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Abstract
Sitotroga cerealella (Oliv.) (Lepidoptera: Gelechiidae) is one of the most important post-harvest pests of maize Zea mays 
L. Some Mexican maize races (Z. mays) could be a novel source of resistance against S. cerealella to improve commercial 
maize varieties, lines and hybrids. We studied the resistance of Mexican maize races, recollected at Chihuahua State to S. 
cerealella. We focused on antibiosis and tolerance of maize to S. cerealella. Cristalino-079 maize race shows low level of 
consumption in grams and percentage, increased larvae mortality before to entering the seed. In addition, Cristalino-079 
reduced first adult’s generation and show the largest biological cycle. Due to the small number of emerged adults, there was 
very little grain weight loss in resistant maize race. The compound that causes high mortality of larvae before to entering the 
grain is in the pericarp of resistant maize races. The compound that causes longest development time is in the endosperm 
and embryo. Cristalino-079 show the better level of resistance to S. cerealella infestation in almost all traits studied and this 
can be used as source of resistance for maize breeding.
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Introduction

The area planted with maize in 2019, globally, exceeds 238.5 
million of hectares, with a total production of 1409.4 million 
of tones (FAOSTAT 2021). Sitotroga cerealella (Olivier) 
(Lepidoptera: Gelechiidae) is one of the most serious and 
destructive pests of stored grains particularly wheat, rice 
and maize around the world (Shah et al. 2014). Some studies 

have reported losses around the 13% in grain weight and 
76% of number of damaged grain caused by S. cerealella 
during 8 months of storage (Giga et al. 1991). This equates 
to a loss of 183.2 million of tones each year in the world 
caused by S. cerealella. S. cerealella is a devastating insect 
pest capable of causing severe crop losses in widespread 
regions around the world, because is considered the third 
most important pest (García-Lara et al. 2007b). Larvae bur-
row into the seed to feed and metamorphose from larva to 
adult within the seed. Adults cause no direct damage to the 
maize grain in storage because their consumption is imper-
ceptible, but females can lay up to 150 eggs (García-Lara 
et al. 2007b).

Farmers use synthetic insecticides, e.g., pyrethroids, 
methyl bromide, deltamethrin and organophosphates, as the 
most effective control for S. cerealella (Fouad et al. 2014). 
However, the indiscriminate use of these pesticides leads 
to environmental contamination, mammalian health prob-
lems, pest resistance, ozone layer depletion and toxicity to 
nontarget organisms (Tavares et al. 2010; Yoza et al. 2005). 
Controls based on chemical insecticides mostly need to be 
repeated periodically and hence are more expensive in com-
parison with genetic manipulation of the crops themselves 
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for resistance to storage pests (Keneni et al. 2011). In addi-
tion, the manufacture and importation of the insecticide 
methyl bromide should have been completely phased out in 
developed countries in 2005. In developing countries, phase-
out should have been complete in 2015 (Yoza et al. 2005).

The use of resistant varieties against storage insect pests, 
when successful, has a number of comparative advantages 
over other control measures, particularly the use of chemical 
insecticides (Jiménez et al. 2017). The best approach is to 
develop resistant varieties to S. cerealella (García-Lara et al. 
2007b; Jiménez et al. 2017). Previous bioassays reported sig-
nificant reduction in the survival of S. cerealella reared on 
transgenic wheat seeds expressing the trypsin inhibitor BTI-
CMe (Altpeter et al. 1999). Also, avidin gene was reported 
as effective control to S. cerealella from transgenic rice 
(Yoza et al. 2005). Transgenic avidin maize has shown toxic 
effects against S. cerealella (Kramer et al. 2000). Moreover, 
the development and application of transgenic maize have 
been a serious concern in the last years, due to low social 
acceptance and rigid regulations (Azadi et al. 2018).

Some resistant genotypes to S. cerealella have been 
reported such as: Pratap makka-5, causing delayed 
(38.3 days) and reduced adult emergence (3.5 adults), mini-
mum grain damage 7.2% and grain weight loss of 1.4%; 
also accessions EH-2253 and EH-2101 have good level of 
resistance (Demissie et al. 2015). These resistant varieties 
were correlated with low ash, increased phenolic content 
and reduced amylase concentration (Demissie et al. 2015). 
The accessions WNCDMR18RYD820171 and WNCD-
MR11R 0913 were reported to be moderately susceptible to 
S. cerealella (Soujanya et al. 2015). Ubeda, Villanueva del 
Arzobispo and Codoñera popcorn landraces, along with the 
extra-early landrace Sajambre, were the least damaged by 
S. cerealella (Butrón et al. 2008). In hybrids, 8711-Hyb and 
32W86-Hyb took longer time to develop and less S. cere-
alella emergence and grain damage (Ahmed et al. 2013). On 
AG1501 genotype, S. cerealella led to longer development 
period, shorter survival percentage and lower kernel weight 
loss percentage (Foaud et al. 2013).

