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Gradient flows and a Trotter–Kato formula
of semi-convex functions on CAT(1)-spaces

Shin-ichi Ohta∗ & Miklós Pálfia†

Abstract

We generalize the theory of gradient flows of semi-convex functions on CAT(0)-
spaces, developed by Mayer and Ambrosio–Gigli–Savaré, to CAT(1)-spaces. The
key tool is the so-called “commutativity” representing a Riemannian nature of the
space, and all results hold true also for metric spaces satisfying the commutativity
with semi-convex squared distance functions. Our approach combining the semi-
convexity of the squared distance function with a Riemannian property of the space
seems to be of independent interest, and can be compared with Savaré’s work on
the local angle condition under lower curvature bounds. Applications include the
convergence of the discrete variational scheme to a unique gradient curve, the con-
traction property and the evolution variational inequality of the gradient flow, and
a Trotter–Kato product formula for pairs of semi-convex functions.

1 Introduction

The theory of gradient flows in singular spaces is a field of active research having appli-
cations in various fields. For instance, regarding heat flow as gradient flow of the relative
entropy in the (L2-)Wasserstein space, initiated by Jordan, Kinderlehrer and Otto [JKO],
is known as a useful technique in partial differential equations (see [Ot], [Vi1], [AGS1],
[ASZ] among many others), and has played a crucial role in the recent remarkable de-
velopment of geometric analysis on metric measure spaces satisfying the (Riemannian)
curvature-dimension condition (see [Vi2], [Gi1], [GKO], [AGS2], [AGS3], [EKS]). One of
the recent striking achievements is Gigli’s splitting theorem [Gi3] (see also a survey [Gi2]),
in which the gradient flow of the Busemann function is used in an impressive way.

We follow the strategy of constructing a gradient flow of a lower semi-continuous, semi-
convex function φ on a metric space (X, d) via the discrete variational scheme employing
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the Moreau–Yosida approximation:

φτ (x) := inf
z∈X

{
φ(z) +

d2(x, z)

2τ

}
, x ∈ X, τ > 0. (1.1)

A point xτ attaining the above infimum is considered as an approximation of the point
ξ(τ) on the gradient curve ξ of φ with ξ(0) = x. Here φ is said to be semi-convex if it is
λ-convex for some λ ∈ R meaning that

φ
(
γ(t)

)
≤ (1− t)φ

(
γ(0)

)
+ tφ

(
γ(1)

)
− λ

2
(1− t)td2

(
γ(0), γ(1)

)

along geodesics γ : [0, 1] −→ X . Since the approximation scheme is based on the dis-
tance function, finer properties of the distance function provide finer analysis of gradient
flows. In [Jo], [Ma] (with applications to harmonic maps) and [AGS1] (with applications
to the Wasserstein spaces), gradient flows in CAT(0)-spaces (non-positively curved metric
spaces) are well investigated; see also Bačák’s recent book [Ba2]. There the 2-convexity
of the squared distance function, that is indeed the definition of CAT(0)-spaces, played
essential roles. We shall generalize their theory to CAT(1)-spaces (metric spaces of sec-
tional curvature ≤ 1), where the distance functions are only semi-convex. CAT(1)-spaces
can have a more complicated global structure than CAT(0)-spaces. For instance, all
CAT(0)-spaces are contractible while CAT(1)-spaces may not.

It is known that the direct application of the techniques of CAT(0)-spaces to CAT(1)-
spaces does not work. The point is that the K-convexity of the squared distance function
with K < 2 holds true on some non-Hilbert Banach spaces, on those the behavior of
gradient flows is much less understood. We overcome this difficulty by introducing the
notion of “commutativity” representing a “Riemannian nature” of the space. Precisely,
the key ingredients of our analysis are the following properties of CAT(1)-spaces:

(A) The commutativity :

lim
s↓0

d2(γ(s), z)− d2(x, z)

s
= lim

t↓0

d2(η(t), y)− d2(x, y)

t
(1.2)

for geodesics γ and η with x = γ(0) = η(0), γ(1) = y and η(1) = z (see (3.1) in the
proof of Lemma 3.1);

(B) The semi-convexity of the squared distance function (see Lemma 2.8).

(One can more generally consider some other family of curves along those (A) and (B)
hold, as was essentially used to study the Wasserstein spaces in [AGS1].) This approach,
reinforcing the semi-convexity with the Riemannian nature of the space, seems to be of
independent interest and is in a similar spirit to Savaré’s work [Sa] based on the semi-
concavity of distance functions and the local angle condition, those properties fit the
study of spaces with lower curvature bounds. The semi-convexity and semi-concavity are
usually studied in the context of Banach space theory and Finsler geometry, see [BCL],
[Oh1], [Oh3]. In the CAT(0)-setting, the commutativity follows from the 2-convexity of
the squared distance function and the role of the commutativity is implicit. The commu-
tativity is not true in non-Riemannian Finsler manifolds (see Remark 3.2(b)). Actually,
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the lack of the commutativity is the reason why the first author and Sturm introduced
the notion of skew-convexity in [OS] to study the contraction property of gradient flows
in Finsler manifolds. In contrast, on the Wasserstein space over a Riemannian manifold,
we have a sort of Riemannian structure but the convexity of the squared distance func-
tion fails. See [Gi3, §B] for a connection between (1.2) and the infinitesimal Hilbertianity

which is an “almost everywhere” notion of Riemannian nature.
Modifying the calculation in [AGS1] with the help of the commutativity, we arrive at

the key estimate for a λ-convex function φ and a K-convex distance (see Lemma 3.1):

d2(xτ , y) ≤ d2(x, y)− λτd2(xτ , y) + 2τ{φ(y)− φ(xτ )} −
K

2
d2(x, xτ ),

where xτ is a point attaining the infimum in (1.1). Surprisingly, even with K < 0 (as well
as λ < 0), this estimate is enough to generalize the argument of [AGS1]. We show the
convergence of the discrete variational scheme to a unique gradient curve (Theorem 4.4),
the contraction property (Theorem 4.7) and the evolution variational inequality (Theo-
rem 4.8) of the gradient flow. Moreover, along the lines of [Ma] and [CM], we study the
large time behavior of the flow (§4.5) and prove a Trotter–Kato product formula for pairs
of semi-convex functions (Theorem 5.4). The latter is a two-fold generalization of the
existing results in [CM], [Sto] and [Ba1] for convex functions on CAT(0)-spaces (to be
precise, an inequality corresponding to our key estimate with λ = 0 and K = 2 is an as-
sumption of [CM]). We stress that we use only the qualitative properties of CAT(1)-spaces
instead of the direct curvature condition. Thus our technique also applies to every metric
space satisfying the conditions (A) and (B) above, under a mild coercivity assumption on
φ (see Case II at the beginning of Section 4). This case could be more important than
the CAT(1)-setting, because in CAT(1)-spaces the squared distance function is locally K-
convex with K > 0, that makes some discussions easier with the help of the globalization
technique (see §4.6).

We finally mention some more related works. Gradient flow in metric spaces with
lower sectional curvature bounds (Alexandrov spaces) is investigated in [PP], [Ly]. This
technique was generalized to the Wasserstein spaces over Alexandrov spaces in [Oh2] and
[Sa]. Sturm [Stu] recently studied gradient flows in metric measure spaces satisfying the
Riemannian curvature-dimension condition. Discrete-time gradient flow is also an impor-
tant subject related to optimization theory, for that we refer to [OP] and the references
therein.

The organization of the article is as follows. In Section 2, we recall preliminary results
on gradient flows in metric spaces from [AGS1], followed by the necessary facts of CAT(1)-
spaces. Section 3 is devoted to our key estimate. We apply the key estimate to the study
of gradient flows in Section 4, and prove a Trotter–Kato product formula in Section 5.

2 Preliminaries

Let (X, d) be a complete metric space. A curve γ : [0, 1] −→ X is called a geodesic if it is
locally minimizing and of constant speed. We call γ a minimal geodesic if it is globally
minimizing, namely d(γ(s), γ(t)) = |s − t|d(γ(0), γ(1)) for all s, t ∈ [0, 1]. We say that
(X, d) is geodesic if any two points x, y ∈ X admit a minimal geodesic between them.
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2.1 Gradient flows in metric spaces

We recall basic facts on the construction of gradient curves in metric spaces. We follow
the technique called the “minimizing movements” going back to (at least) De Giorgi [DG],
see [AGS1] for more on this theory. We also refer to [Br], [CL] for classical theories on
linear spaces.

2.1.1 Discrete solutions

As our potential function, we always consider a lower semi-continuous function φ : X −→
(−∞,∞] such that

D(φ) := X \ φ−1(∞) 6= ∅.
Given x ∈ X and τ > 0, we define the Moreau–Yosida approximation:

φτ (x) := inf
z∈X

{
φ(z) +

d2(x, z)

2τ

}

and set

Jφ
τ (x) :=

{
z ∈ X

∣∣∣∣φ(z) +
d2(x, z)

2τ
= φτ (x)

}
.

For x ∈ D(φ) and z ∈ Jφ
τ (x) (if J

φ
τ (x) 6= ∅), it is straightforward from

φ(z) +
d2(x, z)

2τ
≤ φ(x)

that φ(z) ≤ φ(x) and d2(x, z) ≤ 2τ{φ(x) − φ(z)}. We consider two kinds of conditions
on φ.

