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Abstract. We examine the mode entanglement and correlation of two fermionic

particles. We study the one- and two-mode entropy and a global characteristic, the one-

body entanglement entropy. We consider not only angular momentum coupled states

with single configuration but use the configuration interaction method. With the help

of the Slater decomposition, we derive analytical expressions for the entanglement

measures. We show that when the total angular momentum is zero specific single

configurations describe maximally entangled states. It turns out that for a finite

number of associated modes the one- and two-mode entropies have identical values. In

the shell model framework, we numerically study two valence neutrons in the sd shell.

The one-body entanglement entropy of the ground state is close to the maximal value

and the associated modes have the largest mutual information.
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1. Introduction

Recently, the study of non-classical correlations between individual subsystems has

gained importance in several research areas. Maybe the most notable form of non-

classical correlation is entanglement [1, 2]. The significance of these can be approached

from several viewpoints. On the one hand, the experimental observation of non-classical

correlations predicted by quantum theory represents a constraint on the theories to be

used. On the other hand, entanglement provides a resource for communication and

computing that goes beyond the possibilities of classical physics [3].

The entanglement of subsystems is a highly diverse problem, raising several open

questions and approaches. One of the fundamental issues is the choice of subsystems to

be considered in the studies. In the case of distinguishable particles, the notion of the

entanglement is based on the structure of the tensor product of Hilbert spaces of the

subsystems. This type of entanglement is very thoroughly investigated [2].

The studies on the entanglement of identical particles have led to tough conceptual

questions that have been studied for years. In the case of identical fermions the system is

described by the antisymmetric part of the Fock space, however the decomposition into

particle subsystems does not correspond to tensor product structure of the Fock space.

To overcome this problem, the notion of the mode entanglement was introduced [4–7]. In

the second quantized formalism, the mode creation and annihilation operators generate

the algebra of observables. The subsystems are defined in terms of subalgebras [8–10]

and the partial trace operation is replaced by restriction of the quantum state to a

subalgebra. With a carefully defined partial trace operation on the Fock space [11, 12]

one can define the density operator of the subsystem. The great advantage of the

mode entanglement is that the modes can form a feasible, well-defined subsystems

even for indistinguishable particles [8, 11, 13]. Recently entanglement investigations

[14–16] are carried out in the framework of the algebraic quantum mechanics where the

physical observables are described by a C∗ algebra. Nevertheless both approaches mode

entanglement [17–21] and particle based studies [22–29] are present to describe quantum

correlations in fermionic systems.

In our work, we apply the mode entanglement characterization of the quantum

states. In atomic physics, the quantitative characterization of the entanglement has

already been studied in several models [30]. The application of quantum information

concepts has also proved to be extremely useful in the study of the chemical bond [31–33].

The study of the mode entanglement in nuclei is an almost entirely unexplored area.

Although initial steps have already been taken to study entanglement in nuclear physics

models. The investigations of the non-classical correlations in the Lipkin model [34]

and fermionic superconducting system [35] are important for nuclear physics too. The

entanglement of valance particles is studied in the traditional nuclear shell model [36].

The aim of the present work is to investigate the mode entanglement in nuclear

systems in the simplest case i.e. in the case of two interacting particles described by

a pure state assuming particle number conservation. In the works [22, 37, 38] similar
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systems were considered and the von Neumann entropy of the one-particle reduced

density operator of angular momentum and isospin coupled states were studied. Our

present work can be considered as an extension and continuation of the research

[22, 37, 38]. First of all, we study the mode entanglement instead of the particle

entanglement and give explicit analytical expressions for measures of the entanglement

and correlation. We also consider the interaction between the particles and use

the configuration interaction method to describe ground and excited states with the

interaction USD [39] and USDB [40].

This work is organized as follows. The formalism of the mode entanglement and

two-mode correlation is briefly reviewed in section 2. The Slater decomposed form of

a two-fermion wave function and the calculation of the entropies using this form of

the wave function are discussed in section 3. The angular momentum coupled single

configurations and the states of the configuration interaction method are analysed in

sections 4 and 5. The numerical results are shown in section 6 where two neutron

problem is considered in the sd shell. Section 7 summarizes the results.

2. Mode entanglement and two-mode correlation

Here we summarize the basic notions of the mode entanglement for a fermionic system.

This approach uses the language of the second quantized formalism of the non-relativistic

quantum mechanics. We have a finite-dimensional single-particle (sp) Hilbert space

S and from this, we construct the Fock space. If we take an orthonormal basis

{φi | i = 1, 2, . . . , d} in S then the corresponding creation and annihilation operators

acting on the Fock space are denoted by c†i and ci, respectively. We consider the

canonical anti-commutation relation (CAR) algebra A generated by the set of operators

{ci, c†i | i = 1, . . . , d} whose elements satisfy the CARs

cic
†
j + c†jci = δi,j,

cicj + cjci = c†ic
†
j + c†jc

†
i = 0, (1)

where i, j = 1, . . . , d. The vacuum of the operators ci is denoted by |0〉 and we say that

the system is described by d fermionic modes.

Here we discuss the entanglement associated with bipartitions of the modes. A

bipartition for fermionic system is defined by two subsets of modes and this will

determine a bipartition of the algebra A in terms of subalgebras. First we define two

sets of modes A = {π1, π2, . . . , πa} and B = {πa+1, . . . , πd}, where π1, π2, . . . , πd is a

permutation of the numbers 1, 2, . . . , d and 1 ≤ a ≤ d − 1. We will denote by AA and

AB the operator subalgebras spanned by the modes A and B, respectively.

