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6École Polytechnique de Montréal, C.P. 6079 succ. Centre-ville,
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Abstract

The conditions of existence of extra mass flux in single component
dissipative non-relativistic fluids are clarified. By considering Galilean
invariance we show that if total mass flux is equal to total momentum
density, then mass, momentum, angular momentum and booster (center-
of-mass) are conserved. However, these conservation laws may be fulfilled
also by other means. We show an example of weakly non-local hydrody-
namics where the conservation laws are satisfied as well although the total
mass flux is different from momentum density.

1 Introduction

Mass flux arising in evolution equations of fluid dynamics equals momentum
density plus, possibly, other terms. Our objective in this paper is to discuss the
other terms from the point of view of Galilean invariance, Hamiltonian structure
and kinetic theory. The general discussion is then illustrated in the context of
weakly nonlocal hydrodynamics. Investigations of mass flux have been initiated

1

http://arxiv.org/abs/1510.03900v4


in [1, 2, 3, 4, 5] and continued more recently in [6, 7, 8, 9, 10, 11]. Extra mass
flux from [2] is discussed in Appendix B.

In [9] the conclusion was reached that extra mass fluxes are not thermo-
dynamically admissible. We analyze the admissibility requirements used in [9]
from a different perspective and in a different framework. Galilean invariance in
the continuum time-space four-formulation leads to nearly the same conclusion,
namely that the difference between mass flux and momentum density should
be zero or in a special form such that booster and angular momentum density
are conserved. A model of weakly non-local hydrodynamics (beyond the scope
of the models considered in [9]) is identified to demonstrate the special form.
Mass flux thus does not need to be equal to momentum density.

A similar problem is related to the choice of flow-frames in relativistic fluids
[12], where the difference between the particle and energy-momentum flows is
more evident. According to the general consensus the velocity field of a fluid
may be chosen conveniently and fixed to the particles (Eckart frame) to the
energy (Landau-Lifshitz frame) or in any other reasonable manner. However,
the generic instability of dissipative relativistic fluids seems to be related to the
choice of flow-frames [13, 14, 15, 16, 17, 12].

In a non-relativistic theory the equations and physical quantities are relative.
The reference-frame dependency or independence is investigated by transforma-
tion rules between the physical quantities, similarly as in [18], in contrast to
the covariant physical quantities and governing equations of a relativistic the-
ory (compare them e.g. in [19]). Moreover, the related question of material
frame indifference introduces confusing terminology because of the many differ-
ent formulations and concepts [20]. Therefore, in this paper we explicitly write
whenever a physical quantity or equation is independent of reference frames or
independent of flow-frames. When both properties are fulfilled, then we call the
quantity absolute.

A flow-frame thus characterizes velocity of the fluid. The velocity is, how-
ever, still relative as it is different for each inertial observer. Fixing an inertial
observer then means choosing a particular reference frame. A physical quantity
transforms by changing inertial reference frames by Galilean transformations in
accordance with its tensorial properties. Only when both reference and flow-
frames are specified, the evolution equations gain a concrete form.

In the following we give the balance equations and thermostatics, and we
calculate the entropy production of single component Galilean relativistic fluids
following from an absolute theory [21]. We use the well known relative fields,
the self-diffusion flux and self-momentum density, which follow from the general
treatment. Then flow-frame of the fluid is fixed to the self-momentum field, and
we recover the well known form of the substantial balances except the presence
of an extra mass flux (interpreted as self-diffusion). The Galilean transformation
rules are presented and their application to the balances and the thermodynamic
relations show the consistency of the treatment.

In this paper we show that extra mass flux cannot be eliminated by changing
the reference frame or the flow frame of the usual relative quantities of fluid me-
chanics. Its presence is also consistent with angular momentum conservation.
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However, the difference of momentum density and mass flux leads to the viola-
tion of booster conservation, the requirement of uniform center of mass motion,
unless the extra mass flux is in a special form. This way, one can simplify the
treatment of [9], clarify the conditions of its appearance and show examples of
extra mass flux in various theoretical frameworks.

Apart from the perspective of Galilean invariance, we also follow the Hamil-
tonian structure of the equations. An extra velocity-dependent term can be
added to the free energy which causes also an extra mass flux and extra terms
in the pressure tensor.

Finally, we show that extra mass flux naturally emerges in non-local kinetic
theory.

2 Extra mass flux

Three independent arguments, one based on the Galilean invariance (in Section
2.1), the other on Hamiltonian structure (in Section 2.2) and nonlocal kinetic
theory (Sec. 2.3), point out to the possibility of a more complex mass flux.

2.1 Galilean relativistic fluid mechanics: transformation

of relative fields, balances

The starting point of the reference frame independent theory is that the basic
densities and their fluxes form a single third order symmetric four-tensor, the
mass-momentum-energy density-flux tensor Zαβγ , where α, β, γ ∈ {0, 1, 2, 3}
and Zαβγ = Zαγβ. In a particular reference frame the tensor can be written in
the following form:

Z =

((
ρ p

p e

) (
j P

P q

))

Zαβγ =

((
ρ pi

pj eji

) (
jk P ki

P kj qkji

))

(1)

Here the mass, momentum and energy densities are ρ, pi and eij and the cor-
responding fluxes are jk, P ki and qkji, where i, j, k ∈ {1, 2, 3}. The energy
density and the energy flux are related to the traces of the corresponding ten-
sors e = ejj/2, q

k = qkjj /2 [21]. We have used a notation with indexes to indicate
the proper tensorial properties and also repeated the formula without indexes to
indicate the coordinate free (but reference and flow-frame dependent) nature of
the physical quantities. In the following we will use both, whenever the correct
interpretation of the tensorial properties require. The Galilean transformation
rules of the different relative quantities uniquely follow from the four-vector
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representation [21]:

ρ′ = ρ, (2a)

j′ = j+ ρv, j′i = ji + ρvi, (2b)

p′ = p+ ρv, p′i = pi + ρvi, (2c)

e′ = e+ p · v +
ρ

2
v2, e′ = e+ pkvk +

ρ

2
v2, (2d)

P′ = P+ ρvv + vp+ jv, P ′ij = P ij + ρvivj + vipk + jivj , (2e)

q′ = q+ v
(

e+ p · v +
ρ

2
v2
)

+P · v + j
v2

2
, (2f)

q′i = qi + vi
(

e+ pkvk +
ρ

2
v2
)

+ P ikvk + ji
v2

2
. (2g)

Here v is the relative velocity field of the fluid related to an external inertial
observer. The primed quantities at the left hand side are related to an inertial
reference frame, those are the observed densities and fluxes, corresponding to
the so called ’total’ quantities. These are expressed by the co-moving quan-
tities of the local rest frame of the fluid. The traditional ’conductive parts’,
ρvv for the pressure and ev for the heat flux, here are parts of the complete
Galilean transformation rules. These transformation rules are apparently more
complicated than the usual ones for the fluxes q and P. It is remarkable that the
transformation formula of the energy corresponds to the relation of total, kinetic
and internal energies when p = 0. We emphasize again that the transforma-
tion rules are rigorously derived in the frame independent formulation [21]. An
other way of deriving transformation rules is requiring the Galilean invariance
of the complete system of balances (6)-(8), considering that the energy balance
is the trace of a second order tensorial balance according to the requirements of
non-relativistic kinetic theory [22, 19].

