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1. Introduction

The phase-space formulation of quantum mechanics is still in the focus of research

interst, as it has numerous important applications [1–4]. Quasi-probability distributions

such as the Wigner function [5], the Husimi Q-function [6, 7] and Glauber-Sudarshan

P-function [8, 9] describe completely the states of a quantum system and they are

widely used for calculations in various physical problems [10–15]. They have proven

to be very useful in quantum optics [16–18]. A probability representation with fair

probability distributions defined on the phase space has also been introduced in the

literature [19–21]. A probability distribution called the symplectic tomogram was

introduced in connection with measuring the quantum states of light by means of

optical homodyne tomography [22–24]. The properties of this tomographic probability

representation are discussed in detail in review [25].

In order to use quasi-probability distributions and tomograms in physical problems

the operators modeling observable physical quantities have to be represented. [26]. This

representation is called the symbol of operators. The algebra of symbols corresponding

all possible manipulations with operators on the Hilbert space can be constructed by

applying the general star-product scheme [27–29]. Within this formalism one can relate

operators to their symbols using dequantizers and can reconstruct operators from their

symbols using quantizers. The relations between different phase-space representations

can be also determined in this framework [29–32].

All these ideas can be extended to finite dimensional quantum systems. Possible

applications in quantum information science has generated a growing research interest

aiming at the construction of discrete phase spaces and Wigner functions. There are

several ways of constructing such a phase space and the definition of a discrete Wigner

function in this space is still ambiguous [33–44]. The approach introduced in [37] has

proven to be well suited to study various quantum information problems [45]. In

this method, an N × N phase space is defined for N dimensional quantum systems,

where N is a power of a prime number. This is the case, e.g. for qubit systems.

This phase space has the same geometric properties as those of the ordinary infinite

dimensional phase space. Wigner functions can be defined in this space using Hermitian

operators connected to special mutually orthogonal sets of parallel lines called striations.

There exist N + 1 different striations and the bases associated with them are mutually

unbiased [4,40,46,47]. Such discrete Wigner functions have the same essential properties

as their continuous counterparts. The most interesting one from the point of view of

tomographic measurements is that the sum of values of a Wigner function along any

line in phase space is equal to the probability of detecting the basis state associated

with the line [45].

Tomographic probability distributions called spin tomograms [48–51], and unitary

matrix tomograms [52] have been also developed for finite dimensional spin systems.

The star product formalism of symbols for N -dimensional systems is described in detail

in [53]. Using this formalism the relations between tomograms and Wigner functions



Minimal sets of dequantizers and quantizers for finite-dimensional quantum systems 3

for one and two qubits have been determined [53–55].

In this paper we consider the problem of finding and characterizing minimal sets of

quantizers and dequantizers for finite dimensional quantum systems. We determine the

general properties of such sets. Given minimal sets of dequantizers and quantizers for

a particular quantum system, any type of symbols of the operators and the quantum

states consisting of minimal elements, e.g., discrete Wigner functions, can be treated in

a common framework. We find explicit expressions describing all the minimal self-dual

sets of dequantizers and quantizers for a qubit system.

The paper is organized as follows. In section 2 we present the general formalism of

mapping operators onto functions based on dequantizers and quantizers. The general

properties of minimal sets of dequantizers and quantizers for N dimensional systems

is described in section 3. In section 4 the explicit form of all minimal self-dual sets of

dequantizers and quantizers for a qubit system is found.

2. Dequantizers and quantizers

In this section we summarize the general formalism of using c-number functions instead

of operators to describe quantum systems [26–29]. Let Â be a Hermitian operator

acting on a Hilbert space H so it can be an operator describing an observable or the

density operator ρ̂ of the quantum system. Suppose we have a set of linear operators

Û(x) acting on H and labelled by the parameter x that is an n-dimensional vector

x = (x1, x2, . . . , xn) in the general case. One can construct a c-number function fÂ(x)

called the symbol of the operator Â using the definition

fÂ(x) = Tr[ÂÛ(x)]. (1)

This linear mapping of operators onto functions is invertible if there is a set of operators

D̂(x) acting on H such that

Â =

∫

fÂ(x)D̂(x)dx. (2)

