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In this paper, we prove that KG(3) < KG(4), where KG(d) denotes the Grothendieck constant
of order d. To this end, we use a branch-and-bound algorithm commonly used in the solution
of NP-hard problems. It has recently been proven that KG(3) ≤ 1.4644. Here we prove that
KG(4) ≥ 1.4841, which has implications for device-independent witnessing dimensions greater than
two. Furthermore, the algorithm with some modifications may find applications in various black-box
quantum information tasks with large number of inputs and outputs.

I. INTRODUCTION

The Grothendieck constant KG [1] is an enigmatic con-
stant arising in Banach space theory [2] with several
recent applications in communication complexity [3]
and algorithms [4, 5]. It is known to be in the range
1.6769 < KG < 1.7823, however, its exact value is still
unknown. The lower bound above has been given by
Davie and Reeds [6], and the upper bound is due to Kriv-
ine [7]. There is a refined version of the Grothendieck
constant, the Grothendieck constant of order d, denoted
by KG(d). The definition of KG(d) for any finite d ≥ 2
is given below. Note that the original constant KG is
recovered for d→∞.
Let us first define L(M) by the optimization problem

L(M) = max
ai=±1,bj=±1

n∑
i=1

n∑
j=1

Mijaibj (1)

over all possible signs of ai, bj , i, j = 1, . . . , n, where
M = (Mij) is an arbitrary n × n real-valued matrix.
The optimization problem (1) is called Kn,n-quadratic
programming in the computer science literature [8]. This
is known to be an NP-hard problem in the parameter
n [9]. The Grothendieck inequality [1, 10] states that∑n

i=1
∑n
j=1 Mij~ai ·~bj
L(M) ≤ K(d), (2)

for all unit vectors ~a1,~a2, . . . ,~an ∈ Rd and ~b1,~b2, . . . ,~bn ∈
Rd, where K(d) is a universal constant for a fixed d.
The smallest value of this constant K(d) such that the
inequality still holds is called the Grothendieck constant
of order d, which we denote by KG(d). Recall that KG =
limd→∞KG(d).
Despite efforts, the value of the constant KG(d) is not
known in general and its exact value is only known for
d = 2: KG(2) =

√
2 [7, 11]. For larger d, there ap-

peared better-and-better lower bounds [6, 12–16] and
upper bounds [7, 18, 19] to KG(d) in the literature.
Our goal is to improve on existing lower bounds for KG(d)
in the case of small dimensions d. Note that according
to the definition (2), a lower bound to KG(d) arises by

giving an explicit matrix M and explicit unit vectors ~ai
and ~bj in dimension d. Denoting by

Q(M,d) =
n∑
i=1

n∑
j=1

Mij~ai ·~bj (3)

the nominator in the left-hand side of the inequality (2),
we get the following lower bound:

Q(M,d)
L(M) ≤ KG(d). (4)

Currently, the best-known lower bound is given by
KG(4) ≥ 1.4456 in Ref. [14]. In this paper, we improve
on this bound up to KG(4) ≥ 1.4841. Since KG(3) is
known to be smaller than 1.4644 [19], the strict relation
KG(3) < KG(4) follows. As a by-product, we also im-
prove the best lower bound on KG(3). To this end, we
combine the so-called distance algorithm [16, 17] with a
branch-and-bound algorithm [20]. Let us note that there
is a connection between the Grothendieck constant of
order d and the nonlocality of XOR games [21]. This link
has been established by Tsirelson [22, 23] and further ex-
panded in Ref. [24]. Our result KG(3) < KG(4) will have
implications in this direction as well entailing a so-called
dimension witness for systems beyond qubits [25]. Since
both the distance and the branch-and-bound methods
have been applied independently in versatile schemes, we
believe that together they will find applications in other
nonlocality scenarios and large-scale quantum information
tasks as well.
The paper is organized as follows. In Sec. II, we intro-
duce the branch-and-bound (B&B) algorithm to solve
problem (1) and we also present test cases showing its
performance for large nmatrix dimensions. In Sec. III, the
lower bounds are improved both for KG(3) and KG(4). In
particular, a 92×92 matrix M is constructed in Sec. III A
showing that KG(4) ≥ 1.4731, which is further improved
to KG(4) ≥ 1.4841 in Sec. III B by invoking the distance
algorithm. Similarly, it is shown in Sec. III C using a
90 × 90 matrix that KG(3) ≥ 1.4359. Note that the
best lower bound so far was KG(3) ≥ 1.4261, presen-
ted in Ref. [16]. The connection with nonlocal quantum
correlations and the implications for device-independent
dimensions witnesses are discussed in Sec. IV. The paper
ends with conclusions in Sec. V.
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II. THE BRANCH-AND-BOUND (B&B)
ALGORITHM

A. Description of the algorithm

Let us recall from the introduction that a good lower
bound to KG(d) requires a suitable n × n matrix M

along with a specific arrangement of unit vectors ~ai,~bj .
Armed with these, we also need a method which is able
to efficiently evaluate the maximum L(M) in formula (1)
for large matrix dimensions n. In this section, we propose
a solution based on a branch-and-bound technique [20],
which is feasible on a standard computer up to n ∼ 90.

