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Abstract

In this paper we demonstrate, that the light-cone lattice approach for the Massive-

Thirring (sine-Gordon) model, through the quantum inverse scattering method, ad-

mits an appropriate framework for computing the finite volume form-factors of local

operators of the model. In this work we compute the finite volume diagonal ma-

trix elements of the U(1) conserved current in the pure soliton sector of the theory.

Based on the systematic large volume expansion of our results, we conjecture an

exact expression for the finite volume expectation values of local operators in pure

soliton states. At large volume in leading order these expectation values have the

same form as in purely elastic scattering theories, but exponentially small correc-

tions differ from previous Thermodynamic Bethe Ansatz conjectures of purely elastic

scattering theories.
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1 Introduction

The computation of finite volume matrix elements of local operators is an impor-

tant problem in integrable quantum field theories. These form-factors play impor-

tant role in the determination of heavy-heavy-light 3-point functions in the planar

AdS5/CFT4 correspondence [1], and they are fundamental ingredients of the form-

factor perturbation theory [2].

In [3] the Massive Thirring (MT) model was formulated as the continuum limit

of an inhomogeneous 6-vertex model with appropriately chosen alternating inho-

mogeneities. This integrable lattice regularization allowed one to compute the fi-

nite volume spectrum of the theory by solving a set of nonlinear-integral equations

(NLIE) [4]-[11]. Due to the bosonization link between the Massive Thirring and

sine-Gordon models [13, 14], this method gave access to the finite volume spectrum

of the sine-Gordon (SG) model as well. The NLIE description of the finite volume

spectrum was checked against direct field theoretical methods such as the Truncated

Conformal Space Approach (TCSA) as well [10].

Nevertheless, the integrable lattice regularization of [3] gives access to compute

matrix elements of local operators of the MT model and of their bosonized coun-

terparts in the SG model. The general framework for these computations is the

Quantum Inverse Scattering Method (QISM) [15]. In the past decades a remark-

able amount of progress has been achieved in the computation of form-factors and

correlation functions of local spin operators on the lattice [16]-[39]. One of the most

important discovery was that local spin operators can be expressed in terms of the

elements of the Yang-Baxter algebra in an elegant way [17]. This made it possible to

compute the matrix elements of local spin operators by using only the Yang-Baxter

algebra.

Relying on the light-cone lattice regularization of [3], in this paper our purpose

is to compute finite volume form-factors of local operators in the MT/SG theories.

The lattice Fermi fields of the regularized MT model are related to the spin operators

by a Jordan-Wigner transformation. This is why the results of the QISM for spin

variables are directly applicable to our model. Nevertheless, due to renormalization

effects1 the connection between lattice fields and the fields of the continuum theory

1Here we think to normal ordering, renormalization constants and operator mixing.
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can be very non-trivial. Because of these subtleties in this paper we restrict ourselves

to operators which are related to the U(1) symmetry of the model. Since the U(1)

symmetry is present in both the lattice and the continuum theories, it makes easier to

make a connection between the lattice and the continuum fields. The principle is that

conserved quantities of the regularized theory are mapped to conserved quantities

of the continuum model. In this manner we can identify the two components of the

conserved U(1) current2 of the continuum theory as J0(xn) ∼
σz
2n+σz

2n−1

2
,

J1(xn) ∼
σz
2n−σz

2n−1

2
.

Using the QISM techniques the diagonal matrix elements of Jµ can be computed

on the lattice and the continuum limit can be taken as well. The final results can

be expressed in terms of the counting-function of the theory, which satisfies a set of

NLIEs [9]-[11], which we will refer to as DDV equations. For the sake of simplicity,

in our actual computations we restricted ourselves to the pure soliton sector3 of the

theory, but the computations could be extended without any serious difficulties to

other excited states of the model, as well.

For J0 we got the expected and quite trivial result, that the expectation value

is equal to the topological charge of the state divided by the volume. For J1 the

result is not so trivial. There the expectation value can be expressed by the solution

of a linear integral equation, whose kernel depend on the counting-function of the

sandwiching state. These equations can be solved analytically in the context of a

systematic large volume expansion.

It turns out, that in accordance with [45], in the pure soliton sector, at large

volume in leading order the diagonal form-factors of Jµ can be expressed in terms

of the so-called connected-form factors of the operator in exactly the same way as

in purely elastic scattering theories [43, 44]. Nevertheless the exponentially small in

volume corrections differ from the TBA conjectures [40, 41, 42, 43, 44] of purely elas-

tic scattering theories. The difference arises in the form of the so-called dressed-form

factors, which in our case are functionals of the counting-function of the sandwiching

state and the connected-form factors of Jµ (6.26).

Based on previous experiences in diagonally scattering theories, we conjecture

2The corresponding conserved quantity is the toplogical charge in the SG model.
3In lattice terminology: we restrict ourselves to pure hole states over the antiferromagnetic

vacuum.

2



that in the pure soliton sector, our final formula (6.26) for the dressed form-factors

hold for any operator, provided the connected form-factors of the operator under

consideration is substituted into (6.26).

The organization of the paper is as follows. In section 2. we summarize the

light-cone lattice approach to the MT model and determine the lattice counterparts

of the U(1) conserved current. The NLIE governing the finite volume spectrum of

the model is also reviewed in this section. In section 3. we provide the integrable

QISM formulation of the model. In section 4. the diagonal matrix elements of the

operator σz
n are computed on the lattice. The continuum equations, their solution

and the correct identification between the lattice and continuum fields are presented

in section 5. The systematic large volume expansion and the determination of

dressed form factors can be found in section 6. Our summary and outlook can be

found in section 7. The paper includes a short appendix containing some Fourier-

transforms being necessary for the computations.

2 Light-cone approach to theMassive-Thirring/sine-

Gordon models

The continuum models we consider in this paper are the sine-Gordon theory,

LSG =
1

2
∂νΦ∂

νΦ +
µ2

β2
: cos (βΦ) : 0 < β2 < 8π, (2.1)

and the massive Thirring model:

LMT = Ψ̄(iγν∂
ν +m0)Ψ−

g

2
Ψ̄γνΨΨ̄γνΨ , (2.2)

where we use chiral representation for the fermions {γµ, γν} = 2ηµν :

Ψ =

(

ψL

ψR

)

, γ0 =

(

0 1

1 0

)

, γ1 =

(

0 1

−1 0

)

, γ5 = γ0γ1 = −η =

(

−1 0

0 1

)

.

By bosonization techniques, it was shown [13] that the two models can be mapped

into each other provided their coupling constants satisfy the relation:

1 +
g

4π
=

4π

β2
. (2.3)
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There is a subtle point in the equivalence of the two theories [14], namely they are

equivalent only in the even topological charge sector of their Hilbert-spaces and they

differ in the odd topological charge sector.

The light-cone lattice approach of [3] provides an integrable lattice regularization

of the MT model in the even topological charge sector of theory. In this description

the space-time is discretized along the light-cone directions: x± = x ± t with an

even number of lattice sites in the spatial direction. The sites of the light-cone

lattice correspond to the discretized points of space-time. The left- and right-mover

fermion fields live on the left- and right-oriented edges of the lattice. In this manner

a left- and a right-mover fermion field can be assigned to each site of the lattice (See

figure 1.).

a

t=const

ψ ψ
L,n R,n

n

t

x

Figure 1: The pictorial representation of the light-cone lattice.

Lattice fermion fields satisfy the anticommutation relations:

{ψA,n, ψB,m} = 0, {ψA,n, ψ
+
B,m} = δAB δnm, A, B = R,L, 1 ≤ m,n ≤ N.

(2.4)

Then left- and right-mover fields live on the odd and even edges of of the light-cone

lattice respectively:

ψR,n = ψ2n, ψL,n = ψ2n−1, 1 ≤ n ≤ N
2
. (2.5)

In this regularization, the variables ψn are used to formulate the model and they are
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related to the commonly used spin variables by a Jordan-Wigner transformation:

ψ+
n = σ+

n

n−1
∏

l=1

σz
l , ψn = σ−

n

n−1
∏

l=1

σz
l . (2.6)

The UL and UR light-cone evaluation operators of the model are given by inho-

mogeneous transfer matrices of the 6-vertex model with appropriate alternating

inhomogeneities as follows.