The operators Û(x) and D̂(x) are called dequantizers and quantizers, respectively. In

this formalism the operation for functions corresponding to the multiplication of Â and

B̂ is called star product and defined by

fÂB̂(x) = fÂ(x) ∗ fB̂(x) = Tr[ÂB̂Û(x)]. (3)

Multiplying Eq. (2) by the operator Û(x′) and taking the trace we get

fÂ(x
′) =

∫

fÂ(x) Tr[D̂(x)Û(x′)]dx. (4)

For continuous systems the operators Û(x) are defined in the usual phase space with

the coordinates (q, p) while for discrete systems x can be both discrete and continuous

as in the case of spin tomograms, or it can be purely discrete as in the case of discrete
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Wigner functions defined e.g. in [37]. In the latter case Eqs. (2) and (4) can be written

as

Â =
N
∑

k=1

fÂ(k)D̂(k) (5)

and

fÂ(k
′) =

N
∑

k=1

fÂ(k) Tr[D̂(k)Û(k′)], (6)

respectively.

For a d dimensional discrete quantum system the term minimal set of quantizers

and dequantizers is introduced for sets containing d2 linearly independent operators.

From Eq. (6) it follows that the quantizer and dequantizer operators of such sets satisfy

the condition

Tr (D̂(k)Û(k′)) = δ(k, k′). (7)

For some special set of dequantizers the symbols are called the Wigner function

[37]. These dequantizers are Hermitian operators and coincide with the corresponding

quantizers. So they form a self-dual system.

3. Minimal sets of dequantizers and quantizers

In this section we consider the general properties of minimal sets of quantizers and

dequantizers for N -dimensional systems.

Let us analyse first a two-dimensional qubit system. For this system the minimal

set of dequantizers consists of four linearly independent operators Û (k) that can be

represented by four matrices

Û (k) =

(

U
(k)
11 U

(k)
12

U
(k)
21 U

(k)
22

)

, k = 1, 2, 3, 4. (8)

First we address the problem of determining the four corresponding quantizers

D̂(k) =

(

D
(k)
11 D

(k)
12

D
(k)
21 D

(k)
22

)

, k = 1, 2, 3, 4 (9)

satisfying Eq. (7) that can be written using the notations of Eqs. (8) and (9) as

Tr (Û (k)D̂(k′)) = δ(k, k′). (10)

We assume that the dequantizers U (k) are known.

Let us introduce the operator

Â =









U
(1)
11 U

(1)
21 U

(1)
12 U

(1)
22

U
(2)
11 U

(2)
21 U

(2)
12 U

(2)
22

U
(3)
11 U

(3)
21 U

(3)
12 U

(3)
22

U
(4)
11 U

(4)
21 U

(4)
12 U

(4)
22









, m, n = 1, 2, 3, 4 (11)
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built up from the elements of the four dequantizer operators and the operator

B̂ =











D
(1)
11 D

(1)
12 D

(1)
21 D

(1)
22

D
(2)
11 D

(2)
12 D

(2)
21 D

(2)
22

D
(3)
11 D

(3)
12 D

(3)
21 D

(3)
22

D
(4)
11 D

(4)
12 D

(4)
21 D

(4)
22











(12)

containing the elements of the four quantizer operators. It is easy to see that the

equation (10) is equivalent to

ÂB̂T = Î (13)

As the operators Û (k) are linearly independent therefore the determinant of the matrix

Â is not equal to zero. From Eq. (13) it is clear that det(B̂) = (det(Â))−1 6= 0 implying

that the quantizers D̂(k) are also linearly independent. From Eq. (10) or by performing

the matrix product in (13) one can achieve four systems of equations labeled by k′ each

of which containing four linear equations labeled by k in the form

U
(k)
11 D

(k′)
11 + U

(k)
21 D

(k′)
12 + U

(k)
12 D

(k′)
21 + U

(k)
22 D

(k′)
22 = δ(k, k′), k, k′ = 1, 2, 3, 4. (14)

The solution of these systems of equations can be formulated as follows:

B̂ = Â(c)(det(Â))−1, (15)

where Â(c) is the cofactor matrix of Â.

