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ON THE LOCAL AND GLOBAL COMPARISON OF GENERALIZED BAJRAKTAREVIĆ MEANS

ZSOLT PÁLES AND AMR ZAKARIA

ABSTRACT. Given two continuous functions f, g : I → R such that g is positive and f/g is strictly monotone, a

measurable space (T,A), a measurable family of d-variable means m : Id × T → I , and a probability measure µ on

the measurable sets A, the d-variable mean Mf,g,m;µ : Id → I is defined by

Mf,g,m;µ(xxx) :=

(

f

g

)

−1
(

∫

T
f
(

m(x1, . . . , xd, t)
)

dµ(t)
∫

T
g
(

m(x1, . . . , xd, t)
)

dµ(t)

)

(xxx = (x1, . . . , xd) ∈ Id).

The aim of this paper is to study the local and global comparison problem of these means, i.e., to find conditions for

the generating functions (f, g) and (h, k), for the families of means m and n, and for the measures µ, ν such that the

comparison inequality

Mf,g,m;µ(xxx) ≤ Mh,k,n;ν(xxx) (xxx ∈ Id)

be satisfied.

1. INTRODUCTION

In a recent paper [20], Losonczi and Páles investigated a general class of two-variable means given by

the formula

Mf,g;µ(x1, x2) :=

(

f

g

)−1
(

∫ 1

0
f(tx1 + (1− t)x2) dµ(t)

∫ 1

0
g(tx1 + (1− t)x2) dµ(t)

)

((x1, x2) ∈ I2),

where f, g : I → R are continuous functions such that g is positive and f/g is strictly monotone and

µ is a probability measure on the Borel measurable subsets of [0, 1]. This definition includes many

former classical and important settings. In [20] local and global comparison theorems (that provided

necessary and in some cases also sufficient conditions) have been established for the comparison of two

two-variable means from this general class.

The purpose of this note is to extend the results of [20] in several ways. In our approach we will use

Chebyshev systems, measurable families of means and measures for the definition of a general class of

d-variable means.

Throughout this paper, the symbols N, R, and R+ will stand for the sets of natural, real, and positive

real numbers, respectively, and I will always denote a nonempty open real interval. The classes of

continuous strictly monotone and continuous positive real-valued functions defined on I will be denoted

by CM(I) and CP(I), respectively.

In the sequel, a function M : Id → I is called a d-variable mean on I if the following so-called mean

value property

min(x1, . . . , xd) ≤ M(xxx) ≤ max(x1, . . . , xd) (xxx = (x1, . . . , xd) ∈ Id) (1)

holds. Also, if both of the inequalities in (1) are strict for all x1, . . . , xd ∈ I with xi 6= xj for some

i 6= j, then we say that M is a strict mean on I . The arithmetic and geometric means are well known
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2 ZS. PÁLES AND A. ZAKARIA

instances for strict means on R+. More generally, if p is a real number, then the d-variable Hölder mean

Hp : R
d
+ → R is defined as

Hp(xxx) :=











(

xp1 + · · ·+ xpd
d

)
1
p

if p 6= 0

d
√
x1 · · ·xd if p = 0

(

xxx = (x1, . . . , xd) ∈ R
d
+

)

.

Obviously,H1 andH0 equal the arithmetic and geometric mean, respectively. It is easy to see that Hölder

means are strict means. The d-variable minimum and maximum functions are instances for non-strict

means.

A classical generalization of Hölder means is the notion of d-variable quasi-arithmetic mean (cf.

[12]), which is introduced as follows: For f ∈ CM(I) define

Af(xxx) := f−1

(

f(x1) + · · ·+ f(xd)

d

)

(

xxx = (x1, . . . , xd) ∈ Id
)

. (2)

More generally, if Sd denotes the (d− 1)-dimensional simplex given by

Sd := {(t1, . . . , td) | t1, . . . , td ≥ 0, t1 + · · ·+ td = 1}, (3)

then we can also define

Af (xxx, ttt) := f−1
(

t1f(x1) + · · ·+ tdf(xd)
) (

xxx = (x1, . . . , xd) ∈ Id, ttt = (t1, . . . , td) ∈ Sd

)

, (4)

which is called the weighted d-variable quasi-arithmetic mean on I .

In this paper, we consider a much more general class of means. For their definition, we recall the

notion of Chebyshev system. Let f, g : I → R be continuous function. We say that the pair (f, g) forms

a (two-dimensional) Chebyshev system on I if, for any distinct elements x, y of I , the determinant

Df,g(x, y) :=

∣

∣

∣

∣

f(x) f(y)
g(x) g(y)

∣

∣

∣

∣

(x, y ∈ I)

is different from zero. If, for x < y, this determinant is positive, then (f, g) is called a positive system,

otherwise we call (f, g) a negative system. Due to the connectedness of the triangle {(x, y) | x <
y, x, y ∈ I}, it follows that every Chebyshev system is either positive or negative. Obviously, if (f, g) is

a positive Chebyshev system, then (g, f) is a negative one.

The most standard positive Chebyshev system on R is given by f(x) = 1 and g(x) = x. More

generally, if f, g : I → R are continuous functions with g ∈ CP(I), f/g ∈ CM(I), then (f, g) is a

Chebyshev system. Indeed, we have

Df,g(x, y) :=

∣

∣

∣

∣

f(x) f(y)
g(x) g(y)

∣

∣

∣

∣

= g(x)g(y)

(

f(x)

g(x)
− f(y)

g(y)

)

(x, y ∈ I). (5)

From, here it is obvious that Df,g(x, y) vanishes if and only if x = y. Moreover, if f/g is decreasing

(resp. increasing), then, for x < y, we have that Df,g(x, y) > 0 (resp. Df,g(x, y) < 0), i.e., (f, g) is a

positive (resp. negative) Chebyshev system. By symmetry, analogous properties can be established if f
is positive and g/f strictly monotone.

For the sake of convenience and brevity, now we make the following hypotheses. We say that m :
Id × T → I is a measurable family of d-variable means on I if

(H1) I is a nonvoid open real interval,

(H2) (T,A) is a measurable space, where A is the σ-algebra of measurable sets of T ,

(H3) for all t ∈ T , m(·, t) is a d-variable mean on I ,

(H4) for all xxx ∈ Id, the function m(xxx, ·) is measurable over T .

If, instead of (H2) and H(4), we have that
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(H2+) T is a topological space and A equals the σ-algebra B(T ) of the Borel sets of T ,

(H4+) for all xxx ∈ Id, the function m(xxx, ·) is continuous over T ,

then m : Id × T → I will be called a continuous family of d-variable means on I .

For a measurable family of d-variable means m : Id × T → I , we introduce the notations:

m(xxx) := inf
t∈T

m(xxx, t) and m(xxx) := sup
t∈T

m(xxx, t) (xxx ∈ Id).

Obviously, by property (H3), for all xxx ∈ Id, we have that min(xxx) ≤ m(xxx) ≤ m(xxx) ≤ max(xxx). Provided

that T is a compact and connected topological space and m : Id × T → I is a continuous family of

d-variable means on I , we have that

[m(xxx), m(xxx)] = {m(xxx, t) | t ∈ T} (xxx ∈ Id). (6)

For the construction of a mean in terms of a Chebyshev system, a measurable family of means, and a

probability measure, we need the following basic lemma.

Lemma 1. Let m : Id × T → I be a measurable family of d-variable means, let µ be a probability

measure on (T,A) and let (f, g) be a Chebyshev system on I . Then, for all xxx ∈ Id, there exists a unique

element y ∈ [m(xxx), m(xxx)] such that
∫

T

Df,g(m(xxx, t), y) dµ(t) = 0. (7)

Furthermore, if (f, g) is a positive Chebyshev system, then, for all u ∈ I ,
∫

T

Df,g(m(xxx, t), u) dµ(t)
<
=
>

0 if and only if u
<
=
>
y.

In addition, if g is positive and f/g is strictly monotone, then

y =

(

f

g

)−1
(

∫

T
f
(

m(xxx, t)
)

dµ(t)
∫

T
g
(

m(xxx, t)
)

dµ(t)

)

. (8)

Proof. Without loosing the generality, we may assume that (f, g) is a positive Chebyshev system through-

out this proof.

For fixed xxx ∈ Id, consider now the following function

h(u) :=

∫

T

Df,g(m(xxx, t), u) dµ(t) = g(u)

∫

T

f(m(xxx, t)) dµ(t)− f(u)

∫

T

g(m(xxx, t)) dµ(t) (u ∈ I).

By the continuity of f and g, we have that h is continuous on I . If m(xxx) < u, then, for all t ∈ T we

have that m(xxx, t) < u, hence Df,g(m(xxx, t), u) > 0. This implies that h(u) is positive for all u ∈ I
with m(xxx) < u. Similarly, for all u ∈ I with u < m(xxx), we have that h(u) < 0. Therefore, by the

intermediate value property of continuous functions, h must have a zero between m(xxx) and m(xxx).
To prove the uniqueness, assume that y and z are distinct zeros of h between m(xxx) and m(xxx). Then

we have that

g(y)

∫

T

f(m(xxx, t)) dµ(t)− f(y)

∫

T

g(m(xxx, t)) dµ(t) = 0,

g(z)

∫

T

f(m(xxx, t)) dµ(t)− f(z)

∫

T

g(m(xxx, t)) dµ(t) = 0.