It is known that assuming the Unique Games Conjec-
ture [26], it is NP-hard to approximate the above problem
to any factor better than the Grothendieck constant KG

[8]. Actually, if M is the Laplacian matrix of a graph
then the maximum in (1) coincides with the value of the
maximum cut of this graph. The maximum cut problem
is one of 21 NP-complete problems of Karp [27].

Notice that the optimization problem (1) reduces to the
following problem (where the n×n matrix M is the input
to the problem):

L(M) = max
ai=±1

n∑
j=1

∣∣∣∣∣
n∑
i=1

Mijai

∣∣∣∣∣ , (5)

where maximization is performed over all possible±1 signs
of ai, i = 1, . . . , n. This reformulation of the problem
allows us to eliminate variables bj from the optimization.
Note, however, that a brute-force search evaluation of this
problem becomes infeasible already for relatively small n,
as one has to compute all the 2n−1 distinct cases. Such
a brute force technique was used in Refs. [16, 28], and
the biggest n one could afford (in a reasonable time) on
a normal desktop PC was n = 42.

In contrast, the B&B algorithm is able to cope with
generic matrices M with dimensions up to n ∼ 90 in a
reasonable time as it will be discussed next. In our specific
problem (5), the B&B algorithm performs a systematic
enumeration of candidate solutions for ai, i = (1, . . . , n)
by means of state space search [20]: We can think of our
set of candidate solutions as a rooted binary tree with
the full set at the root. Let us label a given branch by a
particular choice of ±1 signs of {a1, a2, . . . , an} variables.
Then the algorithm explores branches of this tree repres-
enting subsets of the solution set. Before enumerating
the candidate solutions of a branch, the branch is checked
against estimations of upper bounds on the optimal solu-
tion, and the branch is removed if it cannot produce a
better solution than the best one found so far by the
algorithm.

The estimation of the upper bound is based on the fol-
lowing inequality. Let us fix values of ai = {+1,−1}, i =

1, . . . , k, corresponding to the level k of the branching
tree. Then we have the following upper bound:

max
ak+1,...,an

n∑
j=1

∣∣∣∣∣
n∑
i=1

Mijai

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣
k∑
i=1

Mijai

∣∣∣∣∣+ max
ak+1,...,an

n∑
j=1

∣∣∣∣∣
n∑

i=k+1
Mijai

∣∣∣∣∣ , (6)

where maximization is carried out over all possible ±1
signs of ak+1, . . . , an. It is noted that the first term on the
right-hand side of Eq. (6) has some fixed value, which for
consecutive k’s can be computed at low cost by reusing
results from previous computations.
An efficient upperbounding is a crucial part of the al-
gorithm, since without discarding branches, the technique
traces back to a brute force search of all possible solutions,
which amounts to evaluating 2n−1 solutions growing expo-
nentially with n. According to the upper bound (6), the
decision about which branches to remove can be taken
quickly. We refer the interested reader to the Appendix A
for a detailed technical description of the algorithm along
with simple illustrative examples.
Let us stress that the B&B algorithm described above
allows us to give an exact value for the problem (1) if
all entries of matrix M are integers. This algorithm was
implemented in Haskell language and is available in the
webpage [29]. The code performs exact integer arithmetic
and includes assembly code in certain crucial parts to
boost the computation.

B. Numerical tests

In this section some benchmark tests are presented. We
generated n× n random M matrices for a given n, where
the integer coefficients of the matrixM were chosen within
the range [−100,+100] uniformly at random. After aver-
aging over 1000 random matrices for a fixed n, we plot
the time required for computing L(M) using the B&B
algorithm as a function of n in the range 10 ≤ n ≤ 60
(it is noted that for 50 < n ≤ 60, the average was taken
over only 30 matrices to save computation time). The
code was run on a single core of a standard desktop PC.
Fig. 1 shows the performance of the B&B algorithm on
a log-log plot. Note that there is a parameter k in the
algorithm, which designates the level of the tree above
which all nodes are forced to be visited. In this way we
can save computation time, since less decisions have to
be taken about discarding branches from the tree. To our
experience, choosing k ∼ n/4 gives the best performance.
In Fig. 1, we plotted both cases k = 0 and k = n/4,
demonstrating that k = n/4 is indeed superior to k = 0.
For the sake of comparison, we also plotted the line
t = 10−23n15 (shown in red). As one can observe, the
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Figure 1. Time required to compute L(M) as a function of
the matrix dimension n of M . The plot has a log-log scale.
The purple square and blue circle markers correspond to the
curves with parameter k = 0 and k = n/4, respectively. The
red line is for the sake of comparison.

performance of the B&B algorithm can be well approx-
imated with a power-law behavior in the range displayed
(n ≤ 60). By extrapolating the curve t = 10−23n15 up
to n = 90, we get a running time in the range of month
(carried out on a single core). However, for higher n and
generic matrices M , we expect an exponentially growing
behavior due to the NP-complete feature of the problem.
Indeed, one can easily construct specific matrices M for
which there is no saving in the running time compared to
the brute-force technique which has exponential scaling
with n. Such a matrix maybe built up of (n/2) Clauser-
Horne-Shimony-Holt expressions [11] distributed between
n settings of Alice and Bob (where n is even). In this
case, the number of different ai = ±1, (i = 1, 2, . . . , n)
strategies attaining L(M) in Eq. (5) grows exponentially
with n. In such a case the number of discarded branches
is limited and the performance of the algorithm eventually
goes back to that of a brute force search.