Assumption 2.1 (1) There exists τ∗(φ) ∈ (0,∞] such that φτ (x) > −∞ and Jφ
τ (x) 6= ∅

for all x ∈ X and τ ∈ (0, τ∗(φ)) (coercivity).

(2) For any Q ∈ R, bounded subsets of the sub-level set {x ∈ X | φ(x) ≤ Q} are relatively
compact in X (compactness).

We remark that, if φτ∗(x∗) > −∞ for some x∗ ∈ X and τ∗ > 0, then φτ (x) > −∞ for
every x ∈ X and τ ∈ (0, τ∗) (see [AGS1, Lemma 2.2.1]). Then, if the compactness (2)
holds, we have Jφ

τ (x) 6= ∅ by the lower semi-continuity of φ (see [AGS1, Corollary 2.2.2]).

Remark 2.2 If diamX < ∞ and the compactness (2) holds, then the lower semi-
continuity of φ implies that every sub-level set {x ∈ X | φ(x) ≤ Q} is (empty or) compact.
Thus φ is bounded below and we can take τ∗(φ) = ∞.

To construct discrete approximations of gradient curves of φ, we consider a partition

of the interval [0,∞):

Pτ = {0 = t0
τ
< t1

τ
< · · · }, lim

k→∞
tk
τ
= ∞,

and set
τk := tk

τ
− tk−1

τ
for k ∈ N, |τ | := sup

k∈N
τk.
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We will always assume |τ | < τ∗(φ). Given an initial point x0 ∈ D(φ),

x0
τ
:= x0 and recursively choose arbitrary xk

τ
∈ Jφ

τk
(xk−1

τ
) for each k ∈ N. (2.1)

We call {xk
τ
}k≥0 a discrete solution of the variational scheme (2.1) associated with the

partition Pτ , which is thought of as a discrete-time gradient curve for the potential
function φ. The following a priori estimates (see [AGS1, Lemma 3.2.2]) will be useful in
the sequel. We remark that these estimates are easily obtained if φ is bounded below.

Lemma 2.3 (A priori estimates) Let φ : X −→ (−∞,∞] satisfy Assumption 2.1(1).
Then, for any x∗ ∈ X and Q, T > 0, there exists a constant C = C(x∗, τ∗(φ), Q, T ) > 0
such that, if a partition Pτ and an associated discrete solution {xk

τ
}k≥0 of (2.1) satisfy

φ(x0) ≤ Q, d2(x0, x∗) ≤ Q, tN
τ
≤ T, |τ | ≤ τ∗(φ)

8
,

then we have for any 1 ≤ k ≤ N

d2(xk
τ
, x∗) ≤ C,

k∑

l=1

d2(xl−1
τ

, xl
τ
)

2τl
≤ φ(x0)− φ(xk

τ
) ≤ C.

In particular, for all 1 ≤ k ≤ N , we have d2(xk−1
τ

, xk
τ
) ≤ 2Cτk and

d2(x0, x
k
τ
) ≤

(
k∑

l=1

d(xl−1
τ

, xl
τ
)

)2

≤
k∑

l=1

d2(xl−1
τ

, xl
τ
)

τl
·

k∑

l=1

τl ≤ 2Ctk
τ
. (2.2)

2.1.2 Convergence of discrete solutions

From here on, let φ : (−∞,∞] −→ X be λ-convex (also called λ-geodesically convex ) for
some λ ∈ R in the sense that

φ
(
γ(t)

)
≤ (1− t)φ(x) + tφ(y)− λ

2
(1− t)td2(x, y) (2.3)

for any x, y ∈ D(φ) and some minimal geodesic γ : [0, 1] −→ X from x to y. (The existence
of a minimal geodesic between two points in D(φ) is included in the definition, thus in
particular (D(φ), d) is geodesic.) We remark that the compactness (2) in Assumption 2.1
implies the coercivity (1) in this case (see [AGS1, Lemma 2.4.8]; we even have τ∗(φ) = ∞
if λ ≥ 0).

Fix an initial point x0 ∈ D(φ). Take a sequence of partitions {Pτi
}i∈N such that

limi→∞ |τi| = 0 and associated discrete solutions {xk
τi
}k≥0 with x0

τi
= x0. Under Assump-

tion 2.1(2), by the compactness argument ([AGS1, Proposition 2.2.3]), a subsequence of
the interpolated curves

x̄τi
(0) := x0, x̄τi

(t) := xk
τi

for t ∈ (tk−1
τi

, tk
τi
] (2.4)

converges to a curve ξ : [0,∞) −→ D(φ) point-wise in t ∈ [0,∞). In general, under the
coercivity and λ-convexity of φ (but without the compactness), if a curve ξ is obtained as
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above (called a generalized minimizing movement ; see [AGS1, Definition 2.0.6]), then it is
locally Lipschitz on (0,∞) and satisfies limt↓0 ξ(t) = x0 as well as the energy dissipation

identity :

φ
(
ξ(T )

)
= φ

(
ξ(S)

)
− 1

2

∫ T

S

{|ξ̇|2 + |∇φ|2(ξ)} dt. (2.5)

Here

|ξ̇|(t) := lim
s→t

d(ξ(s), ξ(t))

|t− s|
is the metric speed existing at almost all t, and

|∇φ|(x) := lim sup
y→x

max{φ(x)− φ(y), 0}
d(x, y)

is the (descending) local slope (see [AGS1, Theorem 2.4.15]). We remark that |∇φ| is lower
semi-continuous ([AGS1, Corollary 2.4.10]) and limi→∞ φ(x̄τi

(t)) = φ(ξ(t)) for all t ≥ 0
([AGS1, Theorem 2.3.3]). The equation (2.5) can be thought of as a metric formulation
of the differential equation ξ̇(t) = −∇φ(ξ(t)), thus ξ will be called a gradient curve of φ
starting from x0. We remark that one does not have uniqueness of gradient curves in this
generality (see [AG, Example 4.23] for a simple example in the ℓ2∞-space).

Remark 2.4 One can relax the scheme by allowing varying initial points: x0
τi

6= x0.
Then assuming x0

τi
→ x0 and φ(x0

τi
) → φ(x0) yields the same convergence results. In our

setting, such a convergence can also follow from the comparison estimate (4.2) (see the
proof of Theorem 4.4).

2.2 CAT(1)-spaces

We refer to [BBI] for the basics of CAT(1)-spaces and for more general metric geometry.
Given three points x, y, z ∈ X with d(x, y) + d(y, z) + d(z, x) < 2π, we can take

corresponding points x̃, ỹ, z̃ in the 2-dimensional unit sphere S2 (uniquely up to rigid
motions) such that

dS2(x̃, ỹ) = d(x, y), dS2(ỹ, z̃) = d(y, z), dS2(z̃, x̃) = d(z, x).

We call △x̃ỹz̃ a comparison triangle of △xyz in S2.

Definition 2.5 (CAT(1)-spaces) A geodesic metric space (X, d) is called a CAT(1)-
space if, for any x, y, z ∈ X with d(x, y)+d(y, z)+d(z, x) < 2π and any minimal geodesic
γ : [0, 1] −→ X from y to z, we have

d
(
x, γ(t)

)
≤ dS2

(
x̃, γ̃(t)

)

at all t ∈ [0, 1], where △x̃ỹz̃ ⊂ S2 is a comparison triangle of △xyz and γ̃ : [0, 1] −→ S2

is the minimal geodesic from ỹ to z̃.

It is readily observed from the definition that each pair of points x, y ∈ X with
d(x, y) < π is joined by a unique minimal geodesic. Fundamental examples of CAT(1)-
spaces are the following.
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Example 2.6 (1) A complete, simply connected Riemannian manifold endowed with the
Riemannian distance is a CAT(1)-space if and only if its sectional curvature is not greater
than 1 everywhere.

(2) All CAT(0)-spaces, which are defined similarly to Definition 2.5 by replacing S2

with R2, are CAT(1)-spaces. Important examples of CAT(0)-spaces are Hadamard man-
ifolds, Hilbert spaces, trees and Euclidean buildings.

(3) Further examples of CAT(1)-spaces include orbifolds obtained as quotient spaces
of CAT(1)-manifolds, and spherical buildings. See [BBI, §9.1] for more examples.

Remark 2.7 For general κ ∈ R, CAT(κ)-spaces are defined in the same manner by
employing comparison triangles in the 2-dimensional space form of constant curvature κ.
If (X, d) is a CAT(κ)-space, then it is also CAT(κ′) for all κ′ > κ and the scaled metric
space (X, cd) with c > 0 is CAT(c−2κ). Therefore considering CAT(1)-spaces covers all
CAT(κ)-spaces up to scaling.

As was mentioned in the introduction, the properties of CAT(1)-spaces needed in our
discussion are only the semi-convexity of the squared distance function and the commu-
tativity (1.2). The latter is a consequence of the first variation formula. Let us review
them.

Lemma 2.8 (Semi-convexity of distance functions) Let (X, d) be a CAT(1)-space
and take R ∈ (0, π). Then there exists K = K(R) ∈ R such that the squared distance

function d2(x, ·) is K-convex on the open R-ball B(x,R) for all x ∈ X.