This means that the two unknowns ξ :=
∫

T
f(m(xxx, t)) dµ(t) and η :=

∫

T
g(m(xxx, t)) dµ(t) are solutions

of the following system of linear equations:

g(y)ξ − f(y)η = 0,

g(z)ξ − f(z)η = 0.
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Because y and z are distinct, the determinant of this system is nonzero, hence ξ = η = 0. In this case,

h(u) = 0 for all u ∈ I , which contradicts the property that h(u) > 0 for m(xxx) < u. The contradiction

obtained shows that y = z, which proves the uniqueness of the solution y of equation (7). The uniqueness

also implies that h(u) > 0 for u > y and h(u) < 0 for u < y.

Finally, assume that g is positive and f/g is strictly monotone (then (f, g) is a Chebyshev system). In

this case, the equation h(y) = 0 can be rewritten as

f(y)

g(y)
=

∫

T
f(m(xxx, t)) dµ(t)

∫

T
g(m(xxx, t)) dµ(t)

.

By applying the inverse function of f/g to this equation side by side, we obtain that y is of the form

(8). �

The above lemma allows us to define a d-variable mean Mf,g,m;µ : Id → I . Given xxx ∈ Id, let

Mf,g,m;µ(xxx) denote the unique solution y of equation (7). In the particular case when g is positive and

f/g is strictly monotone, we have that

Mf,g,m;µ(xxx) :=

(

f

g

)−1
(

∫

T
f
(

m(xxx, t)
)

dµ(t)
∫

T
g
(

m(xxx, t)
)

dµ(t)

)

(xxx ∈ Id). (9)

This mean will be called a d-variable generalized Bajraktarević mean in the sequel. When g = 1, then

Mf,1,m;µ(xxx) = (f)−1

(
∫

T

f
(

m(xxx, t)
)

dµ(t)

)

(xxx ∈ Id)

which will be termed a d-variable generalized quasi-arithmetic mean. If T = {1, . . . , d}, µ = δ1+···+δd
d

(where δt denotes the Dirac measure concentrated at t) and m(xxx, t) = xt, then

Mf,g,m;µ(xxx) =Mf,g(xxx) :=

(

f

g

)−1(
f(x1) + · · ·+ f(xd)

g(x1) + · · ·+ g(xd)

)

(

xxx = (x1 . . . , xd) ∈ Id
)

,

which was introduced and studied by Bajraktarević [1], [2]. When g = 1, then Mf,1,m;µ(xxx) = Af(xxx),
which is the d-variable quasi-arithmetic mean introduced in (2).

To define d-variable generalized Gini means, let p, q ∈ R and assume that I ⊆ R+. By taking

f(x) = xp, g(x) = xq if p 6= q,

f(x) = xp log(x), g(x) = xp if p = q,
(10)

we can define Gp,q,m;µ in the following manner:

Gp,q,m;µ(xxx) :=



























(

∫

T

(

m(xxx, t)
)p

dµ(t)
∫

T

(

m(xxx, t)
)q

dµ(t)

)
1

p−q

if p 6= q,

exp

(

∫

T

(

m(xxx, t)
)p

log
(

m(xxx, t)
)

dµ(t)
∫

T

(

m(xxx, t)
)p

dµ(t)

)

if p = q.

(xxx ∈ Id). (11)

In the particular case when T = {1, . . . , d}, µ = δ1+···+δd
d

and m(xxx, t) = xt, the above formula reduces

to the so-called d-variable Gini mean Gp,q (cf. [11]):

Gp,q(xxx) :=



















(

xp1 + · · ·+ xpd
xq1 + · · ·+ xqd

)
1

p−q

if p 6= q,

exp

(

xp1 log(x1) + · · ·+ xpd log(xd)

xp1 + · · ·+ xpd

)

if p = q,

(

xxx = (x1 . . . , xd) ∈ R
d
+

)

.
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Obviously, Gp,0 = Hp, i.e., Hölder means are particular Gini means.

In what follows, we describe further interesting particular cases of formula (9). If T = {0, 1,−1},

I = R+, µ = µ−1δ−1 + µ0δ0 + µ1δ1 (where µ−1, µ0, µ1 ∈ R+ with µ−1 + µ0 + µ1 = 1), and m(xxx, t) =
Ht(xxx) (where Ht stands for the t-th Hölder mean), then

Mf,g,m;µ(xxx) =

(

f

g

)−1(
µ−1f(H−1(xxx)) + µ0f(H0(xxx)) + µ1f(H1(xxx))

µ−1g(H−1(xxx)) + µ0g(H0(xxx)) + µ1g(H1(xxx))

)

(xxx ∈ R
d
+).

In the next example we use the notations introduced in (3) and (4). If T = Sd, λ is the (d − 1)-
dimensional Lebesgue measure on Sd, and m(xxx, ttt) = Aϕ(xxx, ttt), where ϕ ∈ CM(I), then

Mf,g,m;µ(xxx) =Mf,g,Aϕ;λ(xxx) =

(

f

g

)−1
(
∫

Sd
f
(

Aϕ(xxx, ttt)
)

dλ(ttt)
∫

Sd
g
(

Aϕ(xxx, ttt)
)

dλ(ttt)

)

(xxx = (x1, . . . , xd) ∈ Id).

If µ is the Lebesgue measure on [0, 1] and f, g : I → R are continuously differentiable functions such

that g′ > 0 and f ′/g′ is strictly monotone, and m(xxx, t) = tx1 + (1 − t)x2, then, by the Fundamental

Theorem of Calculus, one can easily see that

Mf ′,g′,m;µ(xxx) = Cf,g(xxx) =







(

f ′

g′

)−1(
f(x2)− f(x1)

g(x2)− g(x1)

)

if x1 6= x2

x1 if x1 = x2

(xxx = (x1, x2) ∈ I2),

which is called a Cauchy or difference mean in the literature. Their equality problem was solved by

Losonczi [17].

By taking f and g given in (10), the mean so obtained is the so-called Stolarsky mean, which was

introduced in the papers [26] and [13]. Their comparison problem was solved by Leach and Sholander

[14] on unbounded intervals and by Páles [22], [25] and by Czinder and Páles [9] on bounded intervals.

The aim of this paper is to study the global comparison problem

Mf,g,m;µ(xxx) ≤Mh,k,n;ν(xxx) (xxx ∈ Id) (12)

and also its local analogue. In terms of the Chebyshev systems (f, g) and (h, k), the measurable families

of d-variable means m : Id × T → I and n : Id × S → I , and the measures µ, ν, we give necessary

conditions (which, in general, are not sufficient) and also sufficient conditions (that are also necessary

in a certain sense) for (12) to hold. Our main results generalize that of the paper by Losonczi and Páles

[20] and also many former results obtained in various particular cases of this problem, cf. [7], [8], [10],

[18], [19], [21], [23].

2. INVARIANTS WITH RESPECT TO EQUALITY OF MEANS

In order to describe the regularity conditions related to the two generating functions f, g of the mean

Mf,g,m;µ, we introduce some regularity classes. The class C0(I) consists of all those pairs of continuous

functions f, g : I → R that form a Chebyshev system over I .

If k ≥ 1, then we say that the pair (f, g) is in the class Ck(I) if f, g are k-times continuously differen-

tiable functions such that (f, g) ∈ C0(I) and the Wronski determinant
∣

∣

∣

∣

f ′(x) f(x)
g′(x) g(x)

∣

∣

∣

∣

= ∂1Df,g(x, x) (x ∈ I) (13)

does not vanish on I . Provided that g is positive, then we have that
(

f

g

)′

(x) =
∂1Df,g(x, x)

g2(x)
(14)
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hence condition ∂1Df,g(x, x) 6= 0 implies that f/g is strictly monotone, whence it follows that (f, g) ∈
C0(I). Obviously, C0(I) ⊇ C1(I) ⊇ C2(I) ⊇ · · · .

It is easy to see that if (f, g), (f ∗, g∗) ∈ C0(I) and

f = αf ∗ + βg∗,

g = γf ∗ + δg∗,
(15)

where the constants α, β, γ, δ ∈ R satisfy αδ − βγ 6= 0, then

Df,g(x, y) =

∣

∣

∣

∣

α β
γ δ

∣

∣

∣

∣

·Df∗,g∗(x, y) (x, y ∈ I). (16)

This implies that the identity
Mf,g,m;µ =Mf∗,g∗,m;µ (17)

also holds for any measurable family m : Id × T → I and probability measure µ.

If (15) holds for some constants α, β, γ, δ ∈ R, then we say that the pairs (f, g) and (f ∗, g∗) are

equivalent. It is obvious that any necessary and/or sufficient condition for (12) has to be invariant with

respect to the equivalence of the generating functions.

The following result, which is based on [5, Theorem 3], allows us to assume more regularity on

Chebyshev systems.

Lemma 2. Let k ∈ N ∪ {0} and (f, g) ∈ Ck(I). Then there exist α, β, γ, δ ∈ R with αδ − βγ 6= 0 and

(f ∗, g∗) ∈ Ck(I) such that (15) holds and g∗ is positive and f ∗/g∗ is strictly monotone. Furthermore, if

k ≥ 1, then the derivative of f ∗/g∗ does not vanish on I .

Proof. In the case k = 0, the statement is a direct consequence of the result [5, Theorem 3] obtained by

Bessenyei and Páles.

