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We observe metastable localized spin configurations with topological charges ranging from Q = −3
to Q = 2 in a (Pt0.95Ir0.05)/Fe bilayer on Pd(111) surface by performing spin dynamics simulations,
using a classical Hamiltonian parametrized by ab initio calculations. We demonstrate that the
frustration of the isotropic exchange interactions is responsible for the creation of these various
types of skyrmionic structures. The Dzyaloshinsky–Moriya interaction present due to the breaking
of inversion symmetry at the surface energetically favors skyrmions with Q = −1, distorts the shape
of the other objects, and defines a preferred orientation for them with respect to the underlying
lattice.

I. INTRODUCTION

Magnetic skyrmions correspond to localized spin con-
figurations, where the directions of the magnetic mo-
ments span the whole unit sphere[1]. Due to their small
size and the ability to set them into motion with signif-
icantly smaller current densities than magnetic domain
walls[2, 3], they hold promising aspects as bits of infor-
mation in future magnetic logic and memory devices[4–
6]. Recently, their creation and manipulation was also
demonstrated experimentally under room-temperature
environments[7, 8].

Although localized spin configurations also exist as
metastable states in the two-dimensional scale-free
Heisenberg model[9], stabilizing the radius of magnetic
skyrmions requires a further interaction term in the
Hamiltonian. The possible candidates for such an inter-
action identified so far include the Dzyaloshinsky–Moriya
interaction[10–12], the frustration of Heisenberg-type ex-
change interactions[13], and four-spin interactions[14].
The magnetostatic dipolar interaction is also capable
of stabilizing circular magnetic bubble domains in thin
films[15], the size and shape of which can be more easily
manipulated by the geometry of the system and external
magnetic fields than in the case of Dzyaloshinsky–Moriya
skyrmions[16–18].

Past investigations of skyrmions have mostly focused
on Dzyaloshinsky–Moriya systems. This type of interac-
tion only appears in noncentrosymmetric crystals, and
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is caused by the spin–orbit coupling. The skyrmion
lattice phase was first identified in MnSi[19], and later
in other bulk materials belonging to certain symmetry
classes[20–26]. While the skyrmion lattice is a ther-
modynamic phase[27–29], skyrmions may also appear as
metastable localized spin configurations on the collinear
background[30], and most suggested future applications
rely on such individual or isolated skyrmions[4–6]. The
presence of individual skyrmions has been demonstrated
in several ultrathin and multilayer films[31–33] by com-
bining magnetic transition metals with heavy nonmag-
netic elements, which provides a way of enhancing the
Dzyaloshinsky–Moriya interaction[34, 35].

Localized topological spin configurations may be clas-
sified according to the topological charge Q and the he-
licity γ[1]. In Dzyaloshinsky–Moriya systems a given ro-
tational sense of the spins is preferred, which selects a
fixed value of topological charge and helicity for magnetic
skyrmions[30]. In contrast, dipolar systems allow for two
helicity values which are degenerate in energy[16], while
in frustrated systems a continuous degeneracy arises[36,
37]. Furthermore, the presence of biskyrmions (bound
pairs of skyrmions) was recently demonstrated in several
centrosymmetric materials[17, 38, 39]. Skyrmionic struc-
tures with different topological charges have also been
identified in numerical calculations and simulations per-
formed for frustrated systems[36, 37, 40].

Besides the Dzyaloshinsky–Moriya interaction, the
presence of frustrated isotropic exchange interactions
has also been demonstrated recently in several ultra-
thin film systems[40–42]. In particular, skyrmions have
been observed in numerical simulations performed for
(Pt1−xIrx)/Fe bilayer on Pd(111) in Ref. [43], and it was
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shown that the competition between ferromagnetic and
antiferromagnetic isotropic exchange interactions is suffi-
ciently strong to create an oscillating skyrmion–skyrmion
interaction potential, previously only calculated for frus-
trated centrosymmetric systems[36, 37].