Proof. By the definition of CAT(1)-spaces, it is enough to show the claim in S
2. Then

the K-convexity is a direct consequence of the smoothness of d2
S2
(x̃, ·) on B(x̃, π). ✷

Clearly K(R) > 0 if R < π/2 (see, e.g., [Oh1] for the precise estimate) and K(R) < 0
if R > π/2. We can define the angle between two geodesics γ and η emanating from the
same point γ(0) = η(0) = x by

∠x(γ, η) := lim
s,t↓0

∠γ̃(s)x̃η̃(t),

where ∠γ̃(s)x̃η̃(t) is the angle at x̃ of a comparison triangle △γ̃(s)x̃η̃(t) in S2. By the
definition of the angle, we obtain the following (see [BBI, Theorem 4.5.6, Remark 4.5.12]).

Theorem 2.9 (First variation formula) Let γ : [0, 1] −→ X be a geodesic from x to

z, and take y ∈ X with 0 < d(x, y) < π. Then we have

lim
s↓0

d(γ(s), y)− d(x, y)

s
= −d(x, z) cos∠x(γ, η),

where η : [0, 1] → X is the unique minimal geodesic from x to y.
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3 Key lemma

In this section, let (X, d) be a complete CAT(1)-space and φ : X −→ (−∞,∞] satisfy the
λ-convexity for some λ ∈ R and Assumption 2.1(1). Note that (2.3) holds along every
minimal geodesic since minimal geodesics are unique between points of distance < π. The
next lemma, generalizing [AGS1, Theorem 4.1.2(ii)] to the case where both λ and K can
be negative, will be a key tool in the following sections.

Lemma 3.1 (Key lemma) Let x ∈ D(φ) and τ ∈ (0,min{π2/(2C), τ∗(φ)/8}) with C =
C(x, τ∗(φ), φ(x), τ∗(φ)/8) from Lemma 2.3. Take xτ ∈ Jφ

τ (x). Then we have, for any

y ∈ D(φ) ∩ B(xτ , R− d(x, xτ )) with R < π and for K = K(R) as in Lemma 2.8,

d2(xτ , y) ≤ d2(x, y)− λτd2(xτ , y) + 2τ{φ(y)− φ(xτ )} −
K

2
d2(x, xτ )

≤ d2(x, y)− λτd2(xτ , y) + 2τ{φ(y)− φ(xτ )}
+max{0,−K} · τ{φ(x)− φ(xτ )}.

(We remark that C = C(x, τ∗(φ), φ(x), τ∗(φ)/8) in the lemma means the constant
C(x, τ∗(φ), Q, T ) from Lemma 2.3 with Q = φ(x) and T = τ∗(φ)/8.)

Proof. Observe that d2(x, xτ ) ≤ 2Cτ < π2 by Lemma 2.3 and the choice of τ . Let
γ : [0, 1] −→ X be the minimal geodesic from xτ to y, and η : [0, 1] −→ X from xτ to x.
For any s ∈ (0, 1), by the definition of Jφ

τ (x) and the λ-convexity of φ, we have

φ(xτ ) +
d2(x, xτ )

2τ
≤ φ

(
γ(s)

)
+

d2(x, γ(s))

2τ

≤ (1− s)φ(xτ ) + sφ(y)− λ

2
(1− s)sd2(xτ , y) +

d2(x, γ(s))

2τ
.

Hence

φ(xτ ) ≤ φ(y) +
1

2τ

d2(x, γ(s))− d2(x, xτ )

s
− λ

2
(1− s)d2(xτ , y).

Applying the first variation formula (Theorem 2.9) twice, we observe the commutativity :

lim
s↓0

d2(x, γ(s))− d2(x, xτ )

s
= −2d(xτ , x)d(xτ , y) cos∠xτ

(γ, η)

= lim
t↓0

d2(η(t), y)− d2(xτ , y)

t
. (3.1)

Notice that η is contained in B(y, R) by the choice of y. Thus it follows from the K-
convexity of d2(·, y) in B(y, R) that

lim
t↓0

d2(η(t), y)− d2(xτ , y)

t
≤ d2(x, y)− d2(xτ , y)−

K

2
d2(x, xτ )

≤ d2(x, y)− d2(xτ , y) + max{0,−K} · τ{φ(x)− φ(xτ )}.

This completes the proof. ✷
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Remark 3.2 (a) Used in the proof of [AGS1, Theorem 4.1.2(ii)] is the direct application
of the convexity of φ and d2(x, ·) along γ, which implies in our setting

K

2
d2(xτ , y) ≤ d2(x, y)− λτd2(xτ , y) + 2τ{φ(y)− φ(xτ )} − d2(x, xτ ).

This coincides with our estimate when K = 2. The commutativity was used to move the
coefficient K/2 from d2(xτ , y) to d2(x, xτ ), then one can efficiently estimate d2(xτ , y) −
d2(x, y) (see Theorem 4.1).

(b) As we mentioned in the introduction (see the paragraph including (1.2)), the
Riemannian nature of the space (i.e., the angle) is essential in the commutativity (3.1).
In fact, on a Finsler manifold (M,F ), (1.2) (written using only the distance) implies

gv(v, w) = gw(v, w) for all v, w ∈ TxM \ {0}, x ∈ M.

These notations and the basics of Finsler geometry can be found in [OS] for instance.
Thus we find, for v 6= ±w,

F 2(v + w) + F 2(v − w) = gv+w(v + w, v + w) + gv−w(v − w, v − w)

= gv+w(v, v + w) + gv+w(w, v + w) + gv−w(v, v − w)− gv−w(w, v − w)

= gv(v, v + w) + gw(w, v + w) + gv(v, v − w)− gw(w, v − w)

= 2gv(v, v) + 2gw(w,w) = 2F 2(v) + 2F 2(w).

This is the parallelogram identity on TxM and hence F is Riemannian.
The commutativity (1.2) is the essential property connecting the (geodesic) convexity

of a function and the contraction property of its gradient flow (see Theorem 4.7). On
Finsler manifolds, the contraction property is characterized by the skew-convexity which
is different from the usual convexity along geodesics (see [OS] for details).

4 Applications to gradient flows

The estimate in Lemma 3.1 is worse than the one in [AGS1, Theorem 4.1.2(ii)] because
of the generality that K can be less than 2 and even negative. Nonetheless, as we shall
see in this section, Lemma 3.1 is enough to generalize the argumentation in Chapter 4 of
[AGS1]. We will give at least sketches of the proofs for completeness.

Our argument covers two cases. In both cases, (X, d) is complete, φ : X −→ (−∞,∞]
is lower semi-continuous, λ-convex and D(φ) 6= ∅.

Case I (X, d) is a CAT(1)-space.

Case II (X, d) satisfies the commutativity (3.1) and the K-convexity of the squared dis-

tance function, and φ satisfies the coercivity condition (Assumption 2.1(1)). (To be pre-

cise, the commutativity, K-convexity and λ-convexity are assumed to hold along the same

family of geodesics.)
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We stress that both λ,K ∈ R can be negative. In Case II, the K-convexity is assumed
globally, thus the assertion of Lemma 3.1 holds for any x, y ∈ D(φ) and τ ∈ (0, τ∗(φ)).
We recall that the coercivity holds if, for instance, the compactness condition (Assump-
tion 2.1(2)) is satisfied. In Case I, the coercivity is guaranteed by restricting ourselves
to balls with radii ≤ R < π/4. In these (convex) balls the squared distance function
is K-convex with K = K(2R) > 0 from Lemma 2.8, and hence φ + d2(x, ·)/(2τ) is
(λ+K/(2τ))-convex. This implies that Jφ

τ (x) is nonempty and consists of a single point
for τ ∈ (0,−K/(2λ)) even if λ < 0 (by, for example, [AGS1, Lemma 2.4.8]). By the same
reasoning, if K > 0 in Case II, then Assumption 2.1(1) is redundant.

To include both cases keeping clarity of the presentation, we discuss under the global
K-convexity of the squared distance function and Assumption 2.1(1). Thus we implicitly
assume diamX < π/2 if we are in Case I. This costs no generality for the construction
of gradient curves since it is a local problem. We explain how to extend the properties of
the gradient flow to the case of diamX ≥ π/2 in §4.6.

4.1 Interpolations

Given an initial point x0 ∈ D(φ) and a partition Pτ with |τ | < τ∗(φ), we fix a discrete
solution {xk

τ
}k≥0 of (2.1). Let us also take a point y ∈ X . Similarly to Chapter 4 of

[AGS1], we interpolate the discrete data xk
τ
, d(xk

τ
, y) and φ(xk

τ
) as follows (recall (2.4)):

For t ∈ (tk−1
τ

, tk
τ
], k ∈ N, define

x̄τ (t) := xk
τ
∈ Jφ

τk
(xk−1

τ
) (x̄τ (0) := x0),

d̄τ (t; y) :=

{
d2(xk−1

τ
, y) +

t− tk−1
τ

τk
{d2(xk

τ
, y)− d2(xk−1

τ
, y)}

}1/2

,

φ̄τ (t) := φ(xk−1
τ

) +
t− tk−1

τ

τk
{φ(xk

τ
)− φ(xk−1

τ
)}.

Recall that τk = tk
τ
− tk−1

τ
and note that φ̄τ is non-increasing.

Then Lemma 3.1 yields the following discrete version of the evolution variational

inequality (see [AGS1, Theorem 4.1.4]; we remark that our residual function Rτ ,K is
different from that in [AGS1] and depends on K).

