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Abstract. We review important ideas on nuclear and quark matter description on the basis of high-
temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation
and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the
light of these methods concentrating on the – partially still open – problems of the hadronization process.

PACS. 21.65.Qr Quark Matter – 11.10.Wx Finite-temperature field theory – 12.38.Mh Quark Gluon
Plasma

1 Introduction

At the roots of thermal field theory, back to the late 1960-
s, field theory calculations and ideas applied to nuclear
physics were considered as ”exotic” as the idea of using
heavy atomic nuclei as projectile and target in high energy
accelerator experiments. In these heroic times the most
prominent idea was to experimentally produce and study
very hot nuclear matter, whatever it shall be[1,2].

Parallel to the achievements of QCD and the Standard
Model of particle physics, the idea of a phase transition
from ”normal” nuclear and hadronic matter to a quark-
gluon plasma (QGP) have emerged [3,4,5]. Transgress-
ing the ideas of nuclear democracy [6,7] and an infinite
tower of hadronic resonances not allowing to exceed the
Hagedorn temperature [8], the MIT bag model of hadrons
based speculations about a phase transition to a plasma of
free colored charges, a QGP, became popular [9,10]. This
and the more and more progressing nuclear fluid treat-
ment [11,12] at high bombarding energies in the range of 1
GeV/nucleon and upwards in fixed target experiments let
the hydrodynamical models flourish. Since hydrodynamics
relies only on the local conservation of energy, momenta
and eventually of a few more Noether currents, the only
input needed to carry out such calculations is an equation
of state, a connection between local pressure and energy
density. In this way it provides a flexible framework to test
underlying theories predicting various equations of state
[13].

In the forthcoming decades it has been gradually re-
vealed, that neither the QGP, nor the transition process
is as simple as originally proposed. A remnant of con-
fining forces, a long range correlation between colored

a Supported by NKFIH/OTKA project No. 104238 and
104260.

particles, in some respect reminding to (pre-)hadrons, in
some other respect not being particle-like at all, pollute
the naive picture of a free QGP [14,15]. More devastat-
ingly, the non-perturbative infrared effects occur not only
at low temperature, but with a low relative momentum
between any pairs of particles at all temperatures [16,17].
Also the color deconfinement phase transition, at the be-
ginning surmised to be of first order with a huge latent
heat density, proved to be of a rather continuous transi-
tion with no uniquely fixed transition temperature point
by more recent lattice QCD calculations with dynamical
light quarks [18,19]. The ”exact” transition temperature
does not exist, only a position for a maximum in one or
another susceptibilities can be obtained. While a general
lowering trend in the deconfinement temperature, Tc, can
be observed from 175 MeV through 165 MeV for a long
time and recently down to 158 MeV, the width of the tran-
sition zone is about 15−35 MeV itself. Since the transition
is not of first or second order at vanishing baryochemical
potential, the ”correct and only” order parameter cannot
be identified [20,21,22,23,24].

There are furthermore doubts about the applicability
of hydrodynamics [25] at the very early stage of heavy
ion collisions and at the final hadronization process, when
the quarks and gluons suddenly form hadrons. The details
of the latter process are still unresolved; phenomenology
based fragmentation functions and modeling level string-
or rope-decay scenarios are in use [26,27,28,29,30]. For
the early phase, when nevertheless most of the final state
entropy is supposed to be produced already, pictures uti-
lizing the concept of coherent, nearly classical color fields
dominate, describing color rope formation and more re-
cently a colored glass condensate (CGC) [31,32,33,34].

In this concise review we shall concentrate on selected
issues related to applications of models and achievements
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of high temperature field theory to nuclear physics, in par-
ticular to relativistic heavy ion reactions. After a short re-
view of the properties of quark matter we deal with basic
concepts of the hierarchy of scales and dimensional reduc-
tion. Then considering the structure of the QGP we review
the spectral function approach and its main consequences
for the medium properties, including the shear viscosity.
This is followed by a review of special, nonlinear coherent
states, showing a possibility to produce negative binomial
distribution of numbers in quantum states. Finally a short
conclusion section rounds up this brief review with indi-
cations of some open problems in the field.

2 Properties of Quark Matter

Our picture about the properties of quark matter and the
very definition of quark matter and quark–gluon plasma
(QGP) underwent some changes in the passing decades.
Starting with the picture of the plasma state as a ”fourth
phase” beyond solid, liquid and gas, and responding to
the idea of local liberation of color charges, by now al-
most all quark or QCD-level descriptions, also that of a
hadronic resonance gas or string theory fitting numerical
lattice QCD equation of state results, are considered as
dealing with ”quark matter”. We have learned step by step
(and by doing more and more precise ab initio numerical
experiments on bigger and bigger computer farms) that
the QGP should have a very rich interaction structure.
Around the transition to color deconfinement in terms of
temperature and chemical potentials, in a grand canon-
ical approach expanded in terms of the chemical poten-
tial to temperature ratio, µ/T , the real state of matter
is far from having free color charges, quarks and gluons,
in a classical ideal gas based plasma. Not only that the
color freedom is only ”asymptotic”, being expressed only
between pairs having relative momenta sufficiently larger
than a characteristic scale, whose estimates range from
3Tc to 6Tc − 10Tc, but also hadron–like correlations sur-
vive well in the temperature zone of Tc−4Tc according to
modern lattice data.

Beyond heavy mesons, like the cc or bb system, also
new, on the hadron level exotic complexes, like glueballs,
dibaryons, pentaquarks, etc. have been considered as play-
ing a crucial role in forming the rich structure of the realis-
tic QGP near and above Tc. In particular the 1/T 2 fat tail
of the interaction measure, (e − 3p)/T 4, at high temper-
ature (T ∈ [Tc, 4Tc]), that is so luring to be interpreted
as a mass term, m2/T 4 ∼ 1/T 2, has been given special
thoughts by several authors [17,35,36,37]. Also the ques-
tion of critical endpoint in the T −µB plane, signaling the
border between a first order color deconfinement phase
transition and a continuous crossover between hadronic
resonance gas and QGP, has been studied in deep details
relating different susceptibilities to the quality of under-
lying ”freed” color degrees of freedom [38,39,40,41,42,43,
44,45,46]. Finally the problem of a quarkyonic phase, the
expected structure of quark matter at low temperature
but high baryon density, and the coincidence or not co-
incidence of the color deconfinement transition with the

chiral symmetry restoring phase transition are debated
since long.

Beyond the plethora of more or less arbitrary (but
often analytically tractable) models of QGP, the lattice
regularized approach to solving QCD non-perturbatively
by numerical strategies proved to be the one, which has
received the most credits and trust in the community. Al-
though it also has its limitations, e.g. it cannot deal with
dynamical processes on the quantum level in real time,
for the statistical – thermodynamical approach it deliv-
ers very useful insights into a strongly coupled, complex
structure of matter, also called newly an sQGP. It also
helped a lot to identify keynote field configurations, like
the magnetic monopoles and the instantons, which may
characterize the main physical difference between confined
(hadronic) and deconfined (QGP) states of matter.

However, in particular the perturbative QCD domi-
nated regime is hard to be reached by numerical simula-
tion. Although by some tricky methods quite a few au-
thors [47] squeezed out results at temperatures as high
as 10Tc − 100Tc, the real perturbative behavior, also ap-
proached by traditional perturbative QCD (pQCD), sets
in only at unrealistic high temperatures. Certainly one of
the problems is, that thinking in terms of temperature,
T ≈ Tc represents an average energy per degree of free-
dom, while in an accelerator experiment bringing heavy
ions to collide the spread of the relative pair-momenta
goes in the order of several dozens or even hundreds Tc.
Therefore any approach can make only a part of the true
behavior of the physical QGP available, and our complex
picture has to be constructed based on the mosaics we
have puzzled out so far.

High temperature field theory, based on resummation
and renormalization techniques starting with analytic, per-
turbative approach, is a very special theoretical tool for
obtaining a more intuitive picture about sQGP than only
analyzing lattice QCD results. Finally, probably a compar-
ison of correlation functions and density matrix elements
obtained in both ways shall tell us new, hitherto unheard
stories about the ”real nature” of quark matter.

Finally, it can be enlightening to review briefly the
thermodynamics of ideal gases polluted with objects hav-
ing less than 3-dimensional kinetic degrees of freedom, but
carrying strong and possibly long ranged correlations. The
most famous such objects are strings and ropes; they fea-
ture quasi 1-dimensional objects inside the plasma. The
free energy density of an ideal gas will then be additively
modified by an energy contribution reflecting the average
length, 〈 ` 〉 ∼ n−1/3, by a string tension, σ as

f string = σnn−1/3, (1)

besides the trivial f id contributions. Here we present the
simplest, most straightforward implementation of this idea;
more details can be taken from [48,49,50,51].

The non-relativistic ideal, non-equilibrium chemical po-
tential in the Boltzmann approximation is given by

µid =
∂f id

∂n
= T log

n

neq,id(T )
. (2)
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The ideal gas free energy density contribution is its inte-
gral over the density n, resulting

f id = nT

(
log

n

neq,id(T )
− 1

)
+ f0(T ). (3)

The total free energy density is given as

f(n, T ) = f id(n.T ) + σn2/3, (4)

leading to a non-equilibrium chemical potential

µ(n, T ) =
∂f

∂n
= µid +

2

3
σn−1/3. (5)

This sum of a rising and falling function of the density, n,
can be equal to a foreseen constant – in this simple exam-
ple zero – only above a critical temperature. Below that
temperature the plasma with strings would not reach any
finite equilibrium density; the system must disintegrate to
disconnected objects, e.g. to hadrons.

In terms of scaled quantities the non-equilibrium chem-
ical potential is described by a function,

µ

T
= g

(
n

neq,id(T )

)
. (6)

The key function corresponding to our above model is
given by

g(x) = lnx + 3λx−1/3 (7)

with

λ =
2

9

σ

Tn
1/3
eq,id(T )

. (8)

This function has its minimum for g′(xm) = 1/xm −
λx
−4/3
m = 0, giving xm = λ3. The condition for having a

stable equilibrium density for the QGP then follows from
g(xm) = 3 (lnλ+ 1) ≤ 0 and reads as

2

9

σ

Tn
1/3
eq,id(T )

≤ e−1. (9)

Interesting enough, that in the Boltzmann approxima-
tion, where neq,id(T ) = T 3/π2 for each degree of freedom,
and counting with the traditional 37 effective light degrees
of freedom for a QGP we obtain the result that

TQGP ≥
√

2

3

e1/2π1/3

371/6

√
σ ≈ 0.623

√
σ. (10)

This result is near to the one obtained from early studies
of the static quark – antiquark potential for the relation
between the string tension and the color deconfinement
temperature in pure lattice gauge theories [52,53,54,55].
This very simple-minded model can also be extended to
finite baryochemical potentials, and does perform appre-
ciably [50].
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Fig. 1. The generic function g(x) = lnx+λx−1/3 for the scaled
non-equilibrium chemical potential, µ/T , as a function of the
scaled particle number density, n/neq,id(T ). Various values of
λ from the bottom to the top line are 0, 0.5, 0.75, 1.0, 1.1, 1.5.

3 High-T effective field theory

It is known since long, already from the perturbative QCD
treatment of the quark-gluon plasma (QGP) that interac-
tions play a decisive role, and the description of equation
of state at high temperature cannot be based solely on the
model of an ideal gas of bare quarks and gluons. The more
interesting that it can be and for a long time was being
based on the ideal gas picture of quasiparticles, featuring
the same number of degrees of freedom as colored elemen-
tary quarks and gluons do. The most prominent effect of
interaction is concentrated to effective masses and its re-
cursive effects on the pressure, energy density and entropy
density at a given temperature.

First experiences on nontrivial problems in the non-
interacting quasiparticle treatment arose from the study
of the propagation of oscillatory excitations, so called plas-
mons, in hot QGP: original calculations on the gluon damp-
ing coefficient, which determines the speed of thermal-
ization of a QGP, seemed to depend on the gauge fixing
choice. Even its sign was disputed in the beginning [56,
57,58,59].

The solution was found by Rob Pisarski and Eric Braa-
ten with a resummation procedure of the so called hard
thermal loops (HTL-s) [60,61,62,63,64,65,66]. The basis
of this approach is a division of elementary quanta ac-
cording to their momenta: ’hard’ are the hot thermal ones
(k ∼ T ) and ’soft’ are at momentum scales characteristic
to the interaction (k ∼ gT to leading order). Infinitely
many Feynman graphs are grouped together so that the
damping rate and the effective mass (self energy in the
infrared limit) can be calculated with methods familiar
from perturbative QCD. At high temperature the expan-
sion according to the coupling strength, g, and according
to the number of loops in Feynman diagrams, ~, is no more
equivalent.
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This, albeit is a big step forwards, does not solve alone
all the problems. Most prominently the static magnetic
gluon mass is of order g2T , occurs at a ’supersoft’ scale,
and cannot be generated by HTL resummation techniques
alone. One considers e.g. a dilute magnetic monopole gas,
whose density is proportional to n ∼ m3 ∼ (g2T )3, mak-
ing a contribution to pressure and energy density at the
level of p ∼ nT ∼ g6T 4. In the perturbative QCD ap-
proach this term is related to an infrared divergence [67,
68], and as such it is independent of UV renormalization
schemes. The magnetic gluon mass of order g2T seems to
be of genuine nonperturbative origin [69,70]. It plays a role
also in the calculation of other physically relevant quanti-
ties, like shear viscosity. Lattice QCD calculations on the
other hand obtained this static magnetic gluon mass via
observing a reduced dimensional string tension for space–
space like Wilson loops as well as hunting for magnetic
monopole looking configurations during the Monte-Carlo
integration [71,72,73,74,75,76].