In this paper, we discuss the stability properties of
metastable spin configurations with different topologi-
cal charges found in the collinear field-polarized or fer-
romagnetic state of (Pt0.95Ir0.05)/Fe/Pd(111). We per-
form spin dynamics simulations based on the Landau–
Lifshitz–Gilbert equation, and by using a model Hamil-
tonian for the system parametrized by ab initio calcula-
tions in Ref. [43]. The Dzyaloshinsky–Moriya interaction
present in the system selects skyrmions with Q = −1 as
the energetically most favorable spin configuration. Here
we will demonstrate that the frustrated exchange interac-
tions are also capable of stabilizing localized spin configu-
rations with topological charges Q = −3,−2, 0, 1, and 2,
although the Dzyaloshinsky–Moriya interaction deforms
their shape.

The paper is organized as follows. We summarize the
theoretical background in Sec. II: in Sec. II A we present
the parameters of the model Hamiltonian, and discuss the
spin dynamics simulation method; while in Sec. II B we
introduce the topological charge Q, the vorticity m, and
the helicity γ in the continuum model, being the quanti-
ties that characterize the different types of skyrmionic
structures. The results are presented in Sec. III: in
Sec. III A we discuss the shape and the energy of the lo-
calized spin configurations; and in Sec. III B we examine
the preferred orientation of skyrmionic structures with
respect to the lattice in detail. Finally, we summarize
our results in Sec. IV.

II. METHODS

A. Spin model and spin dynamics

For the description of the Fe magnetic moments in the
(Pt0.95Ir0.05)/Fe/Pd(111) ultrathin film, we have applied
a model Hamiltonian with classical spins Si,

H =
1

2

∑
i 6=j

SiJijSj +
∑
i

SiKSi −
∑
i

MSiB, (1)

where B denotes the external magnetic field. The mag-
netic moment M , the coupling coefficients Jij and the
on-site anisotropy tensor K have been determined from
ab initio calculations based on the screened Korringa–
Kohn–Rostoker method[44, 45] and the relativistic torque
method[46]. These calculations are reported in detail in
Ref. [43].

In the following, lower case Greek letters will denote
the Cartesian components of the spins. The isotropic
coupling coefficients are defined as Jij = 1

3J
αα
ij , leading

d [a] Jij [mRy] D
‖
ij [mRy]

1.0000 -1.6952 0.0896
1.7321 0.1525 -0.0037
2.0000 0.4250 -0.0576
2.6458 -0.0477 -0.0114
3.0000 -0.0453 0.0233
3.4641 -0.0035 -0.0025
3.6056 0.0285 0.0053
4.0000 0.0275 -0.0041
4.3589 0.0014 -0.0019
4.5826 -0.0045 0.0015
5.0000 -0.0169 -0.0012

TABLE I. Isotropic exchange interactions Jij and in-plane
components of the Dzyaloshinsky–Moriya vectors D

‖
ij be-

tween the Fe spins as a function of their distance d, given
in terms of the lattice constant of the triangular lattice on
the Pd(111) surface (a = 2.751Å). Jij < 0 denotes ferromag-
netic coupling, while Jij > 0 is antiferromagnetic. D‖ij > 0 de-
notes that the Dzyaloshinsky–Moriya vector prefers the right-
handed rotation of the spins, D‖ij < 0 stands for left-handed
rotation. The magnetic moment is M = 3.3µB. The to-
tal anisotropy energy between the out-of-plane and in-plane
orientations is

(
E⊥FM − E

‖
FM

)
/N = −0.0588mRy, which in-

cludes both on-site and two-site contributions.

to an energy expression of the form

Hiso =
1

2

∑
i 6=j

JijSiSj , (2)

coinciding with the classical Heisenberg model. The anti-
symmetric part of the interaction tensor may be decom-
posed into a vector Dγ

ij = 1
2ε
αβγJ αβij , with the energy

expression

HDM =
1

2

∑
i 6=j

Dij (Si × Sj) , (3)

describing the Dzyaloshinsky–Moriya interaction. Fi-
nally, we mention that the difference between the diag-
onal components of Jij will induce an energy difference
between the out-of-plane and in-plane ferromagnetic ori-
entations, which we will refer to as two-site anisotropy.

The interaction coefficients between the Fe spins are
summarized in Table I. The ground state of the system
is a right-rotating cycloidal spin spiral state, which trans-
forms into the collinear field-polarized state when a mag-
netic field of B = 0.21T is applied perpendicularly to
the surface[43]. We will identify the topological objects
in this field-polarized state.

