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Abstract. The non-Fourier heat conduction phenomenon on room temper-
ature is analyzed from various aspects. The first one shows its experimental

side, in what form it occurs and how we treated it. It is demonstrated that the

Guyer-Krumhansl equation can be the next appropriate extension of Fourier’s
law for room temperature phenomena in modeling of heterogeneous materials.

The second approach provides an interpretation of generalized heat conduc-

tion equations using a simple thermomechanical background. Here, Fourier
heat conduction is coupled to elasticity via thermal expansion, resulting in a

particular generalized heat equation for the temperature field. Both of the

aforementioned approaches show the size dependency of non-Fourier heat con-
duction. Finally, a third approach is presented, called pseudo-temperature

modeling. It is shown that non-Fourier temperature history can be produced

by mixing different solutions of Fourier’s law. That kind of explanation in-
dicates the interpretation of underlying heat conduction mechanics behind

non-Fourier phenomena.

1. Introduction

The Fourier’s law [1]

q = −k
→

∇T (1)

is one of the most applicable, well-known elementary physical laws in engineering
practice. Here, q is the heat flux vector, T is absolute temperature, k is ther-
mal conductivity. However, as all the constitutive equations, it also has limits of
validation. Phenomena that do not fit into these limits, called non-Fourier heat con-
duction, appear in many different forms. Some of them occur at low temperature
like the so-called second sound and ballistic (thermal expansion induced) propaga-
tion [2, 3, 4, 5, 6, 7]. These phenomena have been experimentally measured several
times [8, 9, 10, 11] and many generalized heat equations exist to simulate them
[12, 13, 14, 15, 16, 17, 21]. The success in low-temperature experiments resulted
in the extension of this research field to find the deviation at room temperature as
well. One of the most celebrated result is related to Mitra et al. [18] where the
measured temperature history was very similar to a wave-like propagation. How-
ever, these results have not been reproduced by anyone and undoubtedly demanded
for further investigation.

In most of the room-temperature measurements, the existence of Maxwell-
Cattaneo-Vernotte (MCV) type behavior attempted to be proved [19, 20]. It is this
MCV equation that is used to model the aforementioned second sound, the dissi-
pative wave propagation form of heat [3, 22, 23]. The validity of MCV equation
for room temperature behavior has not yet been justified, despite of the numer-
ous experiments. It is important to note that many other extensions of Fourier
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equation exist beyond the MCV one, such as the Guyer-Krumhansl (GK) equation
[24, 25, 26, 27, 28], the dual phase lag model [29], and their modifications, too
[7, 30, 31]. Some of these possess stronger physical background, some others not
[32, 33, 34].

The simplest extension of MCV equation is the GK model, which reads:

τ q̇ + q + k
→

∇T − κ24q = 0, (2)

where the coefficient τ is called relaxation time and κ2 is regarded as a dissipation
parameter and the dot denotes the time derivative. This GK-type constitutive
equation contains the MCV-type by considering κ2 = 0 and the Fourier equation
taking τ = κ2 = 0. This feature of GK equation allows to model both wave-like
temperature history and over-diffusive one. This is more apparent when one applies
the balance equation of internal energy in order to eliminate q:

ρcṪ +
→

∇ · q = 0, (3)

with mass density ρ, specific heat c and volumetric source neglected, one obtains

τ T̈ + Ṫ = a4T + κ24Ṫ , (4)

with thermal diffusivity a = k/(ρc). One can realize that equation (4) contains the
Fourier heat equation

Ṫ = a4T (5)

as well as its time derivative, with different coefficients. It becomes more visible
after rearranging eq. (4):

τ

(
Ṫ − κ2

τ
4T

).
+ Ṫ − a4T = 0. (6)

When the so-called [35, 36] Fourier resonance condition κ2/τ = a holds, the solu-
tions of the Fourier equation (5) are covered by the solutions of (4). Meanwhile,
when κ2 < aτ the wave-like behavior is recovered and this domain is called as
under-damped region. In the opposite case (κ2 > aτ), there is no visible wave
propagation and it is called over-diffusive (or over-damped) region. We measured
the corresponding over-diffusive effect several times in various materials such as
metal foams, rocks and in a capacitor, too [35, 36]. Furthermore, a similar temper-
ature history has been observed in a biological material [34].