On the other hand, let us also stress that the memory
complexity of the algorithm is low. It equals the size of
the input matrix M of the problem, which is O(n2).

III. IMPROVING THE LOWER BOUND ON
KG(4) AND KG(3)

Our task is to come up with a good lower bound to KG(d),
which according to (4) amounts to finding a suitable ar-
rangement of unit vectors ~ai,~bj in Rd for i = 1, . . . , n and
an n× n dimensional matrix M for which the evaluation
of the maximum L(M) in Eq. (1) is feasible on a standard
desktop. Due to the numerical tests in Sec. II B, it is
expected that L(M) can be computed in a reasonable

time up to a matrix dimension n ≈ 90 by running the
B&B algorithm.
In order to get ~ai, i = 1, . . . , n, we fix icosahedral sym-
metry of the set of vectors ~ai and form a set of 2n vectors
~A2i−1 = ~ai, ~A2i = −~ai, for i = 1, . . . , n. Then we optim-
ize the 2n unit vectors ~Ai in the d-dimensional Euclidean
space assuming icosahedral symmetry such that the op-
timized configuration corresponds to a (local) minimum
of the energy term

E =
∑

1≤i<j≤2n

1
‖ ~Ai − ~Aj‖

. (7)

The goal of this optimization is to find an arrangement
of vectors ~Ai on the (d− 1)-sphere, which distribute the
sphere on a relatively even manner. Minimization has
been performed using a heuristic search, the so-called
Amoeba method [30]. Given the fixed arrangement of
vectors ~ai on Alice’s side coming from the above numerical
search, due to symmetry reasons we pick the same vectors
on Bob’s side. That is, we choose ~bi = ~ai for all i =
1, . . . , n. This gives an n×n correlation matrix C defined
by the entries Ci,j = ~ai ·~bj . Note that all diagonal entries
of this matrix are 1. In the next subsections, we present
two different methods to obtain the matrix M given the
matrix C, considerably improving the lower bound values
of KG(d) for d = 3 and d = 4.

A. KG(4) ≥ 1.4731 using a trial and error method

We fix n = 92 and generate ~ai = ~bi in d = 4 by optimizing
the energy (7), from which we get the matrix C with
entries

Ci,j = ~ai ·~bj . (8)

With this in hand, we have to choose the form of the
n× n matrix M . First we would like to demand that the
matrix entries Mi,j are some function of the entries Ci,j .
Hence we define them as

Mi,j = [f(Ci,j)], (9)

where we choose the form of the periodic function f as

f(q) = 80 sin(πq/2) + 100 sin(3πq/2), (10)

and [x] denotes the nearest integer to x. Rounding has
been introduced in order for the entries of M to be in-
teger. On the other hand, the constants appearing in the
function (10) are chosen by trial and error such that they
would provide good performance, i.e., large lower bound
values for KG(4). The next subsection III B, which uses
the distance method to lowerbound KG(4), will also shed
light on the specific choice of the function (10).
Using the function in Eq. (10), explicit calculations give
Q(M, 4) =

∑
i,jMi,jCi,j ' 2.6785 × 105 in Eq. (3). On
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the other hand, L(M) = 181818 coming from our B&B
algorithm, which took roughly three months to evaluate it
on a desktop computer. Then the lower bound ofKG(4) ≥
Q(M, 4)/L(M) ' 1.4731 follows from formula (4). A
Mathematica file provides all the details of the matrices
involved in the computation [29]. It is noted that the
algorithm has very low memory requirements. We also
recall that the L(M) value does not depend on a specific
ordering of the rows and columns of M . In this respect,
we found that the running time is quite sensitive to the
ordering of the rows, and it is worth trying different
orderings to improve time efficiency. We next present an
improved lower bound to KG(4), which uses the distance
method [16, 17] to generate the function f in Eq. (9).

B. KG(4) ≥ 1.4821 using the distance method

Here we give a specific M matrix using the Gilbert’s
distance method [16, 17]. In this way we get further
improvement on the lower bound to KG(4) presented in
the previous subsection.
Let us first briefly describe Gilbert’s distance algorithm. It
estimates the distance between a point P and an arbitrary
convex set S in some finite-dimensional Euclidean space
via calls to an oracle which performs linear optimizations
over S. In our particular case, the point is given by
P = vC, that is, the correlation matrix C in Eq. (8)
multiplied by a factor 0 < v ≤ 1. The convex set in
our case is the so-called ±1-polytope, which is defined
by the convex hull of its vertices as follows. For a given
n, the dimension of the polytope is n × n, and vertices
Dλ are given by matrices with entries Dλ(i, j) = aibj ,
where λ corresponds to a specific assignment of ai = ±1,
i = 1, . . . , n and bj = ±1, j = 1, . . . , n. This amounts to
22n−1 distinct vertices Dλ. Any point inside the polytope
is a convex combination of vertices Dλ with positive
weights p(λ).
The factor v is chosen in such a way that point P = vC
lies (slightly) outside the ±1-polytope. To this end, let us
choose C from Eq. (8) along with v∗ = 1/1.4731 ' 0.6788,
where 1.4731 corresponds to the lower bound KG(4) ≥
1.4731 obtained in the preceding subsection. By definition
the point v∗C is outside the ±1 polytope. Then we call
the distance algorithm [16, 17] where the inputs to the
problem are the point v∗C and the description of the
±1-polytope. The algorithm outputs (an estimate to) the
distance between the point v∗C and the ±1-polytope by
providing a separating hyperplane with norm M , which
is identified with the n× n matrix M that we are looking
for.
The obtained matrix M (after rounding to integers) is
given in a Mathematica file in the webpage [29]. Ex-
plicit calculations show that Q(M, 4) =