First we consider such a bipartition where the subalgebra AA is generated by the

operators ck, c
†
k, i.e. the single mode k. The CAR subalgebra AB is generated by the

remaining modes. The one-mode reduced density matrix (OM-RDM) can be given in
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the form

ρ(k) =

(
〈c†kck〉 0

0 1− 〈c†kck〉

)
, (2)

where the notation 〈c†kck〉 = 〈Ψ|c†kck|Ψ〉 is used. The pure state Ψ describes the system.

The one-mode reduced density operator ρ̂A on the basis |b1〉 = c†k|0〉 and |b2〉 = |0〉 is

given by

ρ̂A =
2∑

i,j=1

|bi〉ρ(k)
i,j 〈bj|. (3)

The reduced density operator ρ̂A has the following important property [44] Tr(ρ̂AÔA) =

〈Ψ|ÔA|Ψ〉, where ÔA is an arbitrary operator from AA.

The one-mode entropy is given by

S(ρ(k)) = −Tr(ρ(k) log2(ρ(k))) = h(〈c†kck〉), (4)

where the function h is defined by h(x) = −x log2(x) − (1 − x) log2(1 − x). The total

correlation is the sum of the one-mode entropies [42]

Sc =
d∑
i=1

S(ρ(i)). (5)

This quantity depends on the choice of the sp basis [43]. We can consider the minimum

of (5) over all sp basis of S and define the one-body entanglement entropy [44]

SSP = mincSc. (6)

The function SSP takes its minimum value zero for non-entangled states [44]. We have

kept the naming of this entanglement measure and the symbol SSP introduced in the

work [44].

A standard notion in many-body quantum physics is the one-particle reduced

density matrix (OP-RDM)

ρspi,j = 〈Ψ|c†jci|Ψ〉. (7)

It was shown in [44] that the one-body entanglement entropy SSP can be calculated

using such a sp basis where the OP-RDM is diagonal ρsp = diag{n1, n2, . . . , nd} and

SSP =
d∑
i=1

h(ni). (8)

The occupation numbers ni of the natural orbits are the eigenvalues of the OP-RDM.

Next we consider such a bipartition of the modes where two modes determine AA;

AA is generated by a pair of modes (i; j) i.e. the operators {ci, c†i , cj, c
†
j} (i 6= j). The

two-mode reduced density matrix can be constructed using transition operators [45–47]

which in the current case simplifies to [35]

ρ(i;j) =


〈c†icic

†
jcj〉 0 0 0

0 〈c†icicjc
†
j〉 〈c†jci〉 0

0 〈c†icj〉 〈cic†ic
†
jcj〉 0

0 0 0 〈cic†icjc
†
j〉

 . (9)
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The two-mode entropy of the modes i and j S(ρ(i;j)) is the traditional von Neumann

entropy of (9) i.e. −Tr[ρ(i;j) log2(ρ(i;j))]. It is easy to show that S(ρ(i;j)) = S(ρ(j;i)).

The two-mode reduced density operator ρ̂A on the basis |b1〉 = c†ic
†
j|0〉, |b2〉 = c†i |0〉,

|b3〉 = c†j|0〉 and |b4〉 = |0〉 is given by

ρ̂A =
4∑

k,l=1

|bk〉ρ(i;j)
k,l 〈bl|. (10)

The reduced density operator ρ̂A can be used to determine all expectation values of

operators ÔA belong to AA i.e. Tr(ρ̂AÔA) = 〈Ψ|ÔA|Ψ〉.
The mutual information between the modes i and j (i 6= j) is defined in the following

way

I(i;j) = S(ρ(i)) + S(ρ(j))− S(ρ(i;j)). (11)

It describes the correlation between the modes i and j embedded into the environment of

the other modes, and it includes correlations of both classical and quantum origin [48].

3. Two-fermion wave function

We consider two identical fermions in a pure state |ψ〉. The orthonormal one-fermion

set of states is {φi = c†i |0〉, i = 1, . . . , d}. The wave function |ψ〉 of a two-fermion state

can be represented as

|ψ〉 =
d∑

i,j=1

wi,jc
†
ic
†
j|0〉, (12)

where the complex (or real) coefficients satisfy wi,j = −wj,i. The coefficients wi,j
determine a skew–symmetric matrix w and the normalization condition is 2Tr(ww†) = 1.

3.1. Slater decomposition

There is a classical theorem about skew-symmetric matrices which we will use in the

following. A number of proofs can be found in the literature [49–53].

Theorem 1. If w is an even-dimensional complex (or real) non-singular 2n × 2n

skew- symmetric matrix, then there exists a unitary (or real orthogonal) 2n×2n matrix

U such that:

U twU

= diag

{(
0 λ1

−λ1 0

)
,

(
0 λ2

−λ2 0

)
, · · · ,

(
0 λn
−λn 0

)}
. (13)

The rhs of (13) is written in block diagonal form with 2 × 2 matrices appearing along

the diagonal, and the λj are real and positive.
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If w is a complex (or real) singular skew-symmetric d×d matrix of rank 2n (d > 2n),

then there exists a unitary (or real orthogonal) d× d matrix U such that

U twU

= diag

{(
0 λ1

−λ1 0

)
,

(
0 λ2

−λ2 0

)
, · · · ,

(
0 λn
−λn 0

)
,Od−2n.

}
(14)

The rhs of (14) is written in block diagonal form with 2 × 2 matrices appearing

along the diagonal followed by a (d− 2n)× (d− 2n) block of zeros (denoted by Od−2n)

and the λj are real and positive.