Basic formulas of high-temperature field theory make
it possible to obtain order of magnitude estimates by as-
suming different dominant gluon field configurations, which
contribute to the Euclidean path integral integrating the
factors exp(iS/~) with the action

S4 = i

~β∫
0

dτ

∫
d3x

1

2

(
E2
ia +B2

ia

)
. (11)

Here the chromoelectric field is related to the vector poten-
tial via the Euclidean time derivative, Eia = −∂Aia/∂τ .
The quantum theoretical path integral,

Z = Tr
(
e
i
~S4

)
= Tr

e− 1
~

β~∫
0

Hdτ

 , (12)

is carried out for (with their gauge equivalent) τ -periodic
Aia fields with period β~, and can therefore be reduced to
a 3-dimensional partition sum at high temperature (small
β~):

Z3 = Tr
(
e−βH

)
(13)

with

H3 =
1

2

∫
d3x

(
E2
ia +B2

ia

)
. (14)

In obtaining this result one assumes a constant H(τ) func-
tion in the narrow interval (0, β~). This is relevant in the
study of the infrared behavior of the full, interacting the-
ory.

For the sake of simplicity let us consider pure Yang-
Mills theory (i.e. QCD without quarks) for a while. The
path integral trace is over vector potential configurations,
these can be re-scaled by the interaction strength: gA→ A
transformation leads to an effective, reduced 3-dimensional
action with an effective coupling of the static magnetic
mass

S3 =
1

g2T

∫
d3x

1

2
B2
ia, (15)

revealing the sought finite temperature partition sum as

Z3 = Tr
(
e−S3

)
. (16)

Since this formula does not contain the Planck constant
any more, we may confirm that the chromo-magnetostatic
features of QGP can be estimated by purely classical field
theory means. At the same time they are genuinely non-
perturbative.

In the followings we review a few assumed gluon field
configurations and investigate the corresponding mass and
density scales of gluons, in the original setting, before re-
scaling the vector potential with g. As a starting point
we have to relate the magnitudes of the vector potential
and that of the chromoelectric fields. We do this remem-
bering that they are represented by canonically conjugate
operators, satisfying

[Eia(x), Ajb(x)] =
~
i
δij δab δ(x− y). (17)

Looking for quantum states possibly near to classical fields
one singles out coherent states, where the Heisenberg un-
certainty between the canonical operators is minimal.
Henceforth we use the intuitive estimate

E ·A ∼ ~/L3, (18)

assuming a quantization box of length L. We classify the
gluon field configurations according to the magnitude of
the vector potential and distinguish the following three
fiducial classes:

1. The vector potential is large, of classical order (inde-
pendent of ~): A ∼ 1/gL. In this case E ∼ g~/L2

and the magnetic field strength becomes B ∼ A/L +
gA2 ∼ 1/gL2, also classical. It receives Abelian and
non-Abelian contributions in equal magnitude. The
field energy,

H =
1

2

∫
d3x (E2 +B2) ∼ 1

g2L

(
1 +O

(
(g2~)2

) )
,

(19)
is also classical and dominated by the magnetic con-
tribution for g2~ � 1. Equating this value with the
thermal gluon energy, H ∼ T , we obtain the relation
1/L ∼ g2T , i.e. the supersoft magnetic scale deter-
mines these configurations. The gluon density is esti-
mated as being n ∼ 1/L3 ∼ (g2T )3 and the magnetic
screening mass, the gluon self energy in the infrared
limit, is estimated from m2A2 ∼ g2A4:

m2 ∼ g2A2 ∼ (g2T )2. (20)

This tour de force in estimates ends up with the mass
m ∼ g2T .

2. The vector potential and the electric field strength
share the quantum order but they are independent of
the coupling, g. In this case one typically deals with
configurations of A ∼

√
~/L and E ∼

√
~/L2. The

magnetic field is Abelian dominated, B ∼ A/L+gA2 ∼√
~/L2 + g~/L2. The dominant chromomagnetic field
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is of the same magnitude as the chromoelectric one.
This describes a thermal state with equipartition and
the energy density

ε ∼ T

L3
∼ ~

L4
. (21)

The characteristic scale from this is obtained as the
thermal wavelength, L ∼ ~/T , and the effective screen-
ing mass becomes

m2 ∼ g2A2 ∼ g2T 2

~
. (22)

This Debye screening mass is of the order m ∼ gT/
√
~.

3. In principle a third class of configurations exists dom-
inated by the classical chromoelectric field on the ac-
count of a vector potential of highly quantum order:
E ∼ 1/gL2 and A ∼ g~/L. Physically this corre-
sponds to the string picture and implies E � A/L
for g2~ � 1. The Abelian part of the chromomag-
netic field, BAbel ∼ A/L ∼ g~/L2 ∼ g2~E is then
smaller than the chromoelectric field, while the non-
Abelian contribution, Bnon−Abel ∼ gA2 ∼ g3~2/L2 is
even smaller, negligible in the semiclassical weak cou-
pling approach. It is interesting that the thermal en-
ergy, dominated by the classical chromoelectric field,

ε ∼ T

L3
∼ 1

g2L4
, (23)

again delivers a characteristic length scale of L ∼ 1/g2T .
The screening mass effect, however, in this case is very
small and of highly quantum nature:

m2 ∼ g2A2 ∼ g4~2

L2
, (24)

delivering at the end a mass scale of m ∼ g2~ · g2T .

Considering quasiparticles their mass is defined by the
dispersion relation reflecting the Schwinger-Dyson equa-
tion with a general, complex self-energy

ω2 − k2 −Σ(ω,k) = 0. (25)

Interacting with a medium during propagation is included
in the general self-energy term,Σ. The resolution of eq.(25)
for ω can also deliver complex values, the imaginary part
of the frequency signalizes the so called plasmon damp-
ing. In the infrared limit, |k| → 0 the general frequency is
ω + iγ, satisfying

(ω + iγ)
2

= Σ(ω + iγ, 0). (26)

In the weak damping limit, γ � ω the imaginary part of
this equation defines

γ ≈ 1

2ω
ImΣ(ω, 0), (27)

and the real part constitutes a mass gap equation

ω2 ≈ ReΣ(ω, 0). (28)

To leading order in the perturbative expansion ReΣ(ω, 0) =
(m/~)2 with m being the mass scale derived above. With
ω ∼ T/~ taken as hard thermal, the weak damping con-
stant becomes γ ∼ m2/~T . This is perturbatively the
largest in the second class, γ2 ∼ g2T/~.

4 Internal Structure of QGP

The fact that QCD is a strongly interacting theory changes
several concepts originally stemming from the free particle
world.

4.1 Particles in strongly interacting system

In an interacting field theory the notion of a “particle”
needs careful definition. The problem is that the concept
of a “particle” is associated with free field theory ; but, in
fact, there are various definitions that refer to the same
physical phenomenon in non-interacting theories, any of
them being appropriate to describe a free particle:

– In free theory there exists a conserved particle number
operator N̂ that also commutes with the momentum
operator, too. The common eigenvectors of the energy,
momentum and particle number in the N = 1 sec-
tor are the free particles. The N > 1 sector consist of
direct products of one-particle states; the direct sum
of all N -particle sectors provides the Fock-space con-
struction.

– The energy E and momentum k of a free one-particle
state is connected by the dispersion relation E = E(k).
Therefore the spectrum of the one-particle sector con-
sists of a single energy level, let us denote it |E,k〉.
The spectral density of this sector is therefore a single
Dirac-delta. To measure the spectral density we can
use any operator Φ̂ that posesses only a one-particle
form factor, ie. 〈E,k|Φ̂|0〉 6= 0, but 〈E,k;E′,k′|Φ̂|0〉 =
0. Then we define

%(t) = 〈0|[Φ̂(t), Φ̂(0)]±|0〉, (29)

where ± refers to the commutator/anticommutator,
depending on the bosonic/fermionic nature of the par-
ticles. In Fourier space this definition is equivalent with
a weighted spectral density

%(ω) =
∑
E,k

∣∣∣〈E,k|Φ̂|0〉∣∣∣2 2πδ(ω − E(k)). (30)

In a relativistic field theory, using the fundamental
field as a measurement operator we have the spectral
function

%(ω,k) =
2π

2E(k)
[δ(ω − E(k))− δ(ω + E(k))] . (31)

This satisfies the sum rule∫
dω

2π
ω%(ω,k) = 1, (32)
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– The spectral function remains unchanged at finite tem-
perature, so a particle at finite temperature is the same
object as a zero temperature particle.

– As a consequence the wave function of the free parti-
cle is Ψ(t,x) ∼ e−iEt+ikx, an infinite extension plane-
wave, with |Ψ |2 = 1 uniform probability density.

– The linear response to a disturbance leads to the linear
response function, or retarded Green’s function. The
retarded Green’s function reads as

Gret(ω,k) =
1

(ω + iε)2 − E2(k)
(33)

in relativistic systems. This form is preserved at finite
temperature.

In free theory these all are consequences of each other,
therefore we unintentionally identify these concepts, and
when we tell “particle”, it means all of these at the same
time.

However, in an interacting model all of these concepts
yield different results, and so we have to release the iden-
tification of the above concepts.

– In a general field theory the number of conserved quan-
tities is much smaller than the number of state labels
(types of quantizable physical degrees of freedom); the
only exceptions are integrable systems. In particular
the particle number operator does not exists any more.

– We can measure the spectral function in the same way
as we did in the free case. But, because of the inter-
actions, the spectrum of the free one-particle states
will be mixed with the spectrum of the higher par-
ticle number states. These will provide a continuum
contribution besides the free particle state. Since the
spectrum is subject of a sum rule, cf. (32), the height of
the Dirac-delta peak can not be the free one, it receives
a multiplicative correction Z (wave function renormal-
ization).

– The spectrum is more complicated at finite temper-
ature or at finite chemical potential: there the spec-
tral function is nonzero for all frequencies (with the
sole exception ω = 0), as a consequence of the scat-
tering on particles in the environment. This broadens
the Dirac-delta particle peak, resulting in a Lorentzian
curve. Such an excitation is called quasiparticle. It, as
opposed to the free case, does not represent a single en-
ergy level, but a collection of energy eigenstates. Here
other excited/ground states can appear too, and the
continuum is always present. A typical finite temper-
ature spectrum can be seen on Fig. 2.

– The linear response function at zero temperature still
contains contribution from the Dirac-delta peak. For
long times we obtain

Gret(t,k) = Ze−iE(k)t+Ct−3/2e−iEthr(k)t+ . . . . (34)

For long times the second part dies out, leaving a
free particle like propagation: these are the asymptotic
states.

– In numerous cases, however, there are no asymptotic
states: if the particle mixes with zero mass particles

ρ
 (

ar
b
it

ra
ry

 u
n
it

s)

ω (arbitrary units)

Fig. 2. Typical spectrum in an interacting theory. The original
particle peak is broadened (finite lifetime or finite coherence
length), other peaks can appear (excited and bound states),
moreover we always have a multi-particle continuum contribu-
tion.

(all charged particles do that), or the particle is not
stable, or we are at nonzero temperature; practically
in all realistic cases. The Lorentzian quasiparticle peak
and the continuum part of the spectral function yield
the retarded propagator

Gret(t,k) = Ze−iE(k)t−γkt+Ct−3/2e−iEthr(k)t−Γkt+. . . .
(35)

where γk is the half-width of the Lorentzian peak, and
Γk is some parameter determining the smoothing of
the spectrum near the threshold. The quasiparticles for
long times decay exponentially1. If γk � Γk, for long
times we can observe a fading quasiparticle response,
in the reverse case, γk � Γk, the long time behavior
of the system is not particle-like at all.

Having said all these we see that the particle concept
becomes a dangerous ground, we must be very precise
on what we are talking about. For example stating that
the particles have temperature dependent mass is sensible
only in the quasiparticle-sense: free particles are eigen-
states of the Hamiltonian, they cannot have a mass chang-
ing with the temperature. The quasiparticles, on the other
hand, are collections of energy eigenstates, and the coef-
ficients of the combination can change with T . Therefore
the position and the width of the quasiparticle peak can
also change with the temperature.

4.2 Particles, spectral function and thermodynamics

There is still a possible definition for a particle through
thermodynamics: in free theory each particle species rep-
resents a thermodynamic degree of freedom. Does it re-
main true in the interacting case, i.e. are also the nonper-
turbative particle species thermodynamic degrees of free-
dom? Let us seek an answer to this question by utilizing
spectral properties.

1 We must emphasize, however, that this is true for long
times only, for short times a power-law like damping is also
possible.
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The pressure of the free gas of different species is the
sum of partial pressures P =

∑
n Pn with

Pn = ∓ T 4

2π2

∞∫
0

dxx2 ln(1∓ e−
√
x2+(βmn)2), (36)

where mn is the mass of the nth particle, and ∓ refers to
the bosonic/fermionic case, respectively. In particular the
pressure at large temperature, in the Stefan-Boltzmann
limit, T � m, reads as

Pfree =
π2

90

(
Nb +

7

8
Nf

)
, (37)

where Nb is the number of bosonic, Nf the number of
fermionic species. All fundamental free particles therefore
contribute independently to the pressure.