Frame independent treatment of the basic balances of a single component
Galilean relativistic fluid leads to [21]

ρ̇+ ρ∇·v +∇ · j = 0, ρ̇+ ρ∂kv
k + ∂kj

k = 0, (3)

ṗ+ p∇·v + ρv̇ + j·∇v +∇·P = 0, ṗi + pi∂kv
k + ρv̇i + jk∂kv

i + ∂kP
ki = 0i,

(4)

ė+ e∇·v+∇·q+ p·v̇+P : (∇v) = 0, ė + e∂kv
k + ∂kq

k + pkv̇
k + P jk∂jvk = 0.

(5)

These balance equations are expressed in terms of relative quantities of an
inertial observer. We have given them both with and without indexes for the
sake of clarity. The first equation is the balance of mass, the second is the
balance of momentum and the third is the balance of energy. The dot denotes
the time derivative, ∇ or ∂i is the spatial derivative. The central dot denotes
the contraction. The time derivative is best interpreted as substantial time
derivative, and the energy corresponds to the usual internal energy.

4



The underlined nonstandard terms are related either to the extra mass flux
j or to the extra momentum density p (which is not automatically connected
to the relative velocity and therefore not equal to ρv without any further ado).
In the above form of the balances the flow-frame is not yet fixed, we have a
freedom to fix the fluid velocity to one of the physical quantities. The two basic
choices of these two quantities are either the mass-flow, when j = 0, or the
momentum-flow, when p = 0.

Let us choose the momentum-flow. We obtain therefore the following bal-
ances

ρ̇+ ρ∇ · v +∇ · j = 0, ρ̇+ ρ∂kv
k + ∂kj

k = 0, (6)

ρv̇ + j · ∇v +∇ ·P = 0, ρv̇i + jk∂kv
i + ∂kP

ik = 0i, (7)

ė+ e∇ · v +∇ · q+P : (∇v) = 0, ė+ e∂kv
k + ∂kq

k + P jk∂jvk = 0. (8)

These equations have two interesting features. Firstly, we can see that fixing
the momentum-flow does not eliminate the derivative of the relative velocity
from the momentum balance. That term is an inertial term related to the
apparent change of the relative momentum for the external inertial reference
frame. Secondly, the extra mass flux j or the self-momentum density, p, can
be eliminated by fixing the flow. The extra mass flux remains when the extra
momentum (self-momentum) is chosen to be zero.

The Galilean transformation rules of the time-and-space derivatives come
from the fact that the four-derivative is a four-covector. The rules themselves are
well known: the space derivative is Galilean-invariant ∇′ = ∇, and the transfor-
mation rule of the time derivative is the local-substantial relation: d′

dt =
d
dt−v∇,

where d
dt denotes the over-dot of the previous equations and the transformed

derivative (with prime) is usually denoted by ∂t.
The ’local’ form of the basic balances is obtained by applying the above

transformation rules to the ’substantial’ balances (6), (7) and (8):

∂tρ+∇ · j′ = 0, ∂tρ+ ∂kj
′k = 0, (9)

∂t(ρv) +∇ ·P′ = 0, ∂t(ρv
i) + ∂kP

′ki = 0i, (10)

∂te
′ +∇ · q′ = 0, ∂te

′ + ∂kq
′k = 0. (11)

The energy balance (11) is the usual balance of the total energy as it is seen by
using transformation rules (2d) and (2f). The total momentum density appears
only with its ’conductive’ part with the momentum due to the relative motion
because p = 0.

Finally, the substantial balance of entropy is

ṡ+ s∇ · v +∇ · s = Σ ≥ 0, (12)

where s is the entropy density and s is the entropy flux. The entropy density
is Galilean invariant, the entropy flux transforms according to vector Galilean
transformation

s′ = s, s′ = s+ sv. (13)
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With the help of these transformation rules the local balance of entropy is
obtained according to our expectations:

∂ts
′ +∇s′ = Σ′ ≥ 0, (14)

The entropy production is the measure of dissipation, therefore it is expected
to be absolute and therefore also Galilean invariant:

Σ = Σ′ ≥ 0. (15)

2.1.1 Angular momentum and booster

At the beginning we have assumed a particular symmetry of the mass-momentum-
energy density-flux tensor in order obtain well-interpretable relations. This
symmetry has nothing to do with the conservation of angular momentum. For
example, the symmetry of the relative pressure does not follow from this as-
sumption as can be seen in the reference-frame dependent form of the tensor
given in (1).

The simplest way of introducing the angular momentum conservation is to
restrict ourselves to the mass-momentum density-flux tensor, which can be writ-
ten in a particular reference frame as:

z =

(
ρ p

j P

)

zαβ =

(
ρ pi

jk P ki

)

. (16)

In this case the four-angular momentum is the booster and the usual three-
angular momentum together, Φαβγ = xαzβγ − xγzβα,

Φ =

(
t
x

)

∧

(
ρ p

j P

)

=

((
0 tp− ρx
0 tP− jx

)(
−tp+ ρx px− xp

−tP+ jx x ∧P

))

Φαβγ = x[αzβγ] =

((
0 tpi − ρxi

0j tP ji − jjxi

)(
ρxk − tpk pisk − pkxi

jjxk − tP jk xkP ji − xiP jk

))

(17)

One can see that conservation of the four-angular momentum in a particular
reference frame requires conservation of booster, see Appendix A or [6], density
and flux of which are tp − ρx and tP − jx, respectively, together with angular
momentum, density and flux of which are px−xp and x∧P, respectively. Here
the external product is understood in the second order of the pressure, indicated
also above, with the help of the index notation.