Assume now that k ≥ 1. Then, (f, g) ∈ Ck(I) means that f and g are k-times continuously differen-

tiable and ∂1Df,g(x, x) does not vanish for x ∈ I . Using what we have established in the case k = 0,

there exist constants α, β, γ, δ ∈ R with αδ − βγ 6= 0 and (f ∗, g∗) ∈ C0(I) such that (15) holds and g∗

is positive and f ∗/g∗ is strictly monotone. The condition αδ − βγ 6= 0 and (15) imply that there exist

a, b, c, d ∈ R with ad− bc 6= 0 such that

f ∗ = af + bg,

g∗ = cf + dg.

Hence f ∗ and g∗ are also k-times continuously differentiable. This immediately implies that

∂1Df∗,g∗(x, x) =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

· ∂1Df,g(x, x) (x ∈ I),

which shows that ∂1Df∗,g∗(x, x) does not vanish for x ∈ I . Therefore, (f ∗, g∗) ∈ Ck(I) holds, too.

Applying the identity (14) for f ∗ and g∗ instead of f and g, we can also see that the derivative of f ∗/g∗

does not vanish on I . �

For the computation of the first- and second-order partial derivatives of the mean Mf,g,m;µ at the

diagonal of Id, we will establish a result below. For brevity, we introduce the following notation: If

ppp ∈ Id and δ > 0 then let B(ppp, δ) stand for the ball {xxx ∈ Id : |xxx − ppp| ≤ δ}. Furthermore, if µ is a

probability measure on the measurable space (T,A) and q ≥ 1, then the space of measurable functions

ϕ : T → R such that |ϕ|q is µ-integrable will be denoted by Lq(T,A, µ) or shortly by Lq.

If ϕ, ψ : T → R are measurable functions such that ϕψ is µ-integrable (for instance, ϕ, ψ ∈ L2), then

we set

〈ϕ, ψ〉µ :=

∫

T

ϕ(t)ψ(t) dµ(t).
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More generally, if ϕ, ψ : Id × T → R, and for some xxx ∈ Id, the map t 7→ ϕ(xxx, t)ψ(xxx, t) is µ-integrable,

then we write

〈ϕ, ψ〉µ(xxx) :=
∫

T

ϕ(xxx, t)ψ(xxx, t) dµ(t).

Given a number q ≥ 1, a function ϕ : Id × T → R is said to be of Lq-type at ppp ∈ Id, if ϕ(ppp, ·) is

measurable, furthermore, there exist δ > 0 and a function a ∈ Lq such that

|ϕ(xxx, t)| ≤ a(t) (t ∈ T, xxx ∈ B(ppp, δ)).

Let C1(I
d × T ) denote the class of measurable families of d-variable means m : Id × T → I with the

following two additional properties:

(H5) For every t ∈ T , the function m(·, t) is continuously partially differentiable over Id such that, for

all ppp ∈ Id, i ∈ {1, . . . , d}, the function ∂im is of L1-type at ppp.

Analogously, we define C2(I
d × T ) to be the following subclass of C1(I

d × T ):

(H6) For every t ∈ T , the function m(·, t) is twice continuously partially differentiable over Id such

that, for all ppp ∈ Id and i, j ∈ {1, . . . , d}, the function ∂im is of L2-type and ∂i∂jm is of L1-type

at ppp.

Lemma 3. Let k ∈ {1, 2} and let ϕ : I → R be a k-times continuously differentiable function and

m ∈ Ck(I
d × T ). Then the function Φ : Id → R defined by

Φ(xxx) :=

∫

T

ϕ(m(xxx, t)) dµ(t) (18)

is k-times continuously differentiable on Id. Furthermore, for i ∈ {1, . . . , d},

∂iΦ(ppp) =

∫

T

ϕ′(m(ppp, t)) ∂im(ppp, t) dµ(t) (ppp ∈ Id) (19)

and, for i, j ∈ {1, . . . , d},

∂i∂jΦ(ppp) =

∫

T

[

ϕ′′(m(ppp, t)) ∂im(ppp, t) ∂jm(ppp, t) + ϕ′(m(ppp, t)) ∂i∂jm(ppp, t)
]

dµ(t) (ppp ∈ Id) (20)

provided that k = 2.

Proof. If m is measurable family of d-variable means, then, by the continuity of ϕ and the mean value

property of m, it easily follows that Φ is well-defined for all xxx ∈ Id. Due to the continuity of ϕ′ and

the assumption m ∈ C1(I
d × T ), it easily follows that the integral on the right hand side of (19) is

well-defined. Furthermore, if ϕ′′ is continuous and m ∈ C2(I
d×T ), then also the right hand side of (20)

exists.

First we elaborate the case k = 1. We need to show that, for every ppp ∈ Id, the function Φ is partially

differentiable at ppp with formula (19) and that the partial derivatives are continuous at ppp.

Before proceeding to the proof, we shall establish, for every ppp ∈ Id, the following equality

lim
δ→0

∫

T

sup
xxx∈B(ppp,δ)

∣

∣ϕ′(m(xxx, t)) ∂im(xxx, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣ dµ(t) = 0. (21)

First choose δ0 > 0 so that α := min{p1, . . . , pd} − δ0 and β := max{p1, . . . , pd} + δ0 be elements

of I . Let K be the supremum of |ϕ′| over the compact interval [α, β]. The continuity of ϕ′ implies

that K is finite. By the mean value property of m, for every t ∈ T and xxx ∈ B(ppp, δ0), we have that

α ≤ m(xxx, t) ≤ β. Hence, for every t ∈ T and xxx ∈ B(ppp, δ0), the inequality |ϕ′(m(xxx, t))| ≤ K holds.
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Using the assumption that ∂im is of L1-type at ppp, we can find 0 < δ1 ≤ δ0 and a function a ∈ L1 such

that

|∂im(xxx, t)| ≤ a(t) (t ∈ T, xxx ∈ B(ppp, δ1)).

Let δn > 0 be an arbitrary sequence converging to 0 with δn ≤ δ1 for all n ∈ N. By the Lagrange

Mean Value Theorem, for every xxx ∈ B(ppp, δn) and for every t ∈ T , there exists λ ∈ [0, 1] such that

|m(xxx, t)−m(ppp, t)| ≤
d
∑

i=1

|∂im(λxxx+ (1− λ)ppp, t)||xi − pi| ≤ dδna(t).

Using the continuity of ϕ′ at m(ppp, t), it immediately follows that the sequence of measurable functions

ψn : T → R defined by

ψn(t) := sup
xxx∈B(ppp,δn)

|ϕ′(m(xxx, t))− ϕ′(m(ppp, t))| ≤ 2K

converges to zero for every t ∈ T . By the continuity of the partial derivative ∂im(·, t) at ppp, we also have

that the sequence of measurable functions χn : T → R defined by

χn(t) := sup
xxx∈B(ppp,δn)

|∂im(xxx, t)− ∂im(ppp, t)| ≤ 2a(t)

converges to zero for every t ∈ T . Using the above estimations, we can now obtain that

sup
xxx∈B(ppp,δn)

∣

∣ϕ′(m(xxx, t)) ∂im(xxx, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣

≤ sup
xxx∈B(ppp,δn)

|ϕ′(m(xxx, t))||∂im(xxx, t)− ∂im(ppp, t)|+ sup
xxx∈B(ppp,δn)

|ϕ′(m(xxx, t))− ϕ′(m(ppp, t))||∂im(ppp, t)|

≤ Kχn(t) + ψn(t)a(t).

The expression on the right hand side of this inequality converges to zero for each t ∈ T , and these

functions are dominated by the integrable function 4Ka. Hence, by Lebesgue’s Dominated Convergence

Theorem, it follows that

lim
n→∞

∫

T

sup
xxx∈B(ppp,δn)

∣

∣ϕ′(m(xxx, t)) ∂im(xxx, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣ = 0.

Because the sequence (δn) converging to 0 was arbitrary, it follows that (21) holds.

Let ppp ∈ Id be fixed and let eeei denote the ith vector of the standard basis on R
n. For the proof that the

ith partial derivative of Φ at ppp is given by (19), consider the following estimation for s ∈ (I − pi), s 6= 0:

∆i(s) : =

∣

∣

∣

∣

Φ(ppp+ seeei)− Φ(ppp)

s
−
∫

T

ϕ′(m(ppp, t)) ∂im(ppp, t) dµ(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

s

(
∫

T

ϕ(m(ppp + seeei, t)) dµ(t)−
∫

T

ϕ(m(ppp, t)) dµ(t)

)

−
∫

T

ϕ′(m(ppp, t)) ∂im(ppp, t) dµ(t)

∣

∣

∣

∣

≤ 1

|s|

∫

T

∣

∣ϕ(m(ppp+ seeei, t))− ϕ(m(ppp, t))− sϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣dµ(t).

(22)

Applying the Lagrange Mean Value Theorem for the function

κt(s) := ϕ(m(ppp+ seeei, t))− sϕ′(m(ppp, t)) ∂im(ppp, t),

for every t ∈ T , we can find an element σt between 0 and s such that κt(s)− κt(0) = κ′t(σt)s, that is

ϕ(m(ppp+ seeei, t))− ϕ(m(ppp, t))− sϕ′(m(ppp, t)) ∂im(ppp, t)

=
(

ϕ′(m(ppp+ σteeei, t)) ∂im(ppp+ σteeei, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
)

s.
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Using this formula, inequality (22) and the equality (21), for s ∈ I − pi, it follows that

lim sup
s→0

∆i(s) ≤ lim sup
s→0

∫

T

∣

∣ϕ′(m(ppp+ σteeei, t)) ∂im(ppp+ σteeei, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣dµ(t)

≤ lim
s→0

∫

T

sup
xxx∈B(ppp,|s|)

∣

∣ϕ′(m(xxx, t)) ∂im(xxx, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣dµ(t) = 0.