Resistant hybrids possessed higher amount of phenol 
(0.497–0.641 μg/g), amylose (24.90–28.53%) and amylase 
activity (798–843 μg/min) compared to susceptible ones 
(Muthukumar et al. 2015).

The variables that have been mainly used for character-
izing resistance were: number of emerged adults, grain dam-
age, days to adult emergence, egg hatching, fecundity, adult 
weight, susceptibility index (Ahmed et al. 2013; Butrón et al. 
2008; Soujanya et al. 2015; Demissie et al. 2015; Foaud 
et al. 2013; Shafique and Chaudry 2007; Muthukumar et al. 
2015).

Few researchers measured mortality of larvae before 
entering the seed. We want to learn about the role of the 
pericarp as a barrier to the entry of S. cerealella larvae. 

The novelty of this manuscript is that we focus on almost 
all stages of the biological cycle of S. cerealella to visual-
ize where the highest level of antibiosis is. Therefore, the 
objective was to look for new sources of resistance to S. 
cerealella in Mexican maize races. We focus on how the dif-
ferent maize races affect the adults and larvae S. cerealella.

Materials and methods

Plant material

In 2009, at the Chihuahua State, 13 maize races were found. 
Fourteen accessions into eight Mexican maize races, accord-
ing to seed availability, were used to study the resistance 
to S. cerealella. The seed of the Mexican maize races used 
in the present research was reproduced in 2019 at INIFAP 
Experimental Station at Bachiniva, Chihuahua, Mexico.

Bioassay for resistance study

One bioassay was carried out to check for resistance to S. 
cerealella on April 08, 2020. The experiment was conducted 
based on a completely randomized design with eight repeti-
tions. The S. cerealella eggs used in the experiment infesta-
tion were obtained from stock cultures reared at the SENA-
SICA Laboratory (National Service of Agrifood Health, 
Safety and Quality), Navojoa Sonora, Mexico. We evaluated 
14 maize accessions in bottles, 5 cm in diameter and 5 cm 
in height, together with 20 seeds per repetition and eight 
repetitions. The following variables were measured: (1) Seed 
initial weight (g), measured in a precision scale in grams; 
(2) Consumption (g), calculated after the first generation 
with formula: initial weight − final weight; Consumption 
(%), calculated with formula: consumption (g) * 100/initial 
weight; (4) Unhatched eggs (n), as number of unhatched 
eggs, saw and accounted in a stereomicroscopy; (5) dead 
larvae (n), as number of larvae mortality before entering 
the seed, accounted in a stereomicroscopy; (6) adults (n), 
number of adults accounted and (7) biological cycle (days), 
which estimated from the date of the experiment until the 
first adult emerged.

Statistical analysis

To analyze the data of the experiment, we used general 
linear models (GLM) in statistical package SAS 9.4 (SAS 
Institute 2016) and for mean comparisons we used the test 
of MSD (minimum significative difference) from Tukey at 
p < 0.05. Pearson correlation between traits was calculated in 
Excel 2007. The maize accessions were classified into types 
of endosperm and according to grain color and a comparison 
was made between groups (Table 1).
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In maize races, we found 8 accessions with white color, 
3 yellow and 3 colored (one black, one purple and one pink) 
(Fig. 1).

Results

Significant differences were found for seed initial weight 
between maize accessions. The variety with more seed 
initial weight is 8-Carreras-PP (9.28 g) and less Palomero 
(3.31 g) (Fig. 2). White accessions have more seed initial 
weight, 5.9 g, than yellow accessions with 4.1 g (Fig. 3). 
Dent accessions have more seed initial weight, 7.8 g, and 
less flint accessions with 4.5 g (Fig. 4).

Significant differences were found for consumption in 
grams between maize accessions. The accession with less 
level of consumption was Cristalino-079, being this acces-
sion the most resistant to S. cerealella attack. In addition, the 
accessions with more level of consumption, and therefore the 
most susceptible, were Bofo, Cacahuacintle, 8-Carreras-RP 
and 8-Carreras-PP (Fig. 5). Colored and white accessions 
have similar consumption, 0.61 and 0.60 g, respectively, and 
had more consumption than the yellow accessions, 0.39 g 
(Fig. 6). Dent accessions have more consumption, 0.82 g, 
than floury and flint accessions with 0.65 and 0.40 g, respec-
tively (Fig. 7).