We do not need to have, however, fundamental parti-
cles to obtain thermodynamical degrees of freedom. In the
case of well separated quasiparticle excitations, that can
be characterized by a phase shift δ(ω) of a scattered par-
ticle centered at ω = E(k), the Beth-Uhlenbeck formula
[77] states

δZ ∼
∞∫

0

dω

2π

∂δ

∂ω
e−βω ∼ e−βE(k). (38)

Therefore all excitations contribute to the partition func-
tion exactly like a stable particle, irrespective whether it
is a fundamental particle, or a bound state with internal
structure and motion.

This picture leads to the Hadron Resonance Gas (HRG)
description of the QCD plasma [78]. Here all the possi-
ble hadrons, measured and identified at zero temperature,
contribute to the thermal ensemble in the same way, irre-
spective of their width. The resulting pressure is in fact
in a very good agreement with the pressure measured in
MC simulations in the hadronic phase [79,80,81,82,83].

It fails, however, badly in the quark-gluon phase, about
T > 150 MeV [83,46]. In fact, as it was first pointed out
by Hagedorn, the HRG pressure would be divergent, if all
hadrons were taken into account. This is due to the fact
that the density of hadron states grows exponentially with
the mass: ρ(m) ∼ mαeβHm, with TH = 1/βH Hagedorn
temperature, and an appropriate power α (e.g. α = 5/2).
Then the pressure of all hadrons, written up as an integral
for the mass density diverges,

P ∼
∫
dmρ(m) e−βm → ∞, for T > TH . (39)

If we do not take into account all hadrons, just those
that are listed in the Particle Data Book [84], or the
hadrons below, say 3 GeV, then the pressure will not di-
verge, but still overshoots the pressure of the quark gluon
plasma. This is a conceptual problem: at all temperatures
the system in equilibrium realizes that phase where the
grand-canonical thermodynamical potential, in this case

PV , is the largest. The quark gluon plasma with 8 glu-
ons and Nf quarks represents a system with 16 + 10.5Nf
bosonic degrees of freedom (all fermions have 4 Lorentz-
components, 3 colors, and the factor 7/8 compared to the
bosonic contribution). If we would count only the stable
hadrons, i.e. pions and nucleons, as hadronic degrees of
freedom, we would obtain 10 bosonic degrees of freedom,
and so the QGP would have a larger number of degrees
of freedom, which explains, why there is a phase transi-
tion to the QGP phase. But if all the Particle Data Book
hadrons are taken into account, this highly exceeds the
QGP number of degrees of freedom, and we do not un-
derstand, why a phase transition occurs at all? We must
emphasize that the argument that the hadrons are not
valid degrees of freedom in the QGP phase is not appli-
cable, since the hadron phase represents a higher entropy
state of matter, and so it forbids the change to the QGP
phase.

So we are faced with the situation, where we can de-
scribe the pressure of the strongly interacting plasma be-
low ∼ 150 MeV (HRG), and above 300 MeV (QGP), but
we do not understand why there is a phase transition,
and we do not understand the pressure in the intermedi-
ate temperature range. What happens with the hadrons
between 150 MeV < T < 300 MeV? The bound states
must somehow disappear from the system as we rise the
temperature, physically the hadrons must melt away.

How is this melting related to the Beth-Uhlenbeck for-
mula, according to that every quasiparticle resonance cor-
responds to a single thermodynamical degree of freedom?
We should note that in the derivation of the result one
must assume that the quasiparticles are independent, in
the sense that all can be treated as separate Breit-Wigner
peaks. This assumption, however, fails when we consider
a system where the quasiparticle peaks occur densely, or
if a multiparticle background is present. In such cases the
quantum mechanical treatment of the quasiparticle peak
contributions to the S matrix have complex coefficients
[85,86]. The unitarity of the S matrix poses constraints
among these coefficients: in this way the pole contribu-
tions are no more independent.

In field theory we can describe this process by observ-
ing the hadronic spectral functions [87,88,17]. A math-
ematically similar description can be obtained using the
Mott-transition analogy [89,90,91]. The hadronic spectral
functions, as all spectral functions, consist of a quasiparti-
cle peak and a continuum part. The weight of these parts,
however, changes with the temperature. At small temper-
atures the quasiparticle peak is pronounced, it dominates
the thermodynamics, and the gas of hadrons behaves as
a gas of almost free particles. At high temperatures, how-
ever, the quasiparticle peak merges with the continuum,
and the “particle” nature of the hadronic channel ceases
to be true. This is accompanied by a drastic reduction of
the partial pressure in this channel.

To set up a field theoretical model we construct a
quadratic theory with the same statistical property (bo-
son/fermion) and the same spectral function as the stud-
ied channel. For a scalar field it means that we write up
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the Lagrangian as

L =
1

2
ΦK(i∂)Φ, (40)

with some kernel K. The kernel and the retarded Green’s
function are related as Gret(p) = K−1(p0 + iε,p), while
the retarded Green’s function and the spectral function
can be expressed from each other

Gret(p) =

∞∫
−∞

dω

2π

%(ω,p)

p0 − ω + iε
, %(p) = Disc

p0
iGret(p).

(41)
Since the theory described by the effective Lagrangian (40)
is quadratic, and so it is solvable; but its spectrum does
not consists of free particles. To determine thermodynam-
ics one has to start from a microscopically measurable
quantity, which most conveniently can be chosen the en-
ergy density, ie. the expectation value of the 00 compo-
nent of the energy-momentum tensor T00. Although we
have a quadratic, model, the energy-momentum tensor is
not simple, due to the nonlocal nature of the kernel. The
divergence of the energy-momentum tensor can be deter-
mined from the variation of the action with respect to a
space-time translation aµ [92]

∂µTµν =
δS

δaµ
. (42)

This leads to [87]

Tµν(x) =
1

2
Φ(x)DµνK(i∂)Φ(x) (43)

where

DµνK(i∂) =

[
∂K(p)

∂pµ

∣∣∣∣
p→i∂

]
sym

i∂ν − gµνK(i∂), (44)

and the symmetrized derivative is defined as

f(x)[(i∂)n]symg(x) =
1

n+ 1

n∑
a=0

[(−i∂)af(x)][(i∂)n−ag(x)].

(45)
Once we know Tµν , wa can take its expectation value in
equilibrium. We can use KMS relation to write

〈Φ(x)Φ(y)〉 =

∫
d4p

(2π)4
e−ip(x−y)

(
1

2
+ n(p0)

)
%(p). (46)

Finally we renormalize the expressions and express pres-
sure through thermodynamical relations. The result reads
[87,88,17]

P = ∓T
∫

d4p

(2π)4
Θ(p0)

∂K
∂p0

%(p) ln(1∓ e−βp0). (47)

We should note that the pressure does not depend on the
normalization of the spectral function, since the kernel

is inversely proportional to this normalization factor (cf.
(41)).

In the free case, ie. using the free spectral function (31)
and K = p2 −m2 in the above formula, we get back the
free pressure (36). If there are several Dirac-delta peaks in
the spectrum, we also get back the sum of the free gas par-
tial pressures, in accordance with the Beth-Uhlenbeck for-
mula (38). But if the peaks are not independent, the exact
pressure starts to deviate from the Beth-Uhlenbeck pre-
diction. In Fig. 3 we can see that when two peaks start to
merge, the exact pressure decreases. It is not unexpected:
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Fig. 3. Left panel: spectral functions of two peaks with differ-
ent widths as well as a pure continuum. Right panel: energy
density of two peaks with different widths, the energy density
of a single Dirac-delta peak (with m = 1.6), and the energy
density contribution of the continuum, enlarged by a factor of
10

when there is just one peak, the spectrum looks like a one-
quasiparticle spectrum, and so the pressure must come
from a single degree of freedom. Therefore starting from a
two separate peaks spectrum, and continuously approach
a one-peak spectrum the pressure also changes smoothly
from the two-particle pressure to the one particle one.

This observation leads to the explanation of Gibbs-
paradox in interacting systems [87]. The original paradox,
valid in free systems is that if the molecules of two gases
differ only in a tiny, continuously disappearing thing (eg.
mass difference, or a tiny “flag”), then the two gases are
different as long as the difference is present, but are the
same if the difference is exactly zero. This leads to a non-
analytic contribution to the entropy (mixing entropy). In
interacting gases, however, the energy spectrum consists
not infinitely thin Dirac-deltas, but there is a line broad-
ening coming from different sources (eg. thermal motion,
or finite density). Then with vanishing mass difference the
spectral functions become more and more overlapping, as
it is shown in Fig. 3. As a consequence the pressure will
continuously reduce from the 2-independent particle pres-
sure to a 1-particle pressure (where the mass is somewhere
between the masses of the two peaks), as it is also shown
in Fig. 3. In an interacting system, therefore, the Gibbs-
paradox leads to a continuously vanishing mixing entropy.

In Fig. 3 there is shown also the contribution of the
multiparticle continuum (cut) part. Its spectrum is not
quasiparticle-like, as it can be seen on the left panel of
Fig. 3. The corresponding pressure is much lower than
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the pressure of the quasiparticle systems: in Fig. 3 it is
enlarged by a factor of 10 to be visible at all.

This explains why a huge pressure reduction appears
when a peak merges with the continuum, ie. when it melts.
The original narrow peak structure corresponds to an al-
most free quasiparticle, with pressure close to the free
pressure. When the peak gets merged in the continuum,
the spectrum does not contain a particle, it becomes more
and more like the continuum part of Fig. 3, therefore the
corresponding pressure is also smaller and smaller. In the
course of a continuous merging procedure the pressure
smoothly changes from the one free particle pressure to
zero: the particle is melted, it disappears from the thermal
ensemble. We can define the number of thermodynamical
degree of freedom as the ratio of the exact pressure and
the free pressure. With this definition the thermodynami-
cal degrees of freedom changes continuously to zero.

 0

 1
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 5
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 0  100  200  300  400  500  600

p
/T

4

T (MeV)

SB

MC data
total

hadrons
QGP

Fig. 4. Hadronic pressure reduction at high T , quark pressure
reduction at low T , due to merging peaks. For comparison,
lattice data are indicated by triangles.

This mechanism makes it possible to explain why there
is no divergent pressure beyond the Hagedorn temperature
in the QCD plasma, or why the hadronic pressure does
not overshoot the QGP pressure. The hadron spectrum
changes with the temperature from quasiparticle peaks to
peaks merged with the continuum. As discussed above,
this results in the reduction of the thermodynamical de-
grees of freedom effective for the total pressure. The situ-
ation is just the opposite for the QGP degrees of freedom:
at small temperatures the spectrum in the quark channel
is just a continuum, there are no particle-like excitations
there, the partial pressure is zero. At high temperatures
the spectra in the QGP channels become more and more
particle-like; although even at about T ≈ 300 MeV the
number of thermodynamical degrees of freedom is only
about 80% of the free case (cf. Fig.4).

In this way, within the picture of melting quasipar-
ticle peaks, the QCD pressure computed in MC simula-
tions can be reproduced and interpreted in correct phys-
ical terms. The main prediction of this model is that the

hadronic thermodynamic degrees of freedom do not vanish
suddenly above the critical temperature, there is a sizable
temperature regime, until about T = 330 MeV, where
they still dominate the pressure. In this melting hadron
peak regime, however, we do not have quasiparticles as
excitations, just a mixture of hadron-like and dissociated
quark-gluon-like behavior. This is indeed a new type of
nuclear matter.

4.3 Continuous mass fits to lattice EoS

Quark matter, searched for in relativistic heavy ion colli-
sions, reveals itself in signatures on observed hadron spec-
tra which are interpreted in terms of quark level proper-
ties. In particular scaling of the elliptic flow component v2

with the constituent quark content of the finally observed
mesons and baryons [96,97,98,99,100,101] and successful
description of pT -spectra of pions and antiprotons using
quark coalescence rules for hadron building [102] utilize
the fast hadronization concept of quark redistribution. Al-
beit this simple idea brings also problems with it, e.g.
in dealing with energy conservation and entropy increase,
these issues can be resolved by using a distributed mass
quasiparticle model for quark matter [103], and are in ac-
cord with the quark matter equation of state obtained in
lattice QCD calculations [104]. The surmised mass distri-
bution gives rise to specific equation of state (pressure as
a function of temperature, p(T )), and reversed, a mass
distribution may be outlined from knowledge on the p(T )
curve.