Theorem 4.1 (Discrete evolution variational inequality) Assuming |τ | < τ∗(φ),
we have

1

2

d

dt

[
d̄2
τ
(t; y)

]
+

λ

2
d2
(
x̄τ (t), y

)
+ φ̄τ (t)− φ(y) ≤ Rτ ,K(t)

for almost all t ∈ (0, T ) and all y ∈ D(φ), where for t ∈ (tk−1
τ

, tk
τ
]

Rτ ,K(t) :=

(
tk
τ
− t

τk
+

max{0,−K}
2

)
{φ(xk−1

τ
)− φ(xk

τ
)}.

Proof. Note first that Lemma 3.1 is available merely under |τ | < τ∗(φ) in the current
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situation. Then we immediately obtain for t ∈ (tk−1
τ

, tk
τ
)

1

2

d

dt

[
d̄2
τ
(t; y)

]
=

d2(xk
τ
, y)− d2(xk−1

τ
, y)

2τk

≤ −λ

2
d2(xk

τ
, y) + φ(y)− φ(xk

τ
) +

max{0,−K}
2

{φ(xk−1
τ

)− φ(xk
τ
)}

= −λ

2
d2
(
x̄τ (t), y

)
+ φ(y)− φ̄τ (t) +

tk
τ
− t

τk
{φ(xk−1

τ
)− φ(xk

τ
)}

+
max{0,−K}

2
{φ(xk−1

τ
)− φ(xk

τ
)}.

This completes the proof. ✷

Taking the limit in Theorem 4.1 as |τ | → 0 will indeed lead to the (continuous)
evolution variational inequality (Theorem 4.8). Another application of Theorem 4.1 is a
comparison between two discrete solutions generated from different partitions:

Pτ = {0 = t0
τ
< t1

τ
< · · · }, Pσ = {0 = s0

σ
< s1

σ
< · · · }.

We set σl := sl
σ
−sl−1

σ
for l ∈ N. We first observe the following modification of Theorem 4.1

(see [AGS1, Lemma 4.1.6]).

Lemma 4.2 Suppose |τ | < τ∗(φ) and λ ≤ 0. Then we have

1

2

d

dt

[
d̄2
τ
(t; y)

]
+

λ

2
d̄2
τ
(t; y) + λDτ (t)d̄τ (t; y) + φ̄τ (t)− φ(y) ≤ Rτ ,K(t)−

λ

2
D

2
τ
(t)

for almost all t ∈ (0, T ) and all y ∈ D(φ), where for t ∈ (tk−1
τ

, tk
τ
]

Dτ (t) :=
tk
τ
− t

τk
d(xk−1

τ
, xk

τ
).

Proof. This is a consequence of Theorem 4.1 and the inequality

d
(
x̄τ (t), y

)
= d(xk

τ
, y) ≤ t− tk−1

τ

τk
d(xk

τ
, y) +

tk
τ
− t

τk
{d(xk−1

τ
, y) + d(xk−1

τ
, xk

τ
)}

≤ d̄τ (t; y) + Dτ (t),

which follows only from the triangle inequality and the convexity of f(r) = r2, r ∈ R. ✷

Notice that Lemma 4.2 reduces to Theorem 4.1 when λ = 0. Applying a version of
the Gronwall lemma, we obtain from Lemma 4.2 (or directly from Theorem 4.1 if λ = 0)
a comparison estimate between {xk

τ
}k≥0 and {yl

σ
}l≥0 with y0

σ
= y0 ∈ D(φ) (see [AGS1,

Corollaries 4.1.5, 4.1.7]). For s ∈ (sl−1
σ

, sl
σ
], we set

d̄τσ(t, s) :=

{
d̄2
τ
(t; yl−1

σ
) +

s− sl−1
σ

σl
{d̄2

τ
(t; yl

σ
)− d̄2

τ
(t; yl−1

σ
)}
}1/2

.
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Observe that, for (t, s) ∈ (tk−1
τ

, tk
τ
]× (sl−1

σ
, sl

σ
],

d̄2
τσ

(t, s) =

(
1− t− tk−1

τ

τk

)(
1− s− sl−1

σ

σl

)
d2(xk−1

τ
, yl−1

σ
)

+
t− tk−1

τ

τk

(
1− s− sl−1

σ

σl

)
d2(xk

τ
, yl−1

σ
)

+

(
1− t− tk−1

τ

τk

)
s− sl−1

σ

σl
d2(xk−1

τ
, yl

σ
) +

t− tk−1
τ

τk

s− sl−1
σ

σl
d2(xk

τ
, yl

σ
).

Corollary 4.3 (Comparison between two discrete solutions) Assume λ ≤ 0 and

|τ |, |σ| < τ∗(φ). Then we have, for almost all t > 0,

d

dt

[
d̄2
τσ

(t, t)
]
+ 2λd̄2

τσ
(t, t) ≤ −2λ

(
Dτ (t) + Dσ(t)

)
d̄τσ(t, t)

+ 2
(
Rτ ,K(t) + Rσ,K(t)

)
− λ
(
D

2
τ
(t) + D

2
σ
(t)
)
. (4.1)

Moreover, for all T > 0,

eλT d̄τσ(T, T ) ≤
{
d2(x0, y0) +

∫ T

0

e2λt
{
2
(
Rτ ,K(t) + Rσ,K(t)

)
− λ
(
D

2
τ
(t) + D

2
σ
(t)
)}

dt

}1/2

− 2λ

∫ T

0

eλt
(
Dτ (t) + Dσ(t)

)
dt. (4.2)

Proof. For each fixed s, it follows from Lemma 4.2 that

1

2

∂

∂t

[
d̄2
τσ

(t, s)
]
+

λ

2
d̄2
τσ

(t, s) + φ̄τ (t)− φ̄σ(s)

≤ −λDτ (t)

{(
1− s− sl−1

σ

σl

)
d̄τ (t; y

l−1
σ

) +
s− sl−1

σ

σl
d̄τ (t; y

l
σ
)

}
+ Rτ ,K(t)−

λ

2
D

2
τ
(t)

≤ −λDτ (t)d̄τσ(t, s) + Rτ ,K(t)−
λ

2
D

2
τ
(t).

Combining this with a similar inequality

1

2

∂

∂s

[
d̄2
τσ

(t, s)
]
+

λ

2
d̄2
τσ

(t, s) + φ̄σ(s)− φ̄τ (t) ≤ −λDσ(s)d̄τσ(t, s) + Rσ,K(s)−
λ

2
D

2
σ
(s),

we obtain the first inequality (4.1). The second assertion (4.2) is a consequence of (4.1)
via a version of the Gronwall lemma (see [AGS1, Lemma 4.1.8]). ✷

4.2 Convergence of discrete solutions

Corollary 4.3 implies that the discrete solutions {xk
τ
}k≥0 converges to a gradient curve

as |τ | → 0 and the limit curve is independent of the choice of the discrete solutions
(generalizing [AGS1, Theorem 4.2.2]). Recall §2.1.2 for properties of gradient curves.
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Theorem 4.4 (Unique limits of discrete solutions) Fix an initial point x0 ∈ D(φ)
and consider discrete solutions {xk

τi
}k≥0 with x0

τi
= x0 associated with a sequence of parti-

tions {Pτi
}i∈N such that limi→∞ |τi| = 0. Then the interpolated curve x̄τi

: [0,∞) −→ X
as in §4.1 converges to a curve ξ : [0,∞) −→ X with ξ(0) = x0 as i → ∞ uniformly on

each bounded interval [0, T ]. In particular, the limit curve ξ is independent of the choices

of the sequence of partitions and discrete solutions.

Proof. Since (X, d) is complete, it is sufficient to show d̄τiτj
(t, t) → 0 as i, j → ∞

uniformly on [0, T ], in the notations of Corollary 4.3. Let λ < 0 without loss of generality.
Take i0 large enough to satisfy |τi| ≤ τ∗(φ)/8 for all i ≥ i0, and put K ′ := min{0, K} ≤ 0.

The integral of Rτ ,K (recall Theorem 4.1 for the definition) is calculated as

∫ tkτ

tk−1
τ

Rτ ,K dt =

(
1

2
− K ′

2

)
τk{φ(xk−1

τ
)− φ(xk

τ
)}.

Similarly, together with the canonical estimate d2(xk−1
τ

, xk
τ
) ≤ 2τk{φ(xk−1

τ
)− φ(xk

τ
)}, we

have ∫ tkτ

tk−1
τ

D
2
τ
dt ≤ τk

3
· 2τk{φ(xk−1

τ
)− φ(xk

τ
)}.

This also implies

∫ tkτ

0

eλtDτ (t) dt ≤
(∫ tkτ

0

e2λt dt

)1/2(∫ tkτ

0

D
2
τ
dt

)1/2

≤
√
− 1

2λ

√
2

3
|τ |
√
φ(x0)− φ(xk

τ
).