Thus, we have proved that ∆i(s) tends to zero as s → 0. This completes the proof of the partial

differentiability of Φ with respect to the ith variable at ppp and also the validity of formula (19).

Finally, we show that the function ∂iΦ is continuous at every ppp ∈ Id. Let (xxxn) be an arbitrary sequence

in B(ppp, δ0) converging to ppp and denote δn := |xxxn − ppp|. Then (δn) is a null sequence and we have that

|∂iΦ(xxxn)− ∂iΦ(ppp)| ≤
∫

T

∣

∣ϕ′(m(xxxn, t)) ∂im(xxxn, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣dµ(t)

≤
∫

T

sup
uuu∈B(ppp,δn)

∣

∣ϕ′(m(uuu, t)) ∂im(uuu, t)− ϕ′(m(ppp, t)) ∂im(ppp, t)
∣

∣dµ(t).

Due to the equality (21), the right hand side in the above inequality tends to zero as n → ∞, whence it

follows that (∂iΦ(xxxn)) converges to ∂iΦ(ppp), which proves the continuity of ∂iΦ at ppp.

Analogously, using a similar argument as in the proof of (21), for the case k = 2, the reader can show

that the following two equalities hold:

lim
δ→0

∫

T

sup
xxx∈B(ppp,δ)

∣

∣ϕ′′(m(xxx, t)) ∂im(xxx, t) ∂jm(xxx, t)− ϕ′′(m(ppp, t)) ∂im(ppp, t) ∂jm(ppp, t)
∣

∣ dµ(t) = 0, (23)

lim
δ→0

∫

T

sup
xxx∈B(ppp,δ)

∣

∣ϕ′(m(xxx, t)) ∂i∂jm(xxx, t)− ϕ′(m(ppp, t)) ∂i∂jm(ppp, t)
∣

∣ dµ(t) = 0. (24)

Let ppp ∈ Id be fixed. To prove equality (20) which establishes the formula for the jth partial derivative of

∂iΦ at ppp, consider the following estimation for r ∈ (I − pj), r 6= 0:

∆ij(r)

:=

∣

∣

∣

∣

∂iΦ(ppp + reeej)− ∂iΦ(ppp)

r
−
∫

T

ϕ′′(m(ppp, t)) ∂im(ppp, t) ∂jm(ppp, t) + ϕ′(m(ppp, t)) ∂i∂jm(ppp, t) dµ(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

r

(
∫

T

ϕ′(m(ppp + reeej, t)) ∂im(ppp + reeej , t) dµ(t)−
∫

T

ϕ′(m(ppp, t)) ∂im(ppp, t) dµ(t)

)

−
∫

T

ϕ′′(m(ppp, t)) ∂im(ppp, t) ∂jm(ppp, t) + ϕ′(m(ppp, t)) ∂i∂jm(ppp, t) dµ(t)

∣

∣

∣

∣

≤ 1

|r|

∫

T

∣

∣ϕ′(m(ppp + reeej , t)) ∂im(ppp+ reeej , t)− ϕ′(m(ppp, t)) ∂im(ppp, t)

− rϕ′′(m(ppp, t)) ∂im(ppp, t) ∂jm(ppp, t)− rϕ′(m(ppp, t)) ∂i∂jm(ppp, t)
∣

∣ dµ(t).
(25)

Applying, for every t ∈ T , the Lagrange Mean Value Theorem for the function

θt(r) := ϕ′(m(ppp+ reeej , t))∂im(ppp + reeej , t)− r
(

ϕ′′(m(ppp, t))∂im(ppp, t)∂jm(ppp, t) + ϕ′(m(ppp, t))∂i∂jm(ppp, t)
)

,

we can find an element ρt between 0 and r such that

θt(r)− θt(0) = θ′t(ρt)r. (26)
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Now, by using equality (26), inequality (25) and equalities (23) and (24), respectively, with an analogous

argument that we applied in the case k = 1, we get that ∆ij(r) tends to zero as r → 0, proving the partial

differentiability of ∂iΦ at ppp with respect to the jth variable and formula (20). On the other hand, again

by a similar train of thoughts, it easily follows from (23) and (24) that the function ∂i∂jΦ is continuous

on Id. This completes the proof of the lemma. �

Theorem 4. Let (f, g) ∈ C1(I), let m ∈ C1(I
d × T ) be a measurable family of means, and let µ be a

probability measure on the measurable space (T,A). Then Mf,g,m;µ is continuously differentiable on Id

and, for all i ∈ {1, . . . , d} and x ∈ I ,

∂iMf,g,m;µ(x, . . . , x) = 〈∂im, 1〉µ(x, . . . , x). (27)

If, in addition, (f, g) ∈ C2(I), let m ∈ C2(I
d × T ), then Mf,g,m;µ is twice continuously differentiable on

Id and, for all i, j ∈ {1, . . . , d} and x ∈ I ,

∂i∂jMf,g,m;µ(x, . . . , x)

=
(

〈∂im, ∂jm〉µ − 〈∂im, 1〉µ〈∂jm, 1〉µ
)

(x, . . . , x)
∂21Df,g(x, x)

∂1Df,g(x, x)
+ 〈∂i∂jm, 1〉µ(x, . . . , x).

(28)

Proof. Let k ∈ {1, 2} and assume that (f, g) ∈ Ck(I), m ∈ Ck(I
d × T ). In view of Lemma 2, we may

assume that g is positive, f/g is strictly monotone with a non-vanishing first-order derivative. Then f , g
and the inverse of f/g are k-times continuously differentiable and, by Lemma 3, we also have that the

mappings

xxx 7→
∫

T

f
(

m(xxx, t)
)

dµ(t) and xxx 7→
∫

T

g
(

m(xxx, t)
)

dµ(t)

are k-times continuously differentiable on Id. On the other hand, we now also have formula (9) for the

d-variable mean Mf,g,m;µ. Thus, using the standard calculus rules, it follows that Mf,g,m;µ is k-times

continuously differentiable on Id

To prove the first formula stated in (27), let us consider the case k = 1. Differentiating the identity (7)

with respect to the variable xi once, we get
∫

T

[

∂1Df,g(m(xxx, t),Mf,g,m;µ(xxx))∂im(xxx, t) + ∂2Df,g(m(xxx, t),Mf,g,m;µ(xxx))∂iMf,g,m;µ(xxx)
]

dµ(t) = 0.

Now taking x ∈ I and substituting xxx = (x, . . . , x), the above equation simplifies to

∂1Df,g(x, x)

∫

T

∂im(x, . . . , x, t) dµ(t) + ∂2Df,g(x, x)∂iMf,g,m;µ(x, . . . , x) = 0.

Observe that ∂1Df,g(x, x) = −∂2Df,g(x, x) 6= 0 for all x ∈ I , hence the former equation yields the

desired equality (27).

Now consider the case k = 2. Differentiating the identity that we obtained in the first lines of the

proof with respect to the variable xj , we obtain
∫

T

[

∂21Df,g(m(xxx, t),Mf,g,m;µ(xxx))∂im(xxx, t)∂jm(xxx, t)

+ ∂1∂2Df,g(m(xxx, t),Mf,g,m;µ(xxx))
(

∂jMf,g,m;µ(xxx)∂im(xxx, t) + ∂iMf,g,m;µ(xxx)∂jm(xxx, t)
)

+ ∂22Df,g(m(xxx, t),Mf,g,m;µ(xxx))∂jMf,g,m;µ(xxx)∂iMf,g,m;µ(xxx)

+ ∂1Df,g(m(xxx, t),Mf,g,m;µ(xxx))∂j∂im(xxx, t) + ∂2Df,g(m(xxx, t),Mf,g,m;µ(xxx))∂j∂iMf,g,m;µ(xxx)
]

dµ(t) = 0,

respectively. Using the identities ∂2Df,g(x, x) = −∂1Df,g(x, x), ∂
2
2Df,g(x, x) = −∂21Df,g(x, x), and

∂1∂2Df,g(x, x) = 0 (that are consequences of the asymmetry property Df,g(x, y) = −Df,g(y, x)), and
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substituting xxx = (x, . . . , x), we get that

∂21Df,g(x, x)

∫

T

∂im(x, . . . , x, t)∂jm(x, . . . , x, t) dµ(t) + ∂1Df,g(x, x)

∫

T

∂j∂im(x, . . . , x, t) dµ(t)

− ∂21Df,g(x, x)∂jMf,g,m;µ(x, . . . , x)∂iMf,g,m;µ(x, . . . , x)− ∂1Df,g(x, x)∂j∂iMf,g,m;µ(x, . . . , x) = 0.

Dividing both sides of this equation by ∂1Df,g(x, x) 6= 0 and using (27), for the second-order partial

derivative ∂j∂iMf,g,m;µ(x, . . . , x), we obtain the formula stated in (28). �

One of the most important particular case of the above theorem is when the d-variable family of means

is a family of weighted d-variable arithmetic means.