Let us consider the 6-vertex model with the following R-matrix:

R(λ) =













1 0 0 0

0 sinh(λ)
sinh(λ−iγ)

sinh(−iγ)
sinh(λ−iγ)

0

0 sinh(−iγ)
sinh(λ−iγ)

sinh(λ)
sinh(λ−iγ)

0

0 0 0 1













, (2.7)

where λ is the spectral parameter and γ is the anisotropy parameter which encodes

the coupling dependence of the MT model. The coupling dependence of γ is given

by:

γ =
π

p+ 1
, 0 < p <∞, (2.8)

where p parameterizes the coupling constant of the SG and MT models by the

formula4:
β2

4π
=

1

1 + g

4π

=
2p

p+ 1
. (2.9)

The R-matrix (2.7) acts on the tensor product of two linear spaces both being

isomorfic to C2. As usual, the R-matrix acting on V1(λ1) ⊗ V2(λ2) is denoted by

R12(λ1 − λ2). The monodromy matrix acts on V0 and the quantum space of the

model H = ⊗N
i=1 Vi and is given by:

T (λ|~ξ) = R01(λ− ξ1)R02(λ− ξ2) ...R0N(λ− ξN) =

(

A(λ) B(λ)

C(λ) D(λ)

)

[0]

, (2.10)

where ~ξ is the N -dimensional inhomogeneity vector given by:

~ξ = {ξ−, ξ+, ξ−, ξ+, ..., ξ−, ξ+}, (2.11)

4This parameterization is introduced to relate our results easier to the DDV equation.
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with

ξ± = ±ρ− iγ
2
. (2.12)

Here the parameter ρ is part of the regularization scheme. This is why it depends on

the lattice spacing or equivalently on the number of lattice sites. This dependence

is given by the formula:

ρ = γ

π
ln 4

M a
= γ

π
ln 2N

ML
, (2.13)

where M is the physical mass of fermions (solitons), a denotes the lattice spacing,

N is the number5 of lattice sites of the 6-vertex model and L is the volume. Due to

the integrability of the model the transfer matrixes form a commutative family of

operators on the quantum space of the model:

T (λ|~ξ) = Tr0 T (λ|~ξ),
[

T (λ|~ξ), T (λ′|~ξ)
]

= 0. (2.14)

The UL and UR light-cone evaluation operators of the regularized MT model are

given by the transfer matrices:

UL = ei
2
a
(H−P ) = T (ξ+|~ξ), U+

R = e−i
2
a
(H+P ) = T (ξ−|~ξ), (2.15)

where H is the Hamiltonian and P is the momentum of the model. From this

description it follows that the eigenstates of the Hamiltonian are the eigenvectors

of the commuting transfer matrices. These eigenvectors can be obtained via the

algebraic Bethe Ansatz technique [15].

2.1 Algebraic Bethe Ansatz

In the framework of algebraic Bethe Ansatz method, the eigenstates of the mutually

commuting family of transfer matrices (2.14) are constructed by acting with a prod-

uct of B-operators on the reference state |0〉, which is the completely ferromagnetic

Sz =
N
2
state of the model:

|~λ〉 = |λ1, λ2, .., λm〉 = B(λ1)B(λ2) ...B(λm) |0〉, Sz|~λ〉 = (N
2
−m)|~λ〉. (2.16)

5In this convention, in the light-cone lattice the number of lattice sites in spatial direction is
N
2 . See figure 1.
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Such a state is an eigenstate provided the spectral parameters in the argument of

the B-operators satisfy the Bethe equations:

N
∏

i=1

sinh(λa − ξi − iγ)

sinh(λa − ξi)

m
∏

b=1

sinh(λa − λb + iγ)

sinh(λa − λb − iγ)
= −1, a = 1, ..., m. (2.17)

The eigenvalues of the transfer matrices can also be expressed in terms of the Bethe-

roots:

T~λ(µ|
~ξ) =

m
∏

k=1

sinh(µ− λk + iγ)

sinh(µ− λk)
+

N
∏

i=1

sinh(µ− ξi)

sinh(µ− ξi − iγ)

m
∏

k=1

sinh(µ− λk − iγ)

sinh(µ− λk)
.

(2.18)

The Bethe-equations can be reformulated in terms of the so-called counting-function

Zλ(λ):

(−1)δ ei Zλ(λa) = −1, δ = m (mod 2), a = 1, .., m, (2.19)

where

(−1)δ ei Zλ(λ) =

N
∏

i=1

sinh(λ− ξi − iγ)

sinh(λ− ξi)

m
∏

b=1

sinh(λ− λb + iγ)

sinh(λ− λb − iγ)
. (2.20)

For the proper definition of Zλ(λ) the logarithm of (2.20) should be taken, such

that the counting function should be continuous along the real axis. This can be

achieved by defining the function [7]:

φν(λ) = −i log
sinh(iγ

2
ν − λ)

sinh(iγ
2
ν + λ)

, 0 < ν, φν(0) = 0, |Imλ| < ν. (2.21)

The function φν(λ) can be continued analytically to the regime |Imλ| > ν by the

requirements that its logarithmic discontinuities should run parallel to the real axis

and it should be an odd function on the entire complex plane. Using this ana-

lytically continued φν(λ), the definition of the counting-function specified to the

inhomogeneities (2.12) is given by the formula [7]:

Zλ(λ) =
N

2
(φ1(λ− ρ) + φ1(λ+ ρ))−

m
∑

k=1

φ2(λ− λk). (2.22)

Using Zλ(λ), the Bethe-equations (2.17) can be reformulated in their logarithmic

form by the formula:

Zλ(λa) = 2π Ia, Ia ∈ Z+ 1+δ
2

a = 1, .., m. (2.23)
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We note that the role of δ is to determine whether the quantum numbers Ia should

be integers or half-integers. The vacuum of the field theory corresponds to the

δ = 0, Sz = 0, antiferromagnetic vacuum of the lattice-model6. This is formed by

N/2 real Bethe-roots, such that to all quantum numbers satisfying the inequality

Zλ(−∞) ≤ 2π Ia ≤ Zλ(∞) there exist a real Bethe-root in (2.23). The excitations

above this vacuum are characterized by complex Bethe-roots and holes, where holes

are such real solutions of (2.19), which are not Bethe-roots. In the logarithmic form

of the equations quantum numbers can be assigned to holes as well:

Zλ(hk) = 2π Ik, Ik ∈ Z+ 1+δ
2

k = 1, .., mH , (2.24)

where hk denotes the positions of the holes and their number is denoted by mH .

2.2 The DDV equations

The DDV equations7 [4]-[11] reformulate the Bethe-equations (2.17) in terms of a

set of nonlinear-integral equations, such that only those objects enter the equations,

which characterize the excitations. In this paper we will compute diagonal form

factors in the pure soliton sector of the theory, thus we recall here the form of the

DDV equation only for the pure soliton- or equivalently for pure hole states. Here

we present the equations in rapidity variables i.e. θ = π
γ
λ, because of two reasons.

First, this way it is easier to find connection to the literature of the DDV equation

[5]-[11], and on the other hand at the stage of our final results it is better to work

in this convention, since in the field theory this variable corresponds to the rapidity

of particles. We recall the DDV equation for both the lattice and for the continuum

theories. To do so, first we relate the lattice counting function in rapidity variables

to Zλ(λ) of (2.22). The relation is given by ZN(θ) = Zλ(
γ

π
θ). The DDV equation for

6According to (2.19), the δ = 0 requirement implies that N
2 must be even on the lattice.

7A detailed review on the DDV equations can be found in [12].