In the following we show a simplified calculation of the booster-angular mo-
mentum conservation for fluids. Our starting point – the basic assumption –
is analogous to the special relativistic four-angular momentum conservation.
We assume that the antisymmetric part of the momentum of the divergence
of mass-momentum density-flux tensor is zero for all reference points. In a
four-dimensional notation (α, β, γ = (0, 1, 2, 3) ) it can be written as

2x[γ∂αz
αβ] = xγ∂αz

αβ − xβ∂αz
αγ = ∂α(x

γzαβ − xβzαγ)− zγβ + zβγ = 0
(18)
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Therefore, the requirement of conservation of four-angular momentum Φαβγ =
1
2

(
xγzαβ − xβzαγ

)
leads to the symmetry of the mass-momentum.

Introducing momentum flow and using the reference frame of the primed
quantities (2a)-(2g), that is an intertial laboratory frame where the balances
are (9)-(11), leads to the following relative form of the formulas above:

(
t
xk

)
(
∂tρ+ ∂jj

′j ∂tρv
i + ∂jP

′ji
)
−

(
∂tρ+ ∂jj

′j

∂tρv
k + ∂jP

′jk

)
(
t xi

)
=

(
0 t(∂tρv

i + ∂jP
′ji)− xi(∂tρ+ ∂jj

′j)
−xk(∂tρ+ ∂jj

′j)− t(∂tρv
k+ ∂jP

′jk) xk(∂tρv
i + ∂jP

′ji)− xi(∂tρv
k + ∂jP

′jk)

)

=

(
0 0i

0k 0ki

)

,

and we obtain

∂t(tρv
i − xiρ)− ρvi + ∂j(tP

′ji − xij′j) + j′i = 0, (19a)

∂t(ρv
ixk − ρxivk) + ∂j(x

kP ′ji − xiP ′jk)− P ′ki + P ′ik = 0. (19b)

As a consequence, one can see that the conservation of the booster, with a
density and flux given by (tρvi−xiρ and tP ′ji−xij′j) requires that ρvi = j′i =
ρvi + ji, leading to ji = 0i or j in a special form, namely being divergence
of a tensor field so that Eq. (19a) is fulfilled in its integral form. Moreover,
conservation of the angular momentum is satisfied when the pressure tensor is
symmetric or in a special form such that Eq. (19b) is satisfied in its integral
form, see Sec. 4 for an example of the special form.

The above train of thoughts is analogous to the usual special relativistic
calculations (see e.g. [23]). However, in a Galilean relativistic framework our
third-order basic quantity enables several broader generalizations that can be
explored. Note also that the role of relativistic four-spin, which plays the role of
internal four-angular momentum, is not completely understood, especially when
flow-frame independence is expected [24, 23, 25, 26]. In particular, the non-
relativistic counterpart of the usual Frenkel condition eliminates the time-like
component of the internal angular-momentum, which eliminates the possibility
of an internal booster.

2.2 Hamiltonian structure

Clebsch in [27] and later Arnold in [28] recognized Hamiltonian structure in
the Euler fluid mechanics equations. In order to see the structure, we have to
replace the state variables (ρ,v, e) used in the previous section with (ρ,u, s).
The mass density ρ remains the same, u is the field of relative momentum of
an inertial observer (u = p′ of the previous section) and s is the entropy field.
The transformation (ρ,v, e) → (ρ,u, s), given by the relations

ρ = ρ; u = ρv; s = s(ρ, e) (20)
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is one-to-one (since s → e is one-to-one because ∂s/∂e, having the physical
meaning of inverse of the absolute temperature, is always positive). The total
energy E is given by

E = Ekin + Eexk + Eint

Ekin =

∫

dx
u2

2ρ
; Eexk =

∫

dxeexk(∇v, ρ, s); Eint =

∫

dxe(ρ, s)

(21)

where x denotes the position vector, e is the local internal energy and Eexk is a
contribution to the kinetic energy due to a finer scale motion of the continuum.
For example in Section 4, where we consider highly compressible fluids with
large gradients of mass density and velocity (fluids in the vicinity of gas-liquid
phase transition), the extra kinetic energy eexk ∼ (∇ · v)2 (motivated by [29])
is the kinetic energy of the volume (and mass) changes of fluid particles (note
that ∇ · v is a velocity of the volume change).

Following Arnold [28], the Euler part of the fluid mechanics equations (gov-
erning the nondissipative and reversible time evolution) can be cast into the
form

∂

∂t





ρ
u

s



 = L





Eρ

Eu

Es



 (22)

that manifestly displays the Hamiltonian structure. We indeed see in (22) that
the gradient of energy (Eρ, Eu, Es) (that is a covector) is transformed into vector
by the operator L called a Poisson operator. The operator L is given by the
Poisson bracket

{A,B} =

∫

dr(Aρ, Au, As)L(Bρ, Bu, Bs)
T

=

∫

dr
[
ρ((∂iAρ)Bui

− (∂iBρ)Aui
) + ui((∂jAui

)Buj
− (∂jBui

)Auj
)

+s((∂i)AsBui
− (∂iBs)Aui

)] (23)

whereA and B are sufficiently regular functions of (ρ,u, s); we use the shorthand
notation Aρ(r) = δA

δρ(r) , where δ/δ denotes an appropriate functional deriva-

tive. The easiest way to obtain the explicit form of Eqs.(22) is to write (22)

as dA
dt = {A,E} holds for all A (i.e. dA

dt =
∫
dr

[

Aρ
∂ρ
∂t +Au

∂u
∂t +As

∂s
∂t

]

=
∫
dr [Aρ(•) +Au(••) +As(• • •)]. Here the terms represented by the symbols

(•), (••), (• • •) are obtained by rewriting {A,E} with the use of integrations
by parts in which the boundary conditions are assumed to be such that all the
integrals over the boundary that arise in the calculations equal zero. The time
evolution equations are thus ∂ρ

∂t = (•); ∂u
∂t = (••); ∂s

∂t = (• • •)). Specifically, we
arrive at (•) = −∂i(ρEui

) = −∂i (ui + ρδEexk/δui), which then means that

ji = ρ
δEexk

δui
. (24)
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2.3 Kinetic theory

Evolution of fluids is often described within kinetic theory, with the help of
the Boltzmann equation. The irreversibilities stem from the collision integral,
which is typically strictly local, i.e. depends only on distribution function at
a particular point in real space, see e.g. [30, 31, 32]. However, the collision
integral can be also completely (or weakly) nonlocal as in [33], or in Enskog
kinetic equation [34]. Non-locality of the collision integral means that the forces
acting on colliding particles extend over non-negligible area or that the particles
have finite size.