Corollary 5. Let (f, g) ∈ C1(I), let µ be a probability measure on the measurable space (T,A) and let

m ∈ C1(I
d × T ) be a measurable family of d-variable means given by

m(xxx, t) := λ1(t)x1 + · · ·+ λd(t)xd (xxx = (x1, . . . , xd) ∈ Id, t ∈ T ),

where λ1, . . . , λd : T → [0, 1] are measurable functions with λ1 + · · · + λd = 1. Then Mf,g,m;µ is

continuously differentiable on Id and, for all i ∈ {1, . . . , d} and x ∈ I ,

∂iMf,g,m;µ(x, . . . , x) = 〈λi, 1〉µ. (29)

If, in addition, (f, g) ∈ C2(I), let m ∈ C2(I
d × T ), then Mf,g,m;µ is twice continuously differentiable on

Id and, for all i, j ∈ {1, . . . , d} and x ∈ I ,

∂i∂jMf,g,m;µ(x, . . . , x) =
(

〈λi, λj〉µ − 〈λi, 1〉µ〈λj , 1〉µ
)∂21Df,g(x, x)

∂1Df,g(x, x)
. (30)

Proof. Observe that we have ∂im(xxx, t) = λi(t) and ∂i∂jm(xxx, t) = 0. By the boundedness of the mea-

surable function, it follows that ∂im is L1- and L2-type, and ∂i∂jm is L1-type at every point of Id.

Therefore, Theorem 4 applies, and formulas (27) and (28) reduce to (29) and (30), respectively. �

The particular case when T = [0, 1], d = 2, λ1(t) = t and λ2 = 1− t was considered by Losonczi and

Páles in the paper [20], where also the related local and global comparison problems were investigated.

The above Theorem 4 and Corollary 5 generalize the result of [20, Lemma 4].

The following lemma, which is an extension of [20, Lemma 3], will play an important role in estab-

lishing the necessary conditions for the (global) comparison of means. We recall that a sequence (νk) of

probability measures on T is said to converge weakly to a measure ν if, for all bounded Borel measurable

functions ϕ : T → R, we have

lim
k→∞

∫

T

ϕ(t) dνk(t) =

∫

T

ϕ(t) dν(t).

Lemma 6. Let (f, g) ∈ C1(I) and let (νk) be a sequence of probability measures on T weakly converging

to a measure ν, let (γk) be a null sequence of positive numbers in [0, 1] and let t0 ∈ T . Set µk :=
(1− γk)δt0 + γkνk for k ∈ N. Then

lim
k→∞

1

γ k

[

Mf,g,m;µk
(xxx)−m(xxx, t0)

]

=

∫

T
Df,g(m(xxx, t), m(xxx, t0)) dν(t)

∂1Df,g(m(xxx, t0), m(xxx, t0))
(xxx ∈ Id). (31)

Proof. Let xxx ∈ Id be a fixed vector. By the assumptions of the lemma, we have that µk converges to δt0
weakly. More generally, for an arbitrary bounded sequence of Borel measurable functions ϕk : T → R,
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which converges uniformly to ϕ0 : T → R as k → ∞, we get
∫

T

ϕk dµk(t) =

∫

T

ϕkd((1− γk)δt0 + γkνk)(t)

= (1− γk)

∫

T

ϕkdδt0(t) + γk

∫

T

ϕ0 dνk(t) + γk

∫

T

(ϕk − ϕ0) dνk(t)

−→
∫

T

ϕ0dδt0(t) = ϕ0(t0).

(32)

First, we are going to show that the sequence uk := Mf,g,m;µk
(xxx) converges to m(xxx, t0). We have that

min(xxx) ≤ uk ≤ max(xxx) for all k ∈ N. Hence it is sufficient to prove that every convergent subsequence

of (uk) converges to the same limit point. To show this, let (ukj) be any convergent subsequence of

(uk) such that ukj → u0 as j → ∞. Then, the sequence of Borel measurable functions ϕj(t) :=
Df,g(m(xxx, t), ukj) tends uniformly to the limit function ϕ0(t) := Df,g(m(xxx, t), u0). Thus, in view of

formula (32), we get

lim
j→∞

∫

T

Df,g(m(xxx, t), ukj) dµkj(t) = Df,g(m(xxx, t0), u0).

On the other hand, for all j, we have that
∫

T

Df,g(m(xxx, t), ukj) dµkj(t) = 0,

which implies that Df,g(m(xxx, t0), u0) is zero, i.e., u0 = m(xxx, t0). Hence uk → m(xxx, t0) as k → ∞.

Moreover, as k → ∞, we similarly obtain

1

γk

∫

T

Df,g(m(xxx, t), m(xxx, t0)) dµk(t)

=
1

γk

∫

T

Df,g(m(xxx, t), m(xxx, t0)) d((1− γk)δt0 + γkνk)(t)

=

∫

T

Df,g(m(xxx, t), m(xxx, t0)) dνk(t) −→
∫

T

Df,g(m(xxx, t), m(xxx, t0)) dν(t).

(33)

Taking Φk(u) :=
∫

T
Df,g(m(xxx, t), u) dµk(t) and applying the Lagrange mean value theorem for the

differentiable function Φk, for every k ∈ N, we can find a number ηk between uk and m(xxx, t0) such that

Φk(m(xxx, t0))− Φk(uk) = Φ′
k(ηk)(m(xxx, t0)− uk) (34)

Since Φk(uk) = 0, therefore it follows that

1

γk
Φk(m(xxx, t0)) = Φ′

k(ηk) ·
1

γk
(m(xxx, t0)− uk). (35)

Thus,
1

γk

∫

T

Df,g(m(xxx, t), m(xxx, t0)) dµk(t)

=

∫

T

∣

∣

∣

∣

f(m(xxx, t)) f ′(ηk)
g(m(xxx, t)) g′(ηk)

∣

∣

∣

∣

dµk(t) ·
1

γk

[

m(xxx, t0)−Mf,g,m;µk
(xxx)
]

.

(36)

Then, obviously, ηk converges to m(xxx, t0). By taking the limit of both sides of (36) as k → ∞ and using

(33) and (32), we get
∫

T

Df,g(m(xxx, t), m(xxx, t0)) dν(t)

= ∂1Df,g(m(xxx, t0), m(xxx, t0)) · lim
k→∞

1

γ k

[

Mf,g,m;µk
(xxx)−m(xxx, t0)

]

(37)
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By dividing both sides by ∂1Df,g(m(xxx, t0), m(xxx, t0)), we get

lim
k→∞

1

γ k

[Mf,g,m;µk
(xxx)−m(xxx, t0)] =

∫

T
Df,g(m(xxx, t), m(xxx, t0)) dν(t)

∂1Df,g(m(xxx, t0), m(xxx, t0))
. (38)

This completes the proof of the lemma. �

3. NECESSARY CONDITIONS, SUFFICIENT CONDITIONS FOR LOCAL COMPARISON OF MEANS

Our first result offers a necessary as well as a sufficient condition for the local comparison of means.

Given two d-variable means M,N : Id → I , we say that M is locally smaller than N at x0 ∈ I if there

exists a neighborhood U ⊆ I of x0 such that

M(xxx) ≤ N(xxx) (39)

holds for all xxx ∈ Ud. The case d = 1 being trivial, we always assume that d ≥ 2 holds in the subsequent

considerations.

Theorem 7. Let M,N : Id → I be d-variable means such that M is locally smaller than N at a point

x0 ∈ I . Assume that M and N are partially differentiable at the diagonal point (x0, . . . , x0) ∈ Id. Then,

for x = x0 and for all i ∈ {1, . . . , d},

∂iM(x, . . . , x) = ∂iN(x, . . . , x). (40)

If, in addition,M andN are twice differentiable at (x0, . . . , x0) ∈ Id, then the symmetric (d−1)×(d−1)-
matrix

(

∂i∂jN(x0, . . . , x0)− ∂i∂jM(x0, . . . , x0)
)d−1

i,j=1
(41)

is positive semidefinite.

On the other hand, if, for some x0 ∈ I , the equality (40) holds for all i ∈ {1, . . . , d} and for all x in

a neighborhood of x0, furthermore, M and N are twice continuously differentiable at (x0, . . . , x0) and

the symmetric (d− 1)× (d− 1)-matrix given by (41) is positive definite, then M is locally smaller than

N at x0.

Proof. Assume that M is locally smaller than N at x0 ∈ I , i.e., (39) holds for all xxx ∈ Ud in a

neighborhood U ⊆ I of x0. Assume that M and N are partially differentiable at the diagonal point

(x0, . . . , x0) ∈ Id. Define the function D : Ud → R by

D(xxx) = N(xxx)−M(xxx) (xxx ∈ Ud).

ThenD is nonnegative by inequality (39) and attains its minimum (which equals zero) atxxx = (x0, . . . , x0).
Therefore ∂iD(x0, . . . , x0) = 0 for all i ∈ {1, . . . , d}, which yields (40).

If, in addition, M and N are twice differentiable at (x0, . . . , x0) ∈ Id. Then D′′(x0, . . . , x0) =
(

∂i∂jD(x0, . . . , x0)
)d

i,j=1
is a positive semidefinite symmetric d×d-matrix. By the well-known necessary

and sufficient conditions of positive semidefiniteness (cf. [6]), this implies that the symmetric (d− 1)×
(d− 1)-matrix

(

∂i∂jD(x0, . . . , x0)
)d−1

i,j=1
is also positive semidefinite.