While traditional, fixed mass quasiparticle models al-
ready succeed to describe the equation of state obtained
in lattice QCD [105], those mass values are themselves
temperature dependent. Furthermore a temperature de-
pendent width is associated to the quasiparticle mass, too
[106,107,108]. The factor between the massive and mass-
less relativistic ideal pressure in the Boltzmann approxi-
mation,

Φ
(m
T

)
=

pid(m,T )

pid(0, T )
=

1

2

m2

T 2
K2

(m
T

)
, (48)

relates the observed pressure in a non-trivially interacting
system to the mass distribution of a conjectured continu-
ous mixture of different mass particles

p(T ) =

∞∫
0

w(m) pid(m,T ) dm. (49)

This means that the observed equation of state in terms of
the pressure ratio to the Stefan–Boltzmann limit, repre-
senting the effective fraction of thermodynamical degrees
of freedom, is a so called Meijer transform of a conjectured
continuous mass distribution:

σ(T ) =
p(T )

pid(0, T )
=

∞∫
0

w(m)
1

2

m2

T 2
K2

(m
T

)
dm. (50)
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Using the scaled variables, t = m/Tc and z = Tc/T , and
the redefined functions σ(z) := σ(Tc/z), w(t) := Tcw(Tct),
we obtain

σ(z) =

∞∫
0

w(t)
z2t2

2
K2(zt) dt. (51)

This integral transformation, the so called Meijer trans-
form, can be inverted analytically,

w(t) =
2

iπ

∫
σ(z)

I2(zt)

zt
dz. (52)

The respective high temperature expansions of the pres-
sure ratios, based on the expansion of the K2(z) Bessel
function in the mass distribution formula, and that one
applied in perturbative QCD, are worth to be compared:

p(T )

pid(0, T )
= 1− 〈m

2〉
4T 2

+

(
3

4
− γ
)
〈m4〉
16T 4

+
〈m4 ln(2T/m)〉

16T 4
+ . . . ,

ppQCD

pid(0, T )
= 1− a2g

2 + a4g
4 + b4g

4 ln
2πT

Λ
+ . . . (53)

with γ being the Euler–Mascheroni constant and Λ the
renormalization subtraction scale. We note that σ(z) can
also be obtained for Bose or Fermi distributions instead of
the Boltzmann one; the numerical difference is overall mi-
nor, less than six per cent at vanishing chemical potential.
The basic result on the Debye screening length in a QGP
supports the assumption that

〈
m2
〉
∼ g2T 2 sets the scale

for a simplified treatment of the quark matter pressure at
high temperature. The comparison of pQCD and mass

distribution results above reveals that
〈
m4
〉
6=
〈
m2
〉2

,
whence the necessity of a width in the mass distribution
emerges. Alone this fact indicates that the spectral function
cannot be a simple sum of quasiparticle peaks, it must con-
tain appreciable widths, possibly even a continuum part.

The temperature dependence of the pressure ratio to
the massless ideal gas value is concentrated on the tem-
perature dependence of the coupling constant: g = g(T ) in
the traditional interpretation. We have recently pursued
an alternative approach to the quasiparticle mass distri-
bution in quark matter [102,103], where a temperature
independent w(m) distribution is reconstructed from the
pressure ratio σ(T ) = p(T )/pid(0, T ) curve:

σ(T ) =

∫ ∞
0

w(m) Φ
(m
T

)
dm. (54)

It is interesting to play around with some analytic formu-
las with respect to the Meijer transformation. The simple
exponential ansatz leads to a certain power-law tailed form
of w(m) with a threshold mass gap at m = λ:

σ(T ) = e−λ/T ↔ w(m) =
4λ

πm2

√
1− λ2

m2
. (55)

Since such a mass distribution would have a diverging〈
m2
〉

and also for higher powers of m, we conclude that
it must be

σ(T ) < e−λ/T . (56)

Indeed lattice results on σ(T ) all satisfy such a constraint
with a corresponding value of λ. The smallest such λ
value, found numerically, is then the Boltzmannian es-
timate for the mass gap. It is a remarkable property of
this approach that it indicates a temperature indepen-
dent threshold (smallest mass) in the w(m) spectrum for
lattice QCD pressure data[109,110].

The pressure is, however, not known analytically, the
numerical results are smeared with error bars. This prob-
lem is more severe in the light of the fact that eq.(50) con-
stitutes an integral transformation (the Meijer K transfor-
mation, a generalization of the Laplace transformation).
There is no mathematical guarantee that the inverting
transformation eq.(52) leads to close results for w(m) from
close functions for σ(T ). In fact this is known as the ”in-
verse imaging problem” [111,112,113].

However, based on the above assumptions one can ob-
tain some supportive knowledge about a T -independent
w(m) mass distribution when the pressure p(T ) satisfies
certain inequalities. In particular we prove that if the pres-
sure p(T ) is below the corresponding ideal gas pressure
with a given mass M0 at all temperatures, then the mass
distribution is exactly zero for all masses below M0. For
inequalities with other than ideal gas pressure curves as
estimators we apply the Markov inequality for probability
measures, which directly offers upper bounds on the inte-

grated probability density function P (M) =
M∫
0

w(m)dm.

It turns out that the appearance and value of the high-
est possible M for which P (M) = 0, the mass gap value
M0, is connected to the low temperature behavior of σ(T ).
Two particular estimators for σ(T ), namely Φ(M0/T ) with
M0 = 3.2Tc and exp(−Tc/T ) are compared to 2+1 flavor
lattice QCD scaled pressure data in Figure 5 (top) and
to pure SU(3) lattice gauge theory data (bottom) with
M0 = 2.7Tc and λ = 0.55Tc. Of course the temperature
scales are different, Tc ≈ 165 MeV in the first, Tc ≈ 260
MeV in the second case. These examples are important
for gaining a physical insight into the Markov inequality
discussed below.

In the followings we relate the mass gap to the behavior
of σ(T ) using the generalized Markov inequality to esti-
mate upper bounds on the integrated probability density
function for the mass being lower than a given value. The
general form of the Markov inequality is given by [116,
117,118,119]

µ ({x ∈ X : f(x) ≥ t}) ≤ 1

g(t)

∫
x∈X

g ( f(x) ) dµ(x) (57)

with measure µ, a real valued µ-measurable function f ,
and a monotonic growing non-negative measurable real
function g. The proof, based on the monotonity of in-
tegration, can be presented in a few lines. For a non-
negative and monotonic growing function g(t) ≤ g(f(x))
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Fig. 5. Pressure curve estimators for the data from lattice
QCD simulation of Ref.[109] (2+1 flavor QCD) and of [114,
115] (pure SU(3) gauge theory).

for t ≤ f(x). We obtain

g(t)

∫
f(x)≥t

dµ(x) =

∫
f(x)≥t

g(t) dµ(x) ≤
∫

f(x)≥t

g ( f(x) ) dµ(x). (58)

This quantity can be bounded by∫
f(x)≥t

g ( f(x) ) dµ(x) ≤
∫

x∈X

g ( f(x) ) dµ(x). (59)

A division by g(t) ≥ 0 delivers the original statement in
eq.(57).

In order to apply this inequality to the mass spectrum
we choose f(m) = tM/m. In this case

µ

(
tM

m
≥ t
)

=

∫ M

0

dµ(m), (60)

and the Markov inequality reads as

P (M) :=

∫ M

0

dµ(m) ≤ 1

g(t)

∫ ∞
0

g

(
tM

m

)
dµ(m). (61)

For a continuum mass spectrum dµ(m) = w(m) dm can
be chosen with w(m) being the probability density func-
tion. The generalized Markov inequality stated above is
valid for general probability measures2 µ possibly includ-
ing bound state contributions.

2 a measure normalized to one

Now we discuss a few examples for monotonic rising
functions g(z), which allow us to draw some conclusions
about the integrated probability for masses below M . Ap-
plying the special form of g(t) = tn we arrive at

P (M) ≤ 1

tn

∫ ∞
0

(
tM

m

)n
w(m) dm, (62)

whence we obtain:

P (M) ≤Mn

∫ ∞
0

m−nw(m) dm. (63)

It is easy to see that the negative integral moments of
the mass on the right hand side of the above inequality
are connected to the negative integral moments of scaled
pressure σ(T ) = p(T )/pid(0, T ). The final inequality for
the probability of having masses smaller than M is given
by

P (M) ≤ Mn

∞∫
0

T−n−1 σ(T ) dT

∞∫
0

xn−1 Φ(x) dx

. (64)
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Fig. 6. Reconstructed scaled mass distribution using analytic
(continuous line) and numerical Meijer back transformation
(black boxes: lattice EoS data, black circles: exponential upper
estimate) on the top. Upper bounds for the integrated prob-
ability P (M) of masses lower than M , based on 2+1 flavor
lattice QCD EoS data[109] at the bottom (cf. eq.68).

Let us apply this result to the simplest majorant, that
of a fixed mass relativistic ideal gas. In this case σ(T ) ≤
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Φ(M0/T ) with some M0 (cf. dashed line in Figure 5).
Equation (64) leads to

P (M) ≤ Mn

∫∞
0
T−n−1 Φ

(
M0

T

)
dT∫∞

0
xn−1Φ(x) dx

≤
(
M

M0

)n
(65)

in this case. Should it hold for arbitrary high n, the right
hand side of this inequality is zero for all M < M0 and
divergent for M > M0. In the second case it is not restric-
tive, since P (M) < 1 anyway, in the first case this means
a mass gap up to M0. We note that this conclusion holds
for a general non-negative Φ(x), for which the integrals
in eq.(65) are finite for all n > 0. Thus the Bose-Einstein
or the Fermi-Dirac distribution could as well be applied
instead of the Boltzmann one.

Another possible majorant is the exponential function,
σ(T ) ≤ exp(−λ/T ) (cf. the dotted line in Figure 5 for
λ = Tc). In this case eq.(64) delivers

P (M) ≤
(
M

2λ

)n
2Γ (n)

Γ (2 + n/2)Γ (n/2)
. (66)

The large n limit of this result is given by

P (M) ≤
(
M

λ

)n
2

√
2

π

1

n3/2
(67)

to leading order in 1/n. Again the right hand side ap-
proaches zero for M ≤ λ and diverges for M > λ. This
points out a mass gap stretching to (and including) λ from
zero.

The most striking inequality is obtained by using g(t) =
Φ(1/t). This function is also admissible, its rise from zero
to one is strict monotonic. Eq. (64) leads to

P (M) ≤ σ(tM)

Φ(1/t)
. (68)

For t = 1 using the numerical value Φ(1) ≈ 0.81 one ar-
rives at P (M) ≤ 1.23σ(M), which can be directly read
off from numerical simulation or theoretical predictions of
σ(T ). Figure 6 presents curves for different t-values (see
legend), all being an upper estimate for the integrated
probability P (M) in the respective cases of 2+1 flavor
QCD and pure SU(3) gauge theory. The higher seems to
be the starting M0 value for the rise of the upper bound on
P (M), the higher also the magnification of the error bars.
A secure estimate for the P (M) ≤ 0.05 is given for masses
M > 1.7Tc = 280 MeV for the 2+1 flavor QCD case, while
for M > 7.2Tc = 1.9 GeV for the pure SU(3) gauge case.
While in the first case this can be at best an average be-
tween quark and gluon-like quasiparticle masses, in the
second case should be close to observed glueball mass. We
note that using σ(tM) ≤ Φ(M0/tM) in the t → 0 limit
again a mass gap at M0 follows from eq.(68). In this re-
spect the use of different g(z) functions in the Markov
inequality does not matter3.

3 From practical viewpoint, however, in the t → 0 limit the
error bars on the original p/T 4 data are infinitely enlarged.

A related version of the inequality (68) is obtained for
tM = T , g(z) = Φ(tM/zT ). The upper bound is obtained
at any fixed T as being

P (M) ≤ σ(T )

Φ(M/T )
(69)

Figure 7 plots upper bounds for P (M) obtained using the
eq.(69). The most restrictive are the lowest temperature
data for σ(T ), they are, however, also the most contam-
inated by errors. It is probably safe to conclude that as
much as 90 − 95% of the masses are above 1.5Tc ≈ 440
MeV according to these data.

Our mathematical treatment of the mass gap leaves
the point m = 0 in the possible mass distribution as a
special case. Assuming that there were such a contribution
of finite measure, i.e. P (0) = a were a finite value between
zero and one, one concludes from the definition eq.(54)
that in this case σ(T ) ≥ a would be. There is no sign of
such an indication in lattice QCD data.

Finally we note that there is a potential to use our
method presented in this letter in a context wider than
quark matter: the quasiparticle test based on the gener-
alized Markov inequality can in principle be done for any
system with sufficiently known thermal equation of state.
The estimate for a lowest mass can then be checked against
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Fig. 7. Upper bounds for the integrated probability of masses
lower than M based on eq.(69) and on 2+1 flavor lattice QCD
EoS data[109](top) and from Ref.[110] (bottom) respectively.
The estimates belong to different temperatures T near Tc in-
dicated in the legend. In the second case a constant error of
0.01 was assumed in the original p/T 4 data.
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knowledge on the mass spectrum obtained from the study
of correlation functions.

4.4 〈α(Q2)〉T vs αeff(T )

Talking about non-perturbative effects in high tempera-
ture QCD, at a first glance is a paradoxical issue. How-
ever, there always have been warnings coming from a few
experts [120,121,122,123]. By the majority such warn-
ings have been long ignored: upon the famous proof by
A. Linde [67], that the problem of non-perturbativness
were an infrared effect, it was generally believed that one
does not have to consider this above Tc.

The 1/log-like pole behavior of the running coupling
constant has been encountered by phenomenological shifts
in the renormalization point energy scale from Tc a bit
[124,125,126] in a formula for the effective thermal cou-
pling conjectured to be a good approximation:

αT :=
〈
α(Q2)

〉
thermal

≈ α
(〈
Q2
〉)

= α(T 2). (70)

Even without digging into the delicate issues of QCD deep,
one can easily convince himself that this approximation
could only hold if the thermal distribution of relative Q2

values in a QGP were sharp. This is, however, not the
case, as we shall demonstrate it below.