We use the so called canonical real form, where λi are real and positive. The

Slater decomposition given in [24, 25] is in terms of complex λi but for our purposes

it is worthwhile to choose U so that we get the canonical real form [28, 53]. In this

case the quantities λi are the non-zero singular values of w i.e. λ2
i are the non-zero real

eigenvalues of the self-adjoint matrix w†w. These eigenvalues are double degenerated.

With the unitary transformation of the Theorem 1 we can define new creation and

annihilation operators

a†i =
d∑

k=1

U †i,kc
†
k and ai =

d∑
k=1

Uk,ick. (15)

These new operators determine d new modes [43]. We can rewrite the wave function

(12) into the so called Slater decomposed form [27,41]

|Ψ〉 = 2
n∑
i=1

λia
†
2i−1a

†
2i|0〉. (16)

We will call the new modes (2i − 1) and 2i as associated modes (i = 1, . . . , n). The

Slater decomposition introduces three sets of the new modes M1 = {1, 3, . . . , 2n − 1},
M2 = {2, 4, . . . , 2n} and M3 = {2n+1, 2n+2, . . . , d}. The modes in M3 are not present

in the state (16). Each mode from the sets M1 or M2 appears just in one component

of (16). Furthermore Slater determinants constructed only from modes in M1 (M2) are

not present in (16).

The equation (16) is the fermionic analogue of the Schmidt decomposition for

distinguishable bipartite systems [2, 3]. It is customary to say that the Slater rank

of the wave function (12) is n. The relation of Slater rank with the entanglement has

been investigated in several papers [25,26,29]. The state (12) is called entangled if and

only if its Slater rank is greater than 1.

3.2. Correlation measures using Slater decomposed form

A two-particle state is characterized by a skew-symmetric matrix w. The quantities

which measure the correlation can be expressed by w. For example the OP-RDM reads

ρsp = 4ww†. (17)
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and the OM-RDM can be written in the form

ρ(k) =

(
ρspk,k 0

0 1− ρspk,k

)
. (18)

With a straightforward calculation we can get an expression for the two-mode

density matrix (9)

ρ(i;j) =


4|wi,j|2 0 0 0

0 −4|wi,j|2 + ρspi,i ρspi,j 0

0 ρspj,i −4|wi,j|2 + ρspj,j 0

0 0 0 1 + 4|wi,j|2 − ρspi,i − ρ
sp
j,j

 . (19)

If the wave function is in Slater decomposed form we can get simpler expressions

for the entanglement entropies. Here we give the correlation measures expressed by the

singular values λi. Let’s assume that a pure state is given in the Slater decomposed

form (16). The w matrix of the wave function (16) according to (13) and (14) is block

diagonal w = diag (w̄,Od−2n) and w̄ is 2n× 2n type matrix with elements

w̄i,j = δ|i−j|,1

{
λdi/2eδ(−1)i,−1 if i < j

−λdi/2eδ(−1)i,1 if i > j

i, j = 1, . . . , 2n, (20)

where dxe is the ceiling function. From (17) and (20) it follows that the OP-RDM is

also block diagonal ρsp = diag (ρ̄sp,Od−2n) and ρ̄sp is a diagonal 2n× 2n type matrix

ρ̄spi,j = δi,j4λ
2
di/2e, i, j = 1, . . . , 2n. (21)

The one-mode entropies of the modes for the state (16) can be calculated using (4),

(18) and (21)

S(ρ(2i−1)) = S(ρ(2i)) = h(4λ2
i ), i = 1, . . . , n. (22)

Notice that the associated modes have the same one-mode entropies. The one-mode

entropies of the remaining d − 2n modes are zero S(ρ(i)) = 0, i = 2n + 1, . . . d. The

one-body entanglement entropy according to (8) and (22) is

SSP =
2n∑
i=1

h
(
4λ2
di/2e

)
= 2

n∑
i=1

h
(
4λ2

i

)
. (23)

We might ask the question which two-body state has the maximal one-body

entanglement entropy if we can use only predefined number of modes. In the Appendix

we show that the maximum value of SSP is

−2 + d log2 d− (d− 2) log2(d− 2) (24)

if d > 2 and in this case λ2
i = 1

2d
. If d = 2 the state is non-entangled and SSP = 0.

Considering (19), (20) and (21) we can realize that the two-mode reduced density

matrix is a diagonal 4× 4 matrix in a sp basis which corresponds to Slater decomposed

form. For non associated modes we can write

ρ(i;j) = diag{0, 4λ2
di/2e, 4λ

2
dj/2e, 1− 4λ2

di/2e − 4λ2
dj/2e}, (25)
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where i, j = 1, . . . , 2n and i 6= j. The case when the two modes are associated is

interesting. If i is odd then we have

ρ(i;i+1) = diag(4λ2
di/2e, 0, 0, 1− 4λ2

di/2e), i = 1, 3, . . . , 2n− 1. (26)

This means that according to (22) for associated modes we have the relations

S(ρ(2i−1)) = S(ρ(2i)) = S(ρ(2i−1;2i)) = h(4λ2
i ), i = 1, 2, . . . , n (27)

i.e. the one-mode entropies of the associated modes are the same, furthermore this value

agrees with the two-mode entropy of the modes (2i− 1) and 2i. From these properties

it follows that the mutual information (11) of the associated modes is the same as the

one-mode entanglement entropy of the considered modes. For the remaining d − 2n

modes we have S(ρ(i;j)) = 0 if 2n+ 1 ≤ i ≤ d or 2n+ 1 ≤ j ≤ d and i 6= j.