∑
i,jMi,jCi,j '

6.2223 × 108 in Eq. (3). On the other hand, the B&B
algorithm evaluates L(M) = 419810256, which took
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Figure 2. The functions f(q) and f̃(q) are displayed in blue
and green dots, respectively. An (irrelevant) multiplicative
constant c = 2200 is introduced for better comparison of the
two plots. The feasible q values on the x axis correspond to
the relation q = ~ai ·~bj .

about three months on our desktop computer. Put to-
gether, we get from formula (4) the improved lower bound
KG(4) ≥ Q(M, 4)/L(M) ' 1.4821.

In the actual implementation of the distance algorithm,
we projected the problem from the space of n×n matrices
to a smaller subspace such that the entries Mi,j of M are
given by Mi,j = f̃(Ci,j). In this way, one can compare
the two functions f and f̃ , where f is given by equa-
tion (10) and f̃ results from the distance algorithm in the
present subsection. The two functions are shown in Fig. 2.
According to the figure, the blue dots (representing f)
readily well approximate the scattered green dots (repres-
enting f̃) within the full range of q and can be considered
as a coarse-grained version of it. Using f̃ compared to f
in the definition of matrix M gives us the improved lower
bound KG(4) ≥ 1.4821 compared to KG(4) ≥ 1.4731.

C. KG(3) ≥ 1.4359 using the distance method

We optimized the energy formula (7) by running the
Amoeba method for d = 3 and n = 90, and fixing
icosahedral symmetry. In this way, we obtained the
unit vectors ~ai, i = 1, . . . , n, on the sphere. Then,
similarly to Sec. III B, the distance algorithm was con-
sulted to compute matrix M . This matrix M , whose
entries are rounded to the closest integers, is given in
a Mathematica file [29]. With this M and C, we have
Q(M, 3) =

∑
i,jMi,jCi,j ' 4.6560 × 108. On the other

hand, L(M) = 324230014 due to the B&B algorithm,
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where the running time was two weeks on our desktop
computer. Then we get from (4) the lower bound
KG(3) ≥ Q(M, 3)/L(M) ' 1.4359. It is noted that this
value gives the best upper bound of v = 1/1.4359 ' 0.6964
on the critical visibility of the two-qubit Werner states
improving on recent upper bounds [31, 32].

IV. LINK TO BELL NONLOCALITY

The Grothendieck constant has a direct link to quantum
nonlocality problems [33–35], which we discuss briefly
below. A detailed survey of this connection can be found
in Ref. [36].

In a quantum Bell-like experiment two parties perform
local measurements on a shared entangled state [33]. Let
Alice and Bob share a state ρ in CD ⊗ CD and perform
two-outcome projective measurements described by ob-
servables Ax and By, which are D-dimensional Hermitian
matrices with eigenvalues {±1}. Here, x, y = 1, . . . , n la-
bel the measurement settings. Then the correlator, which
is the expectation value of the product of Alice and Bob’s
±1 outcomes, is

cx,y = tr (ρAx ⊗By) (11)

for given settings x and y. Such correlations associated
with XOR nonlocal games are frequently studied in the
computer science literature [21].

Given a dimension D, one wonders if a set of correlators
{cx,y, x, y = 1, . . . , n} in Eq. (11) is quantum realizable
with a state ρ ∈ CD ⊗ CD using arbitrary POVM meas-
urements, and also allowing Alice and Bob to share an
arbitrary large amount of randomness. If it happens not
to be the case, we say that the set of correlators {cx,y}
is not D-dimensional quantum realizable. A convenient
tool to address this problem is the use of dimension wit-
nesses [25]. In what follows, we show that our main result
KG(3) < KG(4) implies a set of correlators {cx,y}, which
are not two-dimensional quantum realizable. This result
is based on earlier works [22, 24, 37], and the argument
is as follows.

Let us consider a matrix M ′ and unit vectors ~a′x ∈ R4

and ~b′y ∈ R4 in formula (2) which give rise to the exact
value of KG(4). It is noted that though the exact value
of KG(4) is unknown, there must exist some matrix M ′
(of possibly infinite dimension n) and unit vectors ~a′x, ~b′y
in the four-dimensional Euclidean space which give rise
to KG(4).