We have examined the possible spin configurations
by numerically solving the Landau–Lifshitz–Gilbert
equation[47],

dSi
dt

= −γ′Si ×Beff
i − γ′αSi ×

(
Si ×Beff

i

)
. (4)

The parameters of the Hamiltonian (1) appear in the ef-
fective field Beff

i = − 1
M

∂H
∂Si

. The dimensionless Gilbert



3

damping coefficient is denoted by α, while γ′ = γ
1+α2

stands for the modified gyromagnetic ratio γ = ge
2m , with

g, e,m the electronic spin g factor, absolute charge, and
mass, respectively. The numerical integrations were per-
formed by the semi-implicit B method from Ref. [48],
which was primarily developed for finite-temperature cal-
culations, but provides a sufficiently fast relaxation at
zero temperature.

During the simulations it had to be ensured that
the obtained localized spin configurations are indeed
metastable, meaning that they represent a local energy
minimum in configuration space and they cannot be de-
stroyed by small rotations of the spins. On the other
hand, since they possess a higher energy than the field-
polarized ground state, they may get destroyed by spin
fluctuations over long timescales, for example due to tem-
perature effects. For this purpose, we initialized the sys-
tem in a random state, then relaxed the spins by numer-
ically solving Eq. (4), which generally yielded a dilute
array of different topological objects. Without thermal
effects, this relaxation process corresponds to finding the
nearest local energy minimum in configuration space, but
not necessarily the ground state which is the global en-
ergy minimum. The speed of the relaxation is maximized
by using α = 1. This method is similar to perform-
ing Monte Carlo simulations at almost zero temperature
(T = 1K) by starting from a random initial state as dis-
cussed in Ref. [40], and corresponds to the infinitely fast
limit of the rapid cooling process used in Ref. [37].

We calculated the energy of the skyrmionic struc-
tures by cutting them out of the final configuration, po-
sitioning them on a field-polarized background of size
N = 128 × 128 atoms with periodic boundary condi-
tions, then performing another energy minimization sim-
ulation. As will be shown below, the characteristic size
of the localized configurations was significantly smaller
than the lattice size, so the effect of the boundary con-
ditions was negligible. In all considered cases, we found
that the decrease in energy was gradually slowing down
over time, and we stopped the simulations when the en-
ergy of the system changed by less than 10−4 mRy over
the last 12 ps. This procedure guaranteed that we indeed
found a metastable state which the system cannot leave
at zero temperature.

B. Topological charge in the continuum model

We will introduce the quantities characterizing the lo-
calized spin configurations in the continuum description,
following the notations of Refs. [1, 36, 37]. The Hamilto-
nian of the system in the micromagnetic model reads

H =

∫ [
−J1 (∇S)

2
+ J2

(
∇2S

)2
+ DwDM (S)

−K (Sz)
2 −BSz

]
d2r, (5)

where the unit-length vector field S denotes the spins.
The differentiation ∇ and the integral is understood in
the two-dimensional plane r = (x, y), while the z axis is
identified with the out-of-plane direction. The first two
terms with J1,J2 > 0 describe the frustrated exchange
interactions preferring a spin spiral with a finite wave
vector[36, 37, 49]. In the atomistic model, this frustra-
tion corresponds to the competition between the ferro-
magnetic nearest-neighbor interaction and the antiferro-
magnetic interaction with the second and third neighbors
– see Table I, or Ref. [43] for a more detailed discussion.

The third term in Eq. (5) stands for the
Dzyaloshinsky–Moriya interaction, with

wDM (S) = Sz∂xS
x − Sx∂xSz + Sz∂yS

y − Sy∂ySz(6)

in the C3v symmetry class[27]. The fourth and fifth terms
describe the presence of the out-of-plane easy axis (K >
0) and the external magnetic field B.