For example the elements of the quantizer D(1) can be expressed as

D
(1)
11 = A

(c)
11 (det(Â))

−1, D
(1)
12 = A

(c)
12 (det(Â))

−1,

D
(1)
21 = A

(c)
13 (det(Â))

−1, D
(1)
22 = A

(c)
14 (det(Â))

−1.
(16)

In the following we examine the problem of finding different minimal sets of

dequantizers Û (k) and quantizers D̂(k′). Given a set of Û (k)-s, one can derive another set

V̂ (j) of dequantizers by applying a non-degenerate linear transformation L̂:

V̂ (j) =

4
∑

k=1

LjkÛ
(k), j = 1, 2, 3, 4. (17)

Denoting the corresponding set of quantizers by Ê(j′) the novel sets will satisfy the

relation (10), that is,

Tr(V̂ (j)Ê(j′)) = δ(j, j′). (18)

The operators Ê(j′) can be viewed as linear combinations of the previous quantizers

D̂(k), and thus written as

Ê(j′) =

4
∑

k=1

Mj′kD̂
(k), j′ = 1, 2, 3, 4. (19)

Substituting (17) and (19) into (18) the following matrix equation can be obtained for

the four-dimensional L̂ = ||Ljk|| and M̂ = ||Mj′k|| matrices

L̂M̂T = Î (20)
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Similarly to the case of Eq. (13), this equation leads to four systems of equations each

of which contains four linear equations in the form

Lj1Mj′1 + Lj2Mj′2 + Lj3Mj′3 + Lj4Mj′4 = δ(j, j′). (21)

Solving these equations the matrix M̂ can be written in the form

M̂ = L̂(c)(det(L̂))−1 (22)

where L̂(c) is the cofactor matrix of L̂. It follows from Eq. (20) that if L̂ is non-degenerate

then M̂ is non-degenerate, too (det(M̂) = (det(L̂))−1 6= 0).

In conclusion, knowing a minimal set of dequantizers one can derive other sets by

using Eq. (17), while Eqs. (15) and (22) can be applied to determine the corresponding

minimal sets of quantizers.

From Eq. (14) an additional proposition can be deduced. In this expression the

values of the matrix elements U
(k)
11 , D

(k)
11 , U

(k)
22 , D

(k)
22 , P

(k), Q(k) are real. If the dequantizers

Û (k) are Hermitian, that is, U
(k)
12 = U

(k)
21

∗

, in order to ensure that the expression remains

real, the equality D
(k′)
12 = D

(k′)
21

∗

must be satisfied. It means that the quantizers are

Hermitian, too.

Let us consider the case when the dequantizers are orthogonal to each other, that

is,

Tr(Û (k)Û (k′)) = δ(k, k′). (23)

Hence, the operators Û (k) form an orthogonal basis in the space of operators acting on

the vectors of the Hilbert space of qubits. Comparing Eqs. (10) and (23) for a fixed set

of dequantizers Û (k) it is obvious that the choice D̂(k′) = Û (k′) is the solution of Eq. (10),

that is, the corresponding quantizers D̂(k) coincide with dequantizers Û (k). Evidently,

they are orthogonal to each other, that is, Tr(D̂(k)D̂(k′)) = δ(k, k′). So the quantizers

Û (k) and dequantizers D̂(k) form a self-dual system.

Though all these results are formulated for a qubit, they can easily be generalized

for a multi-qubit systems of higher dimensions. In d dimensions the operators Â and

B̂ corresponding to the operators Eqs. (11) and (12), respectively, can be defined by

d2×d2 matrices. The connection between Â and B̂ can be still described by Eq. (15). The

transformation rules for Û (k) and D̂(k) can be easily generalized and all the previously

discussed properties of these operators remain valid for higher dimensions.

4. Self-dual systems

In this section we consider a qubit system and analyse in detail the case when the

minimal sets of dequantizers and quantizers coincide with each other, that is, they form

a self-dual system and these operators are Hermitian.

Let us take four general Hermitian operators

Û (k) = D̂(k) =

(

ak bk − ick
bk + ick dk

)

, k = 1, 2, 3, 4, (24)
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where the parameters ak, bk, ck, and dk are real. Our aim is to find explicitly the matrix

elements of the operators Û (k) so that these matrices obey Eq. (23).

