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Abstract

We consider short range correlations in excited states of the finite XXZ and XXX Heisen-
berg spin chains. We conjecture that the known results for the factorized ground state correla-
tions can be applied to the excited states too, if the so-called physical part of the construction
is changed appropriately. For the ground state we derive simple algebraic expressions for the
physical part; the formulas only use the ground state Bethe roots as an input. We conjecture
that the same formulas can be applied to the excited states as well, if the exact Bethe roots
of the excited states are used instead. In the XXZ chain the results are expected to be valid
for all states (except certain singular cases where regularization is needed), whereas in the
XXX case they only apply to singlet states or group invariant operators. Our conjectures
are tested against numerical data from exact diagonalization and coordinate Bethe Ansatz
calculations, and perfect agreement is found in all cases. In the XXX case we also derive a
new result for the nearest-neighbour correlator 〈σz

1σ
z
2〉, which is valid for non-singlet states

as well. Our results build a bridge between the known theory of factorized correlations, and
the recently conjectured TBA-like description for the building blocks of the construction.

1 Introduction

The Heisenberg spin chain is a model of magnetism in one-dimensional or quasi one-
dimensional materials. The study of the original XXX model goes back to its famous solution
by Hans Bethe in 1931 [1], whereas the anisotropic version (also called the XXZ model) was
first solved by Orbach in 1958 [2]. These spin chains play a central role in the field of
integrable models: they are truly interacting models whose solution displays the full arsenal
of integrability, yet their relative simplicity make them an ideal testing ground to develop
new ideas and methods.

By now a large body of literature has been devoted to the study of the equilibrium
properties of the spin chain. The exact eigenstates can be constructed using various forms of
the Bethe Ansatz [3], and the thermodynamic properties can be computed using the so-called
Thermodynamic Bethe Ansatz (TBA) or the Quantum Transfer Matrix (QTM) methods
[4, 5]. On the other hand, for a long time it was believed that the correlation functions can
not be computed in a practical way. The correlators are important physical quantities: they
are experimentally relevant, and a system can not be considered to be exactly solved until
(at least some of the) correlators can be computed. This motivated a long series of works by
different groups to study the correlators of the Heisenberg spin chain.

The first results were multiple integral representations for the ground state correlations,
which were derived using representation theory of quantum algebras [6, 7, 8] or the Algebraic
Bethe Ansatz [9, 10]. Later it was realized in the papers [11, 12, 13, 14] that for the ground
state of the infinite XXX model these multiple integrals can be factorized, i.e. expressed
as polynomials of a single function in two variables. An exponential formula was found in
[15, 16] for the reduced density matrix of a finite sub-chain, whose form was conjectured
to be valid even in the finite temperature or finite length cases [17, 18]. Afterwards a new
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fermionic structure was found on the space of local operators of the XXZ model [19, 20, 21],
which led to easily manageable expressions for the short range correlators including the finite
temperature or finite length cases [22, 23, 24, 25]. In practical terms these developments
can be summarized as follows: In both the XXX and XXZ cases the correlations can be
expressed as a polynomial of only one or two functions, respectively1. The algebraic part of
the construction provides this polynomial, whereas the physical part specifies the functions
themselves depending on the physical situation, which might be the infinite chain at finite
temperature, or the ground state of the finite chain. We should also note, that an independent
derivation of these results was given later in [26] using discrete functional equations.

The previously mentioned results pertain to equilibrium situations. However, recently
there has been considerable interest in the far from equilibrium physics of integrable models,
including and especially the Heisenberg spin chains [27, 28]. One of the main questions
was whether an integrable model equilibrates to some kind of Generalized Gibbs Ensemble
[29, 28]. Regarding the Heisenberg chain this question has been investigated in a series of
works [30, 31, 32, 33, 34] leading to [35] (see also [36]), where a conclusive answer was given:
the asymptotic states can indeed be described by a generalized statistical physical ensemble,
if the recently discovered quasi-local charges are also included [37, 38, 39, 40]. However, the
addition of all charges completely fixes all the string root densities of the spin chain [35, 27],
therefore it is a question of interpretation whether there is any kind of statistical physics
emerging in the long time limit.

In all of these studies it was of central importance to give predictions for the long-time
limit of local observables, so that the analytic results could be compared to independent sim-
ulations [33, 34] or possibly to experimental data. In out-of-equilibrium situations the system
is typically very far from the ground state and there is need to calculate the correlations in
highly excited states too. In the spin chain literature the first such results were presented in
[41], where it was conjectured that in the thermodynamic limit the known factorized formu-
las are valid even for the highly excited states if the physical part is computed using a new
set of TBA-like integral equations. This conjectured result was used in the works [33, 34], it
successfully passed a number of tests, however it was not clear how it relates to the physical
part of the finite temperature situation [21, 22]. In the latter problem all ingredients are
computed using single contour integrals, whereas [41] uses an infinite system of equations
based on the string hypothesis. It is important that the results of [41] are valid for arbitrary
smooth string distributions, and not only for the thermal cases. For the the free energy of the
finite T case it is known how to connect the TBA equations to the single non-linear integral
equation of the QTM method [42], but up to now no such link was known for the factorized
correlation functions.

Here we make a step towards filling this gap by investigating the correlations of the excited
states of the finite spin chain; this problem has not yet been considered in the literature.
We derive algebraic expressions for the physical part of the factorized correlation functions;
the results are expected to be valid for all excited states. In the thermodynamic limit these
results could lead to a proof of the formulas of [41].

The structure of this article is as follows. In Section 2 we present one of the main con-
jectures, namely that factorization holds for all excited states of the XXZ model. Also, we
present a formula for the physical part, which is a simple algebraic expression that uses the
exact Bethe roots. Section 3 deals with the correlations of the XXX model; the focus is on
singlet states and singlet operators. In Section 4 we derive a simple but new result for the
nearest neighbour z−z correlator of the XXX chain, which is valid for arbitrary Bethe states
and not only for the singlets. Section 5 includes our conclusions, and also an outlook to open
problems. Finally, Appendices A and B include numerical data and simple coordinate space
calculations to support our results, whereas in Appendix C we compare a result of the paper
[17] to one of our finite size formulas.

1This applies to spin-reflection invariant operators. In the generic case (including for example the magnetization
operator) one more function is needed.
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2 Excited state correlations of the XXZ model

In this section we consider the homogeneous XXZ spin chain for generic anisotropy. The
model is defined by the Hamiltonian

H =
L
∑

j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1 +∆(σz

j σ
z
j+1 − 1)). (2.1)

In this work we only consider periodic boundary conditions and assume that L is even. For
the anisotropy we will use the parametrization ∆ = cosh(η).

As usual we introduce the monodromy matrix as

T (u) = RL0(u) . . . R10(u), (2.2)

where the Rj0(u) operators are acting on the quantum space at site j and an auxiliary space
denoted by 0. The matrix elements of Rj0(u) are identical to the well known R-matrix of the
XXZ type:

R(u) =
1

sin(u+ iη)









sin(u + iη)
sin(u) sin(iη)
sin(iη) sin(u)

sin(u + iη)









. (2.3)

The trace of the monodromy matrix is called the transfer matrix:

τ(u) = A(u) +D(u).

The transfer matrices form a commuting family:

[τ(u), τ(v)] = 0.

It is also known that the Hamiltonian and the higher charges of the model can be obtained
as the logarithmic derivative of the transfer matrix around u = 0:

Qj =

(

d

du

)j+1

log τ(iu)

∣

∣

∣

∣

∣

u=0

.

It can be shown that with these conventions H = 2 sinh(η)Q0.
Eigenstates of the model can be constructed by various forms of the Bethe Ansatz. The

coordinate Bethe Ansatz solution can be written as follows. We define N -particle states as

|{u}N〉 =
∑

y1<y2<···<yN

φN ({u}N |y1, . . . , yN )σ−
y1

. . . σ−
yN

|0〉, (2.4)

where |0〉 is the reference state with all spins up. Then the wave functions can be written as

φN ({u}N |{y}) =
∑

P∈SN





∏

1≤m<n≤N

sin(uPm
− uPn

+ iη)

sin(uPm
− uPn

)





[

N
∏

l=1

(

sin(uPl
+ iη/2)

sin(uPl
− iη/2)

)yl

]

. (2.5)

Here uj are the rapidities of the interacting spin waves and they satisfy the Bethe equations,
which follow from the periodicity of the wave function:

(

sin(uj − iη/2)

sin(uj + iη/2)

)L
∏

k 6=j

sin(uj − uk + iη)

sin(uj − uk − iη)
= 1. (2.6)

The energy eigenvalues are

E = −
∑

j

2 sinh2 η

sin(uj + iη/2) sin(uj − iη/2)
. (2.7)
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In the regime ∆ > 1 we have η ∈ R and the solutions to the Bethe equations (2.6) are either
real or they form strings that are centered at the real axis. On the other hand, for ∆ < 1 the
parameter η is purely imaginary, and as an effect we have a rotation in the complex plane:
if we use the same formulas (2.5)-(2.6) even in this regime, then the Bethe roots are either
on the imaginary axis or they form strings centered around it2. Usually an explicit rotation
is performed for |∆| < 1 by using hyperbolic functions instead of the trigonometric ones.
However, in the present work we intend to treat the two regimes together, therefore we use
the trigonometric formulas for arbitrary ∆ 6= 1.