For discussing the localized spin configurations, we will
represent the spins in the spherical variables Θ and Φ,

S =

 sin Θ cos Φ
sin Θ sin Φ

cos Θ

 , (7)

and the two-dimensional plane in polar coordinates r =
(r, ϕ). The topological charge Q is defined as[9]

Q =
1

4π

∫
S · (∂xS × ∂yS) dxdy, (8)

which after performing the necessary change in the inte-
gration variables transforms into[1, 50]

Q =
1

4π

∫ ∞
0

∫ 2π

0

(∂rΘ∂ϕΦ− ∂ϕΘ∂rΦ) sin Θdϕdr. (9)

Equation (9) counts how many times the vector field
S winds around the unit sphere. We note that we have
relied on a discretized version of Eq. (8) during the spin
dynamics simulations; see Refs. [50, 51] for details.

Following Refs. [1, 37], in the next step we will assume
that the Θ and Φ functions only depend on the variables
r, ϕ as Θ (r) and Φ (ϕ), the latter in the form

Φ (ϕ) = mϕ+ γ, (10)

corresponding to circular spin configurations. The vari-
able m is called vorticity, while γ is the helicity. In this
case, Eq. (9) may be expressed analytically as

Q = −1

2
[cos Θ (r)]

∞
0

1

2π
[Φ (ϕ)]

2π
0 = −m sgnB. (11)

For the magnetic field pointing outwards from the surface
(sgnB = 1), the polar angle of the spins rotates from
Θ = π in the origin to Θ = 0 in the field-polarized state,
where the spins are parallel to the external field. This
means that the localized configurations may be uniquely
characterized by the vorticitym, which counts how many
times and in which direction the in-plane components
of the spins rotate around the circle when following a
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closed curve containing the origin on the surface. In the
following, localized spin configurations with m > 0 will
be called skyrmions, in contrast to antiskyrmions with
m < 0[36]. Note that the topological charge Q cannot
be used for such a unique classification, because it also
changes sign under time reversal.

It was calculated in Ref. [27] that the energy density of
the Dzyaloshinsky–Moriya interaction in the transformed
coordinates reads

wDM (S) =cos (ϕ− Φ) ∂rΘ−
1

r
sin (ϕ− Φ) ∂ϕΘ

+ sin Θ cos Θ sin (ϕ− Φ) ∂rΦ

+
1

r
sin Θ cos Θ cos (ϕ− Φ) ∂ϕΦ. (12)

Equation (12) indicates that in the presence of the
Dzyaloshinsky–Moriya interaction, circular solutions as
in Eq. (10) may only be found for m = 1; for other val-
ues of the vorticity the r and ϕ variables cannot be sepa-
rated during the solution of the Euler–Lagrange equa-
tions constructed from Eq. (5). This means that the
Dzyaloshinsky–Moriya interaction will distort the form
of topological objects with m 6= 1.

On the other hand, it was demonstrated in Ref. [37]
that the other terms in Eq. (5) admit circular solutions,
skyrmionic structures with different values of m may be
stabilized, and the energy of the configuration will not
depend on the sign of the vorticity. If the energy is cal-
culated in such a circular configuration in the presence of
the Dzyaloshinsky–Moriya interaction, it turns out that
only skyrmions with m = 1 gain energy from the chiral
term due to the periodicity of the cos function in Eq. (12).

It was calculated in Eq. (11) that the topological charge
does not depend on the helicity γ. Its role may be ex-
plained by rotating the spin configuration by the angle
ϕ0, which will transform Φ as

Φ′ (ϕ) = Φ (ϕ− ϕ0) + ϕ0, (13)

while leaving Θ unchanged. For m = 1, this implies
Φ′ = Φ for an arbitrary value of ϕ0, meaning that the
spin configuration is cylindrically symmetric, and that
the helicity γ is well-defined. The preferred value of the
helicity minimizing the energy in the considered system
is either γ = 0 or γ = π, determined by the sign of D
and the direction of the external field. Such a skyrmion
is called a Néel skyrmion, in contrast to Bloch skyrmions
with γ ∈

{
π
2 ,−

π
2

}
[1]. This characterization refers to the

type of spin rotation in the 360◦ domain wall along an
arbitrary cross-section going through the center of the
skyrmion with m = 1.

For all other values of the vorticity, rotating the con-
figuration is equivalent to transforming the helicity as

γ′ = γ + (1−m)ϕ0. (14)

This means that for other localized configurations, the
rotational sense of the spins is different along different
cross-sections. This explains why they do not gain energy

from the Dzyaloshinsky–Moriya interaction, since the lat-
ter selects a preferred rotational sense. From Eq. (14) it
can also be seen that skyrmionic structures with m 6= 1
possess a C|1−m| symmetry, in contrast to the cylindrical
symmetry of the one with vorticity m = 1.

