τ)η(40τ)η(60τ)
.

As mentioned in Section 1, this shows also that R∆(τ) = η∆(τ).

Example 3.8. For ∆ = A1, ηA1(τ) = η2(2τ)
η(τ) which is a noncuspidal holomorphic

modular form of weight 1/2 and level 2 [7, Example 3.12 (1)].

As mentioned above, to investigate holomorphicity of η∆(τ) for some Γ0(N) it is
enough to check the orders at the cusps of the form r = 1

c where c|N . The level
N for each η∆(τ) equals k = |G∆|. Although we do a case-by-case analysis in a
series of Lemmas, the calculations in each case are very similar. We always apply
Lemma 3.2 (2) on the eta quotients in Corollary 3.7.

Lemma 3.9. The eta product ηAn(τ) is holomorphic for Γ0(N) = Γ0(n+ 1).
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Proof. The order of ηAn(τ) at the cusp 1
c for a positive divisor c|(n+ 1) is

ord

(
ηAn ,

1

c

)
=

1

24

(
(c, n+ 1)2

n+ 1
(n+ 1)− 1

)
=

1

24
(c2 − 1).

This number is nonnegative for all positive c|(n+ 1). �

Lemma 3.10. The eta product ηDn(τ) is holomorphic for Γ0(N) = Γ0(4n− 8).

Proof. The order of ηDn(τ) at the cusp 1
c for a positive divisor c|4n− 8 is

ord

(
ηDn ,

1

c

)
=

1

24

(
(c, 4n− 8)2(n+ 2)

4n− 8
+ (c, 2)2 − (c, 4)2

4
− (c, 2n− 4)2

n− 2
− 1

)
=

1

24

(
(c, 4n− 8)2(n+ 2)

4(n− 2)
+ (c, 2)2 − (c, 4)2

4
− (c, 2n− 4)2

n− 2
− 1

)
.

As (c, 4n− 8)2 ≥ (c, 2n− 4)2 and n ≥ 4, we always have that

(c, 4n− 8)2

(n− 2)
· n

4
≥ (c, 2n− 4)2

(n− 2)
.

We also have that (c, 4n− 8)2 ≥ (c, 4)2, which implies that

(c, 4n− 8)2

(n− 2)
· 2

4
≥ (c, 4)2

4
.

Finally, (c, 2)2 ≥ 1. We obtain the statement. �

Lemma 3.11. The eta product ηE6(τ) is holomorphic for Γ0(N) = Γ0(24).

Proof. The order of ηE6(τ) at the cusp 1
c for a positive divisor c|24 is

ord

(
ηE6 ,

1

c

)
=

1

24

(
8(c, 24)2

24
+ (c, 2)2 − 2(c, 8)2

8
− (c, 12)2

12
− 1

)
.

The proof is similar to the type D case. The facts that (c, 24)2 ≥ (c, 12)2 and
(c, 24)2 ≥ (c, 8)2 imply that

2(c, 24)2

24
≥ (c, 12)2

12
and

6(c, 24)2

24
≥ (c, 8)2

4
.

Additionally, (c, 2)2 ≥ 1 as before. �

Lemma 3.12. The eta product ηE7(τ) is holomorphic for Γ0(N) = Γ0(48).

Proof. The order of ηE7(τ) at the cusp 1
c for a positive divisor c|48 is

ord

(
ηE7 ,

1

c

)
=

1

24

(
9(c, 48)2

48
+ (c, 2)2 − (c, 12)2

12
− (c, 16)2

16
− (c, 24)2

24
− 1

)
.

Due to (c, 48)2 ≥ (c, 12)2, (c, 16)2, (c, 24)2 we have that

4(c, 48)2

48
≥ (c, 12)2

12
and

3(c, 48)2

48
≥ (c, 16)2

16
and

2(c, 48)2

48
≥ (c, 24)2

24
.

Additionally, (c, 2)2 ≥ 1 as before. �

Lemma 3.13. The eta product ηE8(τ) is holomorphic for Γ0(N) = Γ0(120).
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Proof. The order of ηE8(τ) at the cusp 1
c for a positive divisor c|120 is

ord

(
ηE8 ,

1

c

)
=

1

24

(
10(c, 120)2

120
+ (c, 2)2 − (c, 24)2

24
− (c, 40)2

40
− (c, 60)2

60
− 1

)
.

Due to (c, 120)2 ≥ (c, 24)2, (c, 40)2, (c, 60)2 we have that

5(c, 120)2

120
≥ (c, 24)2

24
and

3(c, 120)2

120
≥ (c, 40)2

40
and

2(c, 120)2

120
≥ (c, 60)2

60
.

Additionally, (c, 2)2 ≥ 1 as before. �

All these prove the following, and give also the main part of Theorem 1.2.

Corollary 3.14. Let ∆ be a root system of ADE type. Let n be the rank of ∆, and
let k = |G∆|. Then η∆ is a holomorphic modular form of weight n

2 for Γ0(k) with
order 0 at the cusp 1, with order 1

24((n+ 1)k− 1) at ∞, and with a positive order at
cusps corresponding to every other divisor of k.

Proof. The statement on the orders can be checked from the formulas in Lemma 3.9–
3.13. For example, in Type A, (c2 − 1) is zero when c = 1, and positive otherwise.
The order at ∞ is 1

24

∑
mmam, which is 1

24((n+ 1)k − 1) in each case. �

Remark 3.15. We collected the orders at the various cusps for the type E cases in
Appendix A. As all entries are non-negative, this gives another, computational proof
of the statement in type E.

The multiplier system of η∆ can also be obtained quickly.

Corollary 3.16. The multiplier system χ∆(A) of η∆ is

χ∆(A) =

{
(η∆)∗(A)e

(
1
24 (bd((n+ 1)k − 1))

)
, if c is odd,

(η∆)∗(A)e
(

1
24 (bd((n+ 1)k − 1) + 3(d− 1)n)

)
, if c is even.

Proof. We observe that for each η∆ in Corollary 3.7,
∑
am = n and

∑
m
am
m = 0,

the order of the cusp 1. Moreover,
∑

mmam = (n+ 1)k − 1. Combining these facts
with Corollary 3.1 we obtain the statement. �
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Appendix A. The orders of R∆(τ) in type E

E6 E7 E8

c ord c ord c ord

1 0 1 0 1 0

2 1
8 2 1

8 2 1
8

3 1
12 3 1

48 3 1
120

4 1
8 4 1

8 4 1
8

6 11
24 6 5

24 5 1
24

8 7
24 8 7

24 6 19
120

12 35
24 12 11

24 8 19
120

24 167
24 16 31

24 10 7
24

24 71
24 12 31

120

48 383
24 15 7

12

20 19
24

24 23
24

30 59
24

40 89
24

60 227
24

120 1079
24
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