In this paper, further aspects of over-diffusive propagation are discussed. In the
following sections the size dependence of the observed over-damped phenomenon is
discussed both experimentally and theoretically. Moreover, the approach of pseudo-
temperature is presented in order to provide one concrete possible interpretation
for non-Fourier heat conduction.

2. Size dependence

Our measurements reported here are performed on basalt rock samples with
three different thicknesses, 1.86, 2.75 and 3.84 mm, respectively. We have applied
the same apparatus of heat pulse experiment as described in [35, 36], schematically
depicted in Fig. 1 below.
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Figure 1. Setup of our heat pulse experiment [36].

In each case, the rear-side temperature history was measured and numerically
evaluated solving the GK equation. The recorded dimensionless temperature sig-
nals are plotted in Figs. 2, 3, 4. In these figures, the dashed line shows the solution
of Fourier equation using thermal diffusivity corresponding to the initial part of
temperature rising on the rear side. It is clear that the measured signal devi-
ates from the Fourier-predicted one even with considering non-adiabatic (cooling)
boundary condition. That deviation weakens with increasing the sample thickness,
for the thickest one it is hardly visible and the prediction of Fourier’s law is almost
acceptable.

Figure 2. Data recorded for basalt rock sample with thickness of
1.86 mm. The dashed line shows the prediction of Fourier’s law.
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Figure 3. Data recorded for basalt rock sample with thickness of
2.75 mm. The dashed line shows the prediction of Fourier’s law.

Figure 4. Data recorded for basalt rock sample with thickness of
3.84 mm. The dashed line shows the prediction of Fourier’s law.

The evaluation of the thinnest sample using the Guyer-Krumhansl equation is
shown in Fig. 5. The fitted coefficients are summarized in Table 1.
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Figure 5. Data recorded using the basalt with thickness of 1.86
mm. The solid continous line shows the prediction of GK equation.

Table 1. Summarized results of fitted coefficients in Fourier and
GK equations.

Thickness
L, [mm]

Fourier
thermal diffusivity

aF , ·10−6
[
m2

s

] Guyer-Krumhansl
thermal diffusivity

aGK , ·10−6
[
m2

s

] Relaxation
time
τ , [s]

Dissipation
parameter
κ2, ·10−6[m2]

1.86 0.62 0.55 0.738 0.509
2.75 0.67 0.604 0.955 0.67
3.84 0.685 0.68 0.664 0.48

Deviation from the Fourier prediction is weak but is clearly present, and has size
dependent attributes. Concerning the ratio of parameters, i.e., investigating how
considerably the Fourier resonance condition aτ/κ2 = 1 is violated, the outcome
can be seen in Table 2. As analysis of the results, it is remarkable to note the
deviation of the GK fitted thermal diffusivity from the Fourier fitted one, and
that this deviation is size dependent. For the thickest sample, which can be well
described by Fourier’s law, the fitted thermal diffusivity values are practically equal,
and the ratio of parameters is very close to the Fourier resonance value 1.

Table 2. Ratio of the fitted coefficients.
Thickness
L, [mm]

Ratio of parameters
aGKτ
κ2

1.86 0.804
2.75 0.854
3.84 0.943
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The next section is devoted to a possible explanation for the emergence of a
generalized heat equation with higher time and space derivatives. All coefficients
of the higher time and space derivative terms are related to well-known material
parameters. The result also features size dependent non-Fourier deviation.

3. Seeming non-Fourier heat conduction induced by elasticity
coupled via thermal expansion

While, in general, one does not have a direct physical interpretation of the phe-
nomenon that leads to, at the phenomenological level, non-Fourier heat conduction,
here follows a case where we do know this background phenomenon. Namely, in
case of heat conduction in solids, a plausible possibility is provided by an interplay
between elasticity and thermal expansion. Namely, without thermal expansion,
elasticity – a tensorial behaviour – is not coupled to Fourier heat conduction – a
vectorial one – in isotropic materials. However, with nonzero thermal expansion,
strains and displacements have to be in accord both with what elastic mechan-
ics dictates and with what position dependent temperature imposes. The coupled
set of equations of Fourier heat conduction, of elastic mechanics and of kinematic
relationships, after eliminating the kinematic and mechanical quantities, leads to
an equation for temperature only that contains higher derivative corrections to
Fourier’s equation. It is important to check how remarkable these corrections are.
In the following section we present this derivation and investigation.