III. RESULTS

A. Shape and energy of localized spin
configurations

During the spin dynamics simulations we could iden-
tify six types of metastable localized spin configurations
in the field-polarized state of (Pt0.95Ir0.05)Fe bilayer on
Pd(111), which are displayed in Fig. 1, while their en-
ergies are summarized in Table II. Note that the spins
in the field-polarized state were oriented out-of-plane
throughout the calculations, leading to the identifica-
tion Q = −m. We mention that some combinations of
these skyrmionic structures could also be observed by
using other sets of interaction parameters reported in
Ref. [43], obtained for different concentrations of Ir in
the overlayer. This indicates that the stabilization mech-
anism is connected to the general micromagnetic func-
tional Eq. (5), not the precise values of the interaction
parameters in Table I.

In agreement with the considerations given in Sec. II B,
we found that the Dzyaloshinsky–Moriya interaction se-
lects skyrmions with Q = −1 as the lowest-energy con-
figuration. The energy gain is due to the fact that the
rotational sense of the spins along any cross-section of
skyrmions is right-handed, corresponding to the helicity
value γ = π. All other topological objects become dis-
torted compared to the circular approximation given in
Eq. (10) due to the Dzyaloshinsky–Moriya interaction.
Although the rotational sense of the spins depends on
the chosen cross-section, their distorted shape maximizes
the energy gain from the energetically preferable right-
handed rotation. This is clearly visible for the skyrmion
with Q = −2, were the two constituent skyrmions with
Q = −1 can be identified.

It can also be observed in Fig. 1 that the C|1−m| ro-
tational symmetry of topological objects, which we have
deduced in the circular approximation (see Eq. (14)), is
conserved for the distorted skyrmionic structures. The
skyrmion with Q = −3 and the antiskyrmion with Q = 1
are both elongated, possessing a C2 symmetry. The an-
tiskyrmion with Q = 2 has a mostly triangular shape,
while the skyrmion withQ = −2 will only be transformed
into itself after a rotation by 2π. This also holds for the
localized spin configuration with Q = 0 in Fig. 1(d).
It consists of a “head” of a skyrmion and the “tail”
of an antiskyrmion, and therefore we have named it a
“chimera” skyrmion. Although it represents a metastable
state, the “chimera” skyrmion is topologically equivalent
to the field-polarized state, and consequently it is easy
to collapse it by applying a higher value of the exter-
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FIG. 1. Metastable localized spin configurations with different topological charges: (a) skyrmion with Q = −3, (b) skyrmion
with Q = −2[17, 36, 37], (c) skyrmion with Q = −1, (d) “chimera” skyrmion with Q = 0, (e) antiskyrmion with Q = 1, and
(f) antiskyrmion with Q = 2[40]. The value of the external field is B = 2.35T in part (a) and B = 0.23T in parts (b)-(f); the
ground state is field-polarized for B > 0.21T[43]. The colors indicate the directions of the spin vectors, illustrated on the right
edge of the figure.

B = 0.23T B = 2.35T
Q E [mRy] Eb [mRy] Q E [mRy] Eb [mRy]
-1 0.82 n.a. -1 4.12 n.a.
-2 4.11 2.46 -2 10.51 2.26
0 3.08 n.a. -3 15.16 2.79
1 5.11 n.a. 1 6.83 n.a.
2 7.92 -2.30 2 11.51 -2.16

TABLE II. Energy with respect to the field-polarized state E
of the spin configurations in Fig. 1. The binding energy is cal-
culated as Eb (Q) = E (Q)− |Q|E (sgnQ), that is, by assum-
ing that higher-order skyrmions and antiskyrmions represent
bound states of Q = ±1 units.

nal magnetic field; for example, it is no longer stable at
B = 2.35T given in Table II. The in-plane magnetization
component of the half-skyrmion and half-antiskyrmion
points in the same direction, leading to a net in-plane
magnetization for the “chimera” skyrmion. We note that
the “chimera” skyrmion is similar to the topologically
trivial magnetic bubble reported in Ref. [17], although
significantly smaller in size.