∂f(r1,p
1, t)

∂t
= −

∂

∂rk1

(

f
∂Ef

∂p1k

)

+
∂

∂p1k

(

f
∂Ef

∂rk1

)

+

+

∫

d1′

∫

d2

∫

d2′W (f ;1,1′,2,2′)(f(1)′f(2)′ − f(1)f(2)), (25)

where the collision integral is constructed from a collision kernel W . In the
case of standard Boltzmann collision integral, the kernel is zero if positions of
particles 1, 1′, 2, 2′ are not the same.

Mass has to be conserved in the collisions regardless non-locality of the
collision integral. In the standard Boltzmann collision integral, which is strictly
local in space, mass is conserved at each point of space simply because the
distribution function has the same normalization (integral over phase space)
before and after the collision. On the other hand, in the case of generally
nonlocal collisions, where the collision kernel also depends on space, conservation
of mass is a requirement on the form of the collision kernel such that phase-space
integral the right hand side of Eq. (25) is zero. In other words, integral with
respect to p1 of the collision integral is a divergence in space of a vector field,
∫

dp1

∫

d1′

∫

d2

∫

d2′W (f ;1,1′,2,2′)(f(1′)f(2′)− f(1)f(2)) = −∂iji, (26)

the field being the extra mass flux.
It is thus natural in nonlocal kinetic theory that there is an irreversible extra

mass flux in the evolution equation of density.

3 Constitutive relations

Having established the possible appearance of the extra mass flux j, we now
proceed to specify it. A function expressing j in terms of the fields that form
the set of independent state variables is called a constitutive relation. We take
two routes to discuss it. Both routes need to supplement equations governing the
time evolution of the fields chosen to characterized states with another equation
governing the time evolution of the entropy field s used already in Section 2.2.
We recall that s is not an independent field but a field that depends on the
fields included into the set of independent state variables. On both routes
the specification of the constitutive relations is based on the requirement that
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the entropy produced during the time evolution is non-negative. On the first
route (in Section 3.1) this requirement is directly employed. On the second
route (in Sections 3.2 and 4) we first adopt a field closely related to j as an
independent state variable with its own time evolution equation (that is coupled
to the equations governing the time evolution of the fields of mass, momentum,
and energy). From the requirement of non-negativity of the entropy production
and from an another requirement addressing the relative speed of the relaxation
of j and of the remaining fields we then arrive at the constitutive relation for j.
On both routes we show that self-diffusion is a possible constitutive relation for
j.

3.1 Direct specification

The usual Gibbs relation

de = Tds+ µdρ, (27)

holds for the fields e, s, ρ; T is the absolute temperature and µ is the chemical
potential. The extensivity condition and the form of the entropy current density
are obtained from the relation between the corresponding four quantities [21]:

e+ p = Ts+ µρ, s =
1

T
(q− µj) , si =

1

T

(
qi − µji

)
, (28)

p is the static pressure. The given entropy flux is straightforward also consid-
ering the nonzero mass flux. The transformation rules of the temperature, the
pressure, and the chemical potential are due to the four-cotensor form of the
intensive quantities and the momentum-flow:

T ′ = T, p′ = p, µ′ = µ−
v2

2
. (29)

These transformation rules result in the following form of the transformed
Gibbs-relation and the extensivity condition:

de′ = Tds+ µ′dρ+ v · d(ρv), e′ + p = Ts+ µ′ρ+ ρv2 (30)

One can see that for the external observer the relative momentum density, ρv,
is an extensive quantity and that the related intensive is the relative velocity v.

Now we proceed to identify a possible constitutive relation for the extra
mass flux j. The entropy production can be calculated by using the substantial
balances of mass and internal energy (6) and (8) together with the Gibbs relation
(27) and entropy current density (28):

ṡ(e, ρ) + s∇ · v +∇ · s =
1

T
ė−

µ

T
ρ̇+ s∇ · v +∇ ·

(
q− µj

T

)

= −j · ∇
µ

T
+ q · ∇

1

T
−

1

T
(P− pI) : (∇v) = Σ ≥ 0. (31)

10



Here I is the unit tensor. For isotropic fluids one obtains the following linear
relations for the thermodynamic fluxes and forces:

j = −ξ∇
µ

T
+ χ1∇

1

T
, (32a)

q = −χ2∇
µ

T
+ λ∇

1

T
, (32b)

P = pI− ηv∇ · vI − η

(

∇v + v∇−
2

3
∇ · vI

)

. (32c)

The first term on the right hand side of the first line represents indeed self-
diffusion. Here Onsager symmetry [30] requires that χ1 = χ2. Moreover, η ≥ 0,
ηv ≥ 0, ξ ≥ 0, λ ≥ 0 and λξ − (χ1 + χ2)

2/4 ≥ 0 because of the second law (the
non-negativity of the entropy production). Considering parity with respect to
time-reversal [35], one can conclude that extra mass flux (32a) causes dissipative
irreversible evolution.

It is interesting but not apparent from this form that the entropy production
is invariant under Galilean transformations. Moreover, every thermodynamic
flux and force is invariant, too.

3.2 Indirect specification in extended fluid mechanics

As we have seen in Section 2.2, the extra mass flux j arises due to an extra con-
tribution Eexk to the kinetic energy (see Eq. (21)). We now make an extension
of the formulation presented in Section 2.2. The extension is made in four steps.

Step 1 : We replace (ρ,u, s) with (ρ,u, s,k), where k is a field of odd parity
(i.e. in changes sign if the sign of time is changed; u has odd parity and ρ and
s have even parity - see more [35]). Next, we specify the energy E(ρ,u, s,k).

Step 2 : We replace the Poisson bracket (23) with a new Poisson bracket
involving also k. We require that the extended bracket reduces to the bracket
(23) if k is absent.

Step 3 : The equation governing the time evolution of k (the equation is
obtained in Step 2) is supplemented with a term that: (i) makes to relax to 0
(i.e. k → 0) as t → ∞ and (ii) makes the entropy to grow in the time evolution.

Step 4 : The relaxation of k is fast and in its last stage k becomes enslaved to
the remaining fields (i.e. k becomes a function of the remaining fields). If this
enslaved k is then inserted into the extra mass flux j = ρEu − u a self-diffusion
contribution to the mass flux arises.