8



ZN(θ) in the pure hole sector reads as:

ZN(θ) =
N

2
{arctan [sinh(θ −Θ)] + arctan [sinh(θ +Θ)]}+

mH
∑

k=1

χ(θ −Hk)

+

∞
∫

−∞

dθ′

2πi
G(θ − θ′ − iη)L

(+)
N (θ′ + iη)−

∞
∫

−∞

dθ′

2πi
G(θ − θ′ + iη)L

(−)
N (θ′ − iη),

(2.25)

where χ(θ) is the soliton-soliton scattering phase and G(θ) is its derivative:

G(θ) = −i
d

dθ
logS++

++(θ) =

∞
∫

−∞

dω e−i ωθ
sinh( (p−1)πω

2
)

2 cosh(πω
2
) sinh(p π ω

2
)
, (2.26)

0 < η < min(pπ, π) is an arbitrary positive contour-integral parameter, which must

be smaller than the distance of the first pole of G(θ) from the real axis. Furthermore,

L
(±)
N (θ) denotes the nonlinear combinations of ZN(θ):

L
(±)
N (θ) = ln

(

1 + (−1)δ e±i ZN (θ)
)

, (2.27)

Θ = ln 2N
ML

is the inhomogeneity parameter and Hk = π
γ
hk denote the positions

of the holes in the rapidity convention. They are subjected to the quantization

equations:

ZN(Hk) = 2π Ik Ik ∈ Z+ 1+δ
2

k = 1, .., mH. (2.28)

A counting-equation [7] can be derived, which tells us how the number of excitation

characterizing objects is related to the spin or equivalently to the conserved quantum

number of the state. For pure hole states without special objects8 the counting-

equation on the lattice takes the form:

mH = 2Sz − 2
[

1
2
+ Sz

p+1

]

, (2.29)

where here [...] stands for integer part. Since Sz = N
2
− m, this equation tells us

that, on a lattice with even number of sites, only states with even number of holes

8Special objects are points on the complex plane, where the L
(±)
N (θ) jumps along the integration

contour due to going though the branch cut of the logarithm. For more detail see for example

[7, 12].
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exist. The lattice counting-function ZN(θ) depends on the number of lattice sites

N. It has a continuum limit, which is just its N → ∞ limit [5, 6]:

Z(θ) = lim
N→∞

ZN(θ), L±(θ) = lim
N→∞

L
(±)
N (θ) = ln

(

1 + (−1)δ e±i Z(θ)
)

. (2.30)

With these notations the continuum DDV equations are just the N → ∞ limit of

the lattice ones (2.25):.

Z(θ) = ℓ sinh θ +

mH
∑

k=1

χ(θ −Hk) +

∞
∫

−∞

dθ′

2πi
G(θ − θ′ − iη)L+(θ

′ + iη)

−

∞
∫

−∞

dθ′

2πi
G(θ − θ′ + iη)L−(θ

′ − iη),

(2.31)

where ℓ = ML with L being the volume and M is the soliton mass. The energy

and momentum of these hole states in the continuum read as:

E = M
mH
∑

k=1

coshHk −
M

2πi

∑

α=±

∞
∫

−∞

dθ sinh(θ + i α η)Lα(θ + i α η), (2.32)

P = M

mH
∑

k=1

sinhHk −
M

2πi

∑

α=±

∞
∫

−∞

dθ cosh(θ + i α η)Lα(θ + i α η). (2.33)

Since in the large volume limit Lα(θ + i α η) → 0, from (2.32) and (2.33) it can

be seen that in the large volume limit the holes correspond to the rapidities of the

solitons. This is why in the sequel we will refer to holes as solitons. It also turns

out [7] that the counting equation (2.29) changes in the continuum and it reads9:

Q = mH , (2.34)

where Q is the U(1) (topological) charge of the continuum model.

The choice10 of δ is crutial in the continuum theory. In the even charge sector of

the theory δ = 0. In the odd charge sector the choice δ = 0 corresponds to the MT

fermions, while the δ = 1 choice describes the SG solitons [9]-[11].

9For pure soliton states without special objects.
10On the lattice the actual value of δ can be influenced by the parity of N

2 .
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Though in this paper we will make computations only in the twistless case, which

can describe only the even topological charge sector of the model, we note that in

[48] it has been shown that the odd charge sector can also be investigated from the

lattice, if the 6-vertex model with an twist angle ω = π
2
is considered.

2.3 The U(1) current in spin variables

Our purpose is to compute the finite volume form-factors of local operators of the

MT/SG models in the framework of QISM. To achieve this plan, the first step

is to relate the lattice operators to the continuum ones. Due to renormalization

effects, this is a complicated task in general. To avoid complications11 coming from

renormalization effects we will restrict our attention to operators related to the U(1)

symmetry of the model. The U(1) symmetry is present in both the lattice and the

continuum theories, thus it is plausible to assume that the U(1) conserved charge

of the lattice theory is mapped to the U(1) charge of the continuum theory.

The counting equations (2.29) and (2.34) suggest12 the Q ∼ 2Sz identification

between the lattice and continuum conserved quantities. This helps us to define

the correct normal ordering for the lattice fermion fields as follows. Assuming the

Q ∼ 2Sz relation, the lattice topological charge can be expressed by lattice fermion

fields using a Jordan-Wigner transformation (2.6):

Q ∼ 2Sz =

N
∑

n=1

σz
n =

N
∑

n=1

(

ψ+
n ψn −

1
2

)

. (2.35)

In the continuum theory the topological charge is given by the integral:

Q =

L
∫

0

dx
(

: Ψ+
RΨR : (x)+ : Ψ+

LΨL : (x)
)

, (2.36)

which can be approximated on the lattice by the discrete sum:

Q ≈

N
2
∑

n=1

(

: ψ+
2nψ2n : + : ψ+

2n−1ψ2n−1 :
)

. (2.37)

11Here we mostly think of operator mixing.
12At least for large enough values of p, when the integer part becomes zero.
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The comparison of (2.35) and (2.37) offers a natural definition for the normal order-

ing of lattice Fermi-fields:

: ψ+
n ψn := ψ+

n ψn −
1
2
= σz

n. (2.38)

Our purpose is to determine the lattice counterparts of the conserved current be-

longing to the U(1) current of the MT model. The index-0 component of the current

is the charge density. This can be computed from (2.35) and (2.38):

Q ∼ 2Sz =

N
2
∑

n=1

(σz
2n + σz

2n−1) =

N
2
∑

n=1

a
σz
2n + σz

2n−1

a
=

N
2
∑

n=1

a · j0(na) →

L
∫

0

dx j0(x),

(2.39)

where a = 2L
N

is the lattice constant and the index-0 component of the current at

the lattice sites can be expressed in terms of lattice spin variables as:

j0(na) =
σz
2n + σz

2n−1

a
=
N

L

σz
2n + σz

2n−1

2
. (2.40)

In the continuum theory the conserved current is given by:

Jµ =: Ψ̄ γµΨ :, µ = 0, 1. (2.41)

which can be written in component fields as:

J0 =: Ψ+
RΨR : + : Ψ+

LΨL :,

J1 =: Ψ+
RΨR : − : Ψ+

LΨL : .
(2.42)

Since left- and right-mover fields live on the odd and even links of our lattice respec-

tively, comparing (2.40) and (2.42) gives immediately the index-1 component of the

current in terms of spin variables:

j1(na) =
σz
2n − σz

2n−1

a
=
N

L

σz
2n − σz

2n−1

2
. (2.43)

Consequently (2.40) and (2.43) indicates that the computation of form factors of

the current Jµ is reduced to compute form factors of σz
n on the lattice. This can be

achieved within the framework of QISM [17, 18].

We close this section with an important remark concerning the continuum limit

and our notations. It can be recognized, that as far as the notation is concerned, we

12



made difference between the continuum and the lattice notations of the U(1) current.

Namely, Jµ(x) denotes the current in the continuum field theory, while jµ(x) denotes

the lattice analog of the continuum current, the derivation of which was based on

the identification of the topological charge of the continuum field theory with 2Sz

of the corresponding lattice theory. However, in section 5.1. it will turn out that

the two quantities are not equal, but only proportional. We just anticipate their

relation, which is given by the formula (5.10):

Jµ(x) =
p

p+1
jµ(x), µ = 0, 1. (2.44)

We note, that the renormalization factor p

p+1
tends to 1, as p tends to infinity in

accordance with the indication of (2.29).

3 Form-factors in the QISM framework

In the previous section we argued that the computation of form-factors of the U(1)

current of the MT/SG model is equivalent to the determination of the form-factors

of σz
n on the lattice. Our approach to compute the finite volume form-factors of

local operators having lattice counterparts, consists of two steps; first one should

compute the form-factors on the lattice. The result will depend on the number of

lattice sites N . Then the N → ∞ limit of the lattice result gives the required result

for the continuum theory13. We will demonstarate, that this method works fine by

the computation of the diagonal matrix elements of the U(1) current. The details of

the computations enlight, that the diagonal matrix elements of other combinations

of local Fermi fields and their derivatives can also be computed by this method.

Moreover, this procedure gives a theoretical framework also for the computation

of nondiagonal matrix elements of the operators.