3.1. The basic equations. In all respects involved, we choose the simplest as-
sumptions: the small-strain regime, a Hooke-elastic homogeneous and isotropic
solid material, with constant thermal expansion coefficient, essentially being at
rest with respect to an inertial reference frame. Kinematic, mechanical and ther-
modynamical quantities and their relationships are considered along the approach
detailed in [42, 43, 44].

The Hooke-elastic homogeneous and isotropic material model states, at any po-
sition r, the constitutive relationship

σd = EdDd, σs = EsDs, Ed = 2G, Es = 3K, (7)

σ = EdDd + EsDs = EdD +
(
Es − Ed

)
Ds (8)

between stress tensor σ and elastic deformedness tensor D (which, in many cases,
coincides with the strain tensor), where d and s denote the deviatoric (traceless)
and spherical (proportional to the unit tensor 1) parts, i.e.,

Ds =
1

3
(trD) 1, Dd = D−Ds; hence, e.g., 1s = 1, 1d = 0. (9)

Stress induces a time derivative in the velocity field v of the solid medium, according
to the equation

%v̇ = σ ·
←

∇ (10)

with mass density % being constant in the small-strain regime. For the velocity
gradient L and its symmetric part, one has

L = v ⊗
←

∇, trLsym = trL = v ·
←

∇, (Lsym)
s

=
1

3
(trLsym) 1 =

1

3

(
v ·
←

∇
)

1,

(11)
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(
Lsym ·

←

∇
)
·
←

∇ =
1

2
∂i∂j(∂ivj + ∂jvi) =

1

2

[
4
(→
∇ ·v

)
+4

(→
∇ ·v

)]
= 4

(
v ·
←

∇
)
,

(12)(
L ·

←

∇
)
·
←

∇ = 4
(
v ·
←

∇
)
, (13)

where the Einstein summation convention for indices has also been applied. Again
using this convention, and the Kronecker delta notation, to any scalar field f ,

∂j (fδij) = δij∂jf = ∂if, (f1) ·
←

∇ =
→

∇f (14)

follow, which are also to be utilized below.
The small-deformedness relationship among the kinematic quantities, with linear

thermal expansion coefficient α considered constant, and absolute temperature T ,
is

Lsym = Ḋ + αṪ1 . (15)

For specific internal energy e,

e = cT +
Esα

%
T trDs + eel , eel =

Ed

2%
tr
[(

Dd
)2]

+
Es

2%
tr
[

(Ds)
2
]
, (16)

its balance,

%ė = tr(σL)− q ·
←

∇ , (17)

after subtracting the contribution %ėel coming from specific elastic energy eel and
the corresponding elastic part tr

(
σḊ

)
of the mechanical power tr(σL), is

% (e− eel)· = %cṪ + EsαT0 trḊs = −q ·
←

∇ , with q = −k
→

∇T , (18)

where c is specific heat corresponding to constant zero stress (or pressure), tempera-
ture has been approximated in one term of (18) by an initial homogeneous absolute
temperature value T0 to stay in accord with the linear (small-strain) approxima-
tion, and heat flux q follows the Fourier heat conduction constitutive relationship
with thermal conductivity k also treated as a constant.

3.1.1. The derivation. The strategy is to eliminate σ in favour of (with the aid of)
D, then D is eliminated in favour of Lsym, after which we can realize that both from
the mechanical direction and from the thermal one we obtain relationship between

v ·
←

∇ and T , which, eliminating v ·
←

∇, yields an equation for T only.
Starting with the thermal side,

%cṪ + EsαT0 tr
(
Lsym − αṪ1

)s
= %cṪ + EsαT0

(
v ·
←

∇
)
− Esα2T0Ṫ · 3 =

=
(
%c− 3Esα2T0︸ ︷︷ ︸

γ1

)
Ṫ + EsαT0(v ·

←

∇) , (19)