Skyrmions with Q = −3,−2 in Table II have a positive
binding energy; due to this reason, they can easily split
into constituents with Q = −1. Higher-order skyrmions
represent a lower magnetization difference with respect
to the field-polarized state than two or three individual
skyrmions; therefore, the positive binding energy slightly
decreases as the external field is increased due to the en-
ergy gain from the Zeeman term – see the row for Q = −2

in Table II. Increasing the effect of the Zeeman term is
necessary for stabilizing skyrmions with Q = −3; this is
why a significantly higher value of the external magnetic
field was used in Fig. 1(a) than for the other configura-
tions. On the other hand, the antiskyrmion with Q = 2
possesses a negative binding energy, and consequently
cannot split into two antiskyrmions with Q = 1. This
makes higher-order antiskyrmions more stable against
increasing or decreasing the value of the external field
compared to higher-order skyrmions.

The stability of localized spin configurations against
thermal fluctuations is mainly determined by the energy
barrier separating them from the field-polarized state in-
stead of the relative and binding energies listed in Ta-
ble II. This energy barrier strongly depends on the mag-
netic field and system parameters[52, 53]. In order to ex-
amine the relative stability of the skyrmionic structures,
we performed finite-temperature spin dynamics simula-
tions – for the method see e.g. Ref. [43]. We initial-
ized the system in the relaxed metastable states found
at zero temperature, and run the simulations for 484 ps
at selected temperature values between T = 4.7K and
T = 15.8K.

The net topological charge did not change during
any of the simulations. The skyrmionic structures with
Q = −1, 0, 1, and 2 remained stable with the interac-
tion parameters and magnetic field values denoted in
Fig. 1. At higher fields, we found that the “chimera”
skyrmion may collapse due to thermal fluctuations even
if it was metastable at zero temperature. This is in
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FIG. 2. Metastable localized spin configurations with topological charges (a) Q = −3, (b) Q = −2, (c) Q = −1, (d) Q = 1,
and (e) Q = 2. Compared to Fig. 1, only the isotropic part of the exchange tensors was kept. The value of the external field is
B = 0.23T.

B = 0.23T B = 2.35T
Q E [mRy] Eb [mRy] Q E [mRy] Eb [mRy]
-1 5.41 n.a. -1 6.96 n.a.
-2 8.70 -2.12 -2 11.94 -1.99
-3 12.54 -3.69 -3 18.00 -2.89
1 5.41 n.a. 1 6.96 n.a.
2 8.70 -2.12 2 11.94 -1.99

TABLE III. Energy with respect to the field-polarized state E
of the spin configurations in Fig. 2. The binding energy is cal-
culated as Eb (Q) = E (Q)− |Q|E (sgnQ), that is, by assum-
ing that higher-order skyrmions and antiskyrmions represent
bound states of Q = ±1 units.

agreement with the above argument; namely, that it is
more sensitive to the value of the magnetic field than the
other configurations. Skyrmions with Q = −3,−2 sepa-
rated into individual skyrmions already at T = 4.7K,
probably because the height of the energy barrier is
small due to the large positive binding energies of these
structures. However, we found that these structures re-
mained stable against thermal fluctuations at B = 0T
in Pt/Fe/Pd(111) instead of (Pt0.95Ir0.05)/Fe/Pd(111).
Although the interaction parameters do not differ con-
siderably between these two systems (see Ref. [43] for a
comparison), the binding energy of skyrmions with Q =
−3,−2 is below 1mRy in Pt/Fe/Pd(111) at B = 0T,
which is significantly lower than the values listed in Ta-
ble II.

In order to differentiate between the effects caused
by the isotropic exchange interactions and the
Dzyaloshinsky–Moriya interactions, we have performed

the same simulations by replacing the tensorial couplings
Jij in Eq. (1) by only the isotropic Heisenberg couplings
Jij in Eq. (2), while modifying the on-site anisotropy
tensor K to keep the total anisotropy energy between
the in-plane and out-of-plane orientations the same. In
agreement with the theoretical description in Sec. II B
and Ref. [37], Fig. 2 demonstrates that it is still possible
to stabilize all the localized metastable states with finite
topological charge in this case, and their shape will
correspond to the circular approximation in Eq. (10).
However, the “chimera” skyrmion has collapsed into the
field-polarized state for these interaction parameters.