From this equation one can derive ten algebraic equations for the 16 parameters of

the operators in (24). For different matrices, that is, k 6= k′ we get the following six

expressions:

a1a2 + d1d2 + 2(b1b2 + c1c2) = 0, a1a3 + d1d3 + 2(b1b3 + c1c3) = 0,

a1a4 + d1d4 + 2(b1b4 + c1c4) = 0, a2a3 + d2d3 + 2(b2b3 + c2c3) = 0,

a2a4 + d2d4 + 2(b2b4 + c2c4) = 0, a3a4 + d3d4 + 2(b3b4 + c3c4) = 0,

(25)

and for k = k′ we have four equations:

a2k + d2k + 2(b2k + c2k) = 1, k = 1, 2, 3, 4. (26)

The parameters a1, b1, c1, d1 in the operator Û (1) can be chosen arbitrarily, for example,

a1 = 1, b1 = c1 = d1 = 0. (27)

Then from Eq. (25) we get

a2 = a3 = a4 = 0. (28)

and the equations

d2d3 + 2(b2b3 + c2c3) = 0,

d2d4 + 2(b2b4 + c2c4) = 0,

d3d4 + 2(b3b4 + c3c4) = 0.

(29)

and Eqs. (26) for k = 2, 3, 4, that is, six equations can be used for determining the

nine remaining unknown parameters. One can obtain three different solutions of these

equations depending on how many of the parameters di are allowed to be zero. In

the following the corresponding operator sets are denoted by Û
(k)
1 , Û

(k)
2 and Û

(k)
3 ,

respectively. These solutions can be characterized by the number of freely chosen

parameters.

Let us assume that

d2d3d4 6= 0. (30)

We introduce the notation

b3b4 + c3c4 = α2, b2b4 + c2c4 = α3, b2b3 + c2c3 = α4. (31)

From Eqs. (29) and (30) it is clear that αi 6= 0 and

α2α3α4 = −γ2 < 0. (32)

In this notation the solution of the equations (29) is

d22 = −2α3α4

α2

, d23 = −2α2α4

α3

, d24 = −2α3α2

α4

, (33)

and the corresponding operators Û
(k)
1 take the form

Û
(1)
1 =

(

1 0

0 0

)

Û
(2)
1 =

(

0 b2 − ic2
b2 + ic2

√
2γ/α2

)

,

Û
(3)
1 =

(

0 b3 − ic3
b3 + ic3

√
2γ/α3

)

, Û
(4)
1 =

(

0 b4 − ic4
b4 + ic4

√
2γ/α4

)

.
(34)
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For the normalization equations (26) we get

2γ2/α2
k + 2b2k + 2c2k = 1, k = 2, 3, 4. (35)

These equations contain six parameters, hence, three of them can be chosen freely

within certain constraints ensuring that the equations have real solutions satisfying the

condition in Eq. (32).

The general form of the solutions of Eqs. (35) is complicated and depends on the three

chosen independent parameters. Without presenting here these expressions explicitly we

present one set of dequantizer operators corresponding to the general form in Eq. (34):

Û
(1)
1 =

(

1 0

0 0

)

Û
(2)
1 =

1

4

(

0 2− i

2 + i −
√
6

)

,

Û
(3)
1 =

1

4

(

0 2 + i

2− i
√
6

)

, Û
(4)
1 =

1

4

(

0 −i
√
6

i
√
6 2

)

.
(36)

Next, let us apply the conditions

d2 = 0, d3d4 6= 0. (37)

In this case the equation (29) reads

b2b3 + c2c3 = 0, b2b4 + c2c4 = 0, d3d4 + 2(b3b4 + c3c4) = 0. (38)

Let us choose the parameters b4, c2, c3, c4, d4 to be the independent ones in these

equations. Then the three remaining parameters can be expressed as

b2 = −c2c4
b4

, b3 =
b4c3
c4

, d3 = − 2c3
c4d4

(b24 + c24). (39)

In this case the matrices of the dequantizer operators read

Û
(1)
2 =

(

1 0

0 0

)

, Û
(2)
2 = −c2

b4

(

0 c4 + ib4
c4 − ib4 0

)