In this section we collect the most important formulas being necessary for the

computations. Consider the following vector of the Hilbert-space:

|~λ〉 = B(λ1)B(λ2)...B(λm) |0〉. (3.1)

This is called Bethe-state if the numbers λj are arbitrary and is called Bethe-

eigenstate if all λj are solutions of the Bethe equations (2.17). Then the corre-

13In many cases the careful analysis of renormalization constants is also necessary.
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sponding ”bra” vector is given by:

〈~λ| = 〈0|C(λm)...C(λ2)C(λ1). (3.2)

To get all form-factors of the current, one should be able to compute the lattice

form factors:
〈~µ|σz

n|
~λ〉

√

〈~λ|~λ〉 〈~µ|~µ〉
, (3.3)

where both |~µ〉 and |~λ〉 are Bethe-eigenstates, but in this paper we will focus on

computing only the diagonal matrix elements:

〈σz
n〉λ =

〈~λ|σz
n|
~λ〉

〈~λ|~λ〉
, (3.4)

which turns out to be a much simpler problem.

Here we recall the most important formulas [18], which are necessary to per-

form our calculations. For the computations only the Yang-Baxter algebra and the

elements of the monodromy matrix (2.10) are used, this is why it is important to

express the local spin operators in terms of the A,B,C,D operators of the mon-

odromy matrix (2.10). It has been done in [17] and the relations are summarized by

the formula:

Eab
n =

n−1
∏

i=1

(A+D)(ξi) Tab(ξn)

N
∏

i=n+1

(A+D)(ξi), a, b = 1, 2, (3.5)

where the operator En is given in terms of spin operators as follows:

E11
n =

1

2
(1n + σz

n), E12
n = σ−

n , E21
n = σ+

n , E22
n =

1

2
(1n − σz

n). (3.6)

In our actual computations we use the 22-component of (3.5):

en =
1

2
(1n − σz

n) =
n−1
∏

i=1

(A+D)(ξi) D(ξn)
N
∏

i=n+1

(A+D)(ξi), (3.7)

where for short we introduced the notation en = 1
2
(1n − σz

n). We compute the

expectation values of en on the lattice, since apart from a trivial constant and sign

it is equal to the required matrix element 1
2
〈σz

n〉λ. We note, that the lattice part of

14



our computations is a special case of the computations done in [18] for the emptiness

formation probability. This is why we will mostly use the logic and formulas of [18].

To compute 〈en〉λ from (3.7), one should know how the operator D(ξn) acts
14 on

the ”bra”-vector (3.2). This is given by the following formula [18]:

〈0|
m
∏

k=1

C(λk)D(ξn) =
m
∑

a=1

1

r(λa)

m
∏

k=1

sinh(λa − λk − i γ)

sinh(λa − ξn)
m
∏

k=1

k 6=a

sinh(λa − λk)
〈0|

m
∏

k=1

k 6=a

C(λk)C(ξn),

(3.8)

where we explicitely exploited that ξn is one of the inhomogeneities of the vertex

model and introduced:

r(λ) =

N
∏

j=1

sinh(λ− ξj − i γ)

sinh(λ− ξj)
. (3.9)

As a consequence of (3.9) and (2.17) it satisfies the identities:

m
∏

k=1

r(λk) = 1,
1

r(ξj)
= 0, j = 1, ..., N. (3.10)

The last ingredient necessary for the computations is the scalar product a Bethe-

state and a Bethe-eingenstate. Let |µ〉 an arbitrary Bethe-state in the sense of (3.1)

and |λ〉 be a Bethe-eigenstate. Then their scalar product is given by the formula

[37]:

〈~µ|~λ〉 = 〈~λ|~µ〉 =
N
∏

l=1

1

r(µl)
·

detH(~µ|~λ)
∏

j>k

sinh(µk − µj) sinh(λj − λk)
, (3.11)

where H(~µ|~λ) is an m×m matrix with entries:

Hab(~µ|~λ) =
sinh(−i γ)

sinh(λa − µb)









r(µb)

m
∏

k=1

sinh(λk − µb − i γ)

sinh(λa − µb − i γ)
−

m
∏

k=1

sinh(λk − µb + i γ)

sinh(λa − µb + i γ)









.

(3.12)

14We just note that the factors coming from the (A+D)-wings of (3.7) give scalar factors since

the sandwiching states are eigenstates of (A+D).
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The special case of the formula (3.11), when both states correspond to the same

Bethe-eigenvector15, gives the Gaudin formula:

〈~λ|~λ〉 =

m
∏

j=1

m
∏

k=1

sinh(λj − λk − i γ)

∏

j>k

sinh(λk − λj) sinh(λj − λk)
· det Φ(~λ), (3.13)

where Φ(~λ) is the Gaudin-matrix, which can be obtained from the counting-function

(2.22) as follows:

Φab(~λ) = −i
∂

∂λb
Zλ(λa|~λ), a, b = 1, .., m, (3.14)

where we indicated, that the counting-function should be considered as a function

of the Bethe-roots. This Bethe-root dependence can be read off from (2.22).

From (3.12) it can be seen, that the matrix element Hab(~µ|~λ) depend on only

one single component of the vector ~µ. This observation makes it possible remarkable

simplifications, when diagonal form-factors are computed. In this case one needs to

compute scalar products, when the components of the vector ~µ take values either

from the set of Bethe-roots {λj}j=1,..m or from the set of inhomogeneities {ξk}k=1,..N

of the model. In these cases the matrix elements of H(~µ|~λ) take the form:

Hab(~µ|~λ)
∣

∣

µb→λc
= (−1)m−1

m
∏

j=1

sinh(λc − λj − i γ) Φac(~λ), a, b, c = 1, .., m. (3.15)

1

r(µb)
Hab(~µ|~λ)

∣

∣

µb→ξc
=

(−1)m sinh(−i γ)
m
∏

j=1

sinh(ξc − λj + i γ)

sinh(λa − ξc) sinh(λa − ξc − i γ)
, a, b, c = 1, .., m.

(3.16)

4 The computation of 〈en〉λ

Now we are in the position to compute 〈en〉λ on the lattice. First the contribution

of the eigenvalues of the transfer-matrices are lifted:

〈en〉λ =

m
∏

k=1

sinh(ξn − λk)

sinh(ξn − λk + i γ)
· 〈D(ξn)〉λ. (4.1)

15If the two eingenstates are different the scalar product is zero.
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As a consequence of (3.8) the expectation value 〈D(ξn)〉λ can be written as:

〈D(ξn)〉λ =
〈~λ|D(ξn)|~λ〉

〈~λ|~λ〉
=

m
∑

A=1

1

r(λA)

m
∏

k=1

sinh(λA − λk − i γ)

sinh(λA − ξn)
m
∏

k=1

k 6=A

sinh(λA − λk)
·
〈~µ(A)|~λ〉

〈~λ|~λ〉
,

(4.2)

where ~µ(A) is an m-component vector, which differs from ~λ only in its Ath compo-

nent, which is equal to the inhomogeneity corresponding to the nth site:

µ
(A)
k =

{

λk, k 6= A,

ξn, k = A.
k = 1, .., m. (4.3)

Due to (3.15) and (3.16) using some simple determinant identities, 〈~µ(A)|~λ〉 can be

written as:

〈~µ(A)|~λ〉 =
m
∏

j=1

sinh(ξn − λj + i γ)

sinh(ξn − λj − i γ)
·

m
∏

b=1

m
∏

j=1

sinh(µ
(A)
b − λj − i γ) · det Ĥ(~µ(A)|~λ)

m
∏

j>k

sinh(µ
(A)
k − µ

(A)
j ) sinh(λj − λk)

,

(4.4)

where the m×m matrix Ĥ(~µ(A)|~λ) is given by:

Ĥab(~µ
(A)|~λ) =

{

Φ̃ab(~λ), b 6= A,

Va ≡
− sinh(−i γ)

sinh(λa−ξn) sinh(λa−ξn−i γ)
, b = A.

(4.5)

Here

Φ̃ab(~λ) = Φab(~λ)
1

r(λb)
, a, b = 1, .., m. (4.6)

As a consequence of (3.10) det Φ(~λ) = det Φ̃(~λ), thus in (3.13) the Φ(~λ) → Φ̃(~λ)

replacement can be done. Using (4.3), (4.4) and (4.5) one obtains:

〈~µ(A)|~λ〉

〈~λ|~λ〉
=

m
∏

j=1

j 6=A

sinh(λA − λj)

sinh(ξn − λj)
·
m
∏

j=1

sinh(ξn − λj + i γ)

sinh(λA − λj − i γ)
r(λA)

(

Φ−1(~λ) · Ĥ(~µ(A)|~λ)
)

AA
,

(4.7)

where apart from simplifying the multiplicative factors, we used (3.13) with the

Φ → Φ̃ replacement and computed the ratio of the determinants of Ĥ(~µ(A)|~λ) and

Φ̃(~λ) as the determinant of Φ̃−1(~λ) · Ĥ(~µ(A)|~λ). As a consequence of (4.5), the latter
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matrix differs from the unity matrix only in its Ath column. Thus its determinant

could also be computed as an expression of matrix elements of Φ̃−1(~λ) and Ĥ(~µ(A)|~λ).