Tsirelson [22] has shown that all correlators cx,y equal to
dot products ~ax ·~by of the unit vectors ~ax,~by ∈ R4, are

realizable as observables,

Ax =
4∑
i=1

ax,iγi,

By =
4∑
i=1

by,iγ
t
i , (12)

on a pair of maximally entangled four-dimensional
quantum systems, |ψ4〉 = (1/2)

∑4
i=1 |i〉 |i〉. Here, ax,i,

by,i are entries of the four-dimensional unit vectors
~ax,~by ∈ R4, respectively, t denotes the transposition,
and γi above are chosen as follows:

γ1 = σx ⊗ 11,
γ2 = σy ⊗ 11,
γ3 = σz ⊗ σx,
γ4 = σz ⊗ σz. (13)

The above γi matrices are traceless, anticommuting and
square to the identity. Due to these properties, Ax, By
are valid traceless observables: tr(Ax) = tr(By) = 0 and
A2
x = B2

y = 11. On the other hand, one has

cx,y = tr (|ψ4〉 〈ψ4|Ax ⊗By) = tr(AxBty)/4. (14)

Applying Eq. (12), and noting that tr(γiγtj) = 4δi,j , where
δi,j denotes the Kronecker delta, we further have

cx,y = tr(AxBTy )/4 =
∑
i

ax,iby,i = ~ax ·~by. (15)

Replacing ~ax and ~by with the particular vectors ~a′x,~b′y,
which leads to the exact value ofKG(4), we obtain that the
correlators c′x,y = ~a′x ·~b′y are realizable as observables A′x,
B′y on the state |ψ4〉 = (1/2)

∑4
i=1 |i〉 |i〉. We next show

that this set of correlators c′x,y has no two-dimensional
quantum representation, i.e., it cannot be realized using
qubit systems. The proof exploits the strict relation
KG(3) < KG(4), which we have proven in the preceding
sections. To this end, let us consider the linear function
I on the correlators cx,y in equation (11) written as

I =
∑

M ′x,ycx,y, (16)

where M ′x,y is defined by the matrix M ′ which attains
the exact value of KG(4) in (2). Let us then denote by
I(2) the maximum of I it can take if the correlators cx,y
come from two-dimensional quantum systems. It appears
that I(2) is defined by

I(2) = max
m∑

x,y=1
M ′x,y~ax ·~by, (17)

where maximization is over all three dimensional unit
vectors ~ax and ~by [25, 37]. However, by definition (2),
I(2) is upper bounded byKG(3)L(M ′), where the function
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L is defined by equation (1). Therefore, we have the chain
of inequalities

I(2)

L(M ′) ≤ KG(3) < KG(4) =
∑
x,yM

′
x,yc

′
x,y

L(M ′) , (18)

where comparing the leftmost and the rightmost terms
gives us the strict relation

I(2) <
∑
x,y

M ′x,yc
′
x,y. (19)

This tells us that the expression (16) cannot be saturated
by correlations originating from qubit systems. Hence,
the above example shows the existence of a witness, which
detects dimension greater than two in the particular case
where the witness matrixM ′ is associated with the KG(4)
value in equation (2). A similar argument in Ref. [25] has
shown the existence of a qutrit witness from the strict
relation KG(3) < KG. Here we showed that it suffices to
consider a pair of four-dimensional quantum systems to
certify correlations beyond qubit. Note also that dimen-
sion witnesses including any finite dimension D appeared
in the literature based on different methods; see e.g. [38–
42]. More recent works [43–46] revealed further intriguing
properties of the restricted dimensional quantum sets.

V. DISCUSSION

We proved that KG(4) is strictly larger than KG(3).
To this end, we used the so-called branch-and-bound
algorithm commonly used in the solution of NP-hard
problems. This allowed us to solve the problem (1) up to

matrix sizes 92 on a standard desktop PC. Further, due
to the principles of the branch-and-bound algorithm (i.e.
the calculation of the bounds and the branching in each
node is independent), it is a natural idea to adapt the
algorithm to GPU, Grid computing, or FPGA.
As we have shown, our result is relevant in quantum
nonlocality, as one can construct a dimension witness
for detecting dimension greater than two based on the
relation KG(3) < KG(4). To the best of our knowledge,
this is the first application of the branch-and-bound tech-
nique in the context of quantum nonlocality, particularly
in XOR nonlocal games. However, we expect that the
presented algorithm in combination with other power-
ful methods (such as Gilbert’s distance algorithm) may
find applications beyond XOR nonlocal games as well.
Such possible tasks concern Bell nonlocality with more
inputs [47, 48], more outcomes [49] or genuine nonlocal-
ity in the case of multipartite settings [50, 51]. Note a
recent method [52] based on the Navascues-Pironio-Acin
hierarchy [53], which tackles these problems in a different
way. Combining the two approaches may also lead to
improvement in our bipartite setting.
It would also be interesting to adapt the branch-and-
bound technique to bound the so-called unsteerability
limit in EPR steering inequalities [54, 55] with large num-
ber of inputs. Finally, the algorithm is likely applicable
in random access codes [56] or non-contextuality inequal-
ities as well [57, 58] with large number of input-output
alphabets.
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Appendix A: Description and implementation details of the Km,n programming algorithm

INTRODUCTION

Km,n-quadratic programming is a quadratic optimization problem with binary variables. In the main text the algorithm
to solve Km,n-quadratic programming is defined (where we have set m = n). In this appendix, we prove the correctness
of the algorithm. We also provide tips about the efficient implementation of the algorithm on a desktop computer. An
implementation of this algorithm with application in XOR nonlocal games is publicly available at [29].