= − q ·
←

∇ = −
(
−k

→

∇T
)
·
←

∇ = k4T =⇒

EsαT0

(
v ·
←

∇
)

= k4T − γ1Ṫ . (20)
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Meanwhile, from the mechanical direction, aiming at being in tune with (20):

EsαT0

(
v̈ ·

←

∇
)

= EsαT0
1

%

(
σ̇ ·

←

∇
)
·
←

∇ =

=
EsαT0
%

{[
EdḊ +

(
Es − Ed

)
Ḋs
]
·
←

∇
}
·
←

∇ =

=
EsαT0
%

{[
Ed
(
Lsym − αṪ1

)
+

+
(
Es − Ed

) (
Lsym − αṪ1

)s]
·
←

∇
}
·
←

∇ =

=
EsαT0
%

{[
EdLsym − EdαṪ1 +

(
Es − Ed

) 1

3

(
v ·
←

∇
)
1 −

−
(
Es − Ed

)
αṪ1

]
·
←

∇
}
·
←

∇ =

=
EsαT0
%

[
Ed4

(
v ·
←

∇
)

+
Es − Ed

3
4
(
v ·
←

∇
)
− Esα4Ṫ

]
=

=
EsαT0
%

[
Es + 2Ed

3
4
(
v ·
←

∇
)
− Esα4Ṫ

]
=

=
Es + 2Ed

3%
4
[
EsαT0

(
v ·
←

∇
)]
− (Esα)2T0

%
4Ṫ =

=
Es + 2Ed

3%︸ ︷︷ ︸
c2

4
(
k4T − γ1Ṫ

)
− (Esα)2T0

%
4Ṫ ; in parallel,

=
(
k4T − γ1Ṫ

)··
= k4T̈ − γ1

...
T [cf. (20)] (21)

(where c is the longitudinal elastic wave propagation velocity); hence, summarizing
the final result in two equivalent forms,(

γ1Ṫ − k4T
)··

= c24
(
γ1Ṫ − k4T

)
+

(Esα)2T0
%

4Ṫ , (22)

γ1

(
T̈ − c24T

)·
= k4γ1

(
T̈ − c24T

)
+

(Esα)2T0
%

4Ṫ . (23)

The first form here tells us that we have here the wave equation of a heat conduc-
tion equation, the last term on the r.h.s. somewhat detuning the heat conduction
equation of the r.h.s. with respect to the one on the l.h.s. (the underlined coeffi-
cient is the one becoming modified when its term is melted together with the last
term). In the meantime, the second form shows the heat conduction equation of a
wave equation, the last term on the r.h.s. detuning the underlined coefficient.

Both forms show that coupling, after elimination, leads to a hierarchy of equa-
tions, with an amount of detuning that is induced by the coupling – for similar
further examples, see [45].

We close this section by rewriting the final result in a form that enables to esti-
mate the contribution of thermal expansion coupled elasticity to heat conduction:

1

c2

(
γ1Ṫ − k4T

)··
= 4

[(
γ1 +

(Esα)2T0
%c2

)
Ṫ − k4T

]
, (24)
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i.e.,

1

c2

(
γ1Ṫ − k4T

)··
= 4

[(
%c− 6EdEsα2T0

Es + 2Ed︸ ︷︷ ︸
γ2

)
Ṫ − k4T

]
. (25)

One message here is that, thermal expansion coupled elasticity modifies the thermal
diffusivity a = k/(%c) to an effective one a2 = k/γ2 = (%c/γ2) · a (see the heat
conduction on the r.h.s. ). For metals, this means a few-percent shift (1% for steel
and copper, and 6% for aluminum) at room temperature.

The other is that, for a length scale (e.g., characteristic sample size) ` and the
corresponding Fourier time scale `2/a, the r.h.s. is, to a (very) rough estimate,
1/`2 times a heat conduction equation while the l.h.s. is (similarly roughly)

1

(`2/a)2
· 1

c2
(26)

times the (nearly) same heat conduction equation (a one with a1 = k/γ1). In other
words, the l.h.s. provides a contribution to the r.h.s. via a dimensionless factor

`2

(`2/a)2
· 1

c2
=

a2

`2c2
. (27)

This dimensionless factor is about 10−10 to 10−13 for metals, 10−14 for rocks and
10−15 for plastics with ` = 3 mm, a typical size for flash experiments. Therefore,
the effect of the l.h.s. appears to be negligible with respect to the r.h.s. .