This type of extension, where the evolution of the extra state variable is
given by the extended Poisson bracket, has to be seen as reversible evolution.
Indeed, the Poisson bracket only provides reversible evolution, see [35]. On the
other hand, the extra mass flux gives irreversible evolution. The irreversibility
appears in steps 3 and 4, where the extra state variables becomes enslaved by the
slower variables. It means that one can either prescribe a constitutive relation
(the direct approach) for the extra variable and the extra variable then provides
irreversible evolution right away, or one can at first extend the Poisson bracket
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to obtain an evolution equation for the extra variable, which relaxes quickly to
a value given by the slower variables. After the relaxation, the dependence of
the extra variable on the slower variables serves as the constitutive relation, and
the evolution caused by the extra state variable is no longer reversible. This
shows the physical origin of constitutive relations from Sec. 3.1.

This type of extension in which self-diffusion arises has been made in [11]
with k = one particle distribution function f(x, ν) that provides an extra fine-
scale information about fluids. The fine-scale velocity contributing to the kinetic
energy is ν. In the following section we shall illustrate the extension leading to
self-diffusion in the setting that we have started in Section 2.2.

An another possibility is to introduce the fine-scale details into the energy or
free energy functional. This route is followed for example in the Cahn-Hilliard
model [36], where non-local terms are added to the free energy functional. Phys-
ical motivation for such extension of free energy is the same as in the preceding
paragraphs. An extra state variable (e.g. an extra mass flux or fluid particle
volume) naturally contributes to the free energy as for example in the Extended
Irreversible Thermodynamics [37]. When the extra state variable becomes en-
slaved by the remaining (hydrodynamic) variables, its contribution to the free
energy does not disappear, and it is represented by the non-local terms given
by the enslaved extra state variable. This is the way how non-locality is intro-
duced in Sec. 4. Note that due the presence of the extra terms in the free energy
functional, the extra evolution caused by the terms can be both reversible or
irreversible.

4 Illustration in weakly nonlocal hydrodynam-

ics

4.1 Free energy

In this illustration we make the extension of the setting introduced in Section
2.2 by considering ∇ · v as the enslaved extra field k. From the physical point
of view, ∇ · v is the velocity of changes of the volume of the fluid particle. For
the sake of simplicity we limit ourselves in this illustration to isothermal fluids.
This means that the temperature T is a constant and we can omit the entropy s
from the state variables. Moreover, the energy E in (22) has to be replaced by
the free energy that we denote by the symbol Φ. The first step in the extension
is thus (ρ,u, s) → (ρ,u,∇u). We choose the free energy to be

Φ =

∫

dx

[

u2

2ρ
+

1

2
ρσ

(

∇ ·
u

ρ

)2

+ ϕ(ρ, T )

]

, (33)

where the constant parameter σ is related to the surface area of the fluid par-
ticles. Physical consequences of this free energy are discussed in Appendix C.
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4.2 Hamiltonian evolution

Now we proceed to the second step. Since in this illustration we are not adopt-
ing any new field as an independent state variable, the bracket (23) remains
unchanged, except that the functional derivatives appearing in it become varia-
tional derivatives (because we allow A and B depend also on the spatial gradi-
ents of the state variables) and, moreover, the last term in the bracket is missing
since we are omitting the field s from the set of independent state variables (due
to our limitation to isothermal systems). Another difference, again due to the
limitation to isothermal system, is that the energy E in (22) is replaced by the
free energy Φ (that is given in (33)).

Reversible evolution of a functional A of the state variables is then given by

Ȧ = {A,Φ} =

∫

dxAρ
∂ρ

∂t
+Aui

∂ui

∂t
, (34)

which then leads to reversible evolution equations
(
∂ρ

∂t

)

rev
= −∂i(ρΦui

) (35a)

(
∂ui

∂t

)

rev
= −ρ∂iΦρ − ∂j(uiΦuj

)− uj∂iΦuj
. (35b)

Using Eq. (33) leads to
(
∂ρ

∂t

)

rev
= −∂iui + ∂i∂i(ρσ∂jvj), (36a)

(
∂ui

∂t

)

rev
= −∂i(ρϕρ − ϕ)− ∂j

(
uiuj

ρ

)

−∂j (∂ivjσρ∂kvk − vi∂j(σρ∂kvk))
︸ ︷︷ ︸

higher-order terms

, (36b)

where identity ∂i(ρϕρ−ϕ) = ρ∂iϕρ was used. Velocity was defined as v = u/ρ.
Note that we do not interpret this velocity as an average velocity of particles
constituting the fluid. Average velocity of particles should be rather v̄ = Φu

because that is the velocity in the Lie algebra semidirect product leading the
the hydrodynamic Poisson bracket, see [38]. From Eq. (36a) it follows that the
extra mass flux is given by

j = −∇(ρσ∇ · (u/ρ)). (37)

4.3 Irreversible evolution

In order to introduce relaxation of v toward spatial homogeneity, we introduce
the standard Navier-Stokes-like volumetric dissipation

−
δ

δΦui

∫

dx
1

2
ηvolρ(∇ · Φu)

2

︸ ︷︷ ︸

dissipation potential

= ∂i (ηvolρ∂kΦuk
) (38)
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into the equation for momentum, Eq. (36b), which thus becomes

∂ui

∂t
= −∂i(ρϕρ − ϕ)− ∂j

(
uiuj

ρ

)

−∂j (∂ivjσρ∂kvk − vi∂j(σρ∂kvk))

+∂i

(

ηvolρ∂j

(
uj

ρ
−

1

ρ
∂j

(

σρ∂k
uk

ρ

)))

︸ ︷︷ ︸

irreversible terms

, (39)

where η is the kinematic viscosity coefficient and constant ηvol is proportional
the volume viscosity coefficient. Note that we do not pay attention the upper
or lower positions of the indexes as we consider the Cartesian metric. Evolu-
tion equation for density, (36a), remains the same. Equations (36a) and (39)
represent the evolution equations of the weakly non-local fluid.

4.4 Admissibility criteria

Let us now show that all admissibility criteria required in [9] are fulfilled for
evolution equations (36a) and (39).

Total mass and momentum are clearly conserved. Total angular momentum,
∫

drεijkx
juk, (40)

is also conserved as can be verified by straightforward calculation. Pressure can
be introduced as

p = ρϕρ − ϕ (41)

and thus the first term in the momentum equation can be seen as −∂ip. We
assume that both ηvol and σ are constant. Let us also denote the right hand
side of Eq. (39) as divergence of the total pressure tensor P′ although such
a notation might not be fully compatible with (2e) due to the extra term in
energy.