It can be seen from Table III that skyrmions and
antiskyrmions with opposite topological charges be-
come energetically degenerate, in agreement with the
(Sx, Sy, Sz) → (−Sx, Sy, Sz) symmetry of the Hamil-
tonian (2), which switches the sign of the topological
charge. Compared to Table II, it can be seen that
the energy of all objects has increased in the absence
of the Dzyaloshinsky–Moriya interaction, indicating that
skyrmionic structures with m 6= 1 also gain energy
from the chiral interaction due to their distorted shape.
Although higher-order skyrmionic structures possess a
higher energy (cf. Ref. [37]), their binding energy is ac-
tually negative, meaning that they cannot split into their
constituents.
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FIG. 3. Preferred orientation angle δ of the topological objects in Fig. 1 with respect to the underlying lattice. (a) δ = π/3
for Q = −3, (b) δ = π/6 for Q = −2, (d) δ = 5π/6 for Q = 0, (e) δ = 5π/6 for Q = 1, and (f) δ = 2π/3 for Q = 2. Skyrmions
with Q = −1 in (c) are cylindrically symmetric, and they are characterized by the helicity γ = π instead.

B. Preferred orientation of asymmetric skyrmionic
structures on the lattice

Besides distorting the shape of skyrmionic structures
with m 6= 1, the Dzyaloshinsky–Moriya interaction also
defines a preferred orientation of these objects with re-
spect to the underlying atomic lattice. We have char-
acterized this orientation by the angle δ between the
[110] crystallographic direction and a characteristic cross-
section of the localized spin configuration, illustrated in
Fig. 3. Determining the angle δ is equivalent to defining
the helicity γ for m 6= 1, since the latter also transforms
under rotations according to Eq. (14). Furthermore, we
note that shifting δ by 2π/3 leads to an equivalent con-
figuration due to the C3v symmetry of the underlying
lattice. For the elongated objects with Q = −3,−2, 0,
and 1, we chose the long axis as the characteristic cross-
section, yielding the values δ = π/3, δ = π/6, δ = 5π/6,
and δ = 5π/6, respectively. For the antiskyrmion with
Q = 2, we chose the symmetry axis of the triangle, for
an angle of δ ≈ 2π/3.

These preferred orientations appear because domain
walls along different crystallographic directions possess
different energies. As shown in Table IV, domain walls
with normal vectors along the [110] direction are ener-
getically preferred over ones along the [112] in the sys-
tem; the domain walls are of right-handed Néel type due
to the Dzyaloshinsky–Moriya interaction (DMI). This is
in agreement with Ref. [43], where the same directional
preference was found for right-handed cycloidal spin spi-
rals with wave vectors along the different crystallographic
axes; the negative domain wall energies indicate that the

normal vector ∆EDW[mRy] (DMI) ∆EDW[mRy] (no DMI)
[110] -0.0211 0.2129
[112] -0.0118 0.1167

TABLE IV. Energies of 180◦ domain walls along different
crystallographic directions for the original Hamiltonian with
interaction tensors Jij containing the Dzyaloshinsky–Moriya
interactions (DMI), and by only considering the isotropic ex-
change interactions Jij (no DMI). The calculations were per-
formed for an N = 128 × 128 lattice with fixed antiparallel
boundary conditions along the normal vector of the domain
wall, and periodic boundary conditions in the perpendicular
direction. The energy differences are normalized to a one-
dimensional spin chain.

ground state is actually the spin spiral state. If we con-
sider the model with only the isotropic exchange inter-
actions introduced in Sec. IIIA (no DMI), the ground
state becomes ferromagnetic, and the preferred direction
for the domain walls switches.