It is important to point out that the first phenomenon—the emergence of ef-
fective thermal diffusivity—would remain unnoticed in the analogous one space
dimensional calculation:

σ = ED, %v̇ = σ′, L = v′ = Ḋ + αṪ , (28)

q = −kT ′, e = cT +
Eα

%
TD +

E

2%
D2 =⇒ (29)

%

E

[(
%c− Eα2T0

)
Ṫ − kT ′′

]··
=
[
%cṪ − kT ′′

]′′
(30)

[no detuning of %c on the r.h.s. ]. It is revealed only in the full 3D treatment, which
enlights possible pitfalls of 1D considerations in general as well.

As conclusion of this section, thermal expansion coupled elasticity may introduce
a few percent effect (a material dependent but sample size independent value) in
determining thermal diffusivity from flash experiments or other transient processes
(while its other consequences may be negligible).

4. Pseudo-temperature approach

The experimental results serve to check whether a certain theory used for de-
scribing the observed phenomenon is acceptable or not. The heat pulse (flash)
experiment results may show various temperature histories. Generally the flash
measurement results are according to the Fourier theory. In some cases, as re-
ported in [35, 36] the temperature histories show “irregular” characteristics, espe-
cially these histories could be described by the help of various non-Fourier models
[37, 30, 38, 7]. Some kind of non-Fourier behaviour could be constructed as it is
shown in the following. This is only an illustration how two parallel Fourier mech-
anisms could result a non-Fourier-like temperature history. The idea is strongly
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motivated by the hierarchy of Fourier equations in the GK model [39] as mentioned
previously, however, their interaction is not described in detail.

The sample that we investigate now is only a hypothetic one, we may call it as
a “pseudo-matter”. We consider in the following that the pseudo-matter formed
by parallel material strips is wide enough that the interface effects might be ne-
glected, i.e., they are like insulated parallel channels. We also consider that only
the thermal conductivities are different, and the strips have the same mass density
and specific heat. During the flash experiment after the front side energy input, a
simple temperature equalisation process happens in the sample in case of adiabatic
boundary conditions. Since the flash method is widely developed, the effects of the
real measurement conditions (heat losses, heat gain, finite pulse time, etc.) are well
treated in the literature.

Figure 6 shows two temperature histories with thermal diffusivities of different
magnitude, both of them are the solution of Fourier heat equation.

Figure 6. Rear-side temperature history; solid line: a =
10−6 m2/s, dashed line: a = 2.5 · 10−7 m2/s, L = 2 mm.

The mathematical formula that expresses the temperature history of the rear
side in the adiabatic case is [40]:

ν(ξ = 1, Fo) = 1 + 2

∞∑
m=1

(−1)me−(m
2π2Fo), (31)

where ν is the dimensionless temperature, ξ is the normalized spatial coordinate
(ξ = 1 corresponds to the rear-side) and Fo = a · t/(L2) stands for the Fourier
number (dimensionless time variable). This is an infinite series with property of
slow convergence for short initial time intervals. An alternative formula derived
using the Laplace theorem to obtain faster convergence for Fo < 1 [41]:

p(Fo) =
2√
πFo

∞∑
n=0

e−
(2n+1)2

4Fo . (32)
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In the further analysis we use equation (32) to calculate the rear-side temperature
history.

So far we described two parallel heat conducting layers without direct interaction
among them, however, let us suppose that they can change energy only at their
rear side through a very thin layer with excellent conduction properties. Eventually,
that models the role of the silver layer used in our experiments in order to close
the thermocouple circuit and assure that we measure the temperature of that layer
instead of any internal one from the material. Actually, the silver layer averages
the rear side temperature histories of the parallel strips. We considered the mixing
of temperature histories using the formula:

p(Fo) = Θp1(a = 10−6 m2/s, Fo1) + (1−Θ)p2(a = 2.5 · 10−7 m2/s, Fo2), (33)

that is, taking the convex combination of different solutions of Fourier heat equation
(5). Fig. 7 shows a few possible cases of mixing.