Significant differences were found for consumption in 
percent between maize accessions. The accessions with 
more consumption were Palomero, Bofo and Cacahuacintle. 
And the accessions with less consumption (%) were Cris-
talino-079, Cristalino-282, Cristalino-279 and Azul (Fig. 8). 
No differences were found between accession colors for con-
sumption in percent, ranged from 10.13 in whites to 11.64 
in coloreds (Fig. 9). Significant differences were found for 

consumption in percent between maize hardness ranged 
from 9.48 in flints to 12.08 in floury (Fig. 10).

Although high coefficient of variation was calculated, sig-
nificant differences were found for unhatched eggs between 
maize accessions. The accession with more unhatched eggs 
was 8-Carreras-PP. The maize accession with less unhatched 
eggs was Palomero (Fig. 11). No differences were found 
between colors of accessions for unhatched eggs, ranged 
from 1.75 in yellows to 2.16 in whites (Fig. 12). No differ-
ences were found for unhatched eggs between maize hard-
ness ranged from 1.86 in flints to 2.33 in dents (Fig. 13).

Significant differences were found for larvae mortality 
before to entering the seed between maize accessions. The 
accession with more mortality of larvae was Cristalino-079. 
And the maize accessions with less larvae mortality 
were Bofo, Cacahuacintle, E-Zapata, 8-Carreras-RP and 
Apachito-r (Fig. 14). Yellow accessions have more mortal-
ity of larvae, 2.42, than the colored accessions, 1.0 (Fig. 15). 
Flint accessions have more mortality of larvae, 2.04, than 
floury accessions with 0.94 (Fig. 16).

Significant differences were found for adult number 
between maize accessions. The accessions with more adult 
number were Bofo, Cacahuacintle and E-Zapata. And 
the maize accessions with less adult number were Cris-
talino-079, Cristalino-282 and Cristalino-279 (Fig. 17). 
Colored and white accessions have more adults, 8.54 and 
8.14, respectively, than the yellow accessions, 5.83 (Fig. 18). 
Dent accessions have more adults, 9.58, than flint accessions 
with 6.32 (Fig. 19).

Significant differences were found for biological cycle 
between maize accessions. The accessions with more bio-
logical cycle were Cristalino-079 and Gordo. And the maize 
accessions with less biological cycle were Cacahuacintle, 
Bofo, E-Zapata and Palomero (Fig. 20). Yellow accessions 
have a longer biological cycle, 57.5 days, than the colored 

Table 1   Characteristics of seeds 
of 14 maize races originating 
from INIFAP evaluated for 
antibiosis and tolerance to S. 
cerealella 

Accession Maize race Species Color Endosperm type

8-Carreras-PP 8-Carreras Zea mays White Dent
8-Carreras-RP 8-Carreras Zea mays White Dent
Cacahuacintle Cacahuacintle Zea mays White Floury
Azul Azul Zea mays Black Floury
Cristalino-061 Cristalino de Chihuahua Zea mays White Flint
Bofo Bofo Zea mays Purple Floury
E-Zapata – Zea mays White Dent
Cristalino-279 Cristalino de Chihuahua Zea mays White Flint
Cristalino-282 Cristalino de Chihuahua Zea mays Yellow Flint
Apachito-r Apachito Zea mays Pink Flint
Cristalino-079 Cristalino de Chihuahua Zea mays Yellow Flint
Apachito-b Apachito Zea mays White Flint
Gordo Gordo Zea mays White Floury
Palomero Palomero de Chihuahua Zea mays Yellow Flint
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accessions, 52.8 days (Fig. 21). Flint accessions have a 
longer biological cycle, 56.3 days, than floury accessions 
with 53.4 days (Fig. 22).

Positive correlation was found between seed initial 
weight and consumption in grams (0.52). Positive correla-
tion between consumption in grams and consumption in per-
cent (0.75); On other hand negative correlation was shown 
between consumption, in grams and in percent with cycle 
(− 0.56, − 0.52, respectively), this mean that the suscepti-
ble accessions have a shorter biological cycle and resistant 
accessions have a longer biological cycle; while positive cor-
relations were found between consumption, in grams and in 
percent, and adults number (0.78, 0.75, respectively), thus 
more number of adults means a higher level of consump-
tion. And negative correlations between cycle and number 
of adults (− 0.60), this means that the susceptible accessions 
(with more number of adults) have a shorter biological cycle 
and resistant accessions (fewer adults) have a longer biologi-
cal cycle (Table 2).