Combining these with (4.2), we obtain for i, j ≥ i0, t ≤ tk
τi
≤ T and t ≤ tl

τj
≤ T ,

eλtd̄τiτj
(t, t) ≤

{∫ t

0

{2(Rτi,K + Rτj ,K)− λ(D2
τi
+ D

2
τj
)} ds

}1/2

− 2λ

∫ t

0

eλs
(
Dτi

(s) + Dτj
(s)
)
ds

≤
{(

1−K ′ − 2λ

3
|τi|
)
|τi|{φ(x0)− φ(xk

τi
)}

+

(
1−K ′ − 2λ

3
|τj|
)
|τj |{φ(x0)− φ(xl

τj
)}
}1/2

+

√
−4λ

3

(
|τi|
√
φ(x0)− φ(xk

τi
) + |τj|

√
φ(x0)− φ(xl

τj
)
)
.

Thanks to the a priori estimate (Lemma 2.3), we have

max{φ(x0)− φ(xk
τi
), φ(x0)− φ(xl

τj
)} ≤ C = C(x0, τ∗(φ), φ(x0), T ).

Therefore we conclude that d̄τiτj
(t, t) tends to 0 as i, j → ∞, uniformly in t ∈ [0, T ]. ✷

By virtue of the uniqueness, we can define the gradient flow operator

G : [0,∞)×D(φ) −→ D(φ) (4.3)
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by G(t, x0) := ξ(t), where ξ : [0,∞) −→ X is the unique gradient curve with ξ(0) = x0

given by Theorem 4.4. Then the semigroup property:

G
(
t,G(s, x0)

)
= G(s+ t, x0) for all s, t ≥ 0

also follows from the uniqueness of gradient curves.
One can immediately obtain the following (rough) error estimate from the proof of

Theorem 4.4 (compare this with [AGS1, Theorem 4.0.9]).

Corollary 4.5 (An error estimate) Let λ ≤ 0 and |τ | < τ∗(φ), fix x0 ∈ D(φ), and put

ξ(t) := G(t, x0). Then we have

d̄2
τ

(
t; ξ(t)

)
≤ e−2λt

(√
1−K ′ − 2λ

3
|τ |+

√
−4λ

3
|τ |
)2

|τ |
{
φ(x0)− φ

(
x̄τ (t)

)}

for all t > 0, where K ′ := min{0, K}.

Proof. Taking the limit of (4.2) as |σ| → 0 and using the estimates in the proof of
Theorem 4.4, we have for t ∈ (tk−1

τ
, tk

τ
]

eλtd̄τ

(
t; ξ(t)

)
≤
{∫ t

0

(2Rτ ,K − λD
2
τ
) ds

}1/2

− 2λ

∫ t

0

eλsDτ (s) ds

≤
{(

1−K ′ − 2λ

3
|τ |
)
|τ |{φ(x0)− φ(xk

τ
)}
}1/2

+

√
−4λ

3
|τ |
√
φ(x0)− φ(xk

τ
)

=

(√
1−K ′ − 2λ

3
|τ |+

√
−4λ

3
|τ |
)
√

|τ |
√
φ(x0)− φ

(
x̄τ (t)

)
.

This completes the proof. ✷

4.3 Contraction property

Coming back to the discrete scheme, we show the following lemma, which readily implies
the contraction property of G (Theorem 4.7). Set

λτ :=
log(1 + λ|τ |)

|τ |

assuming λ|τ | > −1 (if λ < 0), and observe that λτ ≤ λ and

log(1 + λτk)

τk
≥ λτ (4.4)

for all k ∈ N (see [AGS1, Lemma 3.4.1]).
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Lemma 4.6 (Discrete contraction estimate) Take x0, y0 ∈ D(φ) and Pτ with |τ | <
τ∗(φ)/8. Assume λ|τ | > −1 if λ < 0. Then we have, for t ∈ (tk−1

τ
, tk

τ
] with tk

τ
≤ T ,

e2(λτ t+λ−

τ |τ |)d2
(
x̄τ (t), ȳτ (t)

)
≤ d2(x0, y0) + 2e2λ

+
τ tkτ |τ |{φ(y0)− φ(yk

τ
)}

−K ′e2λ
+
τ tkτ |τ |{φ(x0)− φ(xk

τ
) + φ(y0)− φ(yk

τ
)}

+Ox0,y0,T (
√

|τ |),
where K ′ := min{0, K}, λ−

τ
:= min{0, λτ} and λ+

τ
:= max{0, λτ}.

Proof. The proof is along the line of [AGS1, Lemma 4.2.4]. Applying Lemma 3.1, we
have for each k ∈ N

d2(xk
τ
, yk−1

τ
) ≤ d2(xk−1

τ
, yk−1

τ
)− λτkd

2(xk
τ
, yk−1

τ
) + 2τk{φ(yk−1

τ
)− φ(xk

τ
)}

−K ′τk{φ(xk−1
τ

)− φ(xk
τ
)},

and

d2(xk
τ
, yk

τ
) ≤ d2(xk

τ
, yk−1

τ
)− λτkd

2(xk
τ
, yk

τ
) + 2τk{φ(xk

τ
)− φ(yk

τ
)}

−K ′τk{φ(yk−1
τ

)− φ(yk
τ
)}.

Thus we have

(1 + λτk)d
2(xk

τ
, yk

τ
) ≤ d2(xk−1

τ
, yk−1

τ
)− λτkd

2(xk
τ
, yk−1

τ
) + 2τk{φ(yk−1

τ
)− φ(yk

τ
)}

−K ′τk{φ(xk−1
τ

)− φ(xk
τ
) + φ(yk−1

τ
)− φ(yk

τ
)}.

Note that

|d2(xk
τ
, yk−1

τ
)− d2(xk−1

τ
, yk−1

τ
)| ≤ {d(xk

τ
, yk−1

τ
) + d(xk−1

τ
, yk−1

τ
)}d(xk

τ
, xk−1

τ
)

= Ox0,y0,T (
√

|τ |)
by the a priori estimate (Lemma 2.3, (2.2)). Together with 1 − λτk ≤ (1 + λτk)

−1, this
implies

(1 + λτk)d
2(xk

τ
, yk

τ
) ≤ 1

1 + λτk
d2(xk−1

τ
, yk−1

τ
) + 2τk{φ(yk−1

τ
)− φ(yk

τ
)}

−K ′τk{φ(xk−1
τ

)− φ(xk
τ
) + φ(yk−1

τ
)− φ(yk

τ
)}

+ τk · Ox0,y0,T (
√

|τ |).

Multiplying both sides by eλτ (2t
k−1
τ +τk) = eλτ (2tkτ−τk) yields that, since

(1 + λτk)e
−λτ τke2λτ tkτ ≥ e2λτ tkτ , e2λτ t

k−1
τ

eλτ τk

1 + λτk
≤ e2λτ t

k−1
τ

by (4.4),

e2λτ tkτ d2(xk
τ
, yk

τ
) ≤ e2λτ t

k−1
τ d2(xk−1

τ
, yk−1

τ
) + 2eλτ (t

k−1
τ +tkτ )τk{φ(yk−1

τ
)− φ(yk

τ
)}

−K ′eλτ (t
k−1
τ +tkτ )τk{φ(xk−1

τ
)− φ(xk

τ
) + φ(yk−1

τ
)− φ(yk

τ
)}

+ τk ·Ox0,y0,T (
√
|τ |).
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Summing up, for t ∈ (tk−1
τ

, tk
τ
], we obtain the desired estimate

e2(λτ t+λ−

τ |τ |)d2
(
x̄τ (t), ȳτ (t)

)
≤ e2λτ tkτ d2(xk

τ
, yk

τ
)

≤ d2(x0, y0) + 2e2λ
+
τ tkτ |τ |{φ(y0)− φ(yk

τ
)}

−K ′e2λ
+
τ tkτ |τ |{φ(x0)− φ(xk

τ
) + φ(y0)− φ(yk

τ
)}

+ tk
τ
· Ox0,y0,T (

√
|τ |).

✷

Theorem 4.7 (Contraction property) Take x0, y0 ∈ D(φ) and put ξ(t) := G(t, x0)
and ζ(t) := G(t, y0). Then we have, for any t > 0,

d
(
ξ(t), ζ(t)

)
≤ e−λtd(x0, y0). (4.5)

Proof. Take the limit as |τ | → 0 in Lemma 4.6. Then the claim follows from lim|τ |→0 λτ =
λ and the a priori estimate in Lemma 2.3 (which bounds φ(x0)− φ(xk

τ
)). ✷

The contraction property allows us to take the continuous limit

G : [0,∞)×D(φ) −→ D(φ)

of the gradient flow operator in (4.3), which again enjoys the semigroup property as well
as the contraction property (4.5). One can alternatively derive the contraction property
from the evolution variational inequality (4.6) below, whereas we think that this direct
proof and the discrete estimate in Lemma 4.6 are worthwhile as well.

4.4 Evolution variational inequality

Similarly to [AGS1, Theorem 4.3.2], taking the limit of Theorem 4.1, we obtain the
following.