NOTATION

N set of natural numbers
Z set of integers
An n-ary Cartesian product A× · · · ×A
vi ith coordinate of v ∈ An, i = 1, 2, . . . , n
(v1, v2, . . . , vn) construction of v ∈ An

‖v‖1 Manhattan norm, i.e.
∑

i
|vi|

Mn×m(A) matrices with n rows and m columns over A
Mi ith row of M ∈Mn×m, i = 1, 2, . . . , n

Km,n-QUADRATIC PROGRAMMING

Let M be an n ×m matrix of integers. The goal of Km,n-quadratic programming is to efficiently compute the L
function, which is defined as follows:

L :Mn×m(Z)→ Z

L(M) := max
ai=±1,bj =±1

n∑
i=1

m∑
j=1

Mijaibj

Basic properties

Theorem

L(M) = max
ai=±1

∥∥∥∥∥
n∑
i=1

aiMi

∥∥∥∥∥
1

.

Proof

maxai=±1 ‖
∑n
i=1 aiMi‖1 = maxai=±1

∑m
j=1 |

∑n
i=1 aiMij |

= maxai=±1 maxbj=±1
∑m
j=1 bj (

∑n
i=1 aiMij)

= maxai=±1,bj=±1
∑n
i=1
∑m
j=1 Mijaibj

= L(M).
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Theorem
Let M ∈Mn×m,M = (M1,M2, . . . ,Mn), where Mi is the ith row of M .

L(M) = max(L(M+), L(M−)),

where M+ = (M1 +M2,M3,M4, . . . ,Mn) and M− = (M1 −M2,M3,M4, . . . ,Mn).
Proof

L(M) = maxai=±1 ‖
∑n
i=1 aiMi‖1

= max(maxai=±1,a1=a2 ‖
∑n
i=1 aiMi‖1 ,maxai=±1,a1 6=a2 ‖

∑n
i=1 aiMi‖1)

= max(L(M+), L(M−)).

Theorem
Let M ∈Mn×m,M = (M1,M2, . . . ,Mn), where Mi is the ith row of M .

L(M) ≤ L(MU ) + L(ML).

where MU = (M1,M2, . . . ,Mk) and ML = (Mk+1,Mk+2, . . . ,Mn).
Proof

L(M) = maxai=±1 ‖
∑n
i=1 aiMi‖1

≤ maxai=±1

(∥∥∥∑k
i=1 aiMi

∥∥∥
1

+
∥∥∑n

i=k+1 aiMi

∥∥
1

)
= maxai=±1

∥∥∥∑k
i=1 aiMi

∥∥∥
1

+ maxai=±1
∥∥∑n

i=k+1 aiMi

∥∥
1

= L(MU ) + L(ML).

RECURSIVE CALCULATION OF L

We define a recursive function f to calculate L. The function f is not efficient, but it helps to understand the efficient
functions defined later and it is also used in their correctness proofs.
Let n,m ∈ N.
Let M = (M1,M2, . . . ,Mn) ∈Mn×m.
M is a fixed parameter of the function f so it is placed in the subscript as fM .
The recursive function fM is defined as

fM : N× Zm → Z

fM (k, v) :=
{
‖v‖1 if k = n,
max(fM (k + 1, v + Mk+1), fM (k + 1, v −Mk+1)) otherwise.

Theorem

fM (k, v) = L((v,Mk+1,Mk+2, . . . ,Mn)).

Proof
By induction on k = n, n− 1, n− 2, . . .:

• Base case: k = n

fM (k, v) = ‖v‖1 = L((v)) = L((v,Mk+1, . . . ,Mn)).

• Inductive step: k < n

fM (k, v) = max(fM (k + 1, v +Mk+1), fM (k + 1, v −Mk+1))
= max(L((v +Mk+1,Mk+2, . . . ,Mn)), L((v −Mk+1,Mk+2, . . . ,Mn)))
= L((v,Mk+1,Mk+2, . . . ,Mn)).
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Corollary

L(M) = fM (1,M1).

Example

Let M =

 2 3 3 0
3 2 −3 −3
3 −3 2 3
0 −3 3 2

 ∈M4×4.

L(M) = fM (1, (2, 3, 3, 0))
= max(fM (2, (5, 5, 0,−3)), fM (2, (−1, 1, 6, 3)))
= max(max(fM (3, (8, 2, 2, 0)), fM (3, (2, 8,−2,−6)))

,max(fM (3, (2,−2, 8, 6)), fM (3, (−4, 4, 4, 0))))
= max(max(max(fM (4, (8,−1, 5, 2)), fM (4, (8, 5,−1,−2)))

,max(fM (4, (2, 5, 1,−4)), fM (4, (2, 11,−5,−8))))
,max(max(fM (4, (2,−5, 11, 8)), fM (4, (2, 1, 5, 4)))

,max(fM (4, (−4, 1, 7, 2)), fM (4, (−4, 7, 1,−2)))))
= max(max(max(‖(8,−1, 5, 2)‖1, ‖(8, 5,−1,−2)‖1)

,max(‖(2, 5, 1,−4)‖1, ‖(2, 11,−5,−8)‖1))
,max(max(‖(2,−5, 11, 8)‖1, ‖(2, 1, 5, 4)‖1)

,max(‖(−4, 1, 7, 2)‖1, ‖(−4, 7, 1,−2)‖1)))
= max(max(max(16, 16)

,max(12, 26))
,max(max(26, 12)

,max(14, 14)))
= 26.