An additional conservation law was suggested in [6] or on p. 196 of [1],
namely the booster density

b = ρx− ut (42)

conservation, which was also required in [9]. Physical meaning of booster conser-
vation is explained in Appendix A. Taking equations (36a) and (39), we obtain
that

∂bi

∂t
=

∂ρ

∂t
xi − ui − t

∂ui

∂t

= −(∂ju
j)xi − (∂jj

j)xi − ui + ∂j(tP
′ij)

= ∂j(−xiuj − xijj) + ji + ∂j(tP
′ij), (43)

and booster is thus locally conserved because the extra mass flux is also di-
vergence of a tensor field, see Eq. (37). This balance equation has the same
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structure as Eq. (19a), with the source term j not really playing the role of a
source term as being divergence of a tensor field and thus disappearing when
integrated over the whole volume.

Moreover, the total mass flux, u+ j, is a conserved quantity, since u is con-
served and j is divergence of a tensor field. Finally, let us discuss the possibility
of rigid-body rotation. Such a rotation also implies that no compression or ex-
pansion is taking place. There are, however, two possible meanings of volume
change in the weakly non-local setting, which corresponds to the two possibilities
for choosing velocity, namely v = u/ρ or v̄ = Φu. When employing the former,
we obtain j = 0 from ∇·v = 0, and standard fluid dynamics is recovered, which
is compatible with solid-body rotation. When employing the latter definition of
velocity, we obtain ρv̄ = u + j. No volume change then means ∇ · v̄. Setting
j = 0 everywhere then leads to v = v̄ and we again recover the standard fluid
dynamics. Therefore, solid-body rotation is an admissible solution of evolution
equations (36a) and (39).

In summary, all the criteria required in [9] are satisfied in the weakly non-
local setting. In particular booster and angular momentum are conserved al-
though p 6= j due to the divergence form of j. Let us now discuss physical
implications of the extra term in free energy (33).

5 Discussion

The modifications of the mass flux introduced above have consequences on so-
lutions of the fluid mechanics equations. Some of the consequences have been
considered to be in disagreement with experimental observations and modifica-
tions of the mass flux have been therefore disallowed. In this section we discuss
four objections. First is the conservation of the booster density, b = pt − ρx,
seen in [6] as a natural requirement. The second is the set of conditions in [9]. A
third argument is based on Reynolds transport theorem. Finally kinetic theory
arguments are shortly discussed.

In the Kostädt and Liu analysis [6], in which the momentum density is
considered implicitly as four-vector, the booster density and its conservation
appears naturally. However, this is not the case of our analysis, in which mass,
momentum, and energy densities are all combined into a third order four-tensor.
We have introduced a definition of booster-angular momentum conservation,
analogously to the special relativistic version. The booster density is Galilean
invariant, as well as the condition of booster conservation, j = p. Also, consid-
ering the transformation properties of the pressure tensor, (2e), we see that if
booster conservation is violated, then angular momentum conservation becomes
frame dependent: conservation in a particular frame does not ensure conserva-
tion in a different frame. As a conclusion we can say that the physical content
and experimental consequences of the booster conservation have not yet been
sufficiently clarified.

Let us now turn to the arguments opposing the presence of extra mass flux
in balance of mass formulated in [9]. They have considered four conditions:
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• Galilean invariance,

• possibility of rigid fluid rotation,

• existence of locally conserved angular momentum,

• consistency with uniform center of mass motion.

We have seen here that Galilean invariance can be satisfied differently than it
was assumed in [9]. Transformation rules (2a)-(2g) are derived in a Galilean
relativistic framework. Consequently, the thermodynamic force of mass diffu-
sion is proportional to the gradient of the chemical potential, and not related
OT the gradient of pressure, as it was suggested by Brenner [39]. Neither there
is a need of and extra velocity, playing a central role in the arguments of [9].
The last two conditions are not independent because booster and angular mo-
mentum conservations are components of a particular four-tensor. Therefore,
the consistency with uniform center of mass motion, more properly the booster
conservation, plays a central role and also offers several ways of extra mass
flux with booster conservation. One of them could be the concept of internal
booster, like internal angular momentum. We have given an another, related
particular example in section 4, where extra mass flux appears in a divergence
form, which keeps the total booster conserved. This requirement coincides with
the integrability condition of [9].

The physical background of our example is a Hamiltonian framework with ki-
netic energy of compression, yielding evolution equations (36a) and (39). These
equations are Galilean invariant, which can be proved straightforwardly as in
[9]. Moreover, they obey the integrability condition required in [9], namely that
the extra mass flux is a spatial gradient of a function, and they admit solid-
body vortex as a solution. Finally, they fulfill angular momentum conservation,
which was indicated as the most serious argument in [9]. Regarding booster
conservation it is a particular example of the above mentioned combined extra
mas flux and extra booster flux.

Equations (36a) and (39) can be simplified in the low-Mach-number limit
and when particle surface number, α, is small. Mach number is constructed
from a typical velocity, which could be shifted by an arbitrary constant by a
Galilean transformation. Therefore, letting Mach number go to zero makes it
impossible to require Galilean invariance because the typical velocity is fixed.
That is the case of equations (55). However, mass, momentum and angular
momentum are still conserved up to order O(α). Extra mass flux contributes to
irreversible evolution after the limit in contrast with Eq. (36a). Equations (55)
have also interesting physical implications. For example, they imply migration
of fluid particles towards center of a Poiseuille flow.

An assumption behind the Reynolds transport theorem, see e.g. [40], is
that the fluid particles are infinitely small. Indeed, only then one can divide a
volume in space so that there are only particles inside or outside the volume.
When the particles gain finite size, there are always some particles partially in
and partially out, i.e. they are intersected by boundary of the volume. In the
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setting of nonlocal kinetic theory, Sec. 2.3, this corresponds to that when the
collision kernel is strictly local in space, as in the case of classical Boltzmann
equation, there is no extra mass flux while admitting non-locality in space leads
to the presence of an extra mass flux. Similarly, when setting size of the fluid
particles to zero in the Hamiltonian setting of Sec. 4, i.e. α = 0, the extra mass
flux also disappears. Reynolds transport theorem thus does not apply when
considering finite size of fluid particles.