First we summarize the results we arrive at by consid-
ering the thermal distribution of Q2 in a QGP:

1. The thermal distribution of Q2 values are not peaked
around T 2, rather they are maximal at Q2 = 0 be-
tween two massless particles; the Boltzmann distribu-
tion being just a particular example. The width of the
distribution is proportional to T 2.

2. The expectation value of a non-perturbative (NP) or-
der parameter, being one until Q2 = Λ2 and zero oth-
erwise, is non-vanishing at arbitrary temperatures. For
high T it goes like Λ2/T 2 upon the constant probabil-
ity near to Q2 = 0.

3. As a consequence at arbitrary high temperatures there
is a relative measure of NP effects. In the pressure this
occurs already at the subleading term.

4. The lattice EoS results subleading terms are seen in the
scaling (e − 3p)/T 2 = constant at high temperatures.
pQCD would predict an inverse logarithmic fall of this
value.

In the followings we outline the support for these state-
ments. The relativistic kinematics for pairs of massless
particles delivers

Q2 = −(p1 − p2)2 = 2E1E2(1− cos θ). (71)

The distribution of Q2 values is then given by

P (Q2) =

∫
12

f(E1)f(E2) δ
(
Q2 − 2E1E2(1− cos θ)

)
∫
12

f(E1)f(E2)
.

(72)
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Fig. 8. The distribution of Q2 values between pairs of mass-
less partons at temperature T assuming respective Boltzmann
distributions. It is not peaked, but its width scales with T 2.

with the integration∫
12

. . . =

∫
dE1dE2d cos θ E2

1 E
2
2 . . . (73)

Using the Dirac delta functional for the integral over cos θ
this can be written as

P (Q2) =

∞∫
0

dE1

∞∫
Q2/4E1

dE2
1
2E1E2f(E1)f(E2)

∞∫
0

dE1

∞∫
0

dE2 2E2
1E

2
2f(E1)f(E2)

. (74)

This value is always between zero and one, its integral is
one due to its construction in eq.(72). Since the thermal
parton distribution, f(E), is positive, the numerator is
maximal at Q2 = 0. The maximal value of the distribution
is given by

P (0) =
1

4

∫
dE1

∫
dE2E1E2f1f2∫

dE1dE2E2
1E

2
2f1f2

=

〈
1

2E

〉2

=
c2

T 2
(75)

with c some constant depending on the distribution. In
particular for the Boltzmann distribution, f(E) ∝ e−E/T ,
the Q2-distribution can be given in analytic form as

P (Q2) =
1

64T 2

(
|Q|3

T 3
K1(|Q|/T ) + 2

Q2

T 2
K2(|Q|/T )

)
.

(76)

Let us now consider a non-perturbative quantity, like
the string tension, which is zero above Q2 = Λ2 and
around constant below this momentum scale. The ideal or-
der parameter is given by a step function, o = Θ(Λ2−Q2).
The expectation value of such an order parameter at tem-
perature T is

〈o〉 =

Λ2∫
0

dQ2 P (Q2) =

Λ2/T 2∫
0

F (x)dx (77)
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Fig. 9. The integrated distribution of Q2 values from zero to
Λ2 as a function of T/Λ in order to show the contribution of an
NP order parameter. The dotted line is the high-temperature
limit for the Boltzmann distribution.

by using the integration variable x = Q2/T 2. This is the
integrated distribution function of the thermal Q2 distri-
bution. By definition this approaches the value one from
below, so as a function of T (or T 2) it starts with the value
1 and continuously decreases.

For high enough temperature, T � Λ, the distribution
is nearly constant, so we can use (75) to conclude that

〈o〉 ≈ c2Λ2

T 2
. (78)

For Boltzmann distribution c = 1/4. This means that at
any temperature there are non-perturbative (NP) effects
to subleading order in T 2 (cf. the 1/16x2 curve on Fig.9).

In particular for the equation of state (EoS) of high-
temperature matter, among others for the quark-gluon
plasma, NP effects are present already at this level. Ow-
ing to the fact that the pressure be zero in the confining
phase, one may consider that it is proportional to 1−〈o〉:

p = pSB (1− 〈o〉) . (79)

Figure 10 plots the normalized pressure with this simple
assumption and QCD lattice equation of state data from
different groups. The cut-off parameter was taken as Λ =
6Tc = 1 GeV. The deviation from the Stefan-Boltzmann
limit is non-perturbative, showing the subleading order at
high temperature.

The interaction measure is also non-perturbative to
leading order

e− 3p = 2cNPΛ
2T 2 + . . . (80)

Lattice gauge field theory calculations, especially SU(3)
Yang-Mills, in fact show a rather constant value for the
parameter

∆ =
e− 3p

T 2T 2
c

, (81)

(cf. Figure 10). The perturbative QCD predicts here ef-
fects going with T 2α(T ), which has to be smaller than
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Fig. 11. T 2-scaling of the interaction measure in pure glue
lattice data. This is a slide from Rob Pisarski’s lecture on July
8th, 2016, Wigner RCP Theory Seminar, Budapest.

this. (The problem is that α(T ) = 〈α(Q2)〉 also must con-
tain NP effects, the one-loop inverse logarithm is not in-
tegrable with the P (Q2) distribution.)

Elementary thermodynamics of ideal gases including
string-like objects, gives account to this subleading be-
havior. Here we briefly describe this mechanism based on
the more detailed presentation in Ref.[50]. We denote the
number density of colored sources by c =

∑
cini and as-

sume that the temperature and number density dependent
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Fig. 12. T 2-scaling for 2 + 1 dimensional lattice data for dif-
ferent SU(N) gauge groups. This is a slide from Rob Pisarski’s
lecture on July 8th, 2016, Wigner RCP Theory Seminar, Bu-
dapest.

free energy density is given by

f = fid(ni, T ) + σ 〈 ` 〉 c (82)

with 〈 ` 〉 = c−γ . For straight color tubes with constant
cross sectional area in three dimensions one naturally as-
sumes γ = 1/3. In this way the total free energy density
contains a term depending on the total color density as a
fractional power:

f = fid(ni, T ) + σ c1−γ . (83)

The chemical potentials, the pressure and energy density
can be derived from this as follows

µi =
∂f

∂ni
= µi,id + (1− γ)σc−γ ci,

p =
∑

µini − f = pid − γσc1−γ ,

e = f − T ∂f
∂T

= eid + σc1−γ . (84)

Utilizing these results the interaction measure becomes

∆ = e− 3p = eid − 3pid + (1 + 3γ)σ c1−γ . (85)

The contribution by the ideal gas is zero for massless ob-
jects, for each massive degree of freedom it is proportional
to m2. For a QGP made of (nearly) massless quarks and
gluons only the stringy contribution remains, in which all
densities are proportional to T 3, as ni = νiT

3. In this case
one obtains

(e− 3p)|m=0 = (1 + 3γ)σ
(∑

ciνi

)1−γ
T 3(1−γ). (86)

For straight objects γ = 1/3, and this term is proportional
to T 2, and the same follows for the non-ideal contribution
to the total pressure, too:

p = σSBT
4 − 1

3
σ
(∑

ciνi

)2/3

T 2. (87)

A further remarkable property of this picture is that at
the edge of mechanical stability, defined by vanishing total
pressure, p = 0, the energy density is given by

e|p=0 = eid + pid/γ. (88)

For massless constituents in the QGP eid = 3pid, and pid =
T
∑
ni, and we obtain the following energy per particle

E

N
=

e∑
ni

= (3 + 1/γ)T = 6T. (89)

For a hadronization temperature of 167 MeV, conjectured
in earlier lattice calculations, this would be E/N = 1 GeV;
a value remarkably close to the result of phenomenological
fits of hadronic ideal gas mixtures (the so called ”Statis-
tical Model”) to heavy ion experiments at various bom-
barding energies[127,128,129,130,131]. Since the hadronic
matter has almost zero pressure compared to a QGP, the
deconfinement phase crossover transition temperature is
indeed close to the mechanical instability point defined
by p = 0.

Having a glimpse on Fig.12 one realizes that the non-
perturbative leading correction to ideal pressure term is
negative and scales with the Casimir of the charge in the
SU(N) gauge group, namely with N2 − 1. Since strings
pull, it is natural that they give a negative correction to
the ideal pressure. Since they are mainly made of chromo-
electric flux, it is natural that the effective string tension
scales like N2 − 1. However, for also resulting in O(T 2)
corrections, in 2 + 1 dimensional lattices the elementary
correction per color source must be like f/c ∼ σ ln 〈 ` 〉.
This hints towards a very different mechanism for the ori-
gin of such corrections in lower dimensional Yang-Mills
systems.

Summarizing this subsection, we have shown on the
basis of general arguments that non-perturbative effects,
even those which cease at a sharp momentum cut-off, con-
tribute to thermal expectation values at arbitrary high
temperatures. Based on the thermal distribution of Q2

values it was demonstrated that this contribution is of the
relative order of Λ2/T 2 to any thermally averaged quan-
tity. A physical picture of such non-perturbative correc-
tions to the ideal gas equation of state is offered by an el-
ementary study of the thermodynamics of straight strings
with a naturally density-dependent average length.

4.5 Shear viscosity bounds

Accelerator experiments suggest that the matter formed
in heavy ion collisions is a very good fluid close to be a
perfect one [132,133], which means that the characteristic
dimensionless η/s ratio (η being the shear viscosity, s the
entropy density) is very small. The quantity η/s, apart
from the fact that it appears directly in hydrodynamical
formulas like the sound attenuation length [77], can be
interpreted as a fluidity measure of an ultra-relativistic
gas that characterizes the viscosity on its own scale [134].

The experimental tool to access this quantity is mea-
suring the flow anisotropy, in particular its second angular
moment, v2. The desired parameters of the corresponding
fluid model can be obtained by fitting the model predic-
tions to the experimental curves [135,136]. The result of
these studies is that the observed η

s ∼
1

4π with a coefficient



16 T.S. Biró, A. Jakovác, Z. Schram: QM from HTFT

of order one. The value 1
4π has a specific significance, since,

at is it used to say, it is the “theoretical lower bound”.
But, as opposed to the folklore, the status of 1/4π be-

ing a theoretical lower bound for the η/s ratio, is far from
being proven. We try to review in this section what are the
assumptions and approximations behind this conjecture.

The idea that η/s can have a lower bound, was first
suggested in [137]. The authors realized that in the kinetic
approach η/s ∼ Eτ where E is the quasiparticle energy
and τ is its lifetime. For a quasiparticle E > ∆E where
∆E is the width of the quasiparticle peak, therefore, using
uncertainty principle η/s ∼ Eτ > ∆Eτ & ~, meaning that
η/s has a lower bound. This elegant way of thought, how-
ever, cannot be considered as a proof of the lower bound,
since it uses the kinetic, quasiparticle approach which is
not really suitable to describe the small viscosity regime.
The point is that kinetic theory estimates the shear vis-
cosity to be η ∼ 1/σ where σ is a cross section. In weakly
coupled theories σ ∼ g4 where g is the coupling constant.
Since g must be small in order the kinetic, Boltzmann-
equation approach be applicable, only the large viscosity
regime is accessible in this way. In this range of applica-
bility several studies in the literature computed the shear
viscosity using the Boltzmann-equation or quasiparticle
approach [108,138,139,140,141,142]. But, when the the-
ory is more and more strongly coupled, higher order pro-
cesses become dominant, too [143,144], and the simplest
kinetic argumentation looses its validity.

One can think that perturbation theory is also can
be used to calculate the η/s ratio. The entropy density
is defined through the thermodynamics from free energy,
the shear viscosity by the Kubo formula

η = lim
ω→0

〈[T12(ω,k = 0), T12(x = 0)]〉
ω

. (90)

But with the perturbative approach there are several prob-
lems. The first one is that in realistic applications, for ex-
ample for QCD near the critical regime of the crossover
perturbation theory is not really applicable. At somewhat
higher temperatures the perturbation theory still needs
heavy machinery including resummations to reliably pre-
dict the thermodynamical quantities like pressure or en-
tropy density, but after some efforts one can give a rela-
tively good description [145]. But the shear viscosity is
a quantity that is much harder to access. The funda-
mental problem is that perturbation theory can compute
corrections to a quantity calculated in the free theory.
But the shear viscosity is infinite in a free gas. There-
fore we should compute corrections to infinity which is
a hard task. In a strict diagrammatic approach one has
to re-sum ladder diagrams [146,147]. One can use 2PI
resummation to perform the task [148], or, concentrat-
ing only to the most important pinch singular contribu-
tions, quantum Boltzmann-equations [149,150,151,152].
One can also apply renormalization group techniques to
approach the shear viscosity [153] But even after the most
thorough job one can expect a “small” correction to infin-
ity that means large numerical values: one typically gets
η ∼ 1/(g4 log g) as the leading order estimate. For small

viscosities, just like in the kinetic approach, we would need
large coupling, and so perturbation theory is not applica-
ble there.