Figure 7. Rear-side temperature histories.

5. Outlook and summary

This pseudo-material virtual experiment is only to demonstrate that there might
be several effects causing non-Fourier behaviour of the registered temperature data.
Here, the assumed mixing of “Fourier-temperatures” is analogous with the GK
equation in sense of the hierarchy of Fourier equation: dual heat conducting chan-
nels are present and interact with each other. However, the GK equation is more
general, there is no need to assume some mechanism in order to derive the consti-
tutive equation.

Comparing eq. (6) to (25), the hierarchy of Fourier equation appears in a different
way. While (6) contains the zeroth and first order time derivatives of Fourier
equation, the (25) instead contains its second order time and spaces derivatives.
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Recalling that eq. (25)

1

c2

(
γ1Ṫ − k4T

)··
= 4

[(
%c− 6EdEsα2T0

Es + 2Ed︸ ︷︷ ︸
γ2

)
Ṫ − k4T

]
. (34)

is derived using the assumption that thermal expansion is present beside heat con-
duction, it becomes obvious to compare it to a ballistic (i.e., thermal expansion
induced) heat conduction model. Let us consider such model from [7]:

τ1τ2
...
T + (τ1 + τ2)T̈ + Ṫ = a4T + (κ2 + aτ2)4Ṫ , (35)

where τ1 and τ2 are relaxation times. Eq. (35) have been tested on experiments, too
[16]. Eventually, the GK equation is extended with a third order time derivative
and the coefficients are modified by presence of τ2. On contrary to eq. (34), it does
not contain any fourth order derivative. Actually, the existing hierarchy of Fourier
equation is extended, instead of τ and κ2 the terms (τ1 + τ2) and (κ2 +aτ2) appear
within (35).

Although it is still not clear exactly what leads to over-diffusive heat conduction,
the presented possible interpretations and approaches can be helpful to understand
the underlying mechanism. It is not the first time to experimentally measure the
over-diffusive propagation but it is to consider its size dependence. The simplest
thermo-mechanical coupling predicts size dependence of material coefficients that
can be relevant in certain cases. All three approaches lead to a system of partial
differential equations, which can be called hierarchical.
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[20] Vernotte, P. Les paradoxes de la théorie continue de léquation de la chaleur. Comptes Rendus

Hebdomadaires Des Seances De L’Academie Des Sciences 1958, 246, 3154–3155.

[21] Herwig, H. and Beckert, K. Fourier versus non-Fourier heat conduction in materials with a
nonhomogeneous inner structure Transactions-American Society of Mechanical Engineers

Journal of Heat Transfer 2000, 122, 363–364.

[22] Tisza, L. The theory of liquid Helium. Physical Review 1947, 72, 838–877.
[23] Landau, L. On the theory of superfluidity of Helium II. Journal of Physics 1947, 11, 91–92.

[24] Guyer, R.A.; Krumhansl, J.A. Solution of the Linearized Phonon Boltzmann Equation.

Physical Review 1966, 148, 766–778.
[25] Guyer, R.A.; Krumhansl, J.A. Thermal Conductivity, Second Sound and Phonon Hydrody-

namic Phenomena in Nonmetallic Crystals. Physical Review 1966, 148, 778–788.

[26] Ván, P. Weakly Nonlocal Irreversible Thermodynamics – The Guyer-Krumhansl and the
Cahn-Hilliard Equations. Physic Letters A 2001, 290, 88–92.

[27] Zhukovsky, K.V. Exact solution of Guyer–Krumhansl type heat equation by operational
method. International Journal of Heat and Mass Transfer 2016, 96, 132–144.

[28] Zhukovsky, K.V. Operational Approach and Solutions of Hyperbolic Heat Conduction Equa-

tions. Axioms 2016, 5, 28.
[29] Tzou, D.Y. Macro- to Micro-scale Heat Transfer: The Lagging Behavior; CRC Press, 1996.

[30] Sellitto, A.; Cimmelli, V.A.; Jou, D. Nonequilibrium Thermodynamics and Heat Trans-

port at Nanoscale. In Mesoscopic Theories of Heat Transport in Nanosystems; Springer
International Publishing, 2016; pp. 1–30.
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