With the convention (2.5) the norm of the state (2.4) is given by [43]

〈{u}N |{u}N〉 =
∏

j

sin(uj + iη/2) sin(uj − iη/2)

sinh(η)

∏

j<k

sin(ujk + iη) sin(ujk − iη)

sin2(ujk)
× detG,

(2.8)
where G is the Gaudin matrix:

Gjk = δjk

(

L
sinh(η)

sin(uj + iη/2) sin(uj − iη/2)
+

N
∑

l=1

K(ujl)

)

−K(ujk), (2.9)

with ujk = uj − uk and K is the scattering kernel of the XXZ model:

K(u) = −
sinh(2η)

sin(u+ iη) sin(u− iη)
. (2.10)

We stress that (2.8) is only valid when the rapidities satisfy the Bethe equations. In the
non-physical off-shell cases the norm is a more complicated function of the variables {u}.

It is important that even though the Bethe Ansatz seems to be complete, the regular
solutions of the Bethe equations (2.6) do not produce all eigenstates of the XXZ chain [44].
For example, for arbitrary∆ there are singular states whose Bethe roots include the rapidities
u = ±iη/2 [45, 46, 47, 48, 49, 50]. The existence of these states is related to a special property
of the Bethe Ansatz wave function (2.5): if the state is an eigenvector of the space reflection
operator, then the corresponding eigenvalue is always equal to the eigenvalue of the one-site
shift operator, whereas there must be states where these two eigenvalues are different and
this is produced by the singular rapidities [47]. Other types of singular states appear at the
“root of unity points” ∆ = cos(γπ) with γ = p/q and p, q ∈ Z being relative primes; these
states are related to additional degeneracies in the spectrum caused by the sl2 loop algebra
[51, 52, 53, 44]. In the present work we concentrate on the regular states and give only a few
remarks about the singular cases.

Regarding the correlations our focus is on the short range operators, for example

O = Eab
1 Ecd

n , (2.11)

where Eab
j is the C2 → C2 elementary matrix acting on site j with a single nonzero matrix

element at position (a, b). Our aim is to compute the excited state mean values

〈{u}N |O|{u}N〉. (2.12)

The explicit expression for the wave function gives a direct way to compute the correlators
in arbitrary Bethe states. For example

〈{u}N |E22
1 E22

2 |{u}N〉 =
∑

3≤y2<y3<···<yN≤L

φ∗
N ({u}N |{1, 2, y2, . . . , yN})φN ({u}N |{1, 2, y2, . . . , yN}). (2.13)

In order to study the analytic properties of the correlators it is useful to introduce the
parameters

aj = eipj =
sin(uj + iη/2)

sin(uj − iη/2)
. (2.14)

2The so-called “negative-parity” strings with Ru = π/2 can also be considered to be centered around the
imaginary axis due to the π-periodicity.
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Here pj can be identified as the one-particle pseudo-momentum and aj is the one-particle
eigenvalue of the one-site translation operator. In terms of the a-variables the wave function
can be written as

φN ({a}N |{y}) =
∑

P∈SN





∏

1≤m<n≤N

1− 2∆aPm
+ aPm

aPn

aPn
− aPm





[

N
∏

l=1

ayl

Pl

]

. (2.15)

We are interested in correlations in the physical states. The solutions to the Bethe equations
are self-conjugate [54], therefore, in terms of the a-variables the conjugate wave function can
be written as

φ∗
N ({a}N |{y}) =

∑

P∈SN





∏

1≤m<n≤N

1− 2∆aPn
+ aPm

aPn

aPm
− aPn





[

N
∏

l=1

a−yl

Pl

]

. (2.16)

The direct real space calculations lead to expressions that contain powers of aLj , j = 1 . . .N .
After substituting the Bethe equations in the form

aLj =
∏

k 6=j

−
1− 2∆aj + ajak
1− 2∆ak + ajak

all normalized correlators can be written as

〈{a}|O|{a}〉 =

∑N
j=1 L

jCj({a})
∑N

j=1 L
jDj({a})

, (2.17)

where Cj and Dj are polynomials that don’t depend on the volume L anymore. The denom-
inator in (2.17) is proportional to the Gaudin determinant, whereas the polynomials Cj are
related to the infinite volume form factors of the operator in question [55].

The real space calculations are of course cumbersome and it is not clear how to get useful
formulas for arbitrary N and L. An alternative and well established method is the Algebraic
Bethe Ansatz (ABA), which provides a systematic way towards the correlators, see [56] and
references therein. Previous works concentrated mostly on the ground states, both at zero
and finite magnetic fields, with the aim of taking the thermodynamic limit. However, they
also include a number of intermediate results for finite chains involving the Bethe roots as
arbitrary parameters [18], which are valid for the excited states as well.

In the ABA the correlators are first obtained in the form of multiple integrals. Quite
remarkably, these multiple integrals can be factorized, i.e. expressed as a polynomials of
simple integrals. In the following subsection we summarize the known results for the XXZ
chain, following the presentation of [18, 57, 24].

2.1 Factorization of correlation functions

The construction for the factorized correlation functions consists of two parts: the alge-
braic part, which deals with the space of operators and expresses their mean values using
two functions, and the physical part, which computes these functions depending on the phys-
ical situation. The calculations are valid both for the finite size ground state and at finite
temperature in the thermodynamic limit.

As a first step we define the auxiliary function a through

log a(u) =a0(u) +

∫

C

dω

2π
K(u− ω) log(1 + a(ω)). (2.18)

The source of the integral equation and the contour depend on the physical situation. Here
we only consider the finite volume ground state case, where

a0(x) = L log
sin(x− iη/2)

sin(x+ iη/2)
, (2.19)
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and C is a narrow contour around the segment [−π/2, π/2] of the real axis, so that it encircles
all Bethe roots.

We also define two functions H(x, y) and H̃(x, y) through the linear integral equations3

H(u, x) =− q(u, x)−

∫

C

dω

2π
K(u− ω)

H(ω, x)

1 + a(ω)
(2.20)

and

H̃(u, x) = −q̃(u, x)−

∫

C

dω

2π
K̃(u− ω)

H(ω, x)

1 + a(ω)
−

∫

C

dω

2π
K(λ− ω)

H̃(ω, x)

1 + a(ω)
,

where

K̃(u) =
sin(2u)

sin(u+ iη) sin(u− iη)

and

q(u, x) = −i(cot(u− x− iη)− cot(u− x))

q̃(u, x) = −i cot(u− x− iη).

In these definitions it is assumed that the parameter x lies within the contour C, and in
all other cases an analytic continuation is understood. This requirement follows from the
derivation of the multiple integrals [10, 18], where as a first step an “inhomogeneous transfer
matrix” has to be considered. Here we only treat the homogeneous limit.

For x, y ∈ C Let the functions Ψ(x, y) and P (x, y) be given by

Ψ(x, y) =

∫

C

dω

π
q(ω, x)

H(ω, y)

1 + a(ω)
(2.21)

P (x, y) =

∫

C

dω

π

[

q(ω, y)
H̃(ω, x)

1 + a(ω)
+ q̃(ω, y)

H(ω, x)

1 + a(ω)

]

. (2.22)

The behaviour of these functions in the limits x, y → iη/2 or x, y → 0 determines the
correlations in finite volume or at finite temperature, respectively. Here we are only interested
in the finite volume case, therefore we define

Ψa,b =
∂a

∂xa

∂b

∂yb
Ψ(ix, iy)

∣

∣

∣

∣

x,y=η/2

, Pa,b =
∂a

∂xa

∂b

∂yb
P (ix, iy)

∣

∣

∣

∣

x,y=η/2

. (2.23)

As a final step we define

ωa,b = −Ψa,b − (−1)b
1

2

(

∂

∂u

)a+b

K(iu)
∣

∣

∣

u=0

Wa,b = −Pa,b + (−1)b
1

2

(

∂

∂u

)a+b

K̃(iu)
∣

∣

∣

u=0
.

(2.24)

The objects Ψa,b and ωa,b are symmetric, whereas Pa,b and Wa,b are anti-symmetric with
respect to the exchange of indices.

All short distance correlators can be expressed as finite combinations of the numbers ωa,b

and Wa,b. Explicit formulas can be found in the papers [57, 24] 4. Simple examples for short

3In the literature the function H was denoted by G. Here we changed the notation to avoid confusion with the
Gaudin matrix.

4Our notations differ slightly from [57, 24]: The quantities ω and W correspond to ω and ω′/η of [57, 24].
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range correlators are:

〈σz
1σ

z
2〉T = coth(η)ω0,0 +W1,0

〈σx
1σ

x
2 〉T = −

ω0,0

2 sinh(η)
−

cosh(η)

2
W1,0

〈σz
1σ

z
3〉T = 2 coth(2η)ω0,0 +W1,0 + tanh(η)

ω2,0 − 2ω1,1

4
−

sinh2(η)

4
W2,1

〈σx
1σ

x
3 〉T = −

1

sinh(2η)
ω0,0 −

cosh(2η)

2
W1,0 − tanh(η) cosh(2η)

ω2,0 − 2ω1,1

8
+

+ sinh2(η)
W2,1

8
.