4. States with single configuration

In the rest of the paper, we consider an interacting system composed of identical fermions

(either protons or neutrons) where the Hamiltonian is spherical symmetric. In this case,

the square of the total angular momentum is a conserved quantity. We have to construct

wave function with good total angular momentum. In this section, we apply the general

formalism developed in the previous sections for the study of the entanglement “caused”

by angular momentum coupling. Of course, the real reason of the entanglement is the

spherical symmetric interaction between the fermions.

We use the following notation for the modes (sp states) |φα〉 = |α〉 = |amα〉 where

a = nalaja. Here la and ja have the meanings as the quantum numbers for orbital and

total angular momenta of the sp orbit a, and na is as an additional quantum number to

fully characterize the mode. In the followings a mode will be denoted by (α) = (a,m).

The angular momentum coupling of the sp orbits is signed by [a1⊗a2]JM and the explicit

form of a two nucleon wave function with total angular momentum J and projection M

is

|ΦJM
a1a2
〉 = Na1,a2

∑
m1,m2

〈ja1 ,m1, ja2 ,m2|J,M〉c†a1m1
c†a2m2

|0〉. (28)

The normalization factor is Na1,a2 = 1 if a1 6= a2, and for a1 = a2 we have Na1,a2 = 1/
√

2

(in this case J is an even integer). We denote the number of modes which determines

the sp space by d. It is obvious that d = 2ja1 + 2ja2 + 2 if a1 6= a2 and d = 2ja + 1 if

a1 = a2 = a. The size of the matrix w, which corresponds to the state (28) is d.

4.1. Slater decomposition

Here we illustrate that we can arrange the modes in such a way that the state (28) is

in Slater decomposed form, and we can avoid the numerical calculation of the singular

values of the matrix w. In this way we can give analytical expressions for the entropies.

Pairs of modes which satisfy the condition M = m1 + m2 are arranged in the

following order [(a1, m̄), (a2,M−m̄)], [(a1, m̄+1), (a2,M−m̄−1)], . . . , [(a1, M̄), (a2,M−
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M̄)]. We call this arrangement as mode sequence M. The lower and upper limits are

defined by

m̄ = max(−ja2 +M,−ja1) (29)

and

M̄ = min(ja1 , ja2 +M). (30)

In order to make the equations more readable we do not denote that m̄ and

M̄ depend on the quantum numbers ja1 , ja2 and M . The square brackets

[. . . , . . .] denote pairs of modes which determine two-particle states of the form:

c†a1m̄c
†
a2(M−m̄)|0〉, . . . , c

†
a1M̄

c†
a2(M−M̄)

|0〉. In the case of a1 = a2 there are identical pairs of

modes in the sequenceM. We remove pairs of modes from the end ofM in such a way

that each mode pair should be in the sequence M only once.

In order to have canonical real form of the state (28) as described in Theorem

1 we have to make modifications in sequence M. If the Clebsch-Gordan coefficient

〈ja1 ,m, ja2 ,M − m|JM〉 of a mode pair is negative we have to interchange the order

of modes in the pair. In some cases we have to make a further modification of M. If

a pair of mode has the same quantum numbers α then the corresponding two particle

wave function is identically zero (c†αc
†
α|0〉 = 0) therefore we remove the mode pair [α, α]

from the sequence M and put the mode (α) into a set called N . The modes which are

not contained in M are collected in N .

Finally we have to consider a peculiarity of Clebsch-Gordan coefficients. There are

so called exceptional cases where the quantum numbers satisfy all obvious symmetries

e.g. triangular inequality etc., nevertheless the value of the Clebsch-Gordan coefficient

is zero [54, 55]. We have to leave out those pairs of modes from M whose Clebsch-

Gordan coefficients 〈ja1 ,m, ja2 ,M−m|JM〉 are exceptional ones and move these modes

into the set N . The number of exceptional Clebsch-Gordan coefficients is denoted by

Nexc. The number of modes which remains in the mode sequence M is denoted by 2n

in accordance with the previous sections and

2n =

{
2b(M̄ − m̄+ 1)/2c − 2Nexc if a1 = a2

2(M̄ − m̄+ 1)− 2Nexc if a1 6= a2,
(31)

where the floor function is signed by bxc. The pairs of modes remained in the sequence

M are called associated modes and they are of the form (a1,m) and (a2,M − m)

(m̄ ≤ m ≤ M̄).

Once we have the final sequence of modes M, we give a unique serial number for

each modes in M and define the mapping α(i) = (a(i),m(i)) = (n(i), l(i), j(i),m(i))

i = 1, 2, . . . , 2n in such a way that it corresponds to the final mode sequence M. The

notation α(i) means the quantum numbers of the i’th mode in the ordered enumeration

M. We can say the number of modes present in the wave function (28) is 2n.

With these notation we can rewrite (28) in Slater decomposed form

|ΦJM
a1a2
〉 =

n∑
i=1

2λi c
†
α(2i−1)c

†
α(2i)|0〉, (32)
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where the λi is expressed by Clebsch-Gordan coefficients

λi =

{
1√
2
〈j(2i− 1),m(2i− 1), j(2i),m(2i)|JM〉 if a1 = a2

1
2
|〈j(2i− 1),m(2i− 1), j(2i),m(2i)|JM〉| if a1 6= a2,

i = 1, 2, . . . , n. (33)

4.2. Entanglement entropies

Since we have rewritten the angular momentum coupled two-fermion states in Slater

decomposed form we can easily get the entanglement entropies from the general formulas

of section 3.2.