Inserting (4.7) into (4.2) and the result into (4.1) one ends up with the simple

result:

〈en〉λ = −
m
∑

A=1

(

Φ−1(~λ) · Ĥ(~µ(A)|~λ)
)

AA
. (4.8)

Using (4.5), this can be written in components as:

〈en〉λ = −
m
∑

a=1

m
∑

b=1

Φ−1
ab (

~λ)Vb = −
m
∑

a=1

Sa, (4.9)

where Sa is the solution of the set of linear equations:

m
∑

b=1

Φab(~λ)Sb = Va, a = 1, .., m. (4.10)

4.1 The determination of Sa

In this subsection we show that equation (4.10) for the vector Sa can be formulated

as a set of linear-integral-equations containing the counting-function of the model.

The advantage of this formulation is that it allows one to take the continuum limit

in a straightforward manner.

The first step is to compute the matrix elements of Φ(~λ) from (3.14):

Φab(~λ) = −i Z ′
λ(λa) δab − 2π iK(λa − λb|γ), a, b = 1, ..m, (4.11)

where

K(λ|γ) =
1

2π

sin(2 γ)

sinh(λ− i γ) sinh(λ+ i γ)
. (4.12)

Now an important remark is in order. From (4.11) it can be seen, that apart form

the δab term, the ab matrix element of Φ(~λ) is given by a function of two variables

taken at the arguments λa and λb, and similarly from (4.5) it is obvious that Va is

an analytic function taken at the position λa. This suggests that the components of

the unknown vector Sa should be sought in the following form:

Sa = X(λa), a = 1, ..., m, (4.13)
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where X(λ) is supposed to be an analytic (meromorphic) function on the complex-

plane16. The advantage of such an Ansatz becomes obvious in the large N -limit,

because summation for the large number of components becomes a convolution

integral plus a remnant sum17.

To transform the sum in (4.10) into an integral we should use the following

lemma [6, 7].

Lemma: Let {λj}j=1,..,m solutions of the Bethe-equations (2.17) and let f(λ) a

meromorphic function, which is integrable on the real axis. Denote p(f) its pole

located the closest to the real axis. Then for |Imµ| < |Im p(f)| the following equation

holds:

m
∑

j=1

f(µ− λj) =

mC
∑

j=1

f(µ− cj)−
mH
∑

j=1

f(µ− hj) +

∞
∫

−∞

dλ

2π
f(µ− λ)Z ′

λ(λ)−

−
∑

α=±

∞
∫

−∞

dλ

2π
f(µ− λ+ i α η)Z ′

λ(λ+ i α η)F (λ)
α (λ+ i α η),

(4.14)

where

F
(λ)
± (λ) =

(−1)δ e±i Zλ(λ)

1 + (−1)δ e±i Zλ(λ)
, (4.15)

furthermore hj and cj denote the positions of holes and complex Bethe-roots re-

spectively. η is a small positive contour-integral parameter which should satisfy the

inequalities:

0 < η < min{|Im p±λ |}, |Imµ± η| < |Im p(f)|, (4.16)

where p±λ denotes those complex18 poles of F
(λ)
± (λ), which are located the closest to

the real axis.

The summation formula (4.14) can be extended to the |Imµ| > |Im p(f)| domain

by an analytical continuation procedure being similar to the analytical continuation

of the DDV equation to the whole complex plane [7].

16The thermodynamic limit for the ground state expectation value was treated by the same tacit

assumption in [18].
17The convolution integral comes from the ”Dirac-see” of real roots and the remnant sum is

related to finite number of excitations above this see.
18I.e. not real.
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Using the Ansatz (4.13) and the formula (4.11) together with the parameteriza-

tions (2.11), (2.12), the linear equations (4.10) take the form:

− i Z ′(λa)X(λa)− 2π i
m
∑

b=1

K(λa − λb|γ)X(λb) = 2π iK(λa − ρn|
γ

2
), a = 1, .., m,

(4.17)

where ρn = +ρ if n is even and ρn = −ρ otherwise with ρ given by (2.13). We

transform (4.17) into integral equations with the help of (4.14). Since in (4.14)

the integrand always contains a factor Z ′
λ(λ), it is convenient to parameterize the

function X(λ) as:

X(λ) =
G(λ)

Z ′
λ(λ)

. (4.18)

Then using (4.14), for the case of pure hole states, the linear equations can be

rewritten in the form of the following linear set of integral equations:

Z ′
λ(λ)G(λ) +

∞
∫

−∞

dλ′K(λ− λ′|γ)G(λ′)−

−
∑

α=±

∞
∫

−∞

dλ′K(λ− λ′ + i α η|γ)G(λ′ + i α η)F (λ)
α (λ′ + i α η) =

= −2πK(λ− ρn|
γ

2
) +

mH
∑

j=1

K(λ− hj|γ)Xj,

(4.19)

where

Xj = X(hj), j = 1, ..., mH , (4.20)

such that they should satisfy the discrete set of equations:

Xj =
G(hj)

Z ′
λ(hj)

, j = 1, ..., mH . (4.21)

Similarly, (4.14) allows us to rephrase (4.9) as:

〈en〉λ =

mH
∑

j=1

Xj −

∞
∫

−∞

dλ

2π
G(λ) +

∑

α=±

∞
∫

−∞

dλ

2π
G(λ+ i α η)F (λ)

α (λ+ i α η). (4.22)
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Acting19 (1 +K)−1 on (4.19), the equations take the form:

G(λ)−
∑

α=±

∞
∫

−∞

dλ′Gλ(λ− λ′ + i α η)G(λ′ + i α η)F (λ)
α (λ′ + i α η) =

= −
π

γ

1

cosh
(

π
γ
(λ− ρn)

) +

mH
∑

j=1

Gλ(λ− hj)Xj,

(4.23)

where Gλ(λ) is related to the kernel of DDV equation (2.26) by:

Gλ(λ) =
1

2γ
G
(

π
γ
λ
)

, with γ = π
p+1

. (4.24)

With the help of the integrated form of (4.23), the term
∞
∫

−∞

dλ
2π

G(λ) can be eliminated

from (4.22). Finally, one ends up with the following formula for the expectation

value:

〈en〉λ = 1
2
− 1

2
〈σz

n〉λ,

1
2
〈σz

n〉λ = −
1

2(1− γ

π
)







mH
∑

j=1

Xj +
∑

α=±

∞
∫

−∞

dλ

2π
G(λ+ i α η)F (λ)

α (λ+ i α η)







.
(4.25)

Equations (4.23), (4.21) and (4.25) constitutes our final lattice results, which serve

as the starting point to compute the continuum limit of the expectation values of

the U(1) current of the MT/SG theories.

5 The continuum limit

The continuum limit is the appropriate N → ∞ of our equations. Using (2.13),

the equations (4.21), (4.23) and (4.25) can be expanded at large N in a series of
1
N
, such that the leading power is 1

N
. From (2.40) and (2.43) one can see, that the

continuum result will be proportional to this leading order coefficient:

Gcont(λ) ∼ lim
N→∞

N G(λ), Xcont
j ∼ lim

N→∞
N Xj . (5.1)

19Appendix A. contains some Fourier-transforms, which are necessary to do these computations.
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All equations we have for the computation of the expectation value of σz
n are linear.

This is why using (2.40) and (2.43), one can take their appropriate linear combi-

nations to get the continuum expressions corresponding to the components of the

U(1) current. The equations in the continuum limit and in rapidity convention take

the form:

G(µ)(θ)−
∑

α=±

∞
∫

−∞

dθ′

2π
G(θ − θ′ + i α η)G(µ)(θ′ + i α η)Fα(θ

′ + i α η) =

= −Kµ(θ) +

mH
∑

j=1

G(θ −Hj)X
(µ)
j ,

X
(µ)
j =

G(µ)(Hj)

Z ′(Hj)
, j = 1, ..., mH , µ = 0, 1.