(2.25)

2.2 Transforming back to algebraic expressions

The main idea to get the excited state correlations is to find the proper modification of the
ground state formulas. In the previous section all the necessary ingredients were presented
in the form of contour integrals. In the field of integrable models it is very common that the
excited state quantities can be obtained by a simple change of the integration contours; this
could be a promising direction even in our case. In particular, it is plausible that with certain
changes of integration contours all intermediate results of [18] could be formulated for the
finite volume excited states too, thus leading to factorized formulas [58]. However, it could be
difficult to define the contours for all excited states, or to perform numerical computations
in practice. Therefore we choose a different strategy: we transform the contour integrals into
algebraic expressions, and perform the generalization to excited states afterwards.

The solution of (2.18) is the well known counting function:

a(x) =

(

sin(x− iη/2)

sin(x+ iη/2)

)L N
∏

k=1

sin(x− uk + iη)

sin(x− uk − iη)
. (2.26)

The condition 1 + a(x) = 0 encodes the Bethe equations. Therefore all integrals involving
the weight function 1/(1+ a(x)) are naturally equivalent to a sum over the Bethe roots. For
example (2.20) is transformed into

H(x, x1) = −q(x, x1)− i
N
∑

j=1

K(x− uj)
H(uj , x1)

a
′(uj)

+
K(x− x1)

1 + a(x1)
. (2.27)

Here we used the fact that the only pole of H(x, x1) within the contour is at x = x1 with
residue i. For the correlators we will be interested in the x1,2 → iη/2 limit (and the first
few derivatives) of H(x1, x2). It can be seen from (2.26) that a(x) has an order-L zero at
x = iη/2, therefore we may substitute a(x1) → 0. This results in

H(x, x1) = −q+(x, x1)− i

N
∑

j=1

K(x− uj)
H(uj , x1)

a
′(uj)

, (2.28)

where
q+(u, x) = −i(cot(u− x+ iη)− cot(u− x)). (2.29)

Introducing the function F (x, y) = −iH(x, y)/a′(x) we have

F (x, x1)(ia
′(x)) = −q+(x, x1) +

N
∑

j=1

K(x− uj)F (uj , x1). (2.30)

Specifying to the points x = uj

F (uj , x1)(ia
′(uj)) = −q+(uj , x1) +

N
∑

k=1

K(x− uk)F (uk, x1). (2.31)
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It is easy to see from (2.26) that

ia′(uj) = L
sinh(η)

sin(x− iη/2) sin(x+ iη/2)
+

N
∑

k=1

K(uj − uk). (2.32)

Therefore (2.31) can be written as

GjkF (uj , x1) = q+(uj, x1). (2.33)

Evaluating the integral (2.21) for the function Ψ leads to

Ψ(x1, x2) = 2

N
∑

j=1

F (uj , x1)q(uj , x2)− 2
H(x, y)

1 + a(x)
+ 2

q(y, x)

1 + a(y)
. (2.34)

This can be transformed using equation (2.28) into

Ψ(x1, x2) = 2

N
∑

j=1

F (uj, x1)q+(uj , x2), (2.35)

which is written using (2.33) as

Ψ(x1, x2) = 2(q+(u, x1) ·G
−1 · q+(u, x2)). (2.36)

Here the multiplication is understood as a summation over the Bethe roots and G−1 is the
inverse of the Gaudin matrix. The derivatives of Ψ around the points x1,2 = iη/2 are given
by

Ψn,m = ∂n
x1
∂m
x2
Ψ(x1, x2)|x1,2=iη/2 = 2(qn ·G−1 · qm), (2.37)

where we defined
qj(u) = ∂j

xq+(u, ix)|x=η/2. (2.38)

Note that the functions qj(u) are the single-particle eigenvalue functions of the conserved
charges. Also, it can be shown that the first row and column of Ψn,m are related to the
conserved charges of the Bethe state in question. Indeed, let e be a vector of length N with
all elements equal to 1. It is easy to see from the definition of G that

Lq0 = −G · e. (2.39)

It follows that the first row and first column of the matrix Ψn,m contain the charge densities:

Ψ0,n = Ψn,0 = 2(qn ·G−1 · q0) = −2
1

L
(qn · e) = −2

1

L

N
∑

j=1

qn(uj) = −2
Qn

L
. (2.40)

With similar steps the following algebraic representation can be derived for the function P :

P (x, y) = 2(−q̃+(u, x) ·G
−1 · q+(u, y) + q+(u, x) ·G

−1 · q̃+(u, y)−

− q+(u, x) ·G
−1 · G̃ ·G−1 · q+(u, y)),

(2.41)

where G̃ is an other N ×N matrix with elements

G̃jk = K̃(uj − uk) (2.42)

and
q̃+(u, x) = −i cot(u− x+ iη). (2.43)
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2.3 Conjectures for excited states

The factorization procedure for the correlation functions consists of the algebraic part
and the physical part. Although the factorization for the excited states has not yet been
considered in the literature, it is very natural to expect that the algebraic part of the con-
struction holds also for the excited state of the model [58], especially in the light of the
intermediate results of [18].

Regarding the physical part, formulas (2.36) and (2.41) are algebraic expressions that
compute the physical part for the ground state wave function. Using these expressions, and
supplied with the algebraic part, any correlation function can be expressed as a function
of the ground state Bethe roots. Although the resulting formulas were not obtained by a
direct algebraic manipulation of the coordinate space expressions, it is plausible that for
any correlator there is a specific set of algebraic steps, that transforms the “raw” real space
formulas into the factorized form, and these would just as well work for the excited states
too. Similarly, for any correlator there is a specific set of manipulations that transform the
contour integrals into the factorized form [17, 18], and with a change of contours they would
provide the excited state quantities.

Based on the above arguments we formulate the following conjecture:

Conjecture 1. In the XXZ chain the correlation functions of all regular states are given by

the factorized formulas, provided that the physical part of the construction is computed via

(2.37)-(2.41) using the exact excited state Bethe roots.

The singular states including the rapidities uj = ±iη/2 are excluded from the conjecture.
Their true wave function differs from (2.5), which becomes ill-defined. Similarly, the expres-
sion (2.37) for the building blocks Ψa,b becomes singular. Similarly, we excluded the singular
states of the root of unity points that also lead to ill-defined expressions due to the exact n-
strings. It is plausible that factorization itself holds for such states, but the calculation of the
physical part needs to be regularized. These cases will be considered in a future publication.

We performed numerical tests of conjecture 1. The methods and some examples of the
numerical results are presented in Appendix A. In all cases perfect agreement was found.

3 Excited state correlations of the XXX model

In this section we treat the SU(2)-symmetric Heisenberg spin chain, which is defined
through the Hamiltonian

H =
L
∑

j=1

(σx
j σ

x
j+1 + σy

j σ
y
j+1 + σz

jσ
z
j+1 − 1). (3.1)

The coordinate space eigenstates and the Bethe equations can be obtained either as a scaling
limit of the XXZ formulas, or independently by the Bethe Ansatz of the XXX type. For the
sake of completeness here we summarize the relevant formulas.

The coordinate space wave functions can be written as

φN ({u}N |{y}) =
∑

P∈SN





∏

1≤m<n≤N

uPm
− uPn

+ i

uPm
− uPn





[

N
∏

l=1

(

uPl
+ i/2

uPl
− i/2

)yl

]

. (3.2)

The Bethe equations take the form

(

uj − i/2

uj + i/2

)L
∏

k 6=j

uj − uk + i

uj − uk − i
= 1, (3.3)

and the energy eigenvalues are

E = −
∑

j

2

u2
j + 1/4

.
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With the normalization given by (3.2) the norm of the Bethe state is

〈{u}N |{u}N〉 =
∏

j

(u2
j + 1/4)

∏

j<k

u2
jk + 1

u2
jk

× detG, (3.4)

where the XXX-type Gaudin matrix G is of the form

Gjk = δjk

(

L
1

u2
j + 1/4

+

N
∑

l=1

ϕ(ujl)

)

− ϕ(ujk), (3.5)

and

ϕ(u) = −
2

u2 + 1
. (3.6)

It is known that in the XXX chain the Bethe states are highest weight states with respect
to the SU(2) symmetry and singlet states are obtained when N = L/2 [59]. The remaining
states can be constructed using the global spin lowering operator S−, which can be embed-
ded naturally into to the Algebraic Bethe Ansatz framework [59]. In fact, the action S− is
equivalent to adding a Bethe particle with infinite rapidity. However, in the present paper
we will only consider the highest weight cases.

3.1 Factorized correlation functions of the XXX chain

Here we present the known factorized results for the correlators of the finite XXX chain;
we follow the presentation of [18, 17, 60]. It is important that the corresponding results do
not follow from a scaling limit of the factorized XXZ formulas. In fact, the building blocks
ωa,b and Wa,b defined in (2.24) become singular in the XXX limit and only the special
combinations for the correlators remain finite. In other words, the physical and algebraic
parts of the construction mix with each other. Nevertheless, certain basic objects such as the
auxiliary functions a(x), H(x, y) and the function Ψ(x, y) have simple scaling limits.