From (32) it follows that the Slater rank is Srank(a1, a2,M) = n. The following

relation is valid

Srank(a1, a2,M) = Srank(a1, a2,−M) (34)

and if we assume that Nexc = 0 both for M and M + 1

Srank(a1, a2,M + 1) ≤ Srank(a1, a2,M), 0 ≤M ≤ J − 1. (35)

The smallest Slater rank corresponds to the cases |M | = J if Nexc = 0 for each M

(−J ≤M ≤ J). These formulas are proved in the Appendix B.

From now on instead of the serial number of the modes we will identify them by

their quantum numbers. The one-mode entropies of the associated modes are identical

and they are given by

S
(
ρ(a1,m)

)
= S

(
ρ(a2,M−m)

)
=

{
h (2| 〈ja1 ,m, ja2 ,M −m|J,M〉 |2) if a1 = a2

h (| 〈ja1 ,m, ja2 ,M −m|J,M〉 |2) if a1 6= a2

(36)

m̄ ≤ m ≤ M̄,

where we used (22) and (33). The one-mode entropies of the remaining modes are zero.

The two-mode entropies can be easily calculated with the help of (25), (26) and (33).

In the very important case when J = 0 the expressions above have simpler forms.

In this case we always have ja1 = ja2 = j. Fortunately there are no exceptional Clebsch-

Gordan coefficients in the case i.e. Nexc = 0 in (31). This fact helps to derive simple

analytical expressions. The Slater rank is

Srank(a1, a2, 0) =

{
(2j + 1)/2 if a1 = a2

(2j + 1) if a1 6= a2

. (37)

From a property of the Clebsch-Gordan coefficients, 〈j,m, j,−m|0, 0〉 =

(−1)j−m/
√

2j + 1 and from (32) and (33) it follows that

〈Φ00
a1a2
|c†α(i)cα(i)|Φ00

a1a2
〉 = 4λ2

di/2e =

{
2/(2j + 1) if a1 = a2

1/(2j + 1) if a1 6= a2

i = 1, 2, . . . , 2n. (38)
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According to (21) and (38) the diagonal elements of the diagonal OP-RDM are identical.

From this observation and from (22) we get for the state |Φ00
a1a2
〉 that the one-mode

entropies of each modes are identical i.e. they do not depend on m

S
(
ρ(a,m)

)
= h

(
2

2j + 1

)
, a1 = a2 = a, m = −j, . . . , j (39)

and

S
(
ρ(a1,m)

)
= S

(
ρ(a2,m)

)
= h

(
1

2j + 1

)
, a1 6= a2, m = −j, . . . , j. (40)

In the case of J = 0 the one-body entanglement entropy (8) is

SSP =

 (2j + 1)h
(

2
2j+1

)
if a1 = a2

2(2j + 1)h
(

1
2j+1

)
if a1 6= a2.

(41)

The one-body entanglement entropy of two-nucleon states with total angular

momentum zero shows an interesting property. The state |Φ00
aa〉 when j = 1

2
is

not entangled since its Slater rank is one. We might ask which two-body state has

the maximal one-body entanglement entropy if we can use only the modes (a,m)

(−j ≤ m ≤ j). The states |Φ00
aa〉 (j > 1

2
) are maximally entangled in the previous sense.

The OP-RDM of the state |Φ00
aa〉 is diagonal and the diagonal elements are identical and

their values are 2/(2j + 1). The number of modes in Φ00
aa is (2j + 1) and according to

Appendix A this means that the state is maximally entangled.

In the case J = 0 the two-mode entropies also do not depend on the z components

of the angular momentum of the modes. For non associated modes from (25) and (38)

we get for the two-mode entropies

S
(
ρ((a1,m1);(a2,m2))

)
=

 2H
(

2
2j+1

)
+H

(
1− 4

2j+1

)
if a1 = a2,m1 6= ±m2

2H
(

1
2j+1

)
+H

(
1− 2

2j+1

)
if a1 6= a2,m1 6= −m2

m1,m2 = −j,−j + 1, . . . , j, (42)

where H(x) = −x log2(x). For the associated modes we can use the general relation

(27) and equations (39) and (40).

5. States with configuration mixing

In realistic calculations, the configurations are mixed and very frequently the so-called

CI method is used to solve the Schrödinger equation. In this section, we explicitly give

the mode entanglement measures when the wave function is in a special CI form and

the total angular momentum is zero.

5.1. Configuration interaction method

The general trial wave function in the CI method is of the form

|Ψ(J=0,M=0)〉 =
∑
a1,a2

Aa1,a2|Φ00
a1a2
〉, (43)
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where the amplitudes Aa1,a2 are determined by the Rayleigh-Ritz variational principle

and ja1 = ja2 . If the self-adjoint Hamiltonian is invariant with respect to the complex

conjugation then Aa1,a2 can be chosen to be real. It is easy to see that the wave function

(43) generally cannot be transformed into Slater decomposed form with the help of

special order of the modes. However the following form of CI wave function

|Ψ(J=0,M=0)〉 =
∑
a

Aa|Φ00
aa〉 (44)

can be brought to Slater decomposed form with a special order of the modes. Assume

that the possible orbits are a1, a2, . . . ak in the summation (44) and Aa 6= 0. The modes

are arranged in the form: modes of orbit a1, modes of orbit a2 and so on. At each ai the

modes (ai,m) are arranged in the form as described in the section 4.1. If Aa is negative

then in the mode sequenceM, which corresponds to the orbit a, the order of the modes

in each mode pair has to be interchanged. It is obvious that the CI wave function (44)

with this mode arrangement is in Slater decomposed form. From (37) it follows that the