Finally we should remark that standard derivations of the governing equa-
tions fluid mechanics from kinetic theory cannot lead to extra mass flux, because
the mass of particle number balances are related to the conservation of density
function (see e.g. [31, 32]). However, weakly nonlocal collision integrals may
result in extra mass flux in the related equations of fluid dynamics [29].

6 Conclusion

Galilean relativistic and Hamiltonian structures of fluid mechanics clarify the
conditions for possibility of an extra mass flux, i.e. mass flux being different
than momentum density. Conservation of total booster, the locally conserved
center of mass, is fulfilled when momentum density and mass flux are equal.
However, even if mass flux and momentum density are not the same, the total
booster can be conserved when the extra mass flux is divergence of a tensor
field. An extra mass flux was identified in Sec. 4 which does not violate any
admissibility criterion formulated in [9]. The model is out of the scope of paper
[9].

The physics that we are suggesting behind this extra mass flux and internal
booster is an inclusion of a fine-scale motion into the setting of the classical
fluid mechanics. In order to arrive at the self-diffusion contribution to the mass
flux, the fine-scale motion has to contribute to the overall kinetic energy. In
the illustration worked out in this paper, the fine-scale motion is the motion
of the volume of the fluid particle characterized by ∇ · v, where v is the field
of velocity. Requirement of the Hamiltonian structure of the time-evolution
equations implies that the overall mass flux depends on ∇ · v. If ∇ · v is let
to appropriately relax in the low Mach number limit, it becomes enslaved by
the gradient of mass density ∇ρ (i.e. ∇ · v becomes a function of ∇ρ). This
function then brings ∇ρ into the mass flux.

We have demonstrated here that the relative balances (6)-(8) derived from
the reference frame and flow-frame independent theory are compatible with
thermodynamics and Galilean transformations. The presence of the extra mass
flux term is further supported by a possible physical background from weakly
nonlocal Hamiltonian fluid dynamics and kinetic theory. The goal of this paper
is to revive the discussion of extra mass fluxes.
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A Physical meaning of booster conservation

Consider a collection of classical point-like particles described by indexes 1, . . . , N
and define a quantity

R =

N∑

i=1

miri, (44)

ri and mi being position and mass of the i-th particle. Vector R expresses
position of the center of mass of the particles. Time-derivative of this quantity
is given by Newton’s law,

Ṙ =
N∑

i=1

pi, (45)

where pi is momentum of the i-th particle. In the continuum approach this last
equation becomes

∂

∂t

∫

drρr =

∫

dru, (46)

which can be rewritten as
∫

dr

(
∂ρ(t, r)r

∂t
− u(t, r)

)

= 0. (47)

This equation leads to the requirement that the integrand is divergence of a
second order tensor field. Such requirement is equivalent (as time-derivative of
momentum has the divergence form) to

∂bi
∂t

= ∂jBij (48)

for an unknown tensor field B. This is the local conservation of booster.

B Extra mass flux of Dzyaloshinskii and Volovick

An extra mass flux was introduced by Dzyaloshinskii and Volovick in [2], where
the term ∇ · (D∇µ) was added (taking quadratic dissipation function) to the
right hand side of evolution equation for density. Is such an extra mass flux
admissible?

Mass remains clearly conserved. Since the evolution equation for momentum
is the same as in standard hydrodynamics, momentum and angular momentum
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are also conserved. Booster is conserved provided D is constant as in the case
of Eq. (43).

In a solid-body rotation in cylindrical coordinates the velocity is proportional
the unit vector eφ, perpendicular to er, and it is divergence-free. Steady state
balance of mass then reads

∇ρ · v + ρ∇ · v = D∇ · ∇µ. (49)

Due to radial symmetry, gradient of ρ is parallel to er and thus perpendicular
to v. The left hand side of this last equation thus disappears, and so the
chemical potential must be constant or proportional to 1/r. On the other hand,
it follows from isothermal Gibbs-Duhem relation and from balance of forces that
derivative of µ with respect to the radial direction, µ′, is proportional to v2/r.
To make these two results compatible, it necessarily holds that v ∝ r−1/2. Such
a velocity profile, however, does not fulfill the momentum balance, see e.g. p.
55 of [1].

In summary, all the admissibility criteria except for the possibility of solid-
body rotation are fulfilled by the model of Dzyaloshinskii and Volovick.

C Physical consequences of the weakly non-local

free energy

In this section we discuss what physical implication have non-local free energy
(33) and evolution equations (36a) and (39).

C.1 Non-dimensional form

Firstly, we rewrite the evolution equations in a non-dimensional form in order
to proceed in heuristically the same way as [41]. Speed of sound is defined as
c2 = pρ. All quantities are then expressed in non-dimensional form by

ρ → ρρ̄, ∂i →
∂i

L̄
, vi → viv̄, (50)

t → L̄
v̄ , ηvol → ηvolc

2 L̄

v̄
. (51)

Mach number and a new non-dimensional number expressing particle surface
area

M =
v̄

c
and α =

σ

L̄2
(52)
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will appear in the evolution equations. The latter number expresses how small
surface of the particles is. Evolution equations (36a) and (39) then become

∂ρ

∂t
= −∂i(ρvi) + α∂i∂i(ρ∂jvj) (53a)

∂ui

∂t
= −

1

M2
ρ∂iϕρ − ∂j

(
uiuj

ρ

)

−α∂j (∂ivjρ∂kvk − vi∂j(ρ∂kvk))

+
1

M2
∂i

(

ηvolρ∂j

(
uj

ρ
− α

1

ρ
∂j

(

ρ∂k
uk

ρ

)))

. (53b)

C.2 Low Mach number and surface are limit

In the limit of low Mach number, M → 0, and when the surface area is small,
α << 1, we obtain the condition

ρ∂iϕρ = ∂i

(

ηvolρ∂j

(
uj

ρ
− α

1

ρ
∂j

(

ρ∂k
uk

ρ

)))

, (54a)

or

∂i (ρ∂kvk) =
1

ηvol
(ρ∂iϕρ) + α∂i

(
ρ∂j

(
ρ−1∂j (ρ∂kvk)

))
. (54b)

Since the first term on the right hand side of this last equation can be rewritten
as gradient of pressure, the condition can be also rewritten as

ρ∂kvk =
p− C

ηvol
+ αρ∂j

(
ρ−1∂j (ρ∂kvk)

)

=
p− C

ηvol
+

αρ

ηvol
∂j

(
1

ρ
∂jp

)