The auxiliary function of the XXX model is defined as

log a(x) = a0(x) +
1

2π

∫

C

ϕ(x − y) log(1 + a(y))dy, (3.7)

where ϕ(x) is given by (3.6) and C is a closed contour around the real axis, which lies within
the strip |ℑz| < 1/2. For the finite volume ground state the source term is

a0(x) = L log
x− i/2

x+ i/2
. (3.8)

We define the functions

ΨXXX(x1, x2) =
1

π

∫

C

dy

1 + a(y)

H(y, x1)

(y − x2)(y − x2 − i)

ω(x1, x2) =
1

2
+

1

2
((x1 − x2)

2 − 1)ΨXXX(ix1, ix2),

(3.9)

where H is the solution to the linear integral equation

HXXX(x, x1) = −
1

(x− x1)(x− x1 − i)
+

1

π

∫

C

dy

1 + a(y)

HXXX(y, x1)

1 + (x− y)2
. (3.10)

In the previous definitions it is important that the parameters x1,2 are assumed to lie within
the contour C.

For the finite volume ground state (or in the finite temperature case with zero magnetic
field) all reduced density matrix elements can be expressed using the functions ω or Ψ alone.
For the finite volume situation we define

ωn,m = ∂n
x1
∂m
x2
ω(x1, x2)|x1,x2=1/2 ΨXXX

n,m = ∂n
x1
∂m
x2
ΨXXX(x1, x2)|x1,x2=i/2 (3.11)

10



Then all ground state correlators can be expressed as a finite combination of the quantities
ΨXXX

n,m , for example the simplest z − z correlators read5

〈σz
1σ

z
2〉 =

1

3
(1 −ΨXXX

0,0 ) (3.12)

〈σz
1σ

z
3〉 =

1

3
(1 − 4ΨXXX

0,0 +Ψ1,1 −
1

2
ΨXXX

2,0 ) (3.13)

〈σz
1σ

z
4〉 =

1

108
(36 + 288ΨXXX

1,1 − 15ΨXXX
2,2 + 10ΨXXX

3,1 +ΨXXX
2,0 (−156 + 12ΨXXX

1,1 − 6ΨXXX
2,0 )

+ 2ΨXXX
0,0 (−162− 42ΨXXX

1,1 + 3ΨXXX
2,2 − 2ΨXXX

3,1 )+

+ ΨXXX
1,0 (84ΨXXX

1,0 − 12ΨXXX
2,1 + 4ΨXXX

3,0 )).

(3.14)

It is important that in the finite temperature case these formulas only hold if the magne-
tization is zero [17]. At finite magnetic field the resulting formulas are more complicated,
because they involve additional objects that were called “moments” in [17]. They are defined
through

Φj(x) =
1

π

∫

C

dy
yj−1H(y, x)

1 + a(y)
. (3.15)

It can be shown that for the ground state in the thermodynamic limit

lim
L→∞

Φj(x) ≡ Φ0
j(x) = (−i∂y)

(j−1) 2eiyx

1 + ey

∣

∣

∣

∣

y=0

. (3.16)

The first few cases are

Φ0
1(x) = 1 Φ0

2(x) = x+
i

2
Φ0

3(x) = x2 + ix. (3.17)

The normalized moments are defined as

Φ̃j(x) = Φj(x) − Φ0
j(x). (3.18)

The first normalized moment is special because for the finite volume ground state (or the
finite T case with h = 0) it vanishes for arbitrary x [17, 18]. It is also useful to introduce the
symmetric combinations

∆n(x1, . . . , xn) =
detn

(

Φ̃j(xk)
)

∏

1≤j≤k≤n xjk
. (3.19)

It was conjectured in [17] that for T, h 6= 0 all local correlators can be expressed using
the functions ΨXXX and the ∆n. However, in contrast to the zero magnetization case it is
not known how to compute the algebraic part for an arbitrary operator. In [17] the reduced
density matrices up to length 3 were computed explicitly, but a general theory is still missing.
An exponential form for the reduced density matrix is only available for zero magnetization,
where all ∆n vanish [17]. This fact has implications also for the excited state correlations.

Returning to the finite volume ground state, all of the previous integral formulas can be
transformed into algebraic expressions, in the same way as in the XXZ case. We refrain from
repeating the calculation and just present the final result for the function ΨXXX :

ΨXXX(x1, x2) = 2(qXXX
+ (u, x1) ·G

−1 · qXXX
+ (u, x2)), (3.20)

where

qXXX
+ (u, x) = −

1

(u− x+ i)(u− x)
. (3.21)

5In [60] the correlators are given in terms of ω, but for convenience we present them as a function of Ψ. In
formula (11) of [60] there is a misprint in the case of 〈σz

1σ
z
4〉: the coefficient of the term (1, 0)(3, 0) is written as

-4/27, whereas correctly it is 4/27.
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Also, the moments can be expressed as

Φj(x) = 2(u(j−1) ·G−1 · qXXX
+ (u, x)) + 2

xj−1

1 + a(x)
. (3.22)

Note that (3.20) has the same structure as the corresponding formula (2.36) of the XXZ
chain.

3.2 Excited state correlations

Here we formulate our conjecture for the excited states of the XXX model. In this case
some care needs to be taken due to the SU(2)-symmetry of the model. Both the states
and the operators organize themselves into SU(2)-multiplets, and the mean values within
each multiplet can be calculated using the Wigner-Eckart theorem. The regular Bethe states
are highest weight states, and the finite volume ground state is a singlet. A priori there is
no reason to expect that the factorized formulas for the ground state should describe the
correlations in an arbitrary SU(2)-multiplet. For example the z− z and x−x correlators are
typically different. However, the factorized formulas could hold if the state is a singlet, or if
the operator is a singlet. Regarding the second option it is useful to define the SU(2)-averaged
operators

Ō =

∫

U∈SU(2)

DU UOU †,

where DU is the Haar-measure. Examples are given by the operators

σ1n ≡
1

3
(σx

1σ
x
n + σy

1σ
y
n + σz

1σ
z
n) . (3.23)

For the group-invariant operators we formulate the following conjecture:

Conjecture 2. For any regular Bethe state of the XXX chain the mean values of the SU(2)-
invariant operators Ō are given by the known factorized formulas, provided that the physical

part of the construction is computed via (2.37) using the exact excited state Bethe roots.

This conjecture includes those cases where the Bethe state is a singlet and the operator
O is not, because in singlet states the mean values of O and Ō coincide. We note that the
present situation (namely that relatively simple results hold for group invariant operators) is
analogous to the case of the quantum group invariant operators of the XXZ chain considered
in [16].

We tested this conjecture for the operators σ1n for n = 2, 3, 4. We performed exact diago-
nalization and found perfect agreement on chains with length up to L = 12; examples of our
data is presented in Appendix A. Also, we performed coordinate Bethe Ansatz calculations
for N = 1 and N = 2 and arbitrary L, and this also confirms the conjecture. The calculations
are presented in Appendix B.

It is an interesting open question whether some kind of factorization holds for the mean
values of an arbitrary operator O in non-singlet states. The results of [17, 18] suggest that
the multiple integrals can indeed be factorized, and the generic case involves the moments
too. In the following section we derive a new result for σz

1σ
z
2 which is valid for arbitrary

eigenstates, and this result confirms the expectations.

4 The ∆ → 1 limit

The goal of this section is to determine the local correlator σz
1σ

z
2 in non-singlet states of

the XXX chain. To this order we employ a careful ∆ → 1+ (or equivalently η → 0) limit in
finite size.

As the ∆ → 1 limit is performed from above, the states organize themselves into SU(2)
multiplets. We follow one of these states with N particles and assume that the state vector
evolves analytically as a function of ∆. We apply the Hellmann-Feynman theorem in the
form

L(〈ΨXXX |σz
1σ

z
2 |ΨXXX〉 − 1) = lim

∆→1

EXXZ(∆)− EXXX

∆− 1
. (4.1)
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At finite η the Bethe roots uj are solutions to the equations

(

sin(uj − iη/2)

sin(uj + iη/2)

)L
∏

k 6=j

sin(uj − uk + iη)

sin(uj − uk − iη)
= 1. (4.2)

The energy is given by

EXXZ(∆) =

N
∑

j=1

−2i sinh(η) (cot(uj + iη/2)− cot(uj − iη/2)) . (4.3)

We assume that the roots uj scale smoothly into the XXX rapidities with the usual
behaviour6

uj → ηxj , (4.4)

such that xj is a solution of the Bethe equations (3.3).
At the XXX point the energy becomes

EXXX =
N
∑

j=1

−2i

(

1

xj + i/2
−

1

xj − i/2

)

. (4.5)

The leading order correction in ∆ is

∆− 1 =
η2

2
+ . . . , (4.6)

therefore we need the O(η2) corrections in the energy (4.3). The scaling (4.4) gives the correct
leading behaviour, but the first corrections to the rapidities also need to be calculated. We
write

uj = ηũj , ũj = xj + η2yj +O(η4). (4.7)

The yj parameters can be determined from the Bethe equations. After taking the logarithm
of (4.2) we perform the expansions

log
sin(η(ũj − i/2))

sin(η(ũj + i/2))
= log

xj − i/2

xj + i/2
+ iη2

1

x2
j + 1/4

yj + i
η2

3
xj +O(η4) (4.8)

and

log
sin(η(ũj − ũk + i/2))

sin(η(ũj − ũk − i/2))
=

log
xj − xk + i/2

xj − xk − i/2
− iη2

2

(xj − xk)2 + 1
(yj − yk)− 2i

η2

3
(xj − xk) +O(η4).