An alternative approach to calculate the shear viscos-
ity could be the lattice Monte Carlo technique. There have
been in fact attempts to extract this information from
lattice, calculating the energy-momentum tensor correla-
tion function [154,155]. The obtained results have been in
the η/s ∼ 0.1 − 0.2 regime. Unfortunately the measure-
ments cannot be performed without strong assumptions.
The reason is that hydrodynamics is an effective descrip-
tion of the matter only in so large timescales that is hard
to access from a Euclidean lattice. Therefore the present
MC simulations have very small sensitivity to the desired
transport regime [156]. We remark that in classical theo-
ries one can also compute the shear viscosity [157]. Here
one is not restricted by the Euclidean formalism, but the
quantum interpretation is much more difficult.

Since small viscosity involves large couplings, there-
fore methods that use the inverse coupling as expansion
parameters are of great importance. Unfortunately these
dual partners are rarely known. Therefore the conjectured
AdS/CFT duality [158] has a big relevance, even though
here the weakly coupled theory is a conformal field theory,
and so its symmetries are not the same as the symmetries
of QCD. Nevertheless one can calculate the η/s ratio in the
infinitely strongly coupled (the t’Hooft coupling λ = g2Nc
is infinite) N = 4 supersymmetric Yang-Mills theory with
this method [159] resulted in η/s = 1/4π. The signifi-
cance of this result is raised by the fact that the infinitely
coupled theory is expected to have the smallest shear vis-
cosity; in fact, in this model the 1/λ corrections are all
positive [160]. The KSS result, together with the conjec-
ture of the lower bound based on kinetic approach was
then advertised that “the lower bound for the η/s ratio is
1/(4π)”.

But, as we see, the two pivots of the argumentation
are coming from the quasiparticle and the conformal field
theory limits, and so these are not as general as it is usu-
ally thought. In fact, soon after the announcement of the
“lower bound” there appeared constructions that violate,
or at least challenge the 1/(4π) value.

In the framework of non-relativistic theories one can
construct such theories [161,162,163]; for example theo-
ries where with the growing number of field components
the shear viscosity remains constant, but the entropy den-
sity grows with the number of the components. It is also
seems valid that when we start to deviate from the quasi-
particle approximation, for example with the inclusion of
the continuum besides the quasiparticle peak, the shear
viscosity starts to decrease [164,165,166]. In fact, in very
general grounds one can argue for a lower bound not for
η/s, but ηT 3/s2 [165,166].

From the Ads/CFT side, there are also doubts about
the universality of the 1/(4π) bound. Model studies of
gravity models, where besides the leading order AdS ac-
tion there are corrections (higher order terms in curvature,
other fields like dilaton) lead to the conclusion that in
these models the η/s ratio can ge below 1/(4π) [167,168,
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169,170]. It is not clear if in a general consistent gravity
model there exists at all a lower bound.

From experimental side it seems that the η/s ratio of
the strongly interacting plasma is O(1−2)/(4π) [135,171,
172]. Comparing with the η/s values of other matters like
water or even superfluid 4He, the η/s value really seems
very low [173], but if we use a fluidity measure better
suited for not ultra-relativistic matter, then QCD seems
to be not extraordinary [134].

So, summarizing the content of this section, although
in quasiparticle systems and some conformal theories we
really expect to have a lower bound for the shear viscos-
ity, but in a strongly interacting matter like QCD there
is no well-established proof for that. It is also true, that
the numerical value of 1/(4π) is so small, that it is not
easy to provide such experimental setup where we could
violate this bound. But, since this bound is not a con-
stant of nature, it can happen that in some future collider
experiments it will still be violated.

4.6 Rather field or rather particle?

The particle-wave duality appears in an interesting aspect
in the heavy ion collisions. The classical picture of a par-
ticle is a point-like object traveling on a world-line in the
spacetime; if the particle is free of interaction, the world-
line is a straight line (or geodesic line). On the other hand
the free quantum particle has infinite extension in space
as a plane wave.

Interacting particles or waves penetrating and tres-
passing a medium get distorted. The distortion effect de-
pends on the nature of the interaction, its localization and
strength. Typically particle-like interactions are extremely
localized, not only in space, but also in time. The straight
world-line receives kicks once in a while. An extended
medium on the other hand acts for long and makes the
particle world-line smoothly curved. The same typing for
extended waves includes changes in the dispersion relation
by phase shifts in the former case and an overall change
in the latter case. Static and large media, in particular,
modify the free particle dispersion relations (propagators)
by inducing a self-energy part, which re-scales the effec-
tive mass and adds a quasi-particle width. A continuum
part in a spectral function, however, is a sign for creating
and annihilating particles during the interaction between
the quantum objects and the medium.

Traditional high-temperature field theory considers the
environment as given, in most cases keeping a sharp value
of the temperature. This so called heat bath is assumed to
be god given and very few thoughts are dedicated to the
problem: where does this temperature comes from? What
mechanism keeps its value so constant? And how should
we describe the QGP if none?

In principle all thermal effects are results of the same
interaction. It is therefore legitim to seek for approaches
which do not assume a temperature, but calculate it. Or
at least investigate the effects due to un-sharp values of
it – a step forward – testing some simple distributions.
This so called superstatistical approach[174,175,176,177,

178,179,180] is based on a particular distribution of β
values in the thermal weight, exp (−βH). The simplest
such distribution, having a width of β-values and allowing
only non-negative ones, is an Euler–Gamma distribution.
This converts the Boltzmann–Gibbs weight in a Tsallis–
Pareto form:

∞∫
0

e−βH
(βnT )n−1

Γ (n+ 1)
e−βnT nTdβ =

(
1 +

H

nT

)−n
,

(91)
often experienced in particle spectra measured in high-
energy collisions. Here 〈 β 〉 = 1/T and ∆β/ 〈 β 〉 = 1/

√
n.

In the n → ∞ limit the distribution of β values narrows
to a Dirac delta, and the above statistical weight con-
verts to the well-known Boltzmann factor. Candidates for
physical mechanisms therefore, which would explain the
occurrence of the temperature, T , in a dynamical system,
should also explain whether or not the width ∆β is small
enough under the circumstances given.

A thermodynamical interpretation of the parameters T
and n can be given starting from Einstein’s idea relating
the statistically evenly occupied phase space volume to
the notion of entropy[181,182],

Ω(E) = eS(E) . (92)

Picking up a subsystem with energy H out of E has then
the probability

P (H) =
Ω(H)Ω(E −H)

Ω(E)
, (93)

assuming no correlation other than induced by fixing the
total energy to E. In this microcanonical view the envi-
ronmental factor,

ρ(H) =

〈
Ω(E −H)

Ω(E)

〉
, (94)

models the statistical operator. Based on the conjectured
connection to the thermodynamical entropy one finally
deals with

ρ(H) =
〈

eS(E−H)−S(E)
〉
. (95)

In the expansion H � E up to quadratic terms one ob-
tains

ρ(H) = 1 − H 〈 S′(E) 〉 +
1

2
H2

〈
S′′(E) + S′(E)2

〉
+ . . .

(96)
Comparing this result with eq.(91) one interprets the pa-
rameters as

1

T
= 〈 S′(E) 〉 and T 2∆β2 =

1

C
+

1

n
, (97)

with C = dE/dT being the total heat capacity of the
system. In the infinite reservoir (thermodynamical) limit,
C → ∞, one gets back the width of the Euler–Gamma
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distribution. On the other hand, for n → ∞, consid-
ering a sharp β value, one obtains the textbook result
T 2∆β2 = 1/C for the variance. Indeed near to the max-
imum the Euler–Gamma distribution, as many other, is
well approximated by a Gaussian. However, the Gaus-
sian assumption cannot be extended to negative β values,
therefore the Euler–Gamma assumption is superior.

In interacting, ”real” systems the natural dynamics it-
self must determine the actual distribution of β values.
For any finite sized system, a width of this distribution
is compulsory. The task of understanding the emergence
of temperature and other thermal effects, and calculating
the actual values of T and C, and perhaps n in existing
physical systems, sharpens even more in quantum (field)
theory. If β, or for that matter any function of it, is as-
sociated to an operator in the quantum description, then
its width cannot be narrowed down to zero in practice.
(Only theoretically, on the cost of having infinite width
for other, non-commuting operators.) Here the question
to be answered is, how to describe a statistical operator
part during the quantum evolution, which – under certain
approximations to the physical reality – behaves like fac-
torizing to a Boltzmann-Gibbs, or similar, and a unitary
factor.

For this purpose considering quantum states with fi-
nite width can be of help. Contrary to point-particles (zero
width in location, infinite width in momentum) and to
plane-waves (infinite width in location, zero width in mo-
mentum) more general states, in particular coherent states
look more realistic. In the rest of this section we give a
short overview of properties of coherent states and show
a possible way of an unusual interpretation of being ther-
mal.

4.6.1 State labels

We consider generalized coherent states defined by

| z 〉 =

∞∑
n=0

√
pn(t) einΘ |n 〉 (98)

with z =
√
teiΘ. Such constructions in quantum optics

are called ”nonlinear coherent states”. This state overlaps
with the n-quantum state, the overlap probability being

|〈n|z 〉|2 = pn(t) ≥ 0. (99)

From the normalization of the coherent state, | z 〉, a nor-
malization of the factor pn(t) follows:

〈 z|z 〉 =
∑
n,m

〈m |√pmpn ei(n−m)Θ |n 〉 =
∑
n

pn(t) = 1.

(100)
The expectation value of any function of the number op-
erator, n̂ = a†a, is given by

〈 z |ϕ(n̂) | z 〉 =
∑
n

ϕ(n) pn(t). (101)

This construction ensures that pn(t) is a probability dis-
tribution in n.

We also construct a complete set based on coherent
states as follows:∫
d2z

π
| z 〉 〈 z | =

∞∫
0

dt

2π∫
0

dΘ

2π

∑
n,m

√
pnpme

i(n−m)Θ |m 〉 〈n | .

(102)
Here, after integrating over Θ one obtains a Kronecker
δnm under the double sum and ends up with a single sum:

1 =

∞∫
0

dt
∑
n

pn(t) |n 〉 〈n | =
∑
n

|n 〉 〈n | . (103)

A sufficient condition for completeness is
∞∫
0

dt pn(t) = 1,

wishing a complete set for all possible Fock spaces based
on |n 〉, it is also necessary. This makes pn(t) to a proba-
bility distribution function of t as well. One may consider
the distribution in the number of quanta n as primary
statistics, while in the coherent state parameter t = |z|2
as superstatistics.

4.6.2 Operator eigenstate

While the most known coherent states show a Poisson
statistics in n, and are eigenstates of the annihilation op-
erator, a, the generalized versions are eigenstates to a more
complex operator. To construct this operator is related to
the problem of regularizing the phase operator in quantum
optics [183,184,185,186].

We request that | z 〉, defined as in eq.(98), is an eigen-
state with eigenvalue z to the following operator:

F | z 〉 = ag(n̂) | z 〉 = z | z 〉 . (104)

Here a is an annihilating (a† is a creating) operator, and
n̂ = a†a is the number operator. g(n̂) is a yet unspecified
function of the number operator.

The action of this operator F on the general coherent
state causes

F | z 〉 =

∞∑
n=1

g(n)
√
npn e

inΘ |n− 1 〉 , (105)

that can be re-indexed to

F | z 〉 =

∞∑
n=0

g(n+ 1)
√

(n+ 1)pn+1 e
i(n+1)Θ |n 〉 . (106)

One can derive a recursion law by comparing this result
with

z | z 〉 =
√
t eiΘ

∞∑
n=0

√
pn e

inΘ |n 〉 . (107)

In conclusion the following relation has to be satisfied:

pn(t) =
t

ng(n)2
pn−1(t). (108)
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This specifies to a known quantum number distribution,
pn(t), the necessary function g(n), or serves as a recursion
rule for a given g(n), fixing the operator F , to obtain the
distribution pn(t). The recursion is solved by

pn(t) = p0(t)
tn

n!

n∏
j=1

g(j)−2. (109)

Finally p0(t) can be obtained from the normalization con-
dition. At the end of this reconstruction also the complete-

ness constraint,
∞∫
0

dt pn(t) = 1, has to be checked.

4.6.3 Glauber and Negative Binomial states

The most known, traditional coherent state is defined by
g(n) = 1. This results in a Poisson distribution in n and
in an Euler-Gamma distribution in t:

pn(t) =
tn

n!
e−t. (110)

In this case | z 〉 is an eigenstate to the F = a annihilation
operator.

The negative binomial coherent state is based on the
negative binomial distribution (NBD),

pn(t) =

(
n+ k

n

)
(t/k)n (1 + t/k)−n−k−1. (111)

It is a normalized NBD in n, and at the same time is an
Euler-Beta distribution in t. From the recursion eq.(108)
one obtains the necessary g(n) function for modifying the
operator a to F = ag(n̂):

g(n)2 =
t

n

pn−1

pn
=

k + t

k + n
, (112)

so this NB coherent state satisfies

a

√
k + |z|2
k + a†a

| z 〉 = z | z 〉 . (113)

One realizes a one-dimensional boost property beyond
such NB states when introducing the rapidity-like nota-
tion: t/k = sinh2 ζ. Using this notation the distribution
and the Fock-representation of such a state are rewritten
as

pn(t) =

(
k + n

n

)
sinh2n ζ cosh−2n−2k−2 ζ,

| z 〉 =

∞∑
n=0

√(
k + n

n

) (
eiΘ tanh ζ

)n
coshk+1 ζ

|n 〉 . (114)

Using the velocity variable v = tanh ζ, the corresponding
Lorentz factor is given by γ = cosh ζ and the overlap
probability between two NB coherent states becomes

|〈 z1|z2 〉|2 =
[
1 + γ2

1γ
2
2

∣∣v1e
iΘ1 − v2e

iΘ2
∣∣2]−k−1

. (115)

This result reminds us to a Tsallis–Pareto distribution
with the energy variable replaced by a relative velocity
squared in a 2+1 dimensional vector notation. The pos-
sibility of using such a notation is related to the su(1, 1)
algebra structure of operators forming an NB coherent
state, an interesting connection which shall be discussed
below.