Now let x0 ∈ I and assume that there exists a neighborhoodU ⊆ I of x0 such that the meansM andN
are twice differentiable on Ud, their second-order partial derivatives are continuous at xxx0 = (x0, . . . , x0),
the equality (40) holds for all x ∈ U and for all i ∈ {1, . . . , d}, and the symmetric (d − 1) × (d − 1)-

matrix-valued function A(xxx) :=
(

∂i∂jD(xxx)
)d−1

i,j=1
is positive definite at xxx0.

By Sylvester’s criterion, A(xxx0) is positive definite if and only if all of its leading principal minors

are positive. By the continuity of the second-order partial derivatives, A is continuous at xxx0, hence

its leading principal minors are also continuous at xxx0. Therefore, there is a neighborhood V ⊆ Id of

xxx0 where these leading principal minors are positive and hence, at the points of V , A is also positive
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definite. By shrinking the neighborhood U of x0 if necessary, we may assume that U is an interval and

Ud ⊆ V . Hence A(xxx) is positive definite for all xxx ∈ Ud.

In order to show that the inequality (39) holds for all xxx ∈ Ud, let xxx = (x1, . . . , xd) ∈ Ud be fixed and

apply the Taylor Mean Value Theorem to the function

(u1, . . . , ud−1) 7→ D(u1, . . . , ud−1, xd)
(

(u1, . . . , ud−1) ∈ Ud−1
)

at the base point (xd, . . . , xd) ∈ Ud−1. In view of this theorem, there exists θ ∈ [0, 1], such that

D(x1, . . . ,xd−1, xd)

=D(xd, . . . , xd, xd) +

d−1
∑

i=1

∂iD(xd, . . . , xd, xd)(xi − xd)

+
1

2

d−1
∑

i=1

d−1
∑

j=1

∂i∂jD(θx1 + (1− θ)xd, . . . , θxd−1 + (1− θ)xd, xd)(xi − xd)(xj − xd).

(42)

We have that D(xd, . . . , xd, xd) =M(xd, . . . , xd, xd)−N(xd, . . . , xd, xd) = xd − xd = 0, equation (40)

applied for x = xd implies that ∂iD(xd, . . . , xd, xd) = 0 for all i ∈ {1, . . . , d− 1}. Finally, A is positive

definite at the point (θx1 + (1− θ)xd, . . . , θxd−1 + (1− θ)xd, xd) ∈ Ud, hence the last term on the right

hand side of (42) is nonnegative. Thus (42) shows that D(x1, . . . , xd−1, xd) ≥ 0, which implies that M
is smaller than N on Ud. �

Remark 8. We note that, for the sufficiency part of the theorem, the standard 2nd-order sufficient con-

dition for the local minimum cannot be applied. The reason is that the matrix
(

∂i∂jN(xxx0)− ∂i∂jM(xxx0)
)d

i,j=1
(43)

can never be positive definite. Indeed, if M is locally smaller than N at x0, then M is locally smaller

than N at every x in a neighborhood U of x0 and hence (40) holds for all x ∈ U and i ∈ {1, . . . , d}.

Differentiating (40) with respect to x at x0, we obtain, for all i ∈ {1, . . . , d}, that

d
∑

j=1

∂j∂iN(xxx0) =

d
∑

j=1

∂j∂iM(xxx0).

This shows that the sum of the columns of the matrix in (43) is the zero vector. Therefore, the determinant

of this matrix is zero, showing that this matrix is not positive definite.

Corollary 9. Let (f, g), (h, k) ∈ C1(I), let m ∈ C1(I
d × T ) and n ∈ C1(I

d × S) be measurable

families of means, and let µ and ν be probability measures on the measurable spaces (T,A) and (S,B),
respectively. Suppose that Mf,g,m;µ is locally smaller than Mh,k,n;ν at x0 ∈ I . Then, there exists a

neighborhood U ⊆ I of x0 such that for x ∈ U and for all i ∈ {1, . . . , d},

〈∂im, 1〉µ(x, . . . , x) = 〈∂in, 1〉ν(x, . . . , x). (44)

If, in addition, (f, g), (h, k) ∈ C2(I), m ∈ C2(I
d × T ), and n ∈ C2(I

d × S), then the (d− 1)× (d− 1)-
matrix whose (i, j)th entry is given by

(

〈∂in, ∂jn〉ν − 〈∂in, 1〉ν〈∂jn, 1〉ν
)

(xxx0)
∂21Dh,k(x0, x0)

∂1Dh,k(x0, x0)
+ 〈∂i∂jn, 1〉ν(xxx0)

−
(

〈∂im, ∂jm〉µ − 〈∂im, 1〉µ〈∂jm, 1〉µ
)

(xxx0)
∂21Df,g(x0, x0)

∂1Df,g(x0, x0)
− 〈∂i∂jm, 1〉µ(xxx0)

(45)

for i, j ∈ {1, . . . , d− 1} is positive semidefinite.

On the other hand, if (f, g), (h, k) ∈ C2(I), m ∈ C2(I
d × T ), n ∈ C2(I

d × S), and (44) holds for all
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i ∈ {1, . . . , d} and for all x in a neighborhood of x0 and the (d − 1) × (d − 1)-matrix whose (i, j)th
entry is given by (45) is positive definite, then Mf,g,m;µ is locally smaller than Mh,k,n;ν at x0 ∈ I .

Proof. If (f, g), (h, k) ∈ Ck(I), m ∈ Ck(I
d × T ), and n ∈ Ck(I

d × S), then Theorem 4 implies that

Mf,g,m;µ and Mh,k,n;ν are k-times continuously differentiable on Id in the cases k ∈ {1, 2}.

Assume that Mf,g,m;µ is locally smaller than Mh,k,n;ν at x0 ∈ I . Then, by Theorem 7, there exists a

neighborhood U ⊆ I of x0 such that for x ∈ U and for all i ∈ {1, . . . , d},

∂iMf,g,m;µ(x, . . . , x) = ∂iMh,k,n;ν(x, . . . , x).

Applying formula (27) of Theorem 4, the necessity of condition (44) follows.

In addition, if the second-order regularity assumptions are satisfied, then, by Theorem 7, the (d−1)×
(d− 1)-matrix whose (i, j)th entry is given by

(

∂i∂jMh,k,n;ν(x0, . . . , x0)− ∂i∂jMf,g,m;µ(x0, . . . , x0)
)d−1

i,j=1

for i, j ∈ {1, . . . , d − 1} is positive semidefinite. Now the application of formula (28) of Theorem 4

yields the necessity of condition (45).

Now, under the second-order regularity assumptions suppose that (44) holds for all i ∈ {1, . . . , d} and

for all x in a neighborhood of x0 and the (d − 1)× (d− 1)-matrix whose (i, j)th entry is given by (45)

is positive definite. Since Mf,g,m;µ and Mh,k,n;ν are twice continuously differentiable and by Theorem 7,

we have Mf,g,m;µ is locally smaller than Mh,k,n;ν at x0 ∈ I . �

In the special setting when T = [0, 1], d = 2, m is given by m(xxx, t) := tx1 + (1 − t)x2, the above

Corollary 9 simplifies to the result of [20, Theorem 5]. Now we consider the particular case when the

families of means m and n as well as the measures µ and ν coincide.

Corollary 10. Let (f, g), (h, k) ∈ C2(I), let m ∈ C2(I
d × T ) be a measurable family of means, and let

µ be a probability measure on the measurable space (T,A). Let x0 ∈ I and assume that there exists

i ∈ {1, . . . , d − 1} such that, the map t 7→ ∂im(x0x0x0, t) is not µ-almost everywhere constant on T . If

Mf,g,m;µ is locally smaller than Mh,k,m;µ at x0 ∈ I , then

∂21Df,g(x0, x0)

∂1Df,g(x0, x0)
≤ ∂21Dh,k(x0, x0)

∂1Dh,k(x0, x0)
. (46)

On the other hand, if the functions

t 7→ ∂im(xxx0, t)− 〈∂im, 1〉µ(xxx0) (i ∈ {1, . . . , d− 1})
are µ-linearly independent and (46) holds with strict inequality, then Mf,g,m;µ is locally smaller than

Mh,k,m;µ at x0 ∈ I .

Proof. Assume that Mf,g,m;µ is locally smaller than Mh,k,m;µ at x0 ∈ I . Then, by Corollary 9, the

(d− 1)× (d− 1)-matrix whose (i, j)th entry is given by

(

〈∂im, ∂jm〉µ − 〈∂im, 1〉µ〈∂jm, 1〉µ
)

(xxx0) ·
(

∂21Dh,k(x0, x0)

∂1Dh,k(x0, x0)
− ∂21Df,g(x0, x0)

∂1Df,g(x0, x0)

)

(47)

for i, j ∈ {1, . . . , d− 1} is positive semidefinite at x0 ∈ I . This implies that all the diagonal elements of

this matrix are nonnegative, i.e., for all i ∈ {1, . . . , d− 1},

(

〈∂im, ∂im〉µ − 〈∂im, 1〉µ〈∂im, 1〉µ
)

(xxx0) ·
(

∂21Dh,k(x0, x0)

∂1Dh,k(x0, x0)
− ∂21Df,g(x0, x0)

∂1Df,g(x0, x0)

)

≥ 0. (48)

If, for some i ∈ {1, . . . , d− 1}, the map t 7→ ∂im(x0x0x0, t) is not µ-almost everywhere constant, then

µ({t | ∂im(xxx0, t) 6= 〈∂im, 1〉µ(xxx0)}) > 0,
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whence
(

〈∂im, ∂im〉µ − 〈∂im, 1〉µ〈∂im, 1〉µ
)

(xxx0) =

∫

T

(

∂im(x0x0x0, t)− 〈∂im, 1〉µ(xxx0)
)2

dµ(t) > 0. (49)

Inequality (49), combined with (48), implies that

∂21Dh,k(x0, x0)

∂1Dh,k(x0, x0)
− ∂21Df,g(x0, x0)

∂1Df,g(x0, x0)
≥ 0,

i.e, the inequality (46) holds.