Discussion

None of the maize variety was found to be completely 
resistant to S. cerealella (Khattak et al. 1996; Shafique and 
Chaudry 2007). Some efforts have been made to study dif-
ferences among maize genotypes for resistance to S. cere-
alella (Peters et al. 1960, 1972; Villacis 1972; Weston et al. 
1997; Ahmed et al. 2013; Soujanya et al. 2015; Demissie 
et al. 2015; Foaud et al. 2013; Shafique and Chaudry 2007; 
Muthukumar et al. 2015; Butrón et al. 2008). Our research is 
one of the few to include Mexican maize races for resistance 
to S. cerealella. Ehrlich and Raven (1964) proposed “classic 
theory” where they claim that: the co-evolution is a dynamic 
process whereby plant and insect species exhibit reciprocal 
selective pressure. Along this evolutionary process, insects 
diversify their feeding habits and behaviors, whereas plants 
develop defense strategies against insect herbivores (Ehrlich 
and Raven 1964; Hogenhout and Bos 2011; Jermy 1984; 
Rausher 2001; Thompson 1999). The strategies of plant 
defense are based on physical barriers, constitutive chemical 
defenses and indirect inducible defenses including volatiles 
(Ehrlich and Raven 1964; Hogenhout and Bos 2011). As 
in previous studies, we have found genetic variability for 
resistance to S. cerealella among races of Mexican maize. 
As consumption in grams and consumption in percentage 
vary together, we choose the first trait as a measure of resist-
ance because it indicates the net loss in grams that we would 
expect. Then based on the consumption in grams, we clas-
sified the accessions as resistant (Cristalino-079); partially 
resistant (Cristalino-282, Gordo, Cristalino-279, Apachito-b 
and Azul) and susceptible (Bofo, Cacahuacintle, 8-Carreras-
RP and 8-Carreras-PP). However, damage percentage in the 

Fig. 1   Fourteen accessions into eight Mexican maize races



429Cereal Research Communications (2023) 51:425–436	

1 3

present research (ranged from 4.5 to 20.6) and was lower 
that found by Ahmed et al. (2013) ranged from 5 to 95.2, but 
similar that found by Shafique and Chaudry (2007) ranged 
from 12.5 to 34.7.

The first character that explains the different degree of 
resistance in attacks is larval mortality before entering; this 

trait is given by pericarp. Thus, Cristalino-079 is resistant in 
part because it produces a high mortality of larvae, while the 
susceptible accessions: Bofo, Cacahuacintle and 8-Carreras-
RP showed a low mortality. However, larval mortality is 
very poorly correlated with consumption, that is, its role in 
conferring resistance is smaller than the others traits. There-
fore, the role of the pericarp as a producer of substances 
that kill larvae must be very small. However, its role as a 
physical barrier would not be ruled out because, although 
they do not have to produce a high mortality of larvae, they 
can produce a delay in entry that would clearly influence the 
length of the biological cycle. In stored grains pest insects it 
is very important the mortality of larvae before entering the 
grain because it is the second step, after of antixenosis, to 
reduce the spread of the pest (Jiménez et al. 2017). Jiménez-
Galindo et al. (2020) reported the analysis of this charac-
teristic to study the resistant of the bean testa to Acanthos-
celides obtectus and reported a dominant gene with number 
of adults emerged. In the present research, the mortality of 
larvae before to entering the seed was negative correlated 
with number of adults (− 0.49). Although it is important to 
mention that the role of larval mortality in total resistance 
does not seem to be so important in the present study.

Large size grains had heavy moths which caused high 
damage and small size varieties less weight loss (Ahmed 
et al. 2013; Peters et al. 1972). These results could be in 
agreement with the present study because we found posi-
tive correlation between initial weight and consumption in 
grams (r = 0.52).