Slater rank of the CI wave function (44) is 1
2

∑
a(2ja + 1). For the one-mode entropies

according to (2) we need the expression

〈Ψ(0,0)|c†amcam|Ψ(0,0)〉 = |Aa|2〈Φ00
aa|c†amcam|Φ00

aa〉. (45)

From the equation above and from (4) and (38) it follows that for the wave function

(44) the one-mode entropies of the modes (a,−j), (a,−j + 1), . . . , (a, j − 1), (a, j) are

S(ρ(a,m)) = h

(
|Aa|2

2

2ja + 1

)
. (46)

This expression shows that the one-mode entropies of the modes (a,m) do not depend

on the magnetic quantum number m. This was observed numerically in [36] for systems

of few fermions; here we proved it rigorously for two-fermion systems with CI wave

function of the form (44).

The one-body entanglement entropy of the wave function (44) has the obvious form

SSP =
∑
a

(2ja + 1)h

(
|Aa|2

2

2ja + 1

)
. (47)

We can determine a CI wave function which is in the form (44) and it has the

largest one-body entanglement entropy. According to the Appendix A the occupation

numbers of the natural orbits have to be the same and this value has to be two over the

number of modes present in the wave function. We have the equation

2|Aa|2

2ja + 1
=

2∑
a′(2ja′ + 1)

(48)

and from this equation we can get |Aa|. However we can not determine the sign of

the amplitude Aa. In the case of maximally entangled CI wave function the one-mode

entropies are independent from the modes

S(ρ(a,m)) = h

(
2∑

a′(2ja′ + 1)

)
, m = −j, . . . , j. (49)
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The two-modes entropies can be expressed also in simple forms for the state (44).

It is obvious that the modes (ai,mk) and (aj,ml) are not associated if ai 6= aj. Using

the general expressions (25) and (38) for two-mode entropies we get

S
(
ρ((ai,mk);(aj ,ml))

)
= H

(
2|Aai |2

2jai + 1

)
+H

(
2|Aaj |2

2jaj + 1

)
+ H

(
1− 2|Aai |2

2jai + 1
−

2|Aaj |2

2jaj + 1

)
, ai 6= aj. (50)

In the same way we can get for two-mode entropies of the non-associated modes (a,m1)

and (a,m2)

S
(
ρ((a,m1);(a,m2))

)
= 2H

(
2|Aa|2

2ja + 1

)
+H

(
1− 4|Aa|2

2ja + 1

)
,

m1,m2 = −j, . . . , j, m1 6= −m2, m1 6= m2. (51)

If the considered modes are associated i.e. the modes are (a,−m) and (a,m) (m =

−j,−j + 1, . . . , j) the two-mode entropy is

S
(
ρ((a,−m);(a,m))

)
= H

(
2|Aa|2

2ja + 1

)
+H

(
1− 2|Aa|2

2ja + 1

)
= h

(
2|Aa|2

2ja + 1

)
. (52)

If we compare (52) with (46) we can realize that the one-mode entropies of the

modes (a,m) and (a,−m) agrees with the two-mode entropies of the same modes i.e

S(ρ(a,−m)) = S
(
ρ(a,m)

)
= S

(
ρ((a,−m);(a,m))

)
. The expressions (50), (51) and (52) define

three families of two-mode entropies but within one family the two-mode entropies do

not depend on the magnetic quantum numbers.

6. Numerical results

Here we consider two neutrons in the sd shell and apply the CI method. The sp orbits

are 1s1/2, 0d3/2 and 0d5/2 and the number of modes is twelve. The ground and two

excited Jπ = 0+ states are determined with the interaction USD and USDB. In this

case the CI wave function has the form (44) and we can apply for the entropies the

analytical results of the section 5. The energies are calculated with the CI method and

shown in Table 1. The values of the amplitudes of the components of the wave functions

are also displayed. The angular momentum coupled components are [1s1/2 ⊗ 1s1/2]00,

[0d3/2 ⊗ 0d3/2]00 and [0d5/2 ⊗ 0d5/2]00. In each state the modulus of one component has

much larger value than the modulus of the other components of the wave function. The

dominant configurations are (0d5/2)2, (1s1/2)2 and (0d3/2)2 for the states 0+
1 , 0+

2 and 0+
3 ,

respectively.

Table 2 contains one-body entanglement entropy together with the one-mode

entropies. The ground state has the largest one-body entanglement entropy. To study

the dependence of the one-body entanglement entropy on the amplitudes we take the

following normalized ansatz

cos(θ)
[
1s 1

2
⊗ 1s 1

2

]00

+ sin(θ) sin(φ)
[
0d 3

2
⊗ 0d 3

2

]00

+ sin(θ) cos(φ)
[
0d 5

2
⊗ 0d 5

2

]00

(53)
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Table 1. Energy of the two neutron system in the sd shell using the CI method with

the interaction USD. The ground and excited Jπ = 0+ states are considered. The

amplitudes of the decomposition into angular momentum coupled configurations are

displayed also.

state E (MeV) (s1/2)2 (d3/2)2 (d5/2)2

0+1 -12.171 0.389 0.245 0.889

0+2 -7.851 0.919 -0.029 -0.393

0+3 1.964 0.071 -0.969 0.236

Table 2. One-mode and one-body entanglement entropies of the two-neutron Jπ = 0+

states in the sd shell using the CI method with the interaction USD and USDB. The

one-mode entropy of the mode (a,m) does not depend on m.