For this purpose it is enlightening to express the over-
lap between NB coherent states in terms of the complex
numbers z1 and z2. We introduce the following vector,

K = γ1γ2 (v1 − v2) =
1√
k

(γ2z1 − γ1z2) . (116)

The NB state overlap written this way converges to the
known overlap between Glauber coherent states for large
k →∞:

|〈 z1|z2 〉|2 =

[
1 +

1

k
|γ2z1 − γ1z2|2

]−k−1

→ e−|z1−z2|
2

.

(117)

with γi =
√

1 + |zi|2/k → 1. It is an interesting ques-
tion whether we can connect some physical property of
particle-like objects to this quantity. Interpreting the vi-s
as magnitudes of velocities and obtaining the correspond-
ing Lorentz factors from the energy to mass ratio of point-
like massive objects one would consider

K =
1

m1m2
(E2P 1 − E1P2) . (118)

In this interpretation the overlap between two NB states
decays asymptotically as a power-law of the relative ve-
locity of relativistic massive particles moving on a plane.

It is useful to extend the notation of NB states with
the index k, referring to the k parameter in the underly-
ing NBD distribution. From now on we use the following
notation

| zk, k 〉 =

∞∑
n=0

√
pn(k)einΘ |n 〉 (119)

with zk =
√
kf eiΘ for the NB states and

pn(k) =

(
k + n

n

)
fn (1 + f)−n−k−1 (120)

for the NBD distribution. This distribution provides an
average number of 〈 n 〉 = (k + 1)f .

We are primarily interested in the effect of annihilat-
ing a quantum from an NB state. The annihilating ladder
operator acts as

a | zk, k 〉 =

∞∑
n=1

√
pne

inΘ
√
n |n− 1 〉 (121)

what can be re-indexed into

a | zk, k 〉 =

∞∑
n=0

√
(n+ 1)pn+1 e

iΘ einΘ |n 〉 . (122)
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Consider now that

(n+1)pn+1(k) = (n+1)

(
k + n+ 1

n+ 1

)
fn+1(1+f)−(n+1)−k−1

(123)
can be expressed as

(n+1)pn+1(k) = f(k + 1)

(
k + 1 + n

k + 1

)
fn(1+f)−n−(k+1)−1.

(124)

Here we recognize zk+1 =
√
f(k + 1)eiΘ as a factor and

arrive at the elegant result

a | zk, k 〉 = zk+1 | zk+1, k + 1 〉 . (125)

In the k → ∞ limit again the familiar Glauber coherent
state emerges, as an eigenstate of the annihilation opera-
tor, a. On the other hand for an NB state, the annihilation
of a primary quantum can be represented by an upgrade of
the parameter k by one, times the corresponding complex
eigenvalue, zk+1. This helps us to answer the question of to
what operator is an NB state an eigenstate. We compare
the above result with the action of another operator

√
n̂+ k + 1 | zk, k 〉 =

√
(k + 1)(1 + f) | zk+1, k + 1 〉 ,

(126)
based on the relation

(k + 1 + n)

(
k + n

k

)
= (k + 1)

(
k + 1 + n

k + 1

)
. (127)

This helps to recognize the following NB eigenvalue equa-
tion:(√

f (n̂+ k + 1)−
√

1 + f e−iΘ
√
n̂+ k + 1 a

)
| zk, k 〉 = 0.

(128)
Based on this it is now easy to work out the corresponding
NB algebra. In the previous eigenvalue equation (128) the
following operator occurs:

K− =
√
n̂+ k + 1 a, K+ = K†− = a†

√
n̂+ k + 1.

(129)
Their commutator,

[K−,K+] = (n̂+1)(n̂+k+1)−n̂(n̂+k) = 2n̂+k+1 = 2K0

(130)
defines K0 = n̂ + (k + 1)/2 as a linear expression using

n̂. With α =
√

(1 + f)/f e−iΘ we arrive at

(αK− − K0) | z, k 〉 =
k + 1

2
· | z, k 〉 . (131)

The commutators among theK-operators form an SU(1,1)
algebra:

[K0,K+] = K+

[K0,K−] = −K−
[K−,K+] = 2K0 (132)

The Casimir operator is given as: Q = K2
0 −K0−K+K−.

4.6.4 Creation of an NB state from Fock vacuum

Another important question is how to create an NB state
from the vacuum. For the ordinary coherent state a uni-
tary operator, also called Weyl operator, does the job. For
a more general analysis we consider again general func-
tions of the number operator, n̂, mixed with annihilation
and creation operators. This describes a coupling to a field
with field-energy dependent coefficients.

The known operator identity,

eA+B = e−λ/2 eA eB with [A,B] = λ, (133)

if [A, λ] = 0 and [B, λ] = 0, helps us to obtain the neces-
sary form for | zk, k 〉 = U | 0 〉. We choose A = α zf(n̂) a†

and B = −β z∗a /f(n̂). Please note that B 6= −A†. The
commutator,

[A,B] = |z|2αβ
(
a

1

f(n̂)
f(n̂)a† − f(n̂)a†a

1

f(n̂)

)
(134)

leads to λ = |z|2αβ. We seek our evolution operator from
the Fock vacuum to an NB state in the form

U = eΦ/2+A+B = e(Φ−λ)/2 eA eB . (135)

Here eB | 0 〉 = | 0 〉 due to B | 0 〉 = 0, since B in the ex-
ponent is proportional to the annihilation operator. Ex-
panding the exponential one obtains

U | 0 〉 = e(Φ−αβ |z|2)/2
∞∑
n=0

αnzn

n!

(
f(n̂)a†

)n | 0 〉 . (136)

Since we have(
f(n̂)a†

)n | 0 〉 = f(n) · . . . · f(1)
√
n! |n 〉 , (137)

the form

U | 0 〉 =

∞∑
n=0

√
un e

inΘ |n 〉 , (138)

with z =
√
t eiΘ, is achieved when using f(n̂) = ξ

√
n̂+ k:

un = eΦ−αβ t
(
α2ξ2t

)n (n+ k

n

)
. (139)

In order to satisfy normalization of the resulting NB state,
||U | 0 〉 ||2 = 1, one needs

∞∑
n=0

un = eΦ−αβt
(
1− α2ξ2t

)−(k+1)
= 1. (140)

From this we express

α2ξ2t = 1− e
1
k+1 (Φ−αβt) = 1− w, (141)

and gain the following negative binomial distribution:

un =

(
n+ k

n

)
wk+1 (1− w)n. (142)
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For the superstatistics normalization, we utilize the Euler
Beta integral

∞∫
0

dt un(t) =

(
k + n

n

) ∞∫
0

dtwk+1(1− w)n, (143)

which after changing the integration variable from t to w
should become unity:

∞∫
0

dt un(t) =

(
k + n

n

)
k

1∫
0

dwwk−1(1−w)n = 1. (144)

This condition is satisfied if

dt = −kdw
w2

, −→ t = k

(
1

w
− 1

)
, (145)

or – expressing w(t) – the superstatistics is normalized if

w =
1

1 + t/k
=

k

t+ k
. (146)

This requirement identifies Φ as being

Φ = αβ t− (k + 1) ln (1 + t/k) (147)

After these manipulations only α, β and ξ remain unde-
termined. A purposeful choice is α = β = 1/

√
t = 1/|z|

with ξ = 1/
√
t+ k. The natural logarithm of the evolution

operator becomes in this case

lnU = −k + 1

2
ln (1 + t/k) +

1

2

− e−iΘ a
√
t+ k

n̂+ k
+ eiΘ

√
n̂+ k

t+ k
a†. (148)

This is neither Hermitean nor anti-Hermitean, therefore
can only be interpreted as

lnU = −1

2
βH0 +

i

~
τH1. (149)

With this definition one has a statistical operator of

ρ = U†U = e−βH0 . (150)

This underlines the necessity of thinking in complex time
paths or equivalently assuming an environmental factor,
which is not unitary. The anti-Hermitean part of lnU gives
a guess for the evolution Hamiltonian

i

~
τH1 = eiΘ f+(n̂)a† − e−iΘ af+(n̂), (151)

while the Hermitean part for the statistical factor

− 1

2
βH0 = Rk + eiΘ f−(n̂)a† + e−iΘ af−(n̂). (152)

Here

f± =
1

2

(√
n̂+ k

t+ k
±
√
t+ k

n̂+ k

)
,

Rk =
1

2
− k + 1

2
ln(1 + t/k). (153)

Please note that in this case the statistical environmental
operator contains a factor in the Tsallis–Pareto form:

ρ ∝
(

1 +
t

k

)−k−1

, (154)

with t = |z|2 interpretable as the average number of quanta
in an NB state.

4.7 Physical sources of NB states

Various physical mechanisms may lead to an NBD in par-
ticle numbers produced in high energy collisions. The NB
coherent state, reviewed above, is just one of them; more
closely we did not specify the Hamiltonian which produces
such a state. Typically, as described in eqs.(151) and (152),
a linear field coupling of the particle modes, as described
by the phase factors e±iΘ and the annihilation and cre-
ation operator, are necessary for the desired result. How-
ever, other than for the classical Glauber coherent state,
the coupling (or equivalently the amplitude of the external
field creating the particles) does depend on the number of
particles to be produced. In particular for the NB coher-
ent state this dependence is algebraic, involving the square
root function – as specified in eq.(153). This effect is typ-
ically a multiparticle effect, the mathematical expression
involves infinitely many quanta for the same mode.

There are further hints and speculations about the ori-
gin of negative binomial particle distributions. A simple
phase space cell statistics, ”throwing” stones of quanta
into phase space cells repeatedly in unrestricted number –
as bosons behave – predicts a combinatoric factor in the
probability to find exactly n particles in k cells. The Pólya
distribution extends this picture to the same probability,
when the investigated system of n and k is a part of a
bigger system consisting of N particles altogether in K
total number of phase space cells:

Pn =

(
k+n
n

) (
K−k+N−n

N−n
)(

K+N+1
N

) . (155)

In the large environment limit, K → ∞, N → ∞ while
f = N/K is kept finite, one arrives at the NBD distribu-
tion (120). This approach predicts that k+ 1 = 〈 n 〉 / f ∝
Npart, so high-multiplicity events are closer to the Poisso-
nian, if f is universal.

In the derivation of an NB state in quantum optics,
the f parameter occurs as a squeeze parameter [186,187].
Analyzing bosonic wave packet statistics, onefold filled
bosonic states give a correlation factor of 2 at zero rel-
ative momentum. With M -fold occupation of the same
state it reduces to

C2(0) = 1 +
1

M
= 1 +

1

k + 1
. (156)

The logarithmic cumulants for an NB state, defined by

G(z) =
∑
pnz

n and lnG(z) =
∞∑
n=1

Cn(zn − 1), are

Cn =
k + 1

n

(
f

1 + f

)n
. (157)
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This looks like a (k + 1)-fold overload of the simple Bose
case, given if k = 0. [188,189]

Regarding the superstatistics view [176,177,178], ther-
modynamical β-fluctuations and n-fluctuations are related
by the Poisson transform. From

∞∫
0

γ(β)e−βωdβ =

∞∑
n=0

(
1− ω

E

)n
Pn(E). (158)

it follows

Pn(E) =

∞∫
0

(βE)n

n!
e−βE γ(β) dβ, (159)

after Taylor-expanding eβE(1−ω/E) in the factorized ex-
pression e−βω = e−βE eβE(1−ω/E .

In this way ∆β2/ 〈 β 〉2 = 1/(k + 1) cf. eq.(97).
In perturbative QCD calculations [190,191,192] KNO

scaling + DGLAP give nearly NBD with constant k, re-
lated to ΛQCD and expressed by the n-variance. In exper-
imental findings NBD is in fact slightly violated, so more
sophisticated distributions are also discussed.

In a minimal information statistical approach, the Tsal-
lis–Pareto distribution in stead of the Boltzmann–Gibbs
is viewed as a maximal entropy state. Utilizing the Tsal-
lis’ or Rényi entropy formula [175,193] the usual canonical
constraint on the average energy indeed leads to

w(ω) =
(

1 + (q − 1)
ω

T

)− 1
q−1

. (160)

Using further assumptions about reservoir fluctuations,
further entropy formulas can be constructed, as expecta-
tion values of formal logarithms, behaving additively [194].

Finally we have to mention the color glass condensate
picture [31,32,33,34] where particles are produced directly
from the decay of a nearly classical non-Abelian field. A
glittering glasma with k-fold ropes delivers also NBD in
the final state. In this model the main NBD parameter, k
is calculated as k = κ(N2

c − 1)Q2
sR

2/2, with κ string con-
stant, Nc number of colors, Qs saturation energy scale and
R radius in transverse plane. Its value is about the number
of tubes, produces NBD with this parameter. The actual
estimates in Ref.[195] go to a few hundreds for heavy ion
collisions at RHIC.