(4.9)

This results in

0 = Gjkyk +
1

3

(

(L− 2N)xj + 2
∑

l

xl

)

, (4.10)

which fixes the yj parameters.
The XXZ energy can be expanded as

EXXZ(∆) =

(

1 +
η2

6

)

EXXX −
2

3
η2N − η2

N
∑

j=1

2q1(xj)yj +O(η4) (4.11)

with

q1(x) = −
2x

(x2 + 1)2
. (4.12)

6The states that are not highest weight are obtained when some of the uj don’t scale to 0: this results in
infinite xj parameters. However, here we only consider the highest weight cases.
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Putting everything together

〈ΨXXX |σz
1σ

z
2 |ΨXXX〉 =

=
L+ EXXX

3L
+

2(L− 2N)

3L



1 + 2

N
∑

j,k=1

q1(xj)G
−1
jk xk



+
2

3L
(
∑

j

xj)

N
∑

j,k=1

4q1(xj)G
−1
jk .

(4.13)

This is a new result of the present work. It is interesting to compare it to equation (29)
of [17], which states, that in the finite temperature case with a finite magnetic field the
corresponding correlator can be expressed as

〈σz
1σ

z
2〉T,h =

2

3
∆2(i/2, i/2) +

1

3
(1 −ΨXXX

0,0 ), (4.14)

where ∆2(i/2, i/2) is the homogeneous limit of the function defined in (3.19). In Appendix
C it is shown that if we substitute our finite volume formulas (2.37) and (3.22) into (4.14),
then we obtain our result (4.13). This is an independent confirmation of the conjecture that
the formulas of [17] with the non-vanishing moments could work for all excited states of the
XXX model.

It is also interesting to specify the result (4.13) to singlet states. The derivation holds also
in this case, but as a result of the SU(2)-invariance the z− z correlator is related directly to
the energy, and the correlator is given simply by the first term of (4.13). On the other hand,
the second term vanishes automatically due to N = L/2. It follows that (4.13) can be valid
only if





∑

j

xj









N
∑

j,k=1

4q1(xj)G
−1
jk



 = 0. (4.15)

Quite interestingly both factors are zero for all singlet states, and this can be shown using
the following arguments.

The vanishing of the first factor follows from the sum rules originally discovered by Baxter
in the context of the XYZ model [61]7. In the XYZ model the sum of the rapidities in an
arbitrary eigenstate with N = L/2 is an integer multiple of π/2, and this property survives
also in the XXZ limit, see for example equation (17) of [62] or (151) of [44]. In the ∆ → 1
limit the rapidities get rescaled as (4.4), and if all the resulting XXX rapidities are finite (ie.
the state is really a singlet), then the only possibility is that this integer multiple of π/2 is
actually zero.

The vanishing of the second factor follows from the fact, that at zero magnetization the
first moment Φ1(x) vanishes for arbitrary x [17], and from (3.22) we have

0 = ∂xΦ̃1(x)|x→i/2 =

N
∑

j,k=1

4q1(xj)G
−1
jk . (4.16)

5 Conclusions and Outlook

In this work we have studied factorized formulas for the excited state mean values of the
XXZ and XXX spin chains. The main idea was that the known construction for the ground
state correlators should give correct results for the excited states as well, if the physical part
is calculated through certain algebraic expressions, that can be obtained from the integral
representations. Our main conjectures 1 and 2 were tested using exact diagonalization and
real space calculations with low particle numbers N = 1, 2. The findings can be summarized
as follows:

• In the XXZ case the simple generalization of the ground state formulas to excited states
works for almost all states and arbitrary ∆ 6= 1 values. The only exclusions are Bethe

7The idea of this proof was first suggested to us by Andreas Klümper.
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states with the pair of singular rapidities ±iη/2, and the special states of the root of
unity points ∆ = cos(pπ/q). However, we expect that the exclusion of these states is a
just a technical difficulty, which can be easily circumvented by a proper regularization.

• At the XXX point the factorized formulas give correct answers for group-invariant
operators. This is true for all states except those with singular rapidities ±i/2, where
regularization is needed.

We would like to stress that our results can be applied whenever the algebraic part of the
construction is already available. In particular this means that the distance of the correlator
is limited to small values; in principle the algebraic part could be computed for any distance,
but the resulting expressions become too big and the calculation becomes unfeasible [25].

There are several open questions that deserve further study. First of all, it needs to
be shown rigorously whether our main conjectures 1 and 2 are correct. We have presented
evidence that supports the conjectures, but a rigorous proof would be desirable. Also, it
needs to be sorted out how to regularize the factorized formulas to accommodate the states
with singular rapidities. We expect that simple regularization schemes already available in
the literature would solve these problems.

An other, more ambitious task is to consider the non-singlet operators in non-singlet
states of the XXX model. The situation is analogous to the case of the finite temperature
correlations with finite magnetic field. Explicit factorization of multiple integral formulas
for this case has been performed earlier in [17], and it was conjectured that all short-range
correlators can be expressed using the functions ΨXXX and ∆n. Our result (4.13) about the
nearest neighbour z−z correlator has the exact same structure as the corresponding formula
of [17]. This evidence, together with the fact that the multiple integral formulas in the finite
T and finite size problems have the same structure [17, 18] suggest that the generic finite
size mean values will take the same form as in the infinite volume, finite T problem with
finite magnetic field.

Finally, it would be worthwhile to consider the thermodynamic limit of our finite size
formulas. In large volumes the summation over the rapidities leads to integrals over the root
densities, and due to the string hypothesis one has to deal with root densities and other
auxiliary functions for all string types. Performing this calculation would establish a bridge
to the TBA-like description of the physical part conjectured in [41] for ∆ > 1. Also, it is
important to consider the thermodynamic limit in the ∆ < 1 case, because its relevance to
quench problems [63, 36].

We hope to return to these questions in future research.

Acknowledgments

We would like to thank Frank Göhmann, Gábor Takács and Jacopo De Nardis for very
useful discussions and for motivating us to finish and publish this work.

A Numerical tests

We performed exact diagonalization in order to check our conjectures. Our procedure
included the following steps:

• We numerically constructed the transfer matrices (2.2) (and their XXX counterparts)
for a few arbitrarily chosen rapidity parameters. We exactly diagonalized finite sums of
transfer matrices. This method has an advantage over diagonalizing the Hamiltonian
itself, because it removes all unwanted degeneracies and it immediately provides the
Bethe Ansatz states. We considered spin chains up to length L = 12.

• For each eigenstate we numerically computed the mean values of certain short range
correlators. In the XXZ case we considered the operators σa

1σ
a
n with a = x, z and

n = 2, 3, 4. On the other hand, in the XXX case we chose the averaged operators σ1n.
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• The Bethe roots of the individual states were found with the method originally devel-
oped in [52]. The idea is to numerically compute the transfer matrix eigenvalues for a
finite set of rapidities, and afterwards use the famous T − Q relations to find the Q
function and the Bethe roots. For the formulas relevant to the XXX model we refer the
reader to [49], which also includes tables of the XXX Bethe roots up to L = 12 (tables
with L > 8 are found in the supplementary material on the arxiv).

• We computed the predictions for the correlators using the factorized formulas, and
compared them to the numerics from exact diagonalization.

It is important that this method enabled us to treat all excited Bethe states; even the
states with the singular rapidities are found directly.

In the XXZ case we considered both the massive and massless regimes. It was observed
that Conjecture 1 holds for all states except the singular ones which include the special
rapidities ±iη/2. Tables 1-5 include examples of our numerical data; here we chose the
points ∆ = 2 and ∆ = 0.7 with L = 8 in both cases. Tables 1 and 4 show the energies,
particle numbers, momentum quantum numbers and the correlations of the first few states,
and the root content of the states is shown in Tables 3 and 5. The numerical errors in the
predictions for the correlators were typically of the order 10−14 − 10−16; examples for the
errors are given in table 2. For some states a larger error is observed (up to O(10−6)), but this
is probably related to failure of our numerical program to accurately resolve degeneracies in
the spectrum: it can be seen from the root content that these states are not parity invariant,
therefore they have a degenerate partner with negated root content.

In the XXX case it was found that Conjecture 2 indeed holds: the factorized formulas
give correct answer for the singlet operators σ1n for all regular states. Table 6 shows the
energies, particle numbers, momentum quantum numbers and the correlations in all highest
weight states at L = 8. Table 7 shows the corresponding rapidities.