state CI USD CI USDB

0+1

SSP 6.988 6.951

s1/2 0.611 0.669

d3/2 0.194 0.166

d5/2 0.832 0.825

0+2

SSP 3.024 3.327

s1/2 0.623 0.676

d3/2 0.005 0.009

d5/2 0.293 0.323

0+3

SSP 4.881 4.759

s1/2 0.046 0.033

d3/2 0.997 0.998

d5/2 0.133 0.117

with real parameters θ and φ. The results are depicted on Figure 1. Since the one-body

entanglement entropy depends on only the moduli of the amplitudes we assume that

both θ and φ are nonnegative and θ, φ ≤ π/2. The small values of the entropy along

the θ axis of the coordinate system is due to the fact that when θ = 0 the state (53)

is non-entangled. The maximum value of SSP according to (24) is 7.80 for such a CI

wave function which has the same components as we use in our CI calculations. In the

maximum entropy case with the help of (49) we can calculate the one-mode entropies

(0.65) they are independent from the modes.

The maximum value of the SSP corresponds to such amplitudes which satisfy (48).

In our case we get the following absolute values for the amplitudes 0.41, 0.58 and 0.71

for the configurations (1s1/2)2, (0d3/2)2 and (0d5/2)2, respectively. For completeness we

mention that with the interaction USD the energy of the two-neutron system is −10.271

MeV with the amplitudes 0.41, 0.58 and 0.71 for the configurations (1s1/2)2, (0d3/2)2

and (0d5/2)2.

The position of the maximum of the SSP is denoted MAX in Figure 1. The value of

the SSP when the CI method used with interaction USD is signed by the abbreviation
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USD in Figure 1. One can notice that the one-body entanglement entropy of the ground

state is close to the maximum value of the SSP . We may say that interaction USD and

USDB induce such a nucleon-nucleon correlation which leads to a ground state wave

function which is almost maximally entangled with respect to the SSP measure.

We now discuss the relationship between the amplitudes and the one-mode entropies

for the wave function (44). According to the expression (46) we have to know the

characteristics of the function h(x). The function h(x) on the interval [0, 1] has the

following properties. The absolute maximum is at x = 1/2 and here the one-mode

entropy is one. At x = 0 and x = 1 the one-mode entropy is zero. The function h(x)

is strictly increasing (decreasing) in the interval [0, 1/2]([1/2, 1]) and symmetric to the

point x = 1/2 i.e. h(1/2−x) = h(1/2+x) (h(x) = h(1−x)). Since the argument of h is

2|Aa|2/(2ja + 1) we can make the following statements. If |Aa|2 increases the one-mode

entropy increases if ja > 1/2. The situation is different when ja = 1/2. In this case

if |Aa|2 increases the one-mode entropy increases too provided |Aa|2 ≤ 1/2 is valid. If

the modulus of the amplitude increases the one-mode entropy decreases if |Aa|2 ≥ 1/2.

These observations are in line with the physical expectations. At the first thought we

may find strange the following. The moduli of amplitudes of the components (s1/2)2 for

the states 0+
1 and 0+

2 are very different (0.389 and 0.919). Nevertheless the one-mode

entropies of the modes (s1/2,m) are very similar (0.611 and 0.623). This seemingly

strange result follows from the symmetry property of the function h(x).

Figure 1. The one-body entanglement entropy as the function of the parameters θ

and φ using the wave function (53). The maximum value of the entropy is denoted by

MAX. The result of the CI calculation with interaction USD is signed by USD.

The mutual informations of two modes are displayed in Table 3. The largest
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Table 3. Mutual information of the modes. The two-neutron ground state (Jπ = 0+)

in the sd shell using the CI method with the interaction USD and USDB is considered.

The wave function is in Slater decomposed form. The sign (a) means that the

considered modes are associated.

CI USD CI USDB

(s1/2; s1/2) (a) 0.611 0.669

(d3/2; d3/2) (a) 0.194 0.166

(d5/2; d5/2) (a) 0.832 0.825

(d3/2; d3/2) 0.001 0.001

(d5/2; d5/2) 0.140 0.133

(s1/2; d3/2) 0.007 0.007

(s1/2; d5/2) 0.074 0.085

(d3/2; d5/2) 0.014 0.011

mutual information corresponds to such a pair of modes whose orbits belong to the

wave function component whose amplitude has the largest modulus. It is interesting

that the associated modes have much larger mutual information than the other pairs of

modes. The tables presented in this section show that the USD and USDB interactions

behave qualitatively in the same way.

7. Summary

The mode entanglement and correlation are studied in the case of two interacting

fermions. We showed that for single configurations properly choosing the order of

the modes the angular momentum coupled wave function can be written in Slater

decomposed form. The one- and two-mode entropies can be expressed with the help of

the Clebsch-Gordan coefficients. If the fermions are coupled to total angular momentum

zero then the expressions for the entanglement measures further simplified and very

simple analytical forms are derived. When the two nucleons have zero total angular

momentum in the configuration (a)2 (ja 6= 1
2
) then their states are maximally entangled

with respect to the measure called one-body entanglement entropy.

In the case of configuration interaction method we considered a special form of wave

function with total angular momentum zero. In this case we also derived simple formulas

for the calculation of the one- and two-mode entropy and determined the modulus of

the amplitudes of the state which has maximum one-body entanglement entropy.