As it was discussed in Sec. II B, topological objects
with m 6= 1 always possess both right-handed and left-
handed segments. Since the Dzyaloshinsky–Moriya in-
teraction switches the preferred domain wall direction for
right-handed walls, for left-handed walls the preferred di-
rection must be the same as for the isotropic interactions,
since these domain walls lose energy due to the chiral in-
teraction. In this case, the antiskyrmion with Q = 1 can
minimize its energy when its left-handed cross-section is
along the [121] axis or a symmetrically equivalent direc-
tion (next-nearest neighbors on the lattice), which yields
the value δ = 5π/6 shown in Fig. 3(e). Simultaneously,
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its right-handed cross-section is along the perpendicular
[101] direction (nearest neighbors on the lattice), which
is also energetically favorable. We could not observe such
a preferred orientation when we used only isotropic ex-
change interactions in the simulations as in Fig. 2; this
is expected as the domain wall energy does not depend
on the rotational sense of the spins in this case.

The same argument can be used to explain the orien-
tation of the “chimera” skyrmion, since the only differ-
ence is that the completely left-handed cross-section is
replaced by a pair of left-handed and right-handed 180◦

domain walls following each other. In the skyrmion with
Q = −3, a full 360◦ left-handed domain wall can only be
observed when moving along its short axis, which is par-
allel to the [121] direction. Along the long axis, one can
observe a 360◦ right-handed domain wall, with a shorter
segment with reversed chirality in the middle; this is the
preferred orientation of right-handed domain walls ac-
cording to Table IV.

Regarding the skyrmion with Q = −2, the above ar-
gument would predict that its longer axis, containing
mostly right-handed domain walls, would be oriented
along the nearest-neighbor direction (δ = π/3), while it is
parallel to the next-nearest-neighbor direction (δ = π/6)
in Fig. 3(b). This discrepancy may be explained by
the very strongly distorted spin configuration, resem-
bling two individual skyrmions along the next-nearest-
neighbor direction (δ = π/6) which are weakly connected
to each other. As it was demonstrated in Ref. [43], the
next-nearest-neighbor direction is preferable for creating
bonds between individual skyrmions. Increasing the field
to B = 2.35T (see Table II) compresses the skyrmion
with Q = −2 into a more circular shape, and its pre-
ferred orientation on the lattice also rotates to δ = π/3,
which value is in agreement with the prediction based on
left-handed and right-handed domain walls.

Finally, we note that the above argument is insuffi-
cient for explaining the orientation of the antiskyrmion
with Q = 2 with respect to the lattice, because its cross-
section along the symmetry axes of the triangle corre-
sponds to a pair of right-rotating and left-rotating 180◦

domain walls.

IV. CONCLUSION

We have examined localized metastable spin config-
urations in the field-polarized state of (Pt0.95Ir0.05)/Fe
bilayer on Pd(111) surface by using spin dynamics cal-
culations. The interaction parameters in the Hamil-

tonian have been determined from ab initio methods
earlier[43]. We could identify objects with topological
charges Q = −3,−2,−1, 0, 1, and 2, and explained their
presence by the interplay between the frustrated isotropic
exchange interactions and the Dzyaloshinsky–Moriya in-
teraction.

In agreement with the theoretical prediction based on
the continuum model, we have demonstrated that the
Dzyaloshinsky–Moriya interaction selects skyrmions with
Q = −1 as the energetically most favorable configuration.
However, the other topological objects also remain stable
due to the presence of the frustrated isotropic exchange
interactions, although their shape becomes distorted be-
cause of the chiral interaction, and they assume preferred
orientations on the lattice. We have observed the differ-
ent skyrmionic structures also for other Ir concentrations
x in the (Pt1−xIrx)/Fe/Pd(111) system[43], indicating
that the stabilization of different topological objects is a
consequence of the simultaneous presence of frustrated
exchange interactions and the Dzyaloshinsky–Moriya in-
teraction in ultrathin films. The results discussed in this
paper may motivate the search for experimental realiza-
tions of different topological objects in similar systems.

It was demonstrated in Ref. [37] that if only isotropic
exchange interactions are considered, the extra degree of
freedom connected to the helicity of the skyrmions sig-
nificantly influences their current-driven motion. In the
system considered in this paper, this continuous sym-
metry is broken by the presence of the Dzyaloshinsky–
Moriya interaction, but rotating the topological objects
by 2π/3 still leads to an energetically degenerate configu-
ration due to the symmetry of the lattice. Consequently,
this discrete symmetry offers new implications for the
current-driven motion of skyrmionic structures with dif-
ferent topological charges.
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