High resistance in cereal grains to storage insects has 
been due to low adult progeny and prolonged developmen-
tal period (Ahmed et al. 2013; Butrón et al. 2008; Jiménez 
et al. 2017); Jiménez-Galindo et al. 2020). Previous results 
are according with the present study, where the cultivar Cris-
talino-079 is resistant to S. cerealella based on low adult 
progeny. Besides, Cristalino-079 showed long cycle. Consoli 
and Amaral Filho (1995) found significant differences in the 
development time of moth on all genotypes. This results are 

Fig. 2   Ten seeds initial weight 
from 14 maize accessions. 
Means followed by the same 
letter are not significantly dif-
ferent (Tukey = 0.05). R2 = 0.98, 
CV = 4.5, MSD = 0.42
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Fig. 3   Means for ten seeds initial weight from maize color. 
Means followed by the same letter are not significantly different 
(Tukey = 0.05). MSD = 0.15
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supported by Ahmed and Raza (2010) that indicate that vari-
eties resistance cannot be judged with one criterion, rather 
many factors should be taken altogether.

In development and survivorship experiment, the suscep-
tibility of corn genotypes to S. cerealella depended on the 
physical–chemical characteristics of kernels (Foaud et al. 
2013). Modifications in physical–chemical characteristics 

of kernels may be an important trait to integrate in maize 
breeding programs (Foaud et al. 2013).

This resistance against post-harvest insects is usually 
associated with grain anatomical barriers, such as the peri-
carp thickness or toughness, grain hardness and type of 
endosperm. So vitreous endosperm has been directly cor-
related with the level of resistance (Akpodiete et al. 2015; 
García‐Lara et al. 2004). The three susceptible accessions 
that have shown low mortality are the dent or floury grain 
while the resistant one is flint. So, in this material grain 
hardness plays a role as a defense mechanism against S. cere-
alella. In the present study, the most resistant accessions 
to S. cerealella were Cristalino-079 yellow and flint grain 
accession. Showed high mortality of larvae, longer biologi-
cal cycle and fewer first generation adults and have smaller 
seed. Susceptible accessions have greater seed, floury varie-
ties, shorter biological cycle, higher number of adults and 
also low larvae mortality before entering the seed. Other 
authors have reported a significant correlation between ker-
nel weight and number of insects per kernel (Villacis 1972). 
We found that flint accessions (more resistant) have less seed 
initial weight, consumption in grams and adults number and 
higher larvae mortality and biological cycle than floury and 
dent accessions. Our results are according with Foaud et al. 
(2013) due to they found negative correlation between sur-
vival percentage and kernel hardness.

A strong negative correlation was observed between 
development period and kernel weight, moisture and pro-
tein contents (Foaud et al. 2013). We did not find correla-
tion, between biological cycle and initial weight, because 
the susceptible accessions have heavier grains and shorter 
biological cycle.

Developmental period, progeny of emerging adults of S. 
cerealella and kernel weight loss were related to some ker-
nel characteristics (Foaud et al. 2013). The present research 
is according because we found correlation between ini-
tial weight and consumption in grams 0.52. Although this 

Fig. 5   Consumption in grams 
of 14 maize accessions. Means 
followed by the same letter 
are not significantly differ-
ent (Tukey = 0.05). R2 = 0.87, 
CV = 21.0, MSD = 0.20
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correlation was significant, it only partially explains the 
grain losses.

The correlation between adult moth progeny of S. cere-
alella and grain weight loss (0.977) was positive and sig-
nificant (Shafique and Chaudry 2007). We found a positive 
correlation too, between adult’s number and grain weight 

loss in grams 0.78 and percent 0.75. High number of adult 
progeny caused high weight loss of grain, which is clear 
indication of grains susceptibility to the insects (Shafique 
and Chaudry 2007).

High level of consumption and weight loss in Cacahuacin-
tle and Bofo races are according with Wahla et al. (1984), 
Aslam et al. (2004), Shafique et al. (2006) and Shafique and 
Chaudry (2007). According with results obtained by Ahmed 
and Raza (2010) physical and morphological characters of 
maize grains may confer resistance in combination with 
some other factors particularly biochemical ones.

Some authors as Murayama et al. (2017), García-Lara and 
Bergvinson (2013) and Mwololo et al. (2012) have identified 
some native maize accessions as good natural sources of 
resistance, leading to loss reduction to less than 10%; how-
ever, their yield is still very low. Some breeding programs 
have therefore considered native varieties for the develop-
ment of high-yield hybrids and varieties, and in addition 
with insect resistance (Abebe et al. 2009; Tefera et al. 2016).

The resistance in maize to storage pests is influenced by 
biophysical, biochemical and genetic factors, including ker-
nel hardness, pericarp thickness/toughness, phenolic com-
pounds, enzymes and structural components of the kernel 
(Akpodiete et al. 2015; García‐Lara et al. 2004; García-Lara 
et al. 2007a; López-Castillo et al. 2018a; Saulnier and Thiba-
ult 1999; Sen et al. 1994).