Now assume that the functions

t 7→ ∂im(xxx0, t)− 〈∂im, 1〉µ(xxx0) (i ∈ {1, . . . , d− 1}) (50)

are µ-linearly independent and (46) holds with strict inequality. It is clear that the (d−1)×(d−1)-matrix

whose (i, j)th entry is given by
(

〈∂im, ∂jm〉µ−〈∂im, 1〉µ〈∂jm, 1〉µ
)

(xxx0)

=

∫

T

(

∂im(x0x0x0, t)− 〈∂im, 1〉µ(xxx0)
)(

∂jm(x0x0x0, t)− 〈∂jm, 1〉µ(xxx0)
)

dµ(t)
(51)

for i, j ∈ {1, . . . , d − 1} is a so-called Gram matrix which is always positive semmidefinite (see [6]).

Since the functions (50) are µ-linearly independent it follows that the Gram matrix with entries given by

(51) is positive definite. This result, combined with the strict inequality (46), implies that the (d − 1)×
(d− 1)-matrix whose (i, j)th entry is given by (47) is positive definite at x0 ∈ I . Hence, by Corollary 9,

Mf,g,m;µ is locally smaller than Mh,k,m;µ at x0 ∈ I . �

Now we formulate a particular case concerning generalized Gini means when the partial derivatives

can be calculated more explicitly. Indeed, if, for given p, q ∈ R, the functions f and g are given by

equations (10), then

Df,g(x, y) = ∆p,q(x, y) := yp+qδp,q

(x

y

)

(x, y ∈ R+), (52)

where

δp,q(t) :=







tp − tq

p− q
if p 6= q

tp ln t if p = q

(t ∈ R+). (53)

Then, one can easily get that δ′p,q(1) = 1 and δ′′p,q(1) = p+ q − 1, whence

∂1∆p,q(x, x) = xp+q−1 and ∂21∆p,q(x, x) = (p+ q − 1)xp+q−2.

Therefore,

∂21Df,g(x, x)

∂1Df,g(x, x)
=
∂21∆p,q(x, x)

∂1∆p,q(x, x)
=

(p+ q − 1)xp+q−2

xp+q−1
= (p+ q − 1)

1

x
(x ∈ R+). (54)

Corollary 11. Assume that I ⊆ R+. Let p, q, r, s ∈ R, let m ∈ C2(I
d × T ) and n ∈ C2(I

d × S) be

measurable families of means, and let µ and ν be probability measures on the measurable spaces (T,A)
and (S,B), respectively. Suppose that Gp,q,m;µ is locally smaller than Gr,s,n;ν at x0 ∈ I . Then, there

exists a neighborhood U ⊆ I of x0 such that for x ∈ U , for all i ∈ {1, . . . , d}, (44) holds. In addition,

the (d− 1)× (d− 1)-matrix whose (i, j)th entry is given by

(

〈∂in, ∂jn〉ν − 〈∂in, 1〉ν〈∂jn, 1〉ν
)

(xxx0)(p+ q − 1)
1

x0
+ 〈∂i∂jn, 1〉ν(xxx0)

−
(

〈∂im, ∂jm〉µ − 〈∂im, 1〉µ〈∂jm, 1〉µ
)

(xxx0)(r + s− 1)
1

x0
− 〈∂i∂jm, 1〉µ(xxx0)

(55)
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for i, j ∈ {1, . . . , d− 1} is positive semidefinite.

On the other hand, if (44) holds for all i ∈ {1, . . . , d} and for all x in a neighborhood of x0 and the

(d− 1)× (d− 1)-matrix whose (i, j)th entry is given by (55) is positive definite, then Gp,q,m;µ is locally

smaller than Gr,s,n;ν at x0 ∈ I .

Proof. The proof is a direct consequence of Corollary 9 and formula (54). �

Corollary 12. Assume that I ⊆ R+. Let p, q, r, s ∈ R, let m ∈ C2(I
d × T ) be a measurable family of

means, and let µ be a probability measure on the measurable space (T,A). Let x0 ∈ I and assume that

there exists i ∈ {1, . . . , d − 1} such that, the map t 7→ ∂im(x0x0x0, t) is not µ-almost everywhere constant

on T . If Gp,q,m;µ is locally smaller than Gr,s,m;µ at x0 ∈ I , then

p+ q ≤ r + s. (56)

On the other hand, if x0 ∈ I , the functions

t 7→ ∂im(xxx0, t)− 〈∂im, 1〉µ(xxx0) (i ∈ {1, . . . , d− 1})

are µ-linearly independent and (56) holds with strict inequality, then Gp,q,m;µ is locally smaller than

Gr,s,m;µ at x0 ∈ I .

Proof. Applying Corollary 10 and using formula (54), the result follows immediately. �

4. NECESSARY AND SUFFICIENT CONDITIONS FOR GLOBAL COMPARISON OF MEANS

In the rest of the paper, we consider the case when µ = ν and m = n. In what follows, we give

a condition containing two independent variables for (12) which does not involve the measure µ and

assumes first-order continuous differentiability of the Chebyshev system. In the special setting when

T = [0, 1], d = 2, m is given by m(xxx, t) := tx1 + (1 − t)x2, the following theorem simplifies to the

result of [20, Theorem 6].

Theorem 13. Let (f, g), (h, k) ∈ C1(I) be Chebyshev systems, let T be a compact and connected topo-

logical space and let m : Id × T → R be a continuous family of d-variable means. Define the set Um

by

Um := {(u, v) | ∃xxx ∈ Id : u, v ∈ [m(xxx), m(xxx)]} =
⋃

xxx∈Id

[m(xxx), m(xxx)]2. (57)

The following three assertions are equivalent:

(i) for all Borel probability measures µ on T ,

Mf,g,m;µ(xxx) ≤Mh,k,m;µ(xxx) (xxx ∈ Id); (58)

(ii) there exists a nullsequence (γj) of positive numbers in [0, 1] such that, for all t0, t ∈ T and for all

j ∈ N,

Mf,g,m;(1−γj)δt0+γjδt(xxx) ≤Mh,k,m;(1−γj)δt0+γjδt(xxx) (xxx ∈ Id); (59)

(iii) for all (u, v) ∈ Um,

Df,g(u, v)

∂1Df,g(v, v)
≤ Dh,k(u, v)

∂1Dh,k(v, v)
. (60)

Proof. The implication (i)=⇒(ii) is obvious.

To prove (ii)=⇒(iii), let (u, v) ∈ Um. Then there exists xxx ∈ Id such that u, v ∈ [m(xxx), m(xxx)]. Due

to the compactness and connectedness of T , we have that (6) holds. Therefore, there exits t0, t ∈ T
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such that u = m(xxx, t) and v = m(xxx, t0). Applying Lemma 6 twice with the measure sequence µj :=
(1− γj)δt0 + γjδt and using inequality (58), we get

Df,g(u, v)

∂1Df,g(v, v)
=

Df,g(m(xxx, t), m(xxx, t0))

∂1Df,g(m(xxx, t0), m(xxx, t0))
= lim

j→∞

1

γj

[

Mf,g,m;µj
(xxx)−m(xxx, t0)

]

≤ lim
j→∞

1

γj

[

Mh,k,m;µj
(xxx)−m(xxx, t0)

]

=
Dh,k(m(xxx, t), m(xxx, t0))

∂1Dh,k(m(xxx, t0), m(xxx, t0))
=

Dh,k(u, v)

∂1Dh,k(v, v)
,

which proves (60).

For the proof of (iii)=⇒(i), let xxx ∈ Id be arbitrarily fixed. In view of the inclusion Mh,k,m;µ(xxx) ∈
[m(xxx), m(xxx)] and the equality (6), there exits t0 ∈ T such that

m(xxx, t0) :=Mh,k,m;µ(xxx).

Taking any t ∈ T and applying inequality (60) for u := m(xxx, t) and v := m(xxx, t0), we get

Df,g(m(xxx, t), m(xxx, t0))

∂1Df,g(m(xxx, t0), m(xxx, t0))
≤ Dh,k(m(xxx, t), m(xxx, t0))

∂1Dh,k(m(xxx, t0), m(xxx, t0))
.

Integrating this inequality with respect to the variable t ∈ T , we get
∫

T
Df,g

(

m(xxx, t),Mh,k,m;µ(xxx)
)

dµ(t)

∂1Df,g

(

Mh,k,m;µ(xxx),Mh,k,m;µ(xxx)
) ≤

∫

T
Dh,k

(

m(xxx, t),Mh,k,m;µ(xxx)
)

dµ(t)

∂1Dh,k

(

Mh,k,m;µ(xxx),Mh,k,m;µ(xxx)
) . (61)

By the definition of the value Mh,k,m;µ(xxx), the numerator of the right hand side of this inequality is zero,

whence we obtain
∫

T
Df,g

(

m(xxx, t),Mh,k,m;µ(xxx)
)

dµ(t)

∂1Df,g

(

Mh,k,m;µ(xxx),Mh,k,m;µ(xxx)
) ≤ 0.