(5.2)

〈jµ(x)〉H = −
p+ 1

p







mH
∑

j=1

X
(µ)
j +

∑

α=±

∞
∫

−∞

dθ′

2π
G(µ)(θ′ + i α η)Fα(θ

′ + i α η)







, (5.3)

where

F±(θ) =
(−1)δ e±i Z(θ)

1 + (−1)δ e±i Z(θ)
, (5.4)

and the operator dependent source term reads as:

Kµ(θ) =

{

M cosh(θ), µ = 0,

M sinh(θ), µ = 1.
(5.5)

Here the index µ = 0, 1 corresponds to the lower index of the current Jµ, G(θ) is

the kernel (2.26) of the DDV equation, and η is a small positive contour integral

parameter which must satisfy the inequalities:

0 < η < min{|Im p
(±)
j |}, |Im θ ± η| < min(1, p) π, (5.6)

where p
(±)
j denotes those poles of F±(θ) which are not real.

At the notation of the expectation value, we denoted that in the continuum limit

we think of the state as if it was characterized by the holes. For completeness we

give how the continuum quantities of (5.2) are related to those of the lattice:

G(0)(θ) = lim
N→∞

N
2L

{

γ

π
G(e2n)( γ

π
θ) + γ

π
G(e2n−1)( γ

π
θ)
}

,

G(1)(θ) = lim
N→∞

N
2L

{

γ

π
G(e2n)( γ

π
θ)− γ

π
G(e2n−1)( γ

π
θ)
}

,
(5.7)
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where at the right hand side we indicated as an upper index the lattice operator,

the unknown of whose linear problem20 should be considered. Finally we note that

formula (5.3) for 〈jµ(x)〉H is not the final answer to the expectation value of the U(1)

current. In the next subsection at the investigation of the charge density, it will turn

out that 〈jµ(x)〉H is still not the real expectation value of the U(1) current in the

quantum field theory, but it should be modified with an appropriate renormalization

factor.

5.1 The solution of equations

In this section we relate the equations (5.2) describing the expectation values of the

U(1) current to the counting-function of the DDV-equation (2.31) corresponding to

the sandwiching state. Indeed it turns out that the solutions of (5.2) are related to

certain derivatives of Z(θ). The solutions we get, imply the relation (2.44).

5.1.1 The charge density case

Let us start with the µ = 0 case, which corresponds to the expectation value of the

charge density. Comparing (5.2) with the derivative of the DDV equation (2.31)

with respect to θ, it turns out that the solution of (5.2) can be expressed as:

G(0)(θ) = − 1
L
Z ′(θ),

X
(0)
j = − 1

L
, j = 1, .., mH ,

(5.8)

and the expectation value between mH solitons is given by the the formula:

〈j0(x)〉H = p+1
p

mH

L
. (5.9)

This formula requires some explanation. In the quantum field theory each soliton

carries topological charge Q = +1. The expectation value of the topological charge

in an mH soliton state is 〈Q〉H = mH . Since the charge is the integral of the

charge density operator, whose expectation value has no space-time dependence, in

the continuum theory the expectation value of the charge density should be mH

L
.

It can be seen, that the result in (5.9) agrees with the expected one apart from a

20Here by linear problem we mean, the linear problem which enables one to compute the expec-

tation value. Namely, the set of equations: (4.21) and (4.23), (4.25)
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global coupling dependent factor of p+1
p
. We got (5.9) by identifying the topological

charge of the continuum field theory with twice the z-component of the spin of the

lattice model, Q ∼ 2Sz. In view of the quantum field theory interpretation, formula

(5.9) suggests that instead of (2.40) and (2.43) the correct identification between

the lattice and continuum operators is given by the formulas:

J0(x)|x=na =
p

p+1
j0(x)|x=na =

p

p+ 1

N

L

σz
2n + σz

2n−1

2
,

J1(x)|x=na =
p

p+1
j1(x)|x=na =

p

p+ 1

N

L

σz
2n − σz

2n−1

2
.

(5.10)

Consequently, we conclude that 〈jµ(x)〉H given in (5.2) is not the final answer in the

quantum field theory (QFT), because it has to be modified by the renormalization

factor Zp =
p

p+1
. Thus, the real QFT result is given by:

〈Jµ(x)〉H = −

mH
∑

j=1

X
(µ)
j −

∑

α=±

∞
∫

−∞

dθ′

2π
G(µ)(θ′ + i α η)Fα(θ

′ + i α η). (5.11)

To summarize: (5.2) and (5.11) constitutes our final equations for computing the

diagonal matrix elements of Jµ(x).

5.1.2 The case of J1(x)

The equations (5.2) also for µ = 1 are related to a certain derivative of the counting-

function. The counting-function depends on the spectral parameter θ, on ℓ = ML

the dimensionless length of the system and on the hole positions21, which are also

ℓ dependent. Then, differentiating (2.31) with respect to ℓ, one can recognize that

G(1)(θ) of (5.2) is related to the ℓ-derivative of the counting-function as follows:

G(1)(θ) = −M
d

dℓ
Z(θ| ~H(ℓ), ℓ),

X
(1)
j = −MH ′

j(ℓ), j = 1, .., mH ,
(5.12)

where we explicitly wrote out the Hj and ℓ dependence of Z(θ). With the help

of (5.12), one can show that 〈J1(x)〉H can also be rephrased as the ℓ-derivative of

21Specifying the state, the quantum numbers of holes in the continuum version of (2.28) are

fixed. I.e. They are ℓ independent.
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a quantity, which can be expressed directly in terms of the solution of the DDV

equations;

〈J1(x)〉H = M
d

dℓ
Λ1(ℓ),

Λ1(ℓ) =

mH
∑

j=1

Hj(ℓ)−

∞
∫

−∞

dθ

2 π i
{L+(θ + i η)− L−(θ − i η)} .

(5.13)

We note, that in (5.13) L+ and L− have different signs under the integration.

This fact has a remarkable consequence concerning the TBA description of this

expectation value. Namely, if one considers the TBA description [47, 48] of the

model at the points 1 < p ∈ Z+, where the system is described by a Dp+1-type

TBA-system, then it becomes obvious, that (5.13) cannot be expressed in terms of

the Y-functions corresponding to the massive TBA node22. This implies, that the

TBA conjectures [40, 41, 42, 43, 44] for purely elastic scattering theories, cannot be

valid in this non-diagonally scattering theory. Earlier a similar conclusion has been

drawn in [55].

6 The large volume expansion

In this section we solve our equations (5.2) in the context of a systematic large vol-

ume expansion. The actual form of the representation we get, is very similar to those

conjectured for purely elastic scattering theories [40, 41, 42, 43, 44]. Nevertheless,

since our model is not a diagonally scattering theory, our large volume series differs

from these TBA conjectures.

In this section we will strongly rely on the method described in [44] for the

computation of the diagonal matrix elements of the trace of the stress-energy tensor

in purely elastic scattering theories. We can do this, because the DDV equation

(2.31) is formally similar to the TBA-equations of a purely elastic scattering theory

containing two types of particles. To clarify this analogy better, as a first step we

reformulate the DDV equation as a two-component TBA equation. (2.31) contains

Z(θ) along three different lines; along the real line and on the lines θ±i η with θ ∈ R.

22This is so, because the relation between L± and Y1 the massive Y-function is given by [48]:

L+(θ + iπ2 ) + L−(θ − iπ2 ) = ln(1 + Y1(θ)).
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When solving the equations, one has to compute Z(θ) on all these 3 lines. To get

a closed set of equations, we have to consider (2.31) with left-hand sides Z(θ ± i η)

as well. The two equations for Z(θ ± i η) formally look like a two component TBA

equation of a diagonally scattering theory. Let ε±(θ) = Z(θ ± i η) and L±(θ) =

ln(1 + (−1)δ e±i ε±(θ)), then the TBA-like form of (2.31) reads as:

εα(θ) = Sα(θ) +
∑

β=±

∞
∫

−∞

dθ′

2π
ϕαβ(θ − θ′)Lβ(θ

′), α = ±, (6.1)

where Sα(θ) is the source term:

Sα(θ) = ℓ sinh(θ + i α η) +

mH
∑

k=1

χ(θ + i α η −Hk), (6.2)

and

ϕαβ(θ) = i G(θ + i (α− β) η), α, β = ±, (6.3)

is a symmetric matrix kernel. From the point of view of our later computations, the

fact that the different quantities in (6.1) are complex, does not matter. The only

important property is that the kernel (6.3) is symmetric, i.e. ϕαβ(θ) = ϕβα(−θ).

In a completely analogous way the linear equations (5.2) can also be rephrased

by considering them along the lines θ± i η. In (5.2) the left-hand side describes the

action of the linear operator on the unknown function and the right-hand side is

the source term of the linear problem. Since these equations are linear, it is worth

to consider the solutions of (5.2) with different ”elementary” source terms, from

which the solution of the physical problem can be obtained by linear combinations.