We carried out numerical calculations using the CI method in the case of two

neutrons in the sd shell using the interactions USD and USDB. We considered three

states where the total angular momentum is zero. The ground state has the largest one-

body entanglement entropy and this state is almost maximally entangled with respect to

the one-body entanglement entropy. Using the Slater decomposition one can introduce

the notion of associated modes. It turns out that for the ground state the mutual

information of the associated modes are much larger than the mutual information of



Entanglement and correlation in two-nucleon systems 17

any other pairs of modes.
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Appendix A. States with maximal entropy

The eigenvalues of the OP-RDM are denoted by ni and they satisfy the conditions

0 ≤ ni ≤ 1 i = 1, . . . , d, (A.1)

where d is the number of the modes. These inequalities determine a convex subset D in

Rd. We define an affine function

H(n1, . . . , nd) =
d∑
i=1

ni −N. (A.2)

Due to our normalization of the OP-RDM we have the following constraint

H(n1, . . . , nd) = 0, (A.3)

where N is the particle number. The parameters d and N satisfy the inequality

d ≥ N ≥ 2. The state is non-entangled if d = N since the Slater rank is one in

this case. In the following we assume d > N .

The one-body entanglement entropy is of the following form

SSP (n1, . . . , nd) =
d∑
i=1

h(ni). (A.4)

Since h(x) is concave on the interval [0, 1] (h(0) = 0 and h(1) = 0) the one-body

entanglement entropy SSP is also concave on D. We are looking for the global maximum

http://arxiv.org/abs/2006.00961
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Table B1. Possible inequalities for single configurations.

case inequality M̄ − m̄

A −j1 ≤M − j2 < M + j2 ≤ j1 2j2
B −j1 ≤M − j2 ≤ j1 ≤M + j2 j1 + j2 −M
C M − j2 ≤ −j1 ≤M + j2 ≤ j1 j1 + j2 +M

D M − j2 ≤ −j1 < j1 ≤M + j2 2j1

of SSP on D with the constraint (A.3). This is a convex optimization problem and so

a local maximum is a global one [56]. The optimal point (n∗1, . . . , n
∗
d) is determined by

the following conditions (see [56] pp. 141-142) : there exist a ν ∈ R such that

∂SSP

∂ni
+ ν = 0 i = 1, . . . , d (A.5)

together with (A.3). The solutions of these equations are

n∗i =
N

d
i = 1, . . . , d and ν = log2

(
N

d−N

)
. (A.6)

The value of the maximum is

−N log2N + d log2 d− (d−N) log2(d−N). (A.7)

In the two-particle case, due to Theorem 1 (Slater decomposition) the maximum value

(A.7) can not be reached if d is an odd number.

Appendix B. M dependence of the Slater rank

In the case of single configuration the Slater rank satisfies (34) and (35). We use the

proof by case technique for verification. Twice the value of the Slater rank is given

by (31) and it depends on m̄ and M̄ . According to the definitions (29) and (30) there

are four different inequalities which determine the values of m̄ and M̄ . These cases are

displayed in Table B1.

First we prove (34). Since the symmetry property 〈j1,m1, j2,m2|J,M〉 =

(−1)j1+j2−J〈j1,−m1, j2,−m2|J,−M〉 the number of exceptional Clebsch-Gordan

coefficients in (28) Nexc are identical for M and −M . This means that according to

(31) we have to investigate only the difference M̄ − m̄ to prove (34).

Let’s assume that the j1, j2 and M values are so that the case A happens. If we

change the sign of M the quantum numbers j1, j2 and −M remains in the case A so the

value of M̄−m̄ is unchanged. If the values of j1, j2 and M are so that the case B occurs

then with a sign change of M the new quantum numbers belongs to the case C but

according to Table B1 the values of M̄ − m̄ are identical in the considered two cases. In

the other remaining cases, the sign change of M means the following transformations:

C → B and D → D. It is easy to check that the values of M̄ − m̄ are unchanged under

these transformations. In this way we proved (34).



Entanglement and correlation in two-nucleon systems 20

Table B2. Change of cases if M turn to a larger value M ′. The dependence

on M is indicated on the quantities m̄ and M̄ . The measure of change is ∆ =

(M̄(M ′)− m̄(M ′))− (M̄(M)− m̄(M)).

change M̄(M)− m̄(M) M̄(M ′)− m̄(M ′) ∆

A→ A 2j2 2j2 0

A→ B 2j2 j1 + j2 −M ′ j1 − (M ′ + j2) ≤ 0

B → B j1 + j2 −M j1 + j2 −M ′ M −M ′ < 0

D → B 2j1 j1 + j2 −M ′ −j1 − (M ′ − j2) ≤ 0

D → D 2j1 2j1 0

Next we prove that the Slater rank cannot increase if we increase M (M ≥ 0).

Here we assume that Nexc = 0. Since we consider two different values of M we sign the

M dependence of m̄ and M̄ . We consider a triplet of quantum numbers j1, j2 and M

which belongs to a given case of Table B1. If we increase M to M ′ the new quantum

numbers may belong to an another or the same case. All possible cases are displayed

in Table B2. Since M ≥ 0 we do not have to consider the case C. We have to show

that ∆ = (M̄(M ′) − m̄(M ′)) − (M̄(M) − m̄(M)) ≤ 0. This quantity is shown in the

last column of Table B2. We can derive the sign of ∆ using Table B1. Each case ∆ is

nonpositive. This means that we proved (35).
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