Theorem 4.8 (Evolution variational inequality) Take x0 ∈ D(φ) and put ξ(t) :=
G(t, x0). Then we have

lim sup
ε↓0

d2(ξ(t+ ε), y)− d2(ξ(t), y)

2ε
+

λ

2
d2
(
ξ(t), y

)
+ φ
(
ξ(t)

)
≤ φ(y) (4.6)

for all y ∈ D(φ) and t > 0. In particular,

1

2

d

dt

[
d2
(
ξ(t), y

)]
+

λ

2
d2
(
ξ(t), y

)
+ φ
(
ξ(t)

)
≤ φ(y)

for all y ∈ D(φ) and almost all t > 0.
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Proof. By recalling the estimate of the integral of Rτ ,K in the proof of Theorem 4.4,
integration in t ∈ [S, T ] of Theorem 4.1 gives

1

2
d̄2
τ
(T ; y)− 1

2
d̄2
τ
(S; y) +

∫ T

S

{
λ

2
d2
(
x̄τ (t), y

)
+ φ̄τ (t)

}
dt

≤ (T − S)φ(y) +

(
1

2
− K ′

2

)
|τ |
{
φ
(
x̄τ (S − |τ |)

)
− φ

(
x̄τ (T )

)}
.

Note that φ̄τ is uniformly bounded on [0, T ] thanks to the a priori estimate (Lemma 2.3).
Thus we have ∫ T

S

φ ◦ ξ dt ≤
∫ T

S

lim inf
|τ |→0

φ̄τ dt ≤ lim inf
|τ |→0

∫ T

S

φ̄τ dt

by the lower semi-continuity of φ and Fatou’s lemma. Therefore letting |τ | ↓ 0 shows the
integrated form of the evolution variational inequality:

d2(ξ(T ), y)− d2(ξ(S), y)

2
+

∫ T

S

{
λ

2
d2
(
ξ(t), y

)
+ φ
(
ξ(t)

)}
dt ≤ (T − S)φ(y).

Dividing both sides by T − S and letting T − S ↓ 0, we obtain the desired inequality by
the lower semi-continuity of φ. (We remark that φ ◦ ξ is in fact continuous; see [AGS1,
Theorem 2.4.15].) ✷

4.5 Stationary points and large time behavior of the flow

In this subsection, following the argumentation in [Ma] (on CAT(0)-spaces), we study
stationary points and the large time behavior of the gradient flow G. Since the funda-
mental properties of the flow, for establishing those the CAT(0)-property is used in [Ma,
Section 1], is already in hand, we can follow the line of [Ma, Section 2] almost verba-
tim. We begin with a consequence of the evolution variational inequality (Theorem 4.8)
corresponding to [Ma, Lemma 2.8].

Lemma 4.9 Take x0 ∈ D(φ) and put ξ(t) := G(t, x0). Then we have

d2
(
ξ(T ), y

)
≤ e−λTd2(x0, y) + 2e−λT

∫ T

0

eλt
{
φ(y)− φ

(
ξ(t)

)}
dt

for all T > 0 and y ∈ D(φ). In particular, we have

d2
(
ξ(T ), y

)
≤ e−λTd2(x0, y)−

2(1− e−λT )

λ

{
φ
(
ξ(T )

)
− φ(y)

}
,

where (1− e−λT )/λ := T when λ = 0.

Proof. Rewrite (4.6) as

lim sup
ε↓0

eλ(t+ε)d2(ξ(t+ ε), y)− eλtd2(ξ(t), y)

2ε
≤ eλt

{
φ(y)− φ

(
ξ(t)

)}
,

which implies the first claim. The second claim readily follows from this and the fact that
φ(ξ(t)) is non-increasing in t. ✷
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By the above lemma, one can show a characterization of stationary points of the flow
G in terms of the local slope |∇φ|.

Theorem 4.10 (A characterization of stationary points) A point x0 ∈ D(φ) sat-

isfies |∇φ|(x0) = 0 if and only if G(t, x0) = x0 for all t > 0.

Proof. The “only if” part is a consequence of [Ma, Lemma 2.11] asserting that

|∇φ|(x0) = 0 if and only if sup
x 6=x0

φ(x0)− φ(x)

d2(x0, x)
< ∞, (4.7)

for which only the λ-convexity of φ is used. The “if” part follows from the same relation
(4.7) and Lemma 4.9, noticing that (1− e−λT )/λ ≥ T for λ < 0. See [Ma, Theorem 2.12]
for details. ✷

It is natural to expect that, if φ ◦ ξ does not diverge to −∞, then |∇φ| ◦ ξ tends to 0.
This is indeed the case as follows.

Lemma 4.11 Assume λ ≤ 0, take x0 ∈ D(φ) and put ξ(t) := G(t, x0). Then we have

|∇φ|
(
ξ(T )

)
− |∇φ|

(
ξ(S)

)
≤ −

√
2λ

∫ T

S

|∇φ| ◦ ξ dt (4.8)

for all 0 < S < T .

Proof. For any x ∈ D(φ) and xτ ∈ Jφ
τ (x), it follows from the λ-convexity of φ that

|∇φ|(xτ ) ≤ |∇φ|(x)− λd(x, xτ )

(see [Ma, Lemma 2.23]). Substituting d2(x, xτ ) ≤ 2τ{φ(x) − φ(xτ )} and iterating this
estimate, one finds

|∇φ|(xN
τ
) ≤ |∇φ|(x0)− λ

N∑

k=1

√
2τk{φ(xk−1

τ
)− φ(xk

τ
)}.

Applying the Cauchy–Schwarz inequality:

N∑

k=1

√
τk{φ(xk−1

τ
)− φ(xk

τ
)} ≤

√√√√
N∑

k=1

τk

√√√√
N∑

k=1

{φ(xk−1
τ

)− φ(xk
τ
)}

and taking the limit as |τ | → 0, we have

|∇φ|
(
ξ(T )

)
− |∇φ|(x0) ≤ −

√
2λ

√
T
√
φ(x0)− φ

(
ξ(T )

)
(4.9)

for all T > 0, since φ and |∇φ| are lower semi-continuous (by [Ma, Proposition 2.25] or
[AGS1, Corollary 2.4.10]). By replacing x0 with ξ(S), the implication from (4.9) to (4.8)
is the same as [Ma, Lemma 2.27]. ✷
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Theorem 4.12 (Large time behavior) Take x0 ∈ D(φ), put ξ(t) := G(t, x0) and as-

sume limt→∞ φ(ξ(t)) > −∞. Then we have limt→∞ |∇φ|(ξ(t)) = 0.

Proof. The proof is done by contradiction with the help of the estimate (4.8) and the
right continuity of |∇φ| ◦ ξ (see [Ma, Corollary 2.28] or [AGS1, Theorem 2.4.15]). We
refer to [Ma, Theorem 2.30] for details. ✷

The following corollary is immediate, see [Ma, Corollary 2.31].

Corollary 4.13 Take x0 ∈ D(φ), put ξ(t) := G(t, x0) and assume that there is a sequence

{tn}n∈N such that limn→∞ tn = ∞ and {ξ(tn)}n∈N converges to a point x̄. Then x̄ is a

stationary point of φ (in the sense of Theorem 4.10) and limt→∞ φ(ξ(t)) = φ(x̄).

In general, limt→∞ |∇φ|(ξ(t)) = 0 does not imply the convergence to a stationary
point. One needs some compactness condition to find a stationary point, see for instance
[Ma, Theorem 2.32].

4.6 The case of CAT(1)-spaces with diameter ≥ π/2

All the results in this section are generalized to complete CAT(1)-spaces (X, d) with
diamX ≥ π/2. First of all, given x0 ∈ D(φ), one can restrict the construction of the
gradient curve in, say, the open ball B(x0, π/6). Since B(x0, π/6) is (geodesically) convex,
the squared distance function in this ball is K-convex with K = K(π/3) > 0 from
Lemma 2.8, and we obtain the gradient curve ξ with ξ(0) = x0. Once ξ(t) hits the
boundary ∂B(x0, π/6) at t = t1, we restart the construction in B(ξ(t1), π/6). We remark
that t1 ≥ (π/6)2/(2C) by (2.2). Iterating this procedure gives the gradient curve ξ :
[0,∞) −→ X .

The contraction property and the evolution variational inequality are globalized in a
standard way as follows. (Then Theorems 4.10, 4.12 also hold true since they are based
only on the evolution variational inequality.)

For the contraction property (Theorem 4.7), if d(x0, y0) ≥ π/2, then we consider a
minimal geodesic γ from x0 to y0 and choose points z0 = x0, z1, . . . , zm−1, zm = y0 on γ
such that max1≤l≤m d(zl−1, zl) ≪ πe−|λ|T/2 for given T > 0. Applying Theorem 4.7 to
adjacent gradient curves ξl := G(·, zl) shows d(ξl−1(t), ξl(t)) ≤ e−λtd(zl−1, zl) for t ∈ [0, T ].
This yields d(ξ(t), ζ(t)) ≤ e−λtd(x0, y0) by the triangle inequality.