,

Û
(3)
2 =

c3
c4

(

0 b4 − ic4
b4 + ic4 − 2

d4
(b24 + c24)

)

, Û
(4)
2 =

(

0 b4 − ic4
b4 + ic4 d4

)

.
(40)

For these operators the normalization conditions take the form

2c22c
2
4

b24
+ 2c22 = 1, (41)

8b24c
2
3 + 4c23c

2
4

d24
+

4b44c
2
3

c24d
2
4

+
2b24c

2
3

c24
+ 2c23 = 1, (42)

d24 + 2c24 + 2b24 = 1, (43)

from which the following expressions can be derived:

b4 = ± c2

√

2c23 + 2c22 − 1

2c22 − 1
, (44)

c4 = ±
√

−2c23 − 2c22 + 1

2
, (45)

d4 = ±
√
2ic3

√

2c22 − 1
. (46)
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Recall that all the parameters are chosen to be real, leading to a restriction in the choice

of c2 and c3 in Eqs. (44)–(46) (|c2| ≤ 1/
√
2 and |c3| ≤ 1/

√
2). As an example, we choose

c2 = c3 =
1

2
√
2
. Substituting these values to formulas (40) the following operators can

be derived:

Û
(1)
2 =

(

1 0

0 0

)

, Û
(2)
2 = − 1

2
√
2

(

0
√
3 + i√

3− i 0

)

,

Û
(3)
2 =

1√
6







0
1− i

√
3

2
1 + i

√
3

2
−2






, Û

(4)
2 =

1√
3







0
1− i

√
3

2
1 + i

√
3

2
1






.

(47)

Finally, let us assume that

d2 = d3 = 0, d4 6= 0. (48)

In this case the system (29) reads

b2b3 + c2c3 = 0, b2b4 + c2c4 = 0, b3b4 + c3c4 = 0. (49)

Assuming b3, c2, c3, d4 to be the independent parameters, the solutions of these equations

are

b2 = −c2c3
b3

, b4 = 0, c4 = 0, (50)

leading to the following dequantizers:

Û
(1)
3 =

(

1 0

0 0

)

, Û
(2)
3 = −c2

b3

(

0 c3 + ib3
c3 − ib3 0

)

,

Û
(3)
3 =

(

0 b3 − ic3
b3 + ic3 0

)

, Û
(4)
3 =

(

0 0

0 d4

)

.

(51)

The equations describing the normalization conditions read

2c22c
2
3

b23
+ 2c22 = 1,

2c23 + 2b23 = 1,

d24 = 1,

(52)

resulting in the expressions

c2 = ±b3,

c3 = ±
√

1− 2b23√
2

,

d4 = ±1.

(53)

From equations (53) it is clear that in the choice of b3 the condition |b3| ≤
1√
2
must

be satisfied. As an example, by choosing b3 =
1

2
we can get c2 = c3 =

1

2
, and d4 = 1,

leading to the dequantizer operators

Û
(1)
3 =

(

1 0

0 0

)

, Û
(2)
3 = −1

2

(

0 1 + i

1− i 0

)

,

Û
(3)
3 =

1

2

(

0 1− i

1 + i 0

)

, Û
(4)
3 =

(

0 0

0 1

)

.

(54)
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Here we should point out that the three different sets of dequantizers and quantizers

presented in Eqs. (34), (40), and (51) contain three, two, and one parameters that can

be chosen freely, respectively, taking into account the normalization conditions in these

expressions. In the following we consider the connection of them with some of the

minimal sets presented in the literature thus far.

In [54,55] the following self-dual minimal system of dequantizers are considered for

deriving a discrete Wigner function

V̂ (1) =
1√
2

(

1 1
2
(1− i)

1
2
(1 + i) 0

)

, V̂ (2) =
1√
2

(

1 1
2
(−1 + i)

1
2
(−1 − i) 0

)

,

V̂ (3) =
1√
2

(

0 1
2
(1 + i)

1
2
(1− i) 1

)

, V̂ (4) =
1√
2

(

0 1
2
(−1− i)

1
2
(−1 + i) 1

)

.