+O(α2) (54c)

where C is a constant.
Plugging condition (54b) into evolution equation (53a) and conditions (54b)

and (54c) into Eq. (53b) and dropping all terms of order O(α2) yields

∂ρ

∂t
= −∂iui − ∂iji (55a)

∂ui

∂t
= −∂j

(
uiuj

ρ

)

−
α

ηvol
∂j (∂ivj(p− C)− vi∂jp)

= −∂iπ − ∂j

(
uiuj

ρ

)

+
α

ηvol
(ω ×∇p)i +

α

ηvol
vi∂j∂jp (55b)

where the extra mass flux was identified as

j = −D∇ϕρ with D =
αρ

ηvol
, (56)
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a normalized pressure π is

π =
α(p− C)2

2η2vol
(57)

and ω is vorticity,
ωi = εijk∂jvk. (58)

In this low Mach number and low surface area limit, the extra mass flux ob-
viously produces irreversible evolution and leads to homogenization of density,
since chemical potential can be identified as µ = ϕρ.

The term with vorticity is an irreversible term that could be responsible for
particle migration. Indeed, consider a Poiseuille 2D flow in an infinite rect-
angular channel to the right, where pressure decreases in the x-direction, y
is perpendicular to the flow and z-direction positive so that the basis is right-
oriented, i.e. points upwards. Then in the upper half of the channel ω is positive
in the z-direction, ∇p is negative in the x-direction and the vorticity term in
Eq. (55b) is negative in the y-direction, i.e. produces force to pointing to the
center of the channel. See Sec. C.3 for more details.

The last term in Eq. (55b) is also irreversible (indeed, it is odd with respect
to time-reversal), and it reduces the velocity if ∆p is negative.

Mass is clearly conserved in equations (55). What about total momentum?
From Eq. (55b) it follows that

∂

∂t

∫

drui =
α

ηvol

∫

dr (εijkεjmn∂mvn∂kp+ vi∂k∂kp)

=
α

ηvol

∫

dr (∂kvi∂kp− ∂ivk∂kp)− ∂kvi∂kp

= −
α

ηvol

∫

dr∂kvk∂ip =
α

η

∫

dr

(
p− C

ηρ
+O(α)

)

∂ip (59)

Pressure p is a function of density. Therefore, there exists a function f(ρ) such
that

f ′(ρ) =
p− C

ρ

∂p

∂ρ
. (60)

When neglecting all terms of order O(α2) and higher, Eq. (59) becomes

∂

∂t

∫

drui =
α

η2vol

∫

dr∂if = 0, (61)

and conservation of momentum thus holds also after the limit M → 0 and
α << 1.

And what about angular momentum conservation? Firstly, the symmetric
part of the stress in Eq. (55b) can not violate the conservation. Let us therefore
focus on the apparently non-symmetric part, which contributes to evolution of
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total angular momentum as follows:

∂

∂t

∫

drεlkir
kui =

α

ηvol

∫

dr
(
εlkir

kεimnωm∂np+ εlkir
kvi∂j∂jp

)

=
α

ηvol

∫

drrk(ωl∂kp− ωk∂lp)

−
α

ηvol

∫

dr(εljivi∂jp
︸ ︷︷ ︸

=−ωlp

+εlkir
k∂jvi∂jp)

=
α

ηvol

∫

dr
(
rk(ωl∂kp− ωk∂lp) + ωlp

)

−
α

ηvol

∫

drεlkir
k(∂ivj + εjimωm)∂jp

=
α

ηvol

∫

dr
(
rk(ωl∂kp− ωk∂lp) + ωlp

)

+
α

ηvol

∫

dr
(
rk(ωk∂lp− ωl∂kp)− εlkir

k∂ivj∂jp
)

=
α

ηvol

∫

dr(ωlp+ εlji∂ivjp
︸ ︷︷ ︸

=−ωlp

+εlkir
k∂i∂jvjp)

=
α

ηvol

∫

drεlkir
k∂i

(
p− C

ηρ

)

p = −
α

ηvol

∫

drεlkir
k p− C

ηρ
∂ip

= −
α

ηvol

∫

drεlkir
k∂if =

α

ηvol

∫

drεliif = 0. (62)

where terms of order O(α2) were neglected. Angular momentum is thus also
conserved up to order O(α) after the limit.

C.3 Particle migration

The extra force term ω×∇p in Eq. (55b) causes migration of particles towards
center of a channel (or tube) exhibiting Poiseuille flow. Let us now compare
qualitatively the effect of the term with experimental results concerning particle
migration. Assuming velocity profile

vx = −
1

µ
∂xpy (63)

where µ is dynamic shear viscosity of the fluid, the extra force term becomes

−
α

ηvolµ
(∂xp)

2yey, (64)

which corresponds to an effective potential

ϕm =
α

2ηvolµ
(∂xp)

2y2. (65)
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In physical units the potential becomes

ϕm =
σ

2ηvolµ
(∂xp)

2y2, (66)

which has units J/m3. Energy of a particle with volume V at y is V ϕm(y). The
corresponding Boltzmann factor

f(y) ∝ exp

(

−
V ϕm(y)

kT

)

(67)

then indicates that there are more particles near center of the channel. Taking
data from [42], L = 5µm, ρ = 1.23gcm−3, spherical particle diameter 2.3µm,
shear viscosity of bromocyclohexane µ = 2.8 ·10−3Pa s, bulk viscosity estimated
as that of cyclohexanone [43], i.e. ηvol = 9 · 10−3Pa s/ρ, maximum velocity
in Poiseuille profile vmax = 2.95µms−1, which gives the pressure gradient as
∂xp = 8µvmax/L

2, temperature T = (273.15+ 22)K, the Boltzmann factor can
be plotted as in Fig. 1.

Figure 1: Effective Boltzmann factor (67) for data from [42].

The effective Boltzmann factor only provides a crude approximation of con-
centration profile of particles as also the effect of the hydrodynamic field should
be taken into account. Moreover, the volume (or bulk) viscosity was only esti-
mated. However, the profile clearly shows migration towards the center of the
channel.

In summary, regarding kinetic energy of volume expansion leads to the pres-
ence of extra terms in the reversible evolution of hydrodynamics. After volumes
of fluid particles relax to a stationary, the coupling between momentum and den-
sity provided by the Poisson bracket becomes irreversible, and the irreversible
mass flux naturally appears. Besides irreversible mass flux, also irreversible
stress appears that leads for example to particle migration towards center of a
channel in a Poiseuille flow.
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