For the evolution variational inequality (Theorem 4.8), given a minimal geodesic γ :
[0, 1] −→ X from ξ(t) to y, it is easy to see that (4.6) for y = γ(s) with small s > 0 (so
that d(ξ(t), γ(s)) ≪ π/2) implies (4.6) itself. Indeed, since

d2(ξ(t+ ε), y)− d2(ξ(t), y)

2ε

≤ {d(ξ(t+ ε), γ(s)) + d(γ(s), y)}2 − {d(ξ(t), γ(s)) + d(γ(s), y)}2
2ε

=
d2(ξ(t+ ε), γ(s))− d2(ξ(t), γ(s))

2ε
+

d(ξ(t+ ε), γ(s))− d(ξ(t), γ(s))

ε
d
(
γ(s), y

)

=
d2(ξ(t+ ε), γ(s))− d2(ξ(t), γ(s))

2ε

(
1 +

2d(γ(s), y)

d(ξ(t+ ε), γ(s)) + d(ξ(t), γ(s))

)
,
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we obtain from (4.6) with y = γ(s) that

lim sup
ε↓0

d2(ξ(t+ ε), y)− d2(ξ(t), y)

2ε

≤
{
−λ

2
d2
(
ξ(t), γ(s)

)
− φ

(
ξ(t)

)
+ φ
(
γ(s)

)}(
1 +

d(γ(s), y)

d(ξ(t), γ(s))

)

≤ 1

s

{
−λ

2
s2d2

(
ξ(t), y

)
− φ

(
ξ(t)

)
+ (1− s)φ

(
ξ(t)

)
+ sφ(y)− λ

2
(1− s)sd2

(
ξ(t), y

)}

= −λ

2
d2
(
ξ(t), y

)
− φ

(
ξ(t)

)
+ φ(y).

5 A Trotter–Kato product formula

This final section is devoted to a further application of our key lemma: a Trotter–Kato
product formula for semi-convex functions. See [KM] for the classical setting of convex
functions on Hilbert spaces. The Trotter–Kato product formula on metric spaces was
established by Stojkovic [Sto] for convex functions on CAT(0)-spaces in terms of ultra-
limits (see also a recent result [Ba1] in terms of weak convergence), and by Clément
and Maas [CM] for functions satisfying the assertion of our key lemma (Lemma 3.1)
with K = 2 and λ = 0 (thus including convex functions on CAT(0)-spaces). We stress
that, similarly to the previous section, both the squared distance function and potential
functions are allowed to be semi-convex in our argument.

5.1 Setting and the main theorem

Assumption 5.1 Let (X, d) be a complete metric space in either Case I or Case II (see
the beginning of Section 4), and assume additionally D := diamX < ∞. For i = 1, 2,
we consider a lower semi-continuous, λi-convex function φi : X −→ (−∞,∞] (λi ∈ R)
satisfying D(φ1) ∩D(φ2) 6= ∅ and the compactness (Assumption 2.1(2)).

We remark that λi can be negative. The sum φ := φ1 + φ2 is clearly lower semi-
continuous, (λ1 + λ2)-convex and enjoys Assumption 2.1(2) (with τ∗(φ) = ∞) since φi is
bounded below (Remark 2.2) and

{x ∈ X | φ(x) ≤ Q} ⊂ {x ∈ X | φ1(x) ≤ Q− inf
X

φ2}.

Given z0 ∈ D(φ) = D(φ1) ∩ D(φ2) and a partition Pτ , we consider the discrete
variational schemes for φ1 and φ2 in turn, namely

z0
τ
:= z0, choose arbitrary ẑk

τ
∈ Jφ1

τk
(zk−1

τ
) and then zk

τ
∈ Jφ2

τk
(ẑk

τ
) for k ∈ N. (5.1)

If φ1 = φ2, then this scheme reduces to (2.1) for φ with respect to the partition:

{
0 <

t1
τ

2
< t1

τ
<

t1
τ
+ t2

τ

2
< t2

τ
< · · ·

}
.
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The Trotter–Kato product formula asserts that {zk
τ
}k≥0 converges to the gradient curve

of φ emanating from z0 in an appropriate sense. This is useful when φ1 and φ2 are easier
to handle than their sum φ. An additional difficulty (in the discrete scheme) compared
with the direct variational approximation for φ is that we have a priori no control of
φ2(ẑ

k
τ
)− φ2(z

k−1
τ

) and φ1(z
k
τ
)− φ1(ẑ

k
τ
) (both are being nonpositive if φ1 = φ2). Thus we

suppose the following condition:

Assumption 5.2 Given z0 ∈ D(φ) and a partition Pτ , set

δk
τ
(z0) := max{0, φ2(ẑ

k
τ
)− φ2(z

k−1
τ

), φ1(z
k
τ
)− φ1(ẑ

k
τ
)}

for k ∈ N by suppressing the dependence on the choice of {ẑk
τ
, zk

τ
}k∈N. Assume that, for

any ε, T > 0, there is ∆T
ε (z0) < ∞ such that

N∑

k=1

δk
τ
(z0) ≤ ∆T

ε (z0)

for any Pτ with |τ | < ε, N ∈ N with tN
τ
≤ T , and for any solution {ẑk

τ
, zk

τ
}k∈N to (5.1).

This in particular guarantees that ẑk
τ
∈ D(φ) and zk

τ
∈ D(φ).

Example 5.3 One of the simplest examples satisfying Assumption 5.2 is pairs of Lips-
chitz functions. If both φ1 and φ2 are L-Lipschitz, then

d2(zk−1
τ

, ẑk
τ
) ≤ 2τk{φ1(z

k−1
τ

)− φ1(ẑ
k
τ
)} ≤ 2τkLd(z

k−1
τ

, ẑk
τ
).

Hence d(zk−1
τ

, ẑk
τ
) ≤ 2Lτk and similarly d(ẑk

τ
, zk

τ
) ≤ 2Lτk. Thus we find

N∑

k=1

δk
τ
(z0) ≤

N∑

k=1

Lmax{d(zk−1
τ

, ẑk
τ
), d(ẑk

τ
, zk

τ
)} ≤ 2L2tN

τ
.

Notice that ∆T
ε (z0) is taken independently from ε and z0 in this case. See [CM, Proposi-

tion 1.7] for other examples.

Our assumptions are comparable with those in [CM]. (For the sake of simplicity, we
do not intend to minimize the assumptions in this section.) To state the main theorem
of the section, we introduce the interpolated curve z̄τ similarly to §4.1:

z̄τ (0) := z0, z̄τ (t) := zk
τ

for t ∈ (tk−1
τ

, tk
τ
].

Theorem 5.4 (A Trotter–Kato product formula) Let Assumptions 5.1, 5.2 be sat-

isfied. Given z0 ∈ D(φ), the curve z̄τ converges to the gradient curve ξ := G(·, z0) of φ
(constructed in the previous section) as |τ | → 0 uniformly on each bounded interval [0, T ].

Similarly to the previous section, we will discuss under the global K-convexity of the
squared distance function. Thus diamX < π is implicitly assumed in Case I, however,
this costs no generality as we explained in §4.6.
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5.2 Preliminary estimates

Fix z0 ∈ D(φ), Pτ with |τ | < ε and {ẑk
τ
, zk

τ
}k∈N solving (5.1).

Lemma 5.5 (i) For each N ∈ N with tN
τ
≤ T , we have

max
i=1,2

{φi(z
N
τ
)− φi(z0), φi(ẑ

N
τ
)− φi(z0)} ≤

N∑

k=1

δk
τ
(z0) ≤ ∆T

ε (z0).

(ii) For any l ≤ k with tk
τ
≤ T , we have

max{d(zl−1
τ

, ẑk
τ
), d(zl−1

τ
, zk

τ
), d(ẑl

τ
, ẑk

τ
), d(ẑl

τ
, zk

τ
)}

≤
√

2(tk
τ
− tl−1

τ
)

{√
φ1(z0)− inf

X
φ1 + 2∆T

ε (z0) +
√

φ2(z0)− inf
X

φ2 + 2∆T
ε (z0)

}
.

Proof. (i) This is straightforward from the definition of δk
τ
(z0). We know φ1(ẑ

k
τ
) ≤

φ1(z
k−1
τ

) and hence

φ1(z
N
τ
) = φ1(z0) +

N∑

k=1

{φ1(z
k
τ
)− φ1(ẑ

k
τ
) + φ1(ẑ

k
τ
)− φ1(z

k−1
τ

)} ≤ φ1(z0) +

N∑

k=1

δk
τ
(z0).

Similarly we find φ1(ẑ
N
τ
) ≤ φ1(z0) +

∑N−1
k=1 δk

τ
(z0) and

φ2(z
N
τ
) ≤ φ2(ẑ

N
τ
) ≤ φ2(z0) +

N∑

k=1

δk
τ
(z0).

(ii) It follows from the Cauchy–Schwarz inequality that

max{d(zl−1
τ

, ẑk
τ
), d(zl−1

τ
, zk

τ
), d(ẑl

τ
, ẑk

τ
), d(ẑl

τ
, zk

τ
)} ≤

k∑

m=l

{d(zm−1
τ

, ẑm
τ
) + d(ẑm

τ
, zm

τ
)}

≤

√√√√
k∑

m=l

2τm





√√√√
k∑

m=l

d2(zm−1
τ

, ẑm
τ
)

2τm
+

√√√√
k∑

m=l

d2(ẑm
τ
, zm

τ
)

2τm





≤
√
2(tk

τ
− tl−1

τ
)





√√√√
k∑

m=l

{φ1(zm−1
τ

)− φ1(ẑmτ )}+

√√√√
k∑

m=l

{φ2(ẑmτ )− φ2(zmτ )}



 .

Note that, by (i),

k∑

m=l

{φ1(z
m−1
τ

)− φ1(ẑ
m
τ
)} ≤

k∑

m=l

{φ1(z
m−1
τ

)− φ1(z
m
τ
) + δm

τ
(z0)}

= φ1(z
l−1
τ

)− φ1(z
k
τ
) +

k∑

m=l

δm
τ
(z0)

≤ φ1(z0)− inf
X

φ1 + 2∆T
ε (z0).