If ∂1Df,g(x, x) < 0 for all x ∈ I , then
∫

T

Df,g

(

m(xxx, t),Mh,k,m;µ(xxx)
)

dµ(t) ≥ 0 (62)

and also (f, g) is a positive Chebyshev system, hence, by Lemma 1, the above inequality implies that

(58) holds. In the other possible case, i.e., when ∂1Df,g(x, x) > 0 for all x ∈ I , then inequality (62) is

reversed but (f, g) is a negative Chebyshev system, thus by Lemma 1 again, inequality (58) follows. �

Having a look at the proof, one can see that the compactness and connectedness of T was only used

to prove implication (ii)=⇒(iii).

Corollary 14. Assume that I ⊆ R+ and p, q, r, s ∈ R. Let T be a compact and connected topological

space and let m : Id × T → R be a continuous family of means. Define the constant m∗ ∈ [1,+∞] by

m∗ := sup
xxx∈Id

m(xxx)

m(xxx)
.

The following three assertions are equivalent:

(i) for all Borel probability measures µ on T ,

Gp,q,m;µ(xxx) ≤ Gr,s,m;µ(xxx) (xxx ∈ Id); (63)

(ii) there exists a null sequence (γj) of positive numbers in [0, 1] such that, for all t0, t ∈ T and for all

j ∈ N,

Gp,q,m;(1−γj)δt0+γjδt(xxx) ≤ Gr,s,m;(1−γj)δt0+γjδt(xxx) (xxx ∈ Id); (64)

(iii)

δp,q(t) ≤ δr,s(t)
(

t ∈
]

(m∗)−1, m∗
[)

; (65)
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(iv) In the case m∗ = +∞,

min(p, q) ≤ min(r, s) and max(p, q) ≤ max(r, s), (66)

while in the case m∗ < +∞,

δp,q
(

(m∗)−1
)

≤ δr,s
(

(m∗)−1
)

, δp,q
(

m∗
)

≤ δr,s
(

m∗
)

, and p+ q ≤ r + s. (67)

Proof. Applying Theorem 13 and using notations introduced in (52) and (53) imply that conditions (63)

and (64) are equivalent to the inequality

∆p,q(v, u)

∂1∆p,q(u, u)
≤ ∆r,s(v, u)

∂1∆r,s(u, u)
((u, v) ∈ Um),

where the set Um is defined in (57). This inequality can be rewritten as

vδp,q

(u

v

)

≤ vδr,s

(u

v

)

((u, v) ∈ Um). (68)

Observe that
]

(m∗)−1, m∗
[

⊆
{u

v
: (u, v) ∈ Um

}

⊆
[

(m∗)−1, m∗
]

. (69)

Indeed, if t ∈
]

(m∗)−1, m∗
[

and t ≥ 1, then t < m∗, hence there exits xxx ∈ Id such that t < m(xxx)
m(xxx)

. Then,

with v = m(xxx), u = tm(xxx), we have that t = u
v

and u, v ∈ [m(xxx), m(xxx)]. Therefore t is of the form u
v

for some (u, v) ∈ Um. A similar argument yields for t ≤ 1 a similar representation. This proves the first

inclusion.

For the second inclusion, observe that if (u, v) ∈ Um, then, for some xxx ∈ Id, we have u, v ∈
[m(xxx), m(xxx)]. Hence

(m∗)−1 ≤ m(xxx)

m(xxx)
≤ u

v
≤ m(xxx)

m(xxx)
≤ m∗

Therefore, in view of the inclusions in (69), inequality (53) is equivalent to condition (65).

To show the equivalence of condition (iv) to the previous ones, we have to distinguish two cases. If

m∗ = +∞, then (m∗)−1 = 0, therefore (iii) can be rewritten as

δp,q(t) ≤ δr,s(t)
(

t ∈ ]0,∞[
)

.

This inequality is known to be equivalent (cf. [10]) to the comparison inequality

Gp,q(xxx) ≤ Gr,s(xxx) (d ∈ N, xxx ∈
]

0,∞[d),

of Gini means (with arbitrary many variables over the interval ]0,∞[). In view of the result [10, Satz

5], the above inequality is characterized by the condition (66). Therefore (iii) is equivalent to (iv) in this

case.

Now consider the casem∗ < +∞. Then the inequality in (iii) is equivalent to the comparison inequal-

ity

Gp,q(xxx) ≤ Gr,s(xxx) (d ∈ N, xxx ∈
]

1, m∗[d),

of Gini means (with arbitrary many variables over the interval ]1, m∗[). Using the results of the papers

[15, Theorem 7] or [24], it follows that the above inequality is characterized by (67), which implies that

(iii) is equivalent to (iv) also in this case.

This completes the proof of the corollary. �
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5. NECESSARY AND SUFFICIENT CONDITIONS FOR THE LOCAL AND GLOBAL COMPARISON OF

GENERALIZED QUASI-ARITHMETIC MEANS

In the next result we offer 6 equivalent conditions for the comparison of d-variable generalized quasi-

arithmetic means. The interesting feature of this result is the equivalence of the global and local compa-

rability.

Theorem 15. Let f, h : I → R be twice continuously differentiable functions with non-vanishing first

derivatives, and let m ∈ C2(I
d×T ) be a measurable family of d-variable means. Let µ0 be a probability

measure such that, for all x0 ∈ I , there exists i ∈ {1, . . . , d − 1} such that t 7→ ∂im(xxx0, t) is not

µ0-almost everywhere constant on T . The following assertions are equivalent:

(i) for all Borel probability measures µ on T ,

Mf,1,m;µ(xxx) ≤Mh,1,m;µ(xxx) (xxx ∈ Id); (70)

(ii)

Mf,1,m;µ0
(xxx) ≤Mh,1,m;µ0

(xxx) (xxx ∈ Id);

(iii) for all x0 ∈ I , there exists a neighborhood U ⊆ I of x0 such that

Mf,1,m;µ0
(xxx) ≤Mh,1,m;µ0

(xxx) (xxx ∈ Ud);

(iv) for all x ∈ I ,
f ′′(x)

f ′(x)
≤ h′′(x)

h′(x)
; (71)

(v) the function h ◦ f−1 is convex (concave) on f(I) provided that f is increasing (decreasing);

(vi) for all (u, v) ∈ I2,
f(u)− f(v)

f ′(v)
≤ h(u)− h(v)

h′(v)
. (72)

Proof. The implications (i)=⇒(ii) and (ii)=⇒(iii) are trivial.

To prove (iii)=⇒(iv), will apply Corollary 10. Let x0 ∈ I be arbitrary. Then (iii) asserts that Mf,1,m;µ0

is locally smaller than Mh,1,m;µ0
at x0 and we also have an index i ∈ {1, . . . , d − 1} such that t 7→

∂im(xxx0, t) is not µ0-almost everywhere constant on T . Therefore, by Corollary 10, inequality (46)

follows with the functions g := k := 1. It is immediate to see that (46) implies (71) for x = x0.

Now assume (iv) and that f is increasing (the nondecreasing case is analogous). Then g := h ◦ f−1 is

twice differentiable on f(I). By (71), the ratio h′

f ′
is a nondecreasing function. Therefore, g′ = h′◦f−1

f ′◦f−1 is

also nondecreasing, which proves that g′′ ≥ 0. Hence g must be convex on f(I), i.e., (v) holds.

If (v) is valid and f is increasing, then the convexity of g := h ◦ f−1 implies that

g(y) + g′(y)(x− y) ≤ g(x)

for all x, y ∈ f(I). With the substitution x = f(u), y = f(v), where u, v ∈ I , the above inequality

reduces to (72), proving (vi).

Finally, assume that (vi) holds. Observe that then (60) is valid for all (u, v) ∈ Um with the functions

g := k := 1. Thus, the condition (iii) of Theorem 13 is satisfied, whence it follows that the mean

Mf,1,m;µ0
is (globally) smaller than Mh,1,m;µ0

on Id, i.e., (70) holds. �

As an immediate consequence, we obtain the characterization of the comparison among generalized

Hölder means.

Corollary 16. Let I ⊆ R+, p, q ∈ R, and let m ∈ C2(I
d × T ) be a measurable family of d-variable

means. Let µ0 be a probability measure such that, for all x0 ∈ I , there exists i ∈ {1, . . . , d−1} such that

t 7→ ∂im(xxx0, t) is not µ0-almost everywhere constant on T . The following assertions are equivalent:
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(i) for all Borel probability measures µ on T ,

Gp,0,m;µ(xxx) ≤ Gq,0,m;µ(xxx) (xxx ∈ Id);

(ii)

Gp,0,m;µ0
(xxx) ≤ Gq,0,m;µ0

(xxx) (xxx ∈ Id);

(iii) for all x0 ∈ I , there exists a neighborhood U ⊆ I of x0 such that

Gp,0,m;µ0
(xxx) ≤ Gq,0,m;µ0

(xxx) (xxx ∈ Ud);

(iv) p ≤ q.

Proof. By taking f(x) := xp if p 6= 0 and f(x) := log(x) if p = 0 and h(x) := xq if q 6= 0 and

h(x) := log(x) if q = 0 and applying Theorem 15 the result follows immediately because conditions (i),

(ii) and (iii) are equivalent to the same conditions of Theorem 15, and p ≤ q is equivalent to condition

(iv) of Theorem 15. �
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