Consider in general the linear problems:

G
[α]
A (θ)−

∑

β=±

∞
∫

−∞

dθ′

2π
ψαβ(θ − θ′)G

[β]
A (θ′)F

[β]
β (θ′) = f

[α]
A (θ), α = ±, (6.4)

where for any function f(θ) we introduced the notation: f [±](θ) = f(θ ± i η), and

ψαβ(θ) = 1
i
ϕαβ(θ) is a symmetric kernel. In (6.4) f

[α]
A (θ) denotes the elementary

source term indexed by A.
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If the argument of the ”elementary” solution is not shifted, we denote it simply

GA(θ) and it satisfies the equations:

GA(θ)−
∑

β=±

∞
∫

−∞

dθ′

2π
ψαβ(θ −θ

′− i α η)G
[β]
A (θ′)F

[β]
β (θ′) = fA(θ), α = ±. (6.5)

The elementary solutions from which the physical solutions of (5.2) and (5.11) can

be combined are characterized by their source terms in (6.5) and they are as follows:

GKµ(θ) ↔ fKµ(θ) = Kµ(θ), µ = 0, 1. (6.6)

Gj(θ) ↔ fj(θ) = −G(θ −Hj), j = 1, ..., mH , (6.7)

Gu(θ) ↔ fu(θ) = 1. (6.8)

As a consequence of equations (6.4), for any pair of indexes the following identities

hold:

∑

α=±

∞
∫

−∞

dθ

2π
f
[α]
A (θ)G

[α]
B (θ)F [α]

α (θ) =
∑

α=±

∞
∫

−∞

dθ

2π
f
[α]
B (θ)G

[α]
A (θ)F [α]

α (θ). (6.9)

Now we show how the exact Gaudin-matrix enters the large volume expansion

and how one can express the solutions of (5.2) in terms of the elementary solutions

(6.6)-(6.8). First, we consider the integral equation in (5.2) as if X
(µ)
j were arbitrary

parameters. Then using (6.4) and (6.6)-(6.8) the solution can be written as:

G(µ)(θ) = −GKµ(θ)−
mH
∑

j=1

Gj(θ)X
(µ)
j . (6.10)

However we know from (5.2) that X
(µ)
j s are not independent from G(µ)(θ), but they

are related by: G(µ)(Hj) = X
(µ)
j Z ′(Hj). Inserting this relation into (6.10) taken at

θ = Hk, one ends up with the discrete set of equations for X
(µ)
j as follows:

mH
∑

j=1

{Z ′(Hk) δjk + Gj(Hk)} X
(µ)
j = −GKµ(Hk), k = 1, ..., mH . (6.11)

From (2.31) and (2.28), it follows that the matrix entering (6.11) is nothing, but

the Gaudin-matrix of physical excitations over the Dirac-see, which we call exact

Gaudin-matrix:

Φ̂kj( ~H) =
d

dHj

Z(Hk| ~H) = Z ′(Hk) δjk + Gj(Hk), j, k = 1, .., mH . (6.12)
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Using (6.10), (6.11) and (6.12) finally we get:

X
(µ)
k = −

mH
∑

j=1

Φ̂−1
kj (

~H)GKµ(Hj), k = 1, .., mH . (6.13)

G(µ)(θ) = −GKµ(θ) +

mH
∑

k=1

mH
∑

j=1

Gk(θ) Φ̂
−1
kj (

~H)GKµ(Hj). (6.14)

The last missing piece is the expression of 〈Jµ(x)〉H in terms of the ”elementary”

solutions. This can be computed by inserting (6.13) and (6.14) into (5.11) and by

using the identity:

∑

α=±

∞
∫

−∞

dθ

2π
G
[α]
j (θ)F [α]

α (θ) = 1− Gu(Hj), j = 1, .., mH , (6.15)

which can be derived by using (6.9). The final result is as follows:

〈Jµ(x)〉H =
∑

α=±

∞
∫

−∞

dθ

2π
G
[α]
Kµ
(θ)F [α]

α (θ) +

mH
∑

k=1

mH
∑

j=1

Gu(Hj) Φ̂
−1
jk (

~H)GKµ(Hk). (6.16)

The first term in (6.16) corresponds to the so-called vacuum contribution [43, 44].

Constructing the all order large volume solution of (6.4) for A = Kµ, it can be

written as an infinite series similar to that of LeClair and Mussardo [40, 41, 42].

Performing carefully the calculations one obtains for the vacuum piece the result as

follows:

〈Jµ(x)〉H
∣

∣

vac
=

∞
∑

n+=0

∞
∑

n−=0

1

n+!n−!

∫ n++n−
∏

i=1

dθi
2π

n+
∏

i=1

F+(θ + i η)

n++n−
∏

i=n++1

F−(θ − i η)

×F Jµ
c (θ1+i η, ..., θn+

+i η, θn++1−i η, ..., θn++n−
−i η),

(6.17)

where F
Jµ
c denotes the connected diagonal form factors of the operator Jµ(x) between

pure soliton states. Since Jµ is a conserved current, its connected form-factors can

be determined by simple modifications of the arguments of references [40] and [41].

The explicit form of F
Jµ
c is given by the compact formula23:

F Jµ
c (θ1, θ2, ..., θn) =

∑

σ∈Sn

Kµ(θσ(n))

n−1
∏

j=1

G(θσ(j) − θσ(j+1)), (6.18)

23In (6.18) the 〈θ|θ′〉 = 2π δ(θ − θ′) normalization for the continuum states is assumed.
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where σ denotes the elements of the the symmetric group Sn.

Before turning to the second term is the rhs. of (6.16) it is worth to recall the

conjecture of [43, 44] for the diagonal matrix elements of local operators in purely

elastic scattering theories.

The conjecture for purely elastic scattering theories states, that the exact finite

volume expectation value of any local operator O(x) can be written as:

〈H1, ..., Hn|O(x)|H1, ..., Hn〉 =
1

ρ(H1, .., Hn)

×
∑

{H+}∪{H−}

DO({H+}) ρ({H−}|{H+}),
(6.19)

where ρ( ~H) is the determinant of the exact Gaudin-matrix:

ρ(H1, .., Hn) = det Φ̂( ~H), (6.20)

the sum in (6.19) runs for all bipartite partitions of the rapidities of the sandwiching

state: {H1, .., Hn} = {H+} ∪ {H−}, such that

ρ({H+}|{H−} = det Φ̂+( ~H), (6.21)

with Φ̂+( ~H) being the submatrix of Φ̂( ~H) corresponding to the subset {H+}. The most

important part in (6.19) is the form of the so-called dressed-form factor DO({H+}).

It is expressed as an infinite sum in terms of the connected diagonal form-factors of

the theory:

DO({H1, ..., Hl}) =
∞
∑

n1,..,nk

1
∏

i

ni!

∞
∫

−∞

∑
i ni
∏

j=1

dθj

2π
[

1 + eεβj (θj)
]

× FO
2l,2n1,..,2nk

(H1, .., Hl, θ1, ..., θ∑i ni
),

(6.22)

where εβj
(θj) is the pseudoenergy of the particle of type βj in the TBA equations

of the model and FO
2l,2n1,..,2nk

is the connected diagonal form factor of the operator

O in the theory, such that ni denotes the number of particles of type βi in the set

{θ1, .., θ∑i ni
}.

Now we can turn to compute the second term in the rhs. of (6.16). In this paper

we consider the expectation values of Jµ between pure soliton states. In the SG/MT
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model solitons scatter diagonally among themselves. In this respect the pure soliton

sector is very similar to a purely elastic scattering theory. Consequently, we expect

a final result similar to the conjecture (6.19) for the soliton expectation values of Jµ.

This is why we will show that the second term in the right-hand side of (6.16) can

be brought into the form of (6.19) such that our dressed form factors are defined as

the coefficients of ρ({H−}|{H+})
ρ(H1,...,Hn)

in the sum. The expression we want to bring into the

form of (6.19) reads as follows24:

〈Jµ(x)〉H
∣

∣

ex
=

mH
∑

k=1

mH
∑

j=1

Gu(Hj) Φ̂
−1
jk (

~H)GKµ(Hk). (6.23)

Our sandwiching state is composed of mH -solitons. The key point in the computa-

tion is that the inverse Gaudin-matrix can be expanded in terms of its minors as

follows [44, 46].