B Real space calculations with N = 1 and N = 2

Here we consider the XXX model and perform real space calculations in the case of low
particle numbers N = 1, 2. We only consider the SU(2) averaged operators

σ1n =
1

3

[

σz
1σ

z
n + 2(σ+

1 σ
−
n + σ−

1 σ
+
n )
]

.

Throughout the calculations we will use the parametrization

a = eip =
u+ i/2

u− i/2
, (B.1)

where u is the Bethe rapidity and p is the one-particle pseudo-momentum.

B.1 N = 1

In the one-particle case the un-normalized wave function can be written as

φ(a|y) = ay. (B.2)

The norm is
〈a|a〉 = L. (B.3)

A simple direct calculation gives the following value for the correlator:

〈a|σ1n|a〉 =
1

3

[

L− 4

L
+ 2

an−1 + a−(n−1)

L

]

. (B.4)

This result has to be compared to the conjectures of Section 3. In the one-particle case the
Gaudin matrix is just a scalar:

G = L
1

u2 + 1/4
. (B.5)
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Then (3.20) gives simply

ΨXXX(x, y) =
2(u2 + 1/4)

L((x− i/2− u)2 + 1/4)((y − i/2− u)2 + 1/4)
. (B.6)

It is a straightforward calculation to check that the factorized results (3.12)-(3.14) indeed
reproduce (B.4) with n = 3 and n = 4.

B.2 N = 2

Here we choose the following normalization for the wave function:

φ(a, b|x, y) = axby + aybxS(a, b), x < y, (B.7)

where S is the scattering amplitude which es expressed in the a-variables as

S(a, b) = −
1− 2b+ ab

1− 2a+ ab
.

The Bethe equations are
aLS(a, b) = bLS(b, a) = 1.

We performed the real space calculations using the program Mathematica. As a warm up
we calculated the norm of the wave function (B.7). After substituting the Bethe equations
we obtained

〈a, b|a, b〉 = L2 − L

(

1 +
aS(a, b)− bS(b, a)

a− b

)

.

It is easy to check that this is equal to the Gaudin determinant up to the overall normalization
differences between (B.7) and (2.4).

Afterwards we performed the real space calculation of the correlators σ1n and obtained
them as rational functions of a and b. After substituting the Bethe equations the results take
the form (2.17), where the Cj polynomials only depend on n but not on L8. The results are
lengthy and we refrain from listing them here.

We also calculated the predictions of Conjecture 2. In the present case the Gaudin matrix
(3.5) has a simple structure and the function ΨXXX is easily calculated using two Bethe
rapidities u and v as

ΨXXX(x, y) =
2

detG
×

×

(

1
(u−x+i/2)2+1/4

1
(v−x+i/2)2+1/4

)(

L
u2+1/4 − 2

(u−v)2+1 − 2
(u−v)2+1

− 2
(u−v)2+1

L
v2+1/4 − 2

(u−v)2+1

)(

1
(u−y+i/2)2+1/4

1
(v−y+i/2)2+1/4

)

.

(B.8)

Using the formulas (3.12)-(3.14) and making the substitutions

a =
u+ i/2

u− i/2
b =

v + i/2

v − i/2

the predictions can be compared to real space calculations.
For both σ13 and σ14 we found exact agreement between the resulting formulas.

8It is important that in the present calculation the distance n is simply a parameter. This is in contrast with
the multiple integrals of the ABA method, where the number of the integrals grows with n. On the other hand, the
ABA results are valid for arbitrary N , whereas the coordinate BA calculations become increasingly complicated
as we increase N .
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C The correlator 〈σz
1σ

z
2〉 in finite and infinite volume

Here we evaluate formula (4.14) assuming that the quantities ∆2(0, 0) and ΨXXX(0, 0)
are given by the finite size formulas of Section 3. We recall that

ΨXXX
0,0 = 2q0(u) ·G

−1 · q0(u), Φj(x) = 2uj−1 ·G−1 · q+(u− x) + 2
xj−1

1 + a(x)
,

and
qk(u) = (∂x)

kq+(u− x)|x=i/2, (C.1)

and the homogeneous limit of the determinants ∆n can be calculated as

∆n(i/2, . . . , i/2) = det

[

Φ̃j,k

(k − 1)!

]

,

where

Φ̃j,k ≡ (∂x)
k−1Φ̃j(x)

∣

∣

∣

x=i/2
=

= 2uj−1 ·G−1 · qk−1(u) + 2(∂x)
k−1xj−1

∣

∣

x=i/2
−

[

(∂x)
k−1(−i∂y)

j−1 2eiyx

1 + ey

]∣

∣

∣

∣

y=0,x=i/2

.

In the present case
∆2(0, 0) = Φ̃1,1Φ̃2,2 − Φ̃1,2Φ̃2,1.

For k = 1 we have

G−1 · q0(u) = −
1

L
e,

where e is a vector with all elements equal 1. It follows that

ΨXXX(0, 0) = −
2
∑

j q0(uj)

L
= −

E

L
, Φ1,1 = −

2N

L
+ 2, Φ2,1 = −

2
∑

j uj

L
.

For the normalized Φ̃ quantities we have

Φ̃1,1 = −
2N

L
+ 1 Φ̃2,1 = −

2
∑

j uj

L

Φ̃1,2 = 2e ·G−1 · q1(u) Φ̃2,2 = 2u ·G−1 · q1(u) + 1.

Putting everything together formula (4.14) indeed yields (4.13).
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E N J 〈σz