(55)

The matrices (55) can be presented as linear combinations of the constructed sets of

dequantizers. In the following we show how the matrices V̂ (j) in (55) can be constructed

from any sets of matrices U
(k)
i (i = 1, 2, 3) presented in Eqs. (36), (47), and (54),

respectively, and we determine the corresponding linear transformations L(i).

Let us apply formula (17) for this case

V̂ (j) =
4
∑

k=1

L
(i)
jk Û

(k)
i , j = 1, 2, 3, 4. (56)

Multiplying both sides by Û
(k′)
i and taking the trace of the expressions we get

Tr(V̂ (j)Û
(k′)
i ) = Tr

(

4
∑

k=1

L
(i)
jk Û

(k)
i Û

(k′)
i

)

=
4
∑

k=1

L
(i)
jk Tr(Û

(k)
i Û

(k′)
i ). (57)

Using Eq. (23) the expression on the right hand side simplifies to L
(i)
jk′, therefore

Tr(V̂ (j)Û
(k′)
i ) = L

(i)
jk′. (58)

Applying this formula the linear transformation L(1) connecting V̂ (j) and Û
(k)
1 takes the

form

L(1) =
1

25/2









4 3 1
√
6

4 −3 −1 −
√
6

0 1−
√
6

√
6 + 3 2−

√
6

0 −
√
6− 1

√
6− 3

√
6 + 2









, (59)

while for L(2) and L(3) transforming Û
(k)
2 and Û

(k)
3 to V̂ (j) we obtain

L(2) =
1

4
√
3









2
√
6

√
3− 3

√
3 + 1

√
2
(√

3 + 1
)

2
√
6 3−

√
3 −

√
3− 1 −

√
2
(√

3 + 1
)

0 −
√
3− 3 −

√
3− 3

√
2
(

3−
√
3
)

0 +
√
3 + 3

√
3− 5

√
2
(√

3 + 1
)









(60)

and

L(3) =
1√
2









1 0 1 0

1 0 −1 0

0 −1 0 1

0 1 0 1









. (61)
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Another example for a set of dequantizers are the ones presented in Ref. [41] for

deriving a discrete Wigner function where the operators V (k) were denoted by D−+,

D++, D−−, and D+−. The explicit form of these operators are

V̂ (1) =
1

4

(

0 1 + i

1− i 2

)

, V̂ (2) =
1

4

(

2 1− i

1 + i 0

)

,

V̂ (3) =
1

4

(

0 −1− i

−1 + i 2

)

, V̂ (4) =
1

4

(

2 −1 + i

−1− i 0

)

.

(62)

Applying Eq. (58) for these operators the corresponding linear transformation L(i) can

be found for any of the above sets Û
(k)
i . As an example, the linear transformation L(3)

for the set of dequantizers presented in (54) takes the form

L(3) =
1

2









0 −1 0 1

1 0 1 0

0 1 0 1

1 0 −1 0









(63)

From these results one can conclude that any minimal sets of dequantizers used for

defining discrete Wigner functions can be derived from any type of the minimal sets

presented in Eqs. (34), (40), and (51) using the described procedure. An interesting

aspect of our results is that we found as many different types of minimal sets, i.e., three,

as the number of mutual unbiased bases in this space. Recall that the different types

of discrete Wigner functions that can be derived according to the approach introduced

in [37] are associated with the mutually unbiased bases.

The generalization of the presented method of finding minimal sets of dequantizers

and quantizers for higher dimensions is not obvious owing to the large number of

parameters. In d dimensions the number of operators forming the minimal set

is d2 containing d4 parameters, while the number of equations following from the

orthogonality and normalization conditions is d2(d2 + 1)/2. Nonetheless, one can

construct the minimal sets of dequantizers and quantizers for an N -qubit system using

the tensor product of one-qubit dequantizers and quantizers.

5. Conclusion

We analysed the general properties of minimal sets of dequantizers and quantizers for

finite-dimensional quantum systems. We developed a general approach for deriving the

corresponding quantizers assuming that a minimal set of dequantizers is known, and we

have descrbed the connection between different minimal sets. We have derived explicit

expressions describing all minimal sets of dequantizers and quantizers for a qubit. We

have shown explicitly how some known sets of dequantizers and quantizers used in

certain problems in the literature can be derived from these formulae.
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