Note that the total number of fM (k, v) calls is 1 + 2 + 4 + · · ·+ 2n−1 = 2n − 1 = 15.

SPEEDING UP THE RECURSION

We define another recursive function, g, to calculate L. g is more efficient than f because it tries to skip whole branches
of recursive calls by comparing the best found maximum so far and the estimated result of the branch.
Let ck ≥ L((Mk+1,Mk+2, . . . ,Mn)) arbitrary constants, where k = 1, 2, . . . , n− 1. We discuss later how to choose ck.
Let cn = 0.
Let c = (c1, c2, . . . , cn) ∈ Zn.
M and c are fixed parameters of the function g so they are placed in the subscript as gM,c.
gM,c is defined as

gM,c : N× Zm × Z→ Z

gM,c(k, v, m) :=

{
m if m ≥ ‖v‖1 + ck,
‖v‖1 otherwise if k = n,
gM,c(k + 1, v −Mk+1, gM,c(k + 1, v + Mk+1, m)) otherwise.

Theorem

gM,c(k, v,m) = max(fM (k, v),m).

Proof
By induction on k = n, n− 1, n− 2, . . .:

• Base case: k = n
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– Case m ≥ ‖v‖1

gM,c(k, v,m) = m = max(‖v‖1,m) = max(fM (k, v),m).

– Case m < ‖v‖1

gM,c(k, v,m) = ‖v‖1 = max(‖v‖1,m) = max(fM (k, v),m).

• Inductive step: k < n
– Case m ≥ ‖v‖1 + ck

gM,c(k, v,m) = m
= max(‖v‖1 + ck,m)
= max(L((v,Mk+1, . . . ,Mn)),m)
= max(fM (k, v),m).

– Case m < ‖v‖1 + ck

gM,c(k, v,m) = gM,c(k + 1, v −Mk+1, gM,c(k + 1, v +Mk+1,m))
= max(fM (k + 1, v −Mk+1),max(fM (k + 1, v +Mk+1),m))
= max(max(fM (k + 1, v −Mk+1), fM (k + 1, v +Mk+1)),m)
= max(fM (k, v),m).

Corollary

L(M) = gM,c(1,M1, 0).

Choosing ck

The ck constants can be chosen arbitrarily unless they are greater than or equal to L((Mk+1,Mk+2, . . . ,Mn)). Lower
ck constants prevent more gM,c(k, v,m) computations. There is a trade-off between computing the lower bound of ck
to speed up later computations or using less resources on ck and doing more computation later.

The lower bound of ck can alo be computed with gM,c:

L((Mk+1,Mk+2, . . . ,Mn)) = gM,c(k + 1,Mk+1, 0).

We have found by experience that it is worthwhile to compute the lower bound of cn, cn−1, . . . , ci, and set the remaining
ci−1, ci−2, . . . , c2 constants to ∞, where i is around dn/4e. Note that during the computation of the lower bound of ck,
the cj , j > k constants are also needed, so one should compute the lower bounds of cn, cn−1, . . . , ci one after another
in this order.

Example

Let M =

 2 3 3 0
3 2 −3 −3
3 −3 2 3
0 −3 3 2

 ∈M4×4.



12

c4 = 0 — by definition
c3 := L((M4)) — choose the lower bound

= gM,c(4, (0,−3, 3, 2), 0)
= ‖(0,−3, 3, 2)‖1 — because 0 6≥ ‖(0,−3, 3, 2)‖1 + c4
= 8

c2 :=∞ — avoid computation of L((M3,M4))
c1 :=∞ — avoid computation of L((M2,M3,M4))
L(a) = gM,c(1, (2, 3, 3, 0), 0)

= gM,c(2, (−1, 1, 6, 3), gM,c(2, (5, 5, 0,−3), 0))
= gM,c(2, (−1, 1, 6, 3), gM,c(3, (2, 8,−2,−6), gM,c(3, (8, 2, 2, 0), 0)))
= gM,c(2, (−1, 1, 6, 3), gM,c(3, (2, 8,−2,−6), gM,c(4, (8, 5,−1,−2), gM,c(4, (8,−1, 5, 2), 0))))
= gM,c(2, (−1, 1, 6, 3), gM,c(3, (2, 8,−2,−6), gM,c(4, (8, 5,−1,−2), ‖(8,−1, 5, 2)‖1)))
= gM,c(2, (−1, 1, 6, 3), gM,c(3, (2, 8,−2,−6), gM,c(4, (8, 5,−1,−2), 16)))
= gM,c(2, (−1, 1, 6, 3), gM,c(3, (2, 8,−2,−6), 16))
= gM,c(2, (−1, 1, 6, 3), gM,c(4, (2, 11,−5,−8), gM,c(4, (2, 5, 1,−4), 16)))
= gM,c(2, (−1, 1, 6, 3), gM,c(4, (2, 11,−5,−8), 16))
= gM,c(2, (−1, 1, 6, 3), ‖(2, 11,−5,−8)‖1)
= gM,c(2, (−1, 1, 6, 3), 26)
= gM,c(3, (−4, 4, 4, 0), gM,c(3, (2,−2, 8, 6), 26))
= gM,c(3, (−4, 4, 4, 0), 26) — optimization kicks in
= 26. — optimization kicks in