4.8 Lattice field theory with canonical Tsallis
distribution

Lattice field theory is still the only systematic nonper-
turbative computational tool to solve physical problems
related to the strong interaction. While at its dawn it pro-
duced only a qualitative insight into the characteristic fea-
tures of the strongly interacting matter, in the last decades
it has accomplished a lot and produced reliable quantita-
tive predictions on equilibrium quantities such as the tran-
sition temperature or the equation of state. Among them,

for example, a precise study of the transition tempera-
ture has been done with staggered fermions and results
from different groups tend to agree quite remarkably [198,
199]. It has been shown that the deconfining transition is
a crossover for physical quark masses [200] and the de-
confining transition and the chiral transition essentially
coincide.

Despite the remarkable success of lattice calculations
regarding equilibrium quantities, a direct investigation of
out-of-equilibrium properties is not possible using conven-
tional lattice gauge theory methods. There are attempts to
describe near-equilibrium properties, especially via spec-
tral functions. For a more detailed overview we direct the
reader to a recent review [201] on this topic.

Here we present a completely different approach within
the lattice gauge theory framework, which is based on the
generalized, non-extensive thermodynamics. Non-extensive
thermodynamics is regarded as an effective theory for non-
equilibrium effects and long-range correlations [202]. One
possible manifestation of it in the language of probability
distributions is the Tsallis distribution,

wi(E) =
1

ZTS

(
1 +

βEi
c

)−c
(161)

where E denotes the energy of a state and β is the inverse
temperature. This power-like function restores the Gibbs
factor in the c→∞ limit:

lim
c→∞

w(E) =
1

ZG
exp(−βE) (162)

Observed particle spectra in high energy pp and heavy-ion
reactions can be well described with the above distribution
[196,197]. Via the Gamma-distribution

wc(θ) =
cc

Γ (c)
θc−1 e−cθ (163)

the Tsallis weight can be rewritten as

wi =
1

ZTS

∫ ∞
0

dθ wc(θ) exp(−θβEi), (164)

which is a specific case of the superstatistical approach
[203,204]. That means that averages with the Tsallis dis-
tribution can be calculated from the Gibbs expectation
values at different β’s: one simply has to average them
over the inverse temperature, β, which obeys a Gamma-
distribution. The corresponding partition functions are
connected as

ZTS(β) =
∑
i

∫ ∞
0

dθ wc(θ) exp(−θβEi)

=

∫ ∞
0

dθ wc(θ)ZG(θβ).

(165)

As a consequence, so as to take into account non-
equilibrium effects, it is possible to apply the Tsallis dis-
tribution in lattice gauge theory simulations instead of
the Gibbs one. The calculation of expectation values can
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be realized using the superstatistical method. For an ex-
ploratory study, the simplest, pure SU(2) theory has been
chosen and investigated so far [205,206,207].

In a lattice simulation, the physical temperature is de-
termined by the period length in the Euclidean time di-
rection: β = Ntat. It is clear that one cannot use the re-
sampling technique of the traditional, Gibbs distributed
configurations in order to evaluate the Tsallis averages.
Those configurations are available for a few integer Nt-
s only, therefore the necessary coverage of the Gamma
distribution is not possible. However, if the timelike lat-
tice spacing, at follows a Gamma distribution, so do the
physical β = Ntat = 1/T inverse temperature values at a
given, fixed Nt. We assume that the mean value < at >
is equal to the spacelike lattice spacing, as. Then the ra-
tio θ = at/as follows a normalized Gamma distribution
with the mean value 1 and a width of 1/

√
c. Inspecting

ZEUS e+e− data we obtain c ≈ 5.8±0.5. In the numerical
calculations outlined next the value c = 5.5 has been used.

The form of equation (165) for gauge fields is given as

ZTS [β] =

∫ ∞
0

dθ wc(θ)

∫
DU e−S[U,θ] (166)

In general, one needs to calculate the Tsallis expectation
value of an observable Â[U ] over lattice field configurations

U . If Â has a form Â = θ vA, one obtains

〈A〉TS =
1

ZTS

cc

Γ (c)

∫
dθ θ c−1e−c θ

∫
DUA [U ] θ ve−S[θ,U ]

(167)
Here the lattice action generally can be written as

S [θ, U ] = a θ + b/θ, (168)

where a = Sss[U ] contains space-space oriented plaquettes
and b = Sts[U ] contains time-space oriented plaquettes. In
the c → ∞ limit the Gamma distribution approximates
δ(θ − 1), and one gets back the traditional lattice action
S = a + b, and the corresponding averages. For a given
finite c, one can exchange the θ integration and the path
integral and obtains exactly the power-law-weighted ex-
pression.

One can indeed explicitly perform the θ integration
and derive an effective action, which turns out to be a
logarithm of a Bessel function. As it is not particularly
easy to carry on simulations with that effective action, we
consider an other solution here.

According to equation (167), it is possible to modify
the direct numerical update algorithms used in the usual
canonical Gibbs simulations for our superstatistical en-
semble. We use the Metropolis algorithm here, but the
heat-bath should also work for pure gauge fields. Now
there is an additional variable, the anisotropy, which has
to be generated according to a Gamma distribution with
the Tsallis parameter c. Simulations for different c val-
ues has been performed in the range of 5.5 – 1024.0, the
lower value being relevant in high-energy collision experi-
ments, while c = 1024 is meant to approximate the c→∞

(Gibbs) limit. At a given c the numerically generated ran-
dom θ anisotropy values show, that for a really smooth re-
construction of the Euler-Gamma distribution one needs
random values in the order of 104 ∼ 105. Of course, this
criterion considerably elongates the simulations and makes
them computationally more expensive.

Once an anisotropy parameter is given, the standard
Metropolis sweep is applied to update the gauge fields.
After a sweep through the whole lattice a new θ is thrown
and so on. The ensemble averages are calculated with aver-
aging the gauge configurations over the generated θ values
in the standard way. The numerical calculations show that
the - here outlined - generalized Monte Carlo method is
stable and functioning. Simulations have been performed
on various lattices up to 103 × 2 and 104 sizes and differ-
ent thermodynamical quantities, including the equation
of state, have been estimated [205,206] via the calculation
used in the pioneering work of [208]. The c = 1024 results
can also be compared directly to those obtained in [208].

The deconfining transition can also be studied within
the superstatistical framework by investigating the behav-
ior of the Polyakov loop. Results on this are illustrated in
Fig.13 for c = 5.5 (a realistic value from pT spectra) and
for c = 1024 (which represents effectively the traditional,
Gibbs limit). The Polyakov loop expectation values and
the fourth order cumulants have been calculated and the
critical couplings have been determined using a functional
fit to the data. At c = 1024 the result is xc = 4/g2

c = 1.85
(for both quantities) which is in a good agreement with the
known result for the SU(2) LGT on Nt = 2 lattices [209,
210]. At c = 5.5 one obtains xc = 2.12 with the same type
of fits (again, consistently for the Polyakov loops and the
cumulants as well) which means that the transition tem-
perature moves towards higher values in that case. We
are interested in the amount of the change in the temper-
ature values. Based on [210] the critical couplings can be
translated to temperatures, and if we denote the critical
temperature for the canonical Gibbs ensemble with Tc,
for c = 1024 the transition occurs (trivially) at Tc and for
c = 5.5 one gets the value T ≈ 1.3Tc.

This result, taken at face value, suggests a consider-
able increase of the transition temperature, supposedly
due to non-equilibrium effects. However, one could argue
that during the simulation < θ >= 1, i.e. it is the inverse
temperature, which has the mean value of 1/T . Due to
the properties of the Gamma distribution, the mean of the
temperature itself is determined by < 1/θ >= c/(c− 1) ≈
1.22. Nevertheless, the dynamical effect is definitely larger
than the trivial statistical factor of 1.22 obtained by this
argument.

One should make a further remark here. In the above
superstatistical Monte Carlo method the anisotropy θ is
actually the bare anisotropy. This parameter should be re-
garded as an additional coupling (or, one can imagine hav-
ing different coupling parameters in spacelike and timelike
directions on the lattice) and it should be renormalized ac-
cordingly in order to obtain physical results in the simula-
tion. In principle this renormalization can be incorporated
in the above algorithm if the functional form between the
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Fig. 13. Polyakov-loop expectation values and fourth order
cumulants on 103 × 2 lattices at c = 5.5 (circles) and at c =
1024.0 (squares). The critical coupling, x = 4/g2c , is estimated
by fitting an ∼ (x − xc)1/3 function to the < P > values and
with a linear fit to the smaller nonzero values in case of the
cumulants.

bare and renormalized anisotropies is known. Then an ad-
ditional step is required in the update sweep: after gen-
erating the actual anisotropy parameter θ according to
Gamma distribution (which should be called the physical
anisotropy) one should calculate the bare anisotropy θ0

using this functional form and perform the update with
θ0 (which, in that case is not really Gamma distributed
any more).

For this modification one would actually need to know
θ0 as a function of θ in the whole (0,∞) interval to cover
the whole range of the Gamma distribution. As anisotropic
lattices are also used in the usual simulations, this function
has been determined [211], although only for θ ≤ 1. The
reason is practical: anisotropic lattices are used mainly for
simulating systems at finite (high) temperature and for
that purpose θ ≤ 1 suffices. As a consequence, for renor-
malizing the superstatistical lattice gauge theory, first the
above function should be determined for the region θ > 1.
That could be non trivial, although some relevant physi-
cal quantities do not depend strongly on the temperature
below the deconfining transition.

Because of these difficulties, renormalization is not con-
sidered here. Clearly, the procedure would influence the
value of the transition temperature. Nevertheless, we think
that the qualitative results obtained from the superstatis-
tical Monte Carlo simulation are still reliable. Therefore it
is safe to conclude that experiments aiming at producing
quark matter under circumstances characteristic to high
energy collisions should consider the possibility of an up to
about 30 per cent higher Tc then predicted by traditional
Monte Carlo lattice calculations. (Let’s mention that sim-
ilar effects are reported – although in opposite direction
– based on completely different studies: including more
and more quark fields in the QCD Lagrangian [212], or
applying strong external magnetic fields [213], the critical
temperature seem to decrease.)

5 Conclusion and Open Problems

In conclusion we gave a review of several ”exotic” meth-
ods dealing with the QCD deconfinement transition from
hadron to quark and gluon dominated matter and back,
picking out both phenomenological model approaches and
computation-technique developments. Our main line of
thoughts of dwelling into questions of the complexity of
the structure of quark-gluon plasma (QGP) was accompa-
nied by the playful experimentation with a possible exten-
sion of the Boltzmann-Gibbs canonical view in thermody-
namics for non-equilibrium phenomena and finite reservoir
effects.

Keeping as a main subject the exploration of the well-
established high-temperature field theory approach, we
contrasted a number of phenomenological approaches, also
as speculative physical models, with the most important
findings. There is no sudden switch from the hadronic
world to an ideal quark-gluon plasma. The complex uni-
verse of a QGP in the range Tc−4Tc, also called an sQGP
by some, is full with beautiful physical effects. These ef-
fects go far beyond an effective quasiparticle mass, which
is more or less proportional to the temperature. The in-
creasing thermal width and the occurrence of continuum
parts in the physical spectral function have competing ef-
fects on the total pressure. Their balance results in an
equation of state describing a matter softer than the ra-
diative Stefan-Boltzmann gas with massless constituents.

This phenomenon can be interpreted within a string-
like interaction picture considering the (color-)density de-
pendent contribution to the free energy density. Also an
assumption of emerging and melting quasiparticle peaks in
the spectral function, as well as a higher correlation effect
on generated mass terms agrees with both with leading
order pressure corrections in perturbative QCD and with
numerically obtained lattice Monte Carlo data.

Beyond the equilibrium view, very few things can be
done in exact quantum field theory. The linear response
approximation allows us to wring out some information on
transport properties near the thermal equilibrium; most
famous being the shear viscosity coefficient. Here also some
traps occur in thinking, we have tried to point out some
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of them in this review. On the other hand we have in-
troduced arguments in favor of considering non-Gibbsean
weighting of configurations as if we were dealing with non-
linear (non-Glauber) quantum coherent states of radiation
or – with a very similar effect – with an unsteady envi-
ronment resembling an Euler-Gamma distributed inverse
temperature, as superstatistics.

Certainly we have left a number of problems undis-
closed. Just to list a few we formulate questions for future
consideration, emerging from high energy experimental re-
sults: Is most of entropy produced initially or during a fast
hadronization at the end of these reactions? Is there any
real thermalization (even if no sharp temperature is pos-
sible in an event–averaged ensemble of measured data) or
are all temperature effects just illusion, reflecting barely
an Unruh-like temperature (acceleration based, with no
heat container)? How to produce dynamical states closely
but not exactly reminding to thermal equilibrium states
without ever reaching an equilibrium?

We close this short review with the hope that the
Reader could find as much enjoyment in passing these
ideas through his/her mind, as the Authors definitely did.

This work has been supported by the Hungarian National Na-
tional Research, Development and Innovation Office (NKFIH)
under the contract numbers OTKA 104260 and 104282.
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105. K. K. Szabó, A. Tóth; JHEP 06 (2003) 008.
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