Φ̂−1
ij =

Cij

det Φ̂
, i, j = 1, .., mH , (6.24)

where Cij is the co-factor matrix. It is given by:

Cij =











det Φ̂({i}), i = j,
mH−2
∑

n=0

∑

{α}

(−1)n+1 Φ̂iα1
Φ̂α1α2

. . . Φ̂αnj det Φ̂({j, i, α1, ..., αn}), i 6= j,

(6.25)

where {α} = {1, 2, ..., mH} \ {i, j} and Φ̂({I}) denotes the matrix obtained by

omitting from Φ̂ the rows and columns indexed by the set {I}.

First, one has to construct the all order large volume solution25 of (6.4) for

A ∈ {u,K0,K1} and to insert (6.24) with (6.25) into (6.23). Then after the careful

bookkeeping of the terms being identical due to appropriate permutations of the

variables, one obtains the following expression for the dressed form factors between

24The term corresponding to {H+} = ∅ is given by the vacuum contribution (6.17).
25In the actual computations it is convenient to write GA(Hj) → G

[±]
A (Hj ∓ i η) and iterate the

two-component equations (6.4).
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soliton states for Jµ:

DJµ({H1, ..., Hn}) =
∞
∑

n+=0

∞
∑

n−=0

1

n+!n−!

∫ n++n−
∏

i=1

dθi
2π

n+
∏

i=1

F+(θi + i η)

n++n−
∏

i=n++1

F−(θi − i η)

×F Jµ
c (H1, H2, ..., Hn, θ1+i η, ..., θn+

+i η, θn++1−i η, ..., θn++n−
−i η).

(6.26)

Then the expectation value of Jµ between pure soliton states is given by a formula

being completely analogous to (6.19):

〈H1, ..., HmH
|Jµ(x)|H1, ..., HmH

〉 =
1

ρ(H1, .., HmH
)

×
∑

{H+}∪{H−}

DJµ({H+}) ρ({H−}|{H+}),
(6.27)

with DJµ({H+}) is given by (6.26). The result (6.26) requires some interpretation

in view of previous results for purely elastic scattering theories [43, 44], which we

summarized in (6.19). If one compares our results (6.27), (6.26) to the purely elastic

TBA conjectures (6.19),(6.22), it is easy to recognize that the difference is present

only in the actual form of the dressed form factors. Moreover at leading order in the

volume, when the integral terms in (6.26) and (6.22) can be neglected, in accordance

with [45] our formula agrees with the conjecture for purely elastic scattering theories

[49, 50]. The reason for this might be, that pure soliton states form a purely elastic

scattering subsector in the scattering theory of the SG/MT model. On the other

hand, if one takes a look at the exponentially small in volume corrections, which

are given by the integral terms in (6.26) and (6.22), it becomes obvious that (6.22)

cannot describe26 the SG/MT model by simply substituting the massive pseudoen-

ergy of the TBA equations [47, 48] of the SG-model into (6.22). This is because at

the level of exponentially small in volume corrections, the interactions between soli-

tons and antisolitons will also contribute. Apart from the differences between (6.26)

and (6.22) there is a remarkable similarity, too. Namely both formula contains the

connected diagonal form factors of the operator sandwiched. Though we computed

explicitely the diagonal matrix elements of only the components of the U(1) current

of the SG/MT model, based on the remarkable similarity of our result with those

26The same fact was recognized in [55].
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obtained in purely elastic scattering theories [43, 44], we make the following conjec-

ture:

Conjecture: For any local operator O(x) in the SG/MT model the expectation

value in an n-soliton state is given by (6.19), such that the dressed form factors are

given by the formula:

DO({H1, ..., Hn}) =
∞
∑

n+=0

∞
∑

n−=0

1

n+!n−!

∫ n++n−
∏

i=1

dθi
2π

n+
∏

i=1

F+(θi + i η)

n++n−
∏

i=n++1

F−(θi − i η)

×FO
c (H1, H2, ..., Hn, θ1+i η, ..., θn+

+i η, θn++1−i η, ..., θn++n−
−i η).

(6.28)

where FO
c denotes the connected diagonal form factors of O(x) in pure soliton states

and F±(θ) are an appropriate nonlinear expressions (5.4) of the counting function

of the continuum theory.

The further analytical and numerical tests of our conjecture are left for future

investigations.

7 Summary and outlook

In this paper we argued that, through the light-cone lattice approach, the QISM

admits an appropriate framework for computing the finite volume form factors of

Massive-Thirring/sine-Gordon theories. We demonstrated that the QISM works

efficiently, when the diagonal matrix elements of local operators are computed.

Our approach is similar to that of [52, 51], where the finite temperature one-

point functions of all local operators of the sine-Gordon model have been computed,

which corresponds to finite volume vacuum expectation values in our language. The

main difference between the two approaches is that, the authors of [52, 51] work in

a picture, when the compactified direction is time and the compactification length

corresponds to the inverse temperature, while we work in the other possible channel,

when the space is compactified. This allows us to consider form factors of operators

between all possible excited states of the model. Consequently, our method allows

one to extend the results of [52, 51] from vacuum expectation values to compute

diagonal matrix elements of local operators of the Massive-Thirring/sine-Gordon
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models. To be more precise our approach works for operators, which are composed

of Fermi fields and their derivatives in the MT model and for their bosonized coun-

terparts in the SG model.

Nevertheless, in this paper we considered only a simple operator, the U(1) cur-

rent of the theory and computed its diagonal matrix elements between pure soliton

states. Our results are given by the formulas (5.2) and (5.11). The computation of

an expectation value consists of three steps:

1. First one should solve the DDV equation (2.31) for the sandwiching state.

2. Then, one should solve the linear equations (5.2).

3. Finally, the solution of (5.2) should be inserted into (5.11).

The whole procedure can be written in the form of a systematic large volume ex-

pansion (6.27), (6.26), in which the diagonal connected form factors of Jµ arise. The

remarkable similarity of the large volume series of Jµ to the large volume series con-

jectures for diagonal matrix elements of local operators in purely elastic scattering

theories [40, 41, 42, 43, 44] made us to conjecture, that formulas (6.19) and (6.28)

describe the pure solitonic finite volume expectation values of any local operators of

the Massive-Thirring/sine-Gordon models.

Beyond the results of this paper a lot of interesting questions are still open. It

would be important to test the conjecture (6.27) and (6.28) for other operators than

Jµ. As it was demonstrated in [53, 54] the truncated conformal space approach could

be an appropriate method for these investigations. It would be also interesting to

know how the large volume series formulas (6.19), (6.28) and (6.27), (6.26) should be

modified, when expectation values between not pure soliton states are considered.

And finally the computation of non-diagonal finite volume form factors would be

also of great importance.

Beyond the light-cone lattice approach of [3], in the literature there exists another

integrable lattice regularization27 for the sine-Gordon model [16, 56]. Though, in

the framework of this approach local operators [57, 58] and their form factors [58]

have been computed on the lattice, the continuum results are still missing. It would

be also very interesting to see, whether this approach also allows one to compute

diagonal matrix elements of local operators of the continuum theory.

27This lattice regularization is based on a spin − 1
2 spin-chain, while the light-cone lattice ap-

proach uses a spin + 1
2 chain.
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A Conventions of Fourier transformation

In this short appendix we summarize our conventions for Fourier-transformation and

provide the Fourier-transform of some functions we used in section 4.1.

Our convention for the Fourier-transform of a function f is given by:

f̃(ω) =

∞
∫

−∞

dx eiωx f(x). (A.1)

The inverse transformation reads as:

f(x) =

∞
∫

−∞

dx

2π
e−iωx f̃(ω). (A.2)

The Fourier-transform of the convolution two functions f and g is given by the

product of individual Fourier-transforms:

(f ⋆ g)(x) =

∞
∫

−∞

dy f(x− y) g(y), (̃f ⋆ g)(ω) = f̃(ω) g̃(ω). (A.3)

When deriving the linear equations (4.23) one needs the Fourier-transform ofK(λ|γ)

of (4.12). It is given by the formula:

K̃(ω|γ) =
sinh

[

πω
2

(

1− 2γ
π

)]

sinh
(

πω
2

) . (A.4)

The following inverse transform played important role at the determination of the

source term in (4.23):

∞
∫

−∞

dx

2π
e−iωλ

K̃(ω|γ
2
)

1 + K̃(ω|γ)
=

1

2 γ

1

cosh(πλ
γ
)
. (A.5)
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[53] G. Fehér, G. Takács, “Sine-Gordon form factors in finite volume,”

Nucl.Phys.B852, 441-467,(2011), [ arXiv:1106.1901[hep-th]].
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