Note that the total number of gM,c(k, v,m) calls is 12.

TAIL-RECURSIVE FORM

It is possible to refactor gM,c into two mutually tail-recursive functions dM,c and uM,c such that each recursive call is
a tail call, i.e., there are no further operations involved after the call is completed [59]. Tail calls can be implemented
by goto statements so they do not need stack operations, which is a requirement on a GPU and also speeds up
computation on a CPU.
The definitions of dM,c and uM,c are

dM,c, uM,c : N× N× Zm × N→ N

dM,c(k, b, v, m) :=

{
uM,c(k, b, v, m) if m ≥ ‖v‖1 + ck,
uM,c(k, b, v, ‖v‖1) otherwise if k = n,
dM,c(k + 1, 2b, v + Mk+1, m) otherwise.

uM,c(k, b, v, m) :=

{
m if k = 1,
dM,c(k, b + 1, v − 2Mk, m) otherwise if b = 2b′,
uM,c(k − 1, b′, v + Mk, m) otherwise if b = 2b′ + 1.

Theorem
For all k ∈ N, 1 ≤ k ≤ n and a2, a3, . . . , ak = ±1,

dM,c

(
k, a2a3 · · · ak,M1 +

k∑
i=2

aiMi, max
b2, b3, . . . , bn = ±1

b2b3 · · · bk < a2a3 · · · ak

(
M1 +

n∑
i=2

biMi

))
= L(M),

uM,c

(
k, a2a3 · · · ak,M1 +

k∑
i=2

aiMi, max
b2, b3, . . . , bn = ±1

b2b3 · · · bk ≤ a2a3 · · · ak

(
M1 +

n∑
i=2

biMi

))
= L(M),
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where

x1x2 · · ·xi :=
i∑

j=1

1− xj
2 2i−j ,

and

max
x∈∅

x = 0.

Sketch of the proof
One has to show that if the parameters of dM,c and uM,c are in the form given in the theorem, then in each possible
case, the next call of dM,c or uM,c has parameters in the form given in the theorem too.
Corollary

L(M) = dM,c(1, 0,M1, 0).

Example

Let M =

 2 3 3 0
3 2 −3 −3
3 −3 2 3
0 −3 3 2

 ∈M4×4.

Let c4 = 0, c3 = 8, c2 =∞, c1 =∞ as in the previous example.

L(M) = dM,c(1, 0, (2, 3, 3, 0), 0)
= dM,c(2, 0, (5, 5, 0,−3), 0)
= dM,c(3, 0, (8, 2, 2, 0), 0)
= dM,c(4, 0, (8,−1, 5, 2), 0) — ‖(8,−1, 5, 2)‖1 = 16
= uM,c(4, 0, (8,−1, 5, 2), 16) — 0 = 2 · 0
= dM,c(4, 1, (8, 5,−1,−2), 16)
= uM,c(4, 1, (8, 5,−1,−2), 16) — 1 = 2 · 0 + 1
= uM,c(3, 0, (8, 2, 2, 0), 16) — 0 = 2 · 0
= dM,c(3, 1, (2, 8,−2,−6), 16)
= dM,c(4, 2, (2, 5, 1,−4), 16)
= uM,c(4, 2, (2, 5, 1,−4), 16) — 2 = 2 · 1
= dM,c(4, 3, (2, 11,−5,−8), 16) — ‖(2, 11,−5,−8)‖1 = 26
= uM,c(4, 3, (2, 11,−5,−8), 26) — 3 = 2 · 1 + 1
= uM,c(3, 1, (2, 8,−2,−6), 26) — 1 = 2 · 0 + 1
= uM,c(2, 0, (5, 5, 0,−3), 26) — 0 = 2 · 0
= dM,c(2, 1, (−1, 1, 6, 3), 26)
= dM,c(3, 2, (2,−2, 8, 6), 26) — 26 ≥ ‖(2,−2, 8, 6)‖1 + 8
= uM,c(3, 2, (2,−2, 8, 6), 26) — 2 = 2 · 1
= dM,c(3, 3, (−4, 4, 4, 0), 26) — 26 ≥ ‖(−4, 4, 4, 0)‖1 + 8
= uM,c(3, 3, (−4, 4, 4, 0), 26) — 3 = 2 · 1 + 1
= uM,c(2, 1, (−1, 1, 6, 3), 26) — 1 = 2 · 0 + 1
= uM,c(1, 0, (2, 3, 3, 0), 26) — k = 1
= 26.
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