Deeper studies in this area are necessary in future breed-
ing programs (López-Castillo et al. 2018b). We are accord-
ing with López-Castillo et al. (2018b) because they have 
considered the development of insect-resistant genotypes 
would be a sustainable alternative for pest control especially 
in developing countries.

The most resistant accession to S. cerealella was Cris-
talino-079 yellow and flint grain accession and it is promis-
ing source of resistance to S. cerealella. The most resistant 
accessions showed high mortality of larvae, longer biologi-
cal cycle and fewer first generation adults. Also have smaller 
seed, flint and yellow grain. Susceptible accessions showed 

Fig. 8   Consumption in percent 
of 14 maize accessions. Means 
followed by the same letter 
are not significantly differ-
ent (Tukey = 0.05). R2 = 0.83, 
CV = 23.4, MSD = 4.2
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Fig. 10   Means for consumption in percent per maize hardness. 
Means followed by the same letter are not significantly different 
(Tukey = 0.05). MSD = 1.45
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low larvae mortality before entering, shorter biological 
cycle, higher number of adults. Also greater and floury 
grain. Number of adults, high mortality of larvae before to 
entering the seed and biological cycle are the most interest-
ing traits to study the resistance to S. cerealella in maize. 
Resistant and susceptible populations are an ideal material 
to find out what physical and chemical mechanisms are 

related to resistance to S. cerealella. Due to the small num-
ber of emerged adults, there was very little grain weight loss. 
The compound that causes high mortality of larvae before 
to entering the grain should be in the pericarp of resistant 
maize races; however, this trait had a small role in resist-
ance. The compound or physical characteristics that cause 
largest biological cycle should be located in the endosperm 

Fig. 11   Unhatched eggs of 
14 maize accessions. Means 
followed by the same letter 
are not significantly differ-
ent (Tukey = 0.05). R2 = 0.37, 
CV = 74.0, MSD = 2.5
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Fig. 12   Means for unhatched eggs per maize color. Means followed 
by the same letter are not significantly different (Tukey = 0.05). 
MSD = 0.90
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Fig. 13   Means for unhatched eggs per maize hardness. Means fol-
lowed by the same letter are not significantly different (Tukey = 0.05). 
MSD = 0.86

Fig. 14   Larvae mortality of 
14 maize accessions. Means 
followed by the same letter 
are not significantly differ-
ent (Tukey = 0.05). R2 = 0.53, 
CV = 77.9, MSD = 2.1
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Fig. 15   Means for larvae mortality per maize color. Means followed 
by the same letter are not significantly different (Tukey = 0.05). 
MSD = 0.75

a
2.04

ab
1.42

b
0.94

0.00

0.50

1.00

1.50

2.00

2.50

Flint Dent Floury

La
rv

ae
 m

or
ta

lit
y 

(n
)

Endosperm type

Fig. 16   Means for larvae mortality per maize hardness. Means fol-
lowed by the same letter are not significantly different (Tukey = 0.05). 
MSD = 0.72

Fig. 17   Adults number of 
14 maize accessions. Means 
followed by the same letter 
are not significantly differ-
ent (Tukey = 0.05). R2 = 0.71, 
CV = 27.6, MSD = 3.7
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Fig. 18   Means for adults number per maize color. Means followed 
by the same letter are not significantly different (Tukey = 0.05). 
MSD = 1.31
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Fig. 19   Means for adults number per maize hardness. Means fol-
lowed by the same letter are not significantly different (Tukey = 0.05). 
MSD = 1.25
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and embryo but also in the pericarp. Cristalino-079 show the 
better level of resistance to S. cerealella infestation in almost 
all traits studied and this can be used as source of resistance 
for maize breeding.
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Table 2   Pearson’s correlations between seed and resistant traits for resistance to S. cerealella in Mexican maize races

*Significant correlations with values greater than 0.50

Initial weight (g) Consumption (g) Consumption (%) Unhatched 
eggs (n)

Larvae mor-
tality (n)

Biological 
cycle (days)

Initial weight (g)
Consumption (g) 0.52*
Consumption (%) − 0.12 0.75*
Unhatched eggs (n) 0.17 − 0.06 − 0.25
Larvae mortality (n) − 0.07 − 0.43 − 0.40 0.08
Biological cycle (days) − 0.16 − 0.56* − 0.52* 0.17 0.30
Adults (n) 0.24 0.78* 0.75* − 0.13 − 0.49 − 0.60*
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