1
σz
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〉 〈σz

1
σz
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〉 〈σz

1
σz
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〉 〈σx

1
σx

2
〉 〈σx

1
σx

3
〉 〈σx

1
σx

4
〉

1 -36.1577 4 -0 1.00000 -0.77381 0.55947 -0.54364 -0.48605 0.13559

2 -35.1227 4 4 -1.00000 -0.87304 0.75209 -0.75785 -0.32213 0.05255

3 -31.9185 3 4 -0.00000 -0.44530 0.10801 0.14514 -0.54961 0.24317

4* -30.4979 4 4 1.00000 -0.47190 -0.03764 0.21568 -0.43421 -0.08096

5 -29.4276 3 1 0.00000 -0.46515 0.12383 0.16438 -0.37408 0.01858

6 -29.1610 4 1 -1.00000 -0.44374 -0.03196 0.18650 -0.37882 0.02717

7 -28.3967 4 3 -1.00000 -0.48454 -0.00201 0.24404 -0.29025 0.14360

8 -28.2969 4 -0 1.00000 -0.61733 0.30334 -0.15418 -0.15122 0.20686

9 -27.4782 3 3 -0.00000 -0.40745 0.26602 -0.21529 -0.30994 0.02627

10 -26.9793 3 0 -0.00000 -0.48056 0.36874 -0.26012 -0.20565 0.22899

11 -26.3751 4 2 -1.00000 -0.40264 -0.15462 -0.00260 -0.24581 0.06465

12 -26.2433 3 2 0.00000 -0.39599 0.22330 -0.18488 -0.24422 -0.12448

13 -25.6569 4 3 1.00000 -0.40636 -0.08168 -0.01196 -0.19720 -0.18874

14 -25.2867 4 2 1.00000 -0.41200 -0.03927 0.17598 -0.16842 -0.08671

15 -24.7075 4 2 1.00000 -0.46980 -0.01595 0.20141 -0.07442 0.05612

16 -24.4287 3 2 0.00000 -0.46749 0.11275 0.22015 -0.05931 -0.03089

17 -24.2925 4 1 1.00000 -0.48180 -0.01760 -0.00060 -0.03648 0.18215

18* -24.0000 4 -0 -1.00000 -0.50000 -0.00000 -0.00000 -0.00000 -0.25000

19 -23.6520 3 1 0.00000 -0.43058 0.22230 -0.10473 -0.04767 0.06131

20 -23.3698 4 4 -1.00000 -0.42333 0.06085 -0.23535 -0.03728 0.03861

21 -23.1266 2 0 0.00000 0.00725 0.10369 0.23868 -0.45266 0.34116

22 -23.0670 3 4 -0.00000 -0.36663 0.17000 -0.00872 -0.07505 0.02696

23 -21.4400 3 3 -0.00000 -0.34113 -0.03974 0.20530 0.00113 -0.13741

24 -21.3810 4 3 -1.00000 -0.35755 -0.04656 0.05623 0.02124 -0.15380

25 -21.2481 4 1 -1.00000 -0.43533 -0.04543 0.22808 0.10733 -0.16686

26 -21.0118 2 2 -0.00000 0.00472 0.09993 0.24151 -0.31796 -0.00000

27* -20.8791 4 4 1.00000 -0.31781 -0.18963 0.09706 0.01287 -0.21640

28 -20.2925 2 1 -0.00000 0.02467 0.27299 0.20234 -0.29296 -0.01285

29 -20.2844 4 0 1.00000 -0.36483 -0.19859 0.13415 0.09705 0.02393

30* -20.0000 3 -0 0.00000 -0.00000 -0.25000 0.00000 -0.25000 -0.12500

31 -20.0000 3 0 -0.00000 -0.35714 -0.07143 0.21429 0.10714 -0.03571

32 -19.3685 4 0 1.00000 -0.02885 -0.22253 -0.24533 -0.18168 -0.07996

33 -19.0707 3 1 -0.00000 -0.03722 -0.14017 -0.03592 -0.15470 0.02689

34 -18.9234 4 1 -1.00000 -0.03682 -0.16601 -0.26115 -0.14589 0.05193

35 -18.8157 3 2 -0.00000 -0.01470 -0.24160 -0.01204 -0.16129 -0.15896

36 -18.6357 4 3 1.00000 -0.06897 -0.14533 -0.28570 -0.09576 0.17589

37 -18.5112 4 2 -1.00000 -0.01151 -0.26087 -0.25683 -0.14544 -0.10876

38 -18.4910 3 3 0.00000 -0.06635 -0.09953 -0.06773 -0.08934 0.17045

39 -18.2825 4 4 -1.00000 -0.16403 -0.04601 -0.31077 0.02137 0.37728

40 -17.9394 4 2 1.00000 -0.06788 -0.16993 -0.19477 -0.05333 0.14711

41 -17.8276 3 1 0.00000 0.01651 -0.22108 -0.01696 -0.13074 -0.17328

42 -17.8109 3 4 0.00000 -0.14863 0.04346 -0.17412 0.03545 0.40029

Table 1: List of the correlation functions in the first few eigenstates of the XXZ model for ∆ = 2 and
L = 8. Whenever degenerate states are connected to each other by space or spin reflection we only kept
one of them in the list. In the table N denotes the number of Bethe particles, J = 0 . . . (L/2) is the
overall momentum quantum number. States marked with a star include the singular rapidities ±iη/2.
The factorized formulas correctly reproduce the correlators in all cases except the singular states.
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〉 〈σx

1
σx

2
〉 〈σx
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〉 〈σx

1
σx

4
〉

1 -36.1577 2.2×10−16 8.9×10−16 1.8×10−14 2.3×10−15 1.9×10−16 1.5×10−14

2 -35.1227 8.9×10−16 4.4×10−15 5.1×10−15 1.1×10−15 4×10−16 8.4×10−15

3 -31.9185 1.6×10−15 5.5×10−15 2.3×10−14 1.1×10−16 2.2×10−15 1.5×10−14

4* -30.4979 NaN NaN NaN NaN NaN NaN

5 -29.4276 1×10−15 3.1×10−15 3.2×10−14 1.1×10−15 4.4×10−16 2.2×10−14

6 -29.1610 2.1×10−15 7.1×10−16 2.2×10−14 2.4×10−15 9.2×10−15 1.7×10−14

7 -28.3967 8.9×10−16 1.1×10−15 1.3×10−14 2.8×10−16 5.6×10−17 1×10−14

8 -28.2969 8.9×10−16 5.6×10−16 2×10−14 1.1×10−15 3.9×10−16 4.4×10−15

9 -27.4782 2.4×10−15 7.8×10−16 1.1×10−14 5.6×10−17 1×10−15 1.1×10−14

10 -26.9793 1.1×10−15 3.9×10−16 3.6×10−15 4.4×10−16 1.9×10−15 7.7×10−16

11 -26.3751 5.6×10−17 1.7×10−16 1.6×10−15 3.2×10−15 2.6×10−15 8.7×10−16

12 -26.2433 7.8×10−16 5.4×10−15 4.9×10−15 8.6×10−16 2.8×10−16 7.8×10−15

13 -25.6569 3.1×10−13 4.1×10−12 3.6×10−13 2.4×10−13 2.5×10−12 9×10−12

14 -25.2867 1.1×10−15 4.2×10−14 9.6×10−14 2.2×10−15 2×10−14 3.7×10−14

15 -24.7075 1.1×10−15 3.2×10−15 3.7×10−15 1.2×10−15 2×10−15 4.3×10−15

16 -24.4287 3.3×10−16 1.7×10−15 3×10−15 8.3×10−16 5×10−16 3.7×10−15

17 -24.2925 1.3×10−15 1.7×10−15 9×10−15 1.2×10−15 1.7×10−16 7.6×10−15

18* -24.0000 NaN NaN NaN NaN NaN NaN

19 -23.6520 1.3×10−15 1.6×10−15 1.4×10−17 2×10−16 4.9×10−16 6.7×10−15

20 -23.3698 2.8×10−14 5.8×10−13 4.9×10−14 3×10−14 2.7×10−13 2.3×10−13

21 -23.1266 5.3×10−16 6.7×10−16 1.2×10−15 4.9×10−15 4.8×10−15 4.2×10−16

22 -23.0670 7.8×10−16 1.4×10−15 1.5×10−14 1.6×10−15 1.2×10−15 6.7×10−15

23 -21.4400 5×10−16 1.6×10−15 1.4×10−14 3.5×10−16 5.6×10−16 7.4×10−15

24 -21.3810 1.8×10−15 2.2×10−15 1.5×10−14 9.7×10−16 7.8×10−16 1.8×10−14

25 -21.2481 1.1×10−10 3.2×10−10 6.2×10−09 1.1×10−10 5×10−10 1×10−08

26 -21.0118 5.6×10−16 1×10−15 1.8×10−14 4.4×10−16 1.4×10−15 1.5×10−14

27* -20.8791 NaN NaN NaN NaN NaN NaN

28 -20.2925 1.1×10−15 1.8×10−15 9.5×10−15 3.3×10−16 3.5×10−18 1×10−15

29 -20.2844 3.9×10−16 5.6×10−17 5.1×10−15 6.7×10−16 5.6×10−16 3.3×10−15

30* -20.0000 NaN NaN NaN NaN NaN NaN

31 -20.0000 1.7×10−16 3.2×10−15 6.9×10−15 7.2×10−16 6×10−16 1×10−14

32 -19.3685 4.1×10−15 6.6×10−13 1.3×10−12 2.2×10−15 3.6×10−13 4.3×10−12

33 -19.0707 5×10−15 1×10−14 2.7×10−14 2.3×10−15 1.8×10−14 4.1×10−14

34 -18.9234 7.4×10−16 1.5×10−15 8×10−15 4.7×10−16 1.1×10−15 2.8×10−15

35 -18.8157 1.4×10−13 8.3×10−14 3.8×10−13 1.2×10−13 2.7×10−13 4.1×10−13

36 -18.6357 7.5×10−16 6.9×10−15 1×10−14 2.7×10−15 1.1×10−14 1.7×10−14

37 -18.5112 3.3×10−15 2.1×10−14 3.1×10−14 3.8×10−15 3.1×10−14 1.4×10−14

38 -18.4910 6.5×10−16 2.5×10−15 9.5×10−15 1.7×10−15 1.5×10−15 8.3×10−15

39 -18.2825 2.4×10−15 6.7×10−15 1×10−14 4.5×10−15 7.8×10−15 6.4×10−15

40 -17.9394 7.9×10−16 4.7×10−16 1.7×10−14 1.3×10−15 1.1×10−16 1.6×10−14

41 -17.8276 8.3×10−09 4.2×10−08 2.1×10−06 8.5×10−09 4.7×10−08 1.8×10−06

42 -17.8109 1.9×10−16 8.9×10−16 9.4×10−15 2.6×10−15 1.9×10−15 5.1×10−15

Table 2: List of the numerical errors for the calculation of correlation functions in the first few eigenstates
of the XXZ model for ∆ = 2 and L = 8. Whenever degenerate states are connected to each other by space
or spin reflection we only kept one of them in the list. States marked with a star include the singular
rapidities ±iη/2; in these cases the factorized correlations are not computed, because the corresponding
expressions are ill defined and need regularization.
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1 -0.16931 0.16931 -0.67692 0.67692