Similarly we obtain
∑k

m=l{φ2(ẑ
m
τ
)−φ2(z

m
τ
)} ≤ φ2(z0)−infX φ2+2∆T

ε (z0). This completes
the proof. ✷
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Thanks to (ii) above, as |τ | → 0, we obtain the uniform convergence of a subsequence
of z̄τ : [0, T ] −→ X to a Hölder continuous curve ζ : [0, T ] −→ X with ζ(0) = z0. Our goal
is to show that ζ coincides with the gradient curve ξ of φ. Then z̄τ uniformly converges
to ξ as |τ | → 0 without passing to subsequences. Observe that the uniformity can be
seen by contradiction; the existence of ρ > 0 such that supt∈[0,T ] d(z̄τi

(t), ξ(t)) ≥ ρ for all
i with limi→0 |τi| → 0 contradicts the uniform convergence of a subsequence of {z̄τi

}i∈N.
The following key estimate can be thought of as a discrete version of the evolution

variational inequality (compare this with [CM, Lemma 2.1]).

Lemma 5.6 Assume λi|τ | > −1 for i = 1, 2. For any w ∈ D(φ) and k ∈ N with tk
τ
≤ T ,

we have

e(λ
τ
1 +λτ

2 )t
k
τ d2(zk

τ
, w) ≤ e(λ

τ
1 +λτ

2 )t
k−1
τ d2(zk−1

τ
, w) + 2eλ

τ
2 t

k−1
τ +λτ

1 t
k
τ τk{φ(w)− φ(zk

τ
) + δk

τ
(z0)}

−K ′eλ
τ
2
tk−1
τ +λτ

1
tkτ τk{φ(zk−1

τ
)− φ(zk

τ
) + 2δk

τ
(z0)}+ τk · Oz0,ε,T (

√
τk),

where K ′ := min{0, K} and

λτ

i :=
log(1 + λi|τ |)

|τ | , i = 1, 2.

Proof. The proof is based on calculations similar to Lemma 4.6. Applying Lemma 3.1
to the steps zk−1

τ
→ ẑk

τ
and ẑk

τ
→ zk

τ
, we have

(1 + λ1τk)d
2(ẑk

τ
, w)− d2(zk−1

τ
, w) ≤ 2τk{φ1(w)− φ1(ẑ

k
τ
)} −K ′τk{φ1(z

k−1
τ

)− φ1(ẑ
k
τ
)},

(1 + λ2τk)d
2(zk

τ
, w)− d2(ẑk

τ
, w) ≤ 2τk{φ2(w)− φ2(z

k
τ
)} −K ′τk{φ2(ẑ

k
τ
)− φ2(z

k
τ
)}.

Thus we find

(1 + λ2τk)d
2(zk

τ
, w) ≤ d2(zk−1

τ
, w)− λ1τkd

2(ẑk
τ
, w) + 2τk{φ(w)− φ1(ẑ

k
τ
)− φ2(z

k
τ
)}

−K ′τk{φ1(z
k−1
τ

)− φ1(ẑ
k
τ
) + φ2(ẑ

k
τ
)− φ2(z

k
τ
)}.

Note that, by Lemma 5.5(i),

|d2(ẑk
τ
, w)− d2(zk−1

τ
, w)| ≤ {d(ẑk

τ
, w) + d(zk−1

τ
, w)}d(ẑk

τ
, zk−1

τ
)

≤ 2D
√
2τk{φ1(zk−1

τ
)− φ1(ẑkτ )}

≤ 2D
√
2τk
√
φ1(z0) + ∆T

ε (z0)− inf
X

φ1

= Oz0,ε,T (
√
τk).

Moreover,
φ(w)− φ1(ẑ

k
τ
)− φ2(z

k
τ
) ≤ φ(w)− φ(zk

τ
) + δk

τ
(z0)

and similarly

φ1(z
k−1
τ

)− φ1(ẑ
k
τ
) + φ2(ẑ

k
τ
)− φ2(z

k
τ
) ≤ φ(zk−1

τ
)− φ(zk

τ
) + 2δk

τ
(z0).
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Combining these yields

(1 + λ2τk)d
2(zk

τ
, w) ≤ 1

1 + λ1τk
d2(zk−1

τ
, w) + 2τk{φ(w)− φ(zk

τ
) + δk

τ
(z0)}

−K ′τk{φ(zk−1
τ

)− φ(zk
τ
) + 2δk

τ
(z0)}+ τk · Oz0,ε,T (

√
τk).

Multiply both sides by eλ
τ
2 t

k−1
τ +λτ

1 t
k
τ = e(λ

τ
1 +λτ

2 )t
k−1
τ +λτ

1 τk = e(λ
τ
1 +λτ

2 )t
k
τ−λτ

2 τk . Then, recalling
(4.4), we obtain the desired estimate. ✷

5.3 Proof of Theorem 5.4

By Lemma 5.6,

d2(zk
τ
, w)− d2(zk−1

τ
, w)

2τk

=
e(λ

τ
1 +λτ

2 )t
k
τ d2(zk

τ
, w)− e(λ

τ
1 +λτ

2 )t
k−1
τ d2(zk−1

τ
, w)

2e(λ
τ
1
+λτ

2
)tkτ τk

+
e−(λτ

1 +λτ
2 )τk − 1

2τk
d2(zk−1

τ
, w)

≤ e−λτ
2
τk{φ(w)− φ(zk

τ
) + δk

τ
(z0)} −

K ′

2
e−λτ

2
τk{φ(zk−1

τ
)− φ(zk

τ
) + 2δk

τ
(z0)}

+
e−(λτ

1 +λτ
2 )τk − 1

2τk
d2(zk−1

τ
, w) +O(

√
|τ |)

= φ(w)− φ(zk
τ
)− K ′

2
{φ(zk−1

τ
)− φ(zk

τ
)} − λ1 + λ2

2
d2(zk−1

τ
, w) + (1−K ′)δk

τ
(z0)

+O(
√
|τ |).

We used the bound of φ(zk
τ
) (Lemma 5.5(i)) to estimate the error terms. Denote by

{xk
τ
}k≥0 a discrete solution of the variational scheme (2.1) for φ with x0

τ
= z0. We recall

from the proof of Theorem 4.1 that, putting λ := λ1 + λ2,

d2(xk
τ
, y)− d2(xk−1

τ
, y)

2τk
≤ φ(y)− φ(xk

τ
)− K ′

2
{φ(xk−1

τ
)− φ(xk

τ
)} − λ

2
d2(xk

τ
, y).

Applying these inequalities with w = xk−1
τ

and y = zk
τ
to

d2(xN
τ
, zN

τ
) =

N∑

k=1

{
d2(xk

τ
, zk

τ
)− d2(xk−1

τ
, zk

τ
) + d2(xk−1

τ
, zk

τ
)− d2(xk−1

τ
, zk−1

τ
)
}
,
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we obtain for N with tN
τ
≤ T

d2(xN
τ
, zN

τ
) ≤

N∑

k=1

2τk

{
φ(zk

τ
)− φ(xk

τ
)− K ′

2
{φ(xk−1

τ
)− φ(xk

τ
)} − λ

2
d2(xk

τ
, zk

τ
)

}

+

N∑

k=1

2τk

{
φ(xk−1

τ
)− φ(zk

τ
)− K ′

2
{φ(zk−1

τ
)− φ(zk

τ
)} − λ

2
d2(xk−1

τ
, zk−1

τ
)

}

+
N∑

k=1

2τk(1−K ′)δk
τ
(z0) + tN

τ
· O(

√
|τ |)

≤ (2−K ′)

N∑

k=1

τk{φ(xk−1
τ

)− φ(xk
τ
)} −K ′

N∑

k=1

τk{φ(zk−1
τ

)− φ(zk
τ
)}

− λ
N∑

k=1

τk{d2(xk−1
τ

, zk−1
τ

) + d2(xk
τ
, zk

τ
)}+ 2(1−K ′)|τ |∆T

ε (z0)

+ tN
τ
· O(

√
|τ |).

Notice that

N∑

k=1

τk{φ(xk−1
τ

)− φ(xk
τ
)} ≤

N∑

k=1

|τ |{φ(xk−1
τ

)− φ(xk
τ
)} ≤

{
φ(z0)− inf

X
φ
}
|τ |.

Moreover, since φ(zk−1
τ

)− φ(zk
τ
) ≥ −2δk

τ
(z0),

N∑

k=1

τk{φ(zk−1
τ

)− φ(zk
τ
)} ≤

N∑

k=1

|τ |{φ(zk−1
τ

)− φ(zk
τ
) + 2δk

τ
(z0)}

≤
{
φ(z0)− inf

X
φ+ 2∆T

ε (z0)
}
|τ |.

Therefore, letting i → ∞ in the sequence Pτi
for which z̄τi

converges to ζ , we find

d2
(
ξ(T ), ζ(T )

)
≤ −2λ

∫ T

0

d2(ξ, ζ) dt.

This implies that the nonnegative function f(T ) :=
∫ T

0
d2(ξ, ζ) dt satisfies f ′ ≤ −2λf and

hence (e2λT f(T ))′ ≤ 0. Thus f ≡ 0 and we complete the proof of ζ = ξ and Theorem 5.4
(recall the paragraph following Lemma 5.5). ✷
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