2 0 0.36517 -0.36517 -1.57080

3 0 -0.32582 0.32582

4* 0.18374 -0.18374 -0.65848i 0.65848i

5 0.08677 -0.22094 -0.68609

6 0.03422 -0.33383 -0.63559+0.65091i -0.63559-0.65091i

7 0.01707 0.37440 -0.98113+0.61044i -0.98113-0.61044i

8 -0.15916 0.15916 -1.57080+0.76282i -1.57080-0.76282i

9 0.03724 0.36952 -0.78636

10 0.14958 -0.14958 -1.57080

11 -0.32884 0.38712 -0.81454+0.63423i -0.81454-0.63423i

12 -0.24837 0.39897 -0.73478

13 0.16131 0.27757-0.65850i 0.27757+0.65850i -0.71645

14 -0.18828 -0.70030 0.44429-0.65896i 0.44429+0.65896i

15 0.13162 0.57017 1.21990+0.75972i 1.21990-0.75972i

16 0.10182 0.46175 1.39682

17 -0.17285 0.57575 1.36934+0.76935i 1.36934-0.76935i

18* 0 -0.65848i 0.65848i -1.57080

19 -0.17459 0.49080 1.47126

20 0 1.57080 -1.57080-0.35091i -1.57080+0.35091i

21 0.13785 -0.13785

22 0 -0.87010 0.87010

23 -0.28888 -0.81653 0.91977

24 -0.32729 1.26917 -1.25634+0.47792i -1.25634-0.47792i

25 0.38794 -0.17943+0.65848i -0.17943-0.65848i 1.54172

26 0.08798 0.40130

27* -0.65848i 0.65848i -0.71693 0.71693

28 -0.16404 0.43048

29 -0.58190 0.58190 1.57080-0.78528i 1.57080+0.78528i

30* 0 0.65848i -0.65848i

31 0.52360 -0.52360 -1.57080

32 0.04168 -0.04168 1.33652i -1.33652i

33 -0.11381 0.52304-0.65895i 0.52304+0.65895i

34 -0.10163 0.54749 0.56247-1.32488i 0.56247+1.32488i

35 0.18614 0.41430+0.65859i 0.41430-0.65859i

36 0.08631 0.98431 1.03549+1.36050i 1.03549-1.36050i

37 0.18214 0.45323 0.46771+1.33824i 0.46771-1.33824i

38 0.07731 0.98921-0.64251i 0.98921+0.64251i

39 0 -1.57080 -1.57080+1.41573i -1.57080-1.41573i

40 -0.19570 1.07228 1.13250-1.35314i 1.13250+1.35314i

41 0.33452 -0.12946+0.65848i -0.12946-0.65848i

42 0 -1.57080+0.69453i 1.57080-0.69453i

Table 3: Bethe root content in the first few states at ∆ = 2, L = 8. Whenever degenerate states are
connected to each other by space or spin reflection we only kept one of them in the list. States marked
with a star include the singular rapidities ±iη/2.
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1 -18.8078 4 0 -0.55523 0.17411 -0.17857 -0.63116 0.30760 -0.29264

2 -17.1789 3 4 -0.37804 0.05519 0.09571 -0.59137 0.34351 -0.26778

3 -16.3463 4 4 -0.70565 0.46055 -0.50445 -0.42467 0.07272 0.15524

4* -15.3317 4 4 -0.43852 -0.07926 0.18411 -0.45475 -0.05900 0.20029

5 -14.5716 4 1 -0.34075 -0.08169 0.08617 -0.44147 0.12485 0.10379

6 -14.4385 3 1 -0.40282 0.07618 0.11199 -0.41142 0.01125 0.15510

7 -13.5074 3 3 -0.25626 0.10481 -0.15772 -0.40452 0.09997 0.01195

8 -13.0793 4 3 -0.45086 -0.00254 0.21038 -0.30966 0.15167 -0.16087

9 -12.8462 2 0 0.01812 0.11432 0.22837 -0.45923 0.36597 -0.27813

10 -12.3510 3 2 -0.25615 0.07089 -0.13928 -0.33228 -0.05083 -0.07248

11 -12.2647 4 2 -0.29826 -0.29478 -0.01439 -0.31215 0.13104 -0.17247

12 -11.8077 4 3 -0.23238 -0.19759 -0.07003 -0.30665 -0.14760 -0.03699

13 -11.7284 3 0 -0.44022 0.34938 -0.26275 -0.22895 0.23119 -0.00485

14 -11.5032 4 2 -0.20335 -0.11094 -0.04214 -0.29777 -0.07649 0.05979

15 -11.4450 4 0 -0.50248 0.37331 -0.48284 -0.18945 0.18769 0.10722

16 -10.6975 2 2 0.01426 0.11117 0.23182 -0.32358 -0.00000 0.18678

17 -10.3143 2 1 0.06514 0.26935 0.16551 -0.31745 0.03794 0.03011

18 -10.0405 3 2 -0.19673 -0.09617 0.12150 -0.20867 0.08873 0.19586

19 -10.0132 3 4 -0.13796 0.00401 0.09603 -0.22754 -0.00317 -0.09340

20 -9.9144 4 4 -0.19588 -0.02394 -0.37565 -0.20109 0.06464 0.04398

21 -9.6574 4 2 -0.40732 -0.04904 0.12664 -0.11103 0.07340 0.21892

22* -9.6000 3 0 -0.00000 -0.25000 -0.00000 -0.25000 -0.12500 0.00000

23 -9.5110 3 1 -0.24273 -0.07193 0.10480 -0.15949 0.18795 0.05760

24 -9.1958 4 1 -0.37899 -0.10244 -0.01856 -0.09209 0.18674 0.14175

25 -8.8184 4 3 -0.06300 -0.13441 -0.24467 -0.17910 -0.14975 0.12408

26 -8.7270 3 3 -0.10430 -0.21899 0.08270 -0.15893 -0.14497 -0.01306

27* -8.4253 4 4 -0.05373 -0.22139 -0.22437 -0.15778 -0.25000 -0.07695

28* -8.4000 4 0 -0.50000 -0.00000 0.00000 -0.00000 -0.25000 0.00000

29 -8.0873 4 0 -0.24214 -0.05748 -0.21013 -0.07071 -0.18598 -0.20935

30 -7.9465 4 1 -0.07037 -0.06535 -0.25547 -0.12203 -0.00078 -0.09941

31 -7.9343 4 2 -0.02443 -0.30708 -0.24022 -0.13734 -0.15321 0.03579

32 -7.7855 3 1 0.06800 -0.18074 -0.06856 -0.16039 -0.14461 0.07699

33 -7.7574 3 1 -0.17221 0.08450 -0.15357 -0.07457 -0.07944 -0.15130

34 -7.6784 2 0 0.13829 0.20570 0.01856 -0.17830 -0.21003 0.08810

35 -7.5238 3 2 -0.25121 -0.05371 0.05552 -0.03231 -0.23776 -0.12077

36 -7.4061 2 3 0.03020 0.27341 0.19640 -0.12345 0.00431 -0.13014

37 -7.0942 3 0 -0.06867 -0.23635 -0.02045 -0.06936 0.00256 0.07524

38 -7.0588 3 3 -0.11784 0.05867 -0.19845 -0.04993 0.12789 0.04083

39 -6.9067 4 3 -0.20247 -0.03306 -0.26446 -0.01080 0.18554 0.06709

40 -6.8721 4 1 -0.29782 -0.15369 0.18784 0.02473 -0.21028 -0.02506

41 -6.8651 2 2 0.11190 0.23114 0.01427 -0.11823 -0.00000 -0.05325

42 -6.8000 1 4 0.50000 0.50000 0.50000 -0.25000 0.25000 -0.25000

Table 4: List of the correlation functions in the first few eigenstates of the XXZ model for ∆ = 0.7 and
L = 8. Whenever degenerate states are connected to each other by space or spin reflection we only kept
one of them in the list. In the table N denotes the number of Bethe particles, J = 0 . . . (L/2) is the
overall momentum quantum number. States marked with a star include the singular rapidities ±iη/2.
The factorized formulas correctly reproduce the correlators in all cases except the singular states.
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1 0.10290i -0.10290i -0.41679i 0.41679i

2 0 -0.21412i 0.21412i

3 0 -0.19828i 0.19828i -1.57080

4* -0.11284i 0.11284i 0.39770 -0.39770

5 0.05523i -0.13596i -0.45671i 1.57080+0.53745i

6 0.03604i -0.16484i -0.57849i

7 0.01595i 0.22953i -0.62652i

8 0.02501i 0.22723i -0.50508i -1.57080+0.25284i

9 0.09368i -0.09368i

10 -0.17550i 0.24105i -0.59845i

11 -0.15054i 0.24671i -0.47828i -1.57080+0.38211i

12 0.09671i -0.39772+0.17721i 0.39772+0.17721i -0.45113i

13 0.08816i -0.08816i 1.57080

14 -0.11623i -0.44009i -0.39811+0.27816i 0.39811+0.27816i

15 -0.08831i 0.08831i -1.57080-0.67395i 1.57080+0.67395i

16 0.07157i 0.30728i

17 -0.10461i 0.32066i

18 0.05874i 0.27040i -1.57080-0.20712i

19 0 0.64966i -0.64966i

20 0 0.54135i -0.54135i -1.57080

21 0.06005i 0.26612i 1.57080+0.46830i -1.57080-0.79448i

22* 0 -0.39770 0.39770

23 -0.10375i 0.28673i 1.57080-0.11375i

24 -0.10232i 0.28371i -1.57080+0.55219i 1.57080-0.73359i

25 -0.17362i -0.51089i 0.56888i -1.57080+0.11563i

26 -0.18992i -0.62127i 0.66947i

27* 0.39770 -0.39770 -0.44618i 0.44618i

28* 0 -0.39770 0.39770 -1.57080

29 0.02845i -0.02845i 0.81043 -0.81043

30 -0.07634i -0.39925+0.36643i 0.39925+0.36643i 1.57080-0.65652i

31 0.11033i -0.39820+0.29906i 0.39820+0.29906i -1.57080-0.70845i

32 0.22711i -0.39770-0.09840i 0.39770-0.09840i

33 -0.06572i 0.43479+0.65780i -0.43479+0.65780i

34 -0.33388i 0.33388i

35 0.11339i -0.42937+0.61132i 0.42937+0.61132i

36 0.05033i 0.96789i

37 0.30501i -0.30501i -1.57080

38 0.03844i 0.70050i 1.57080-0.30395i

39 0.03543i 0.59541i 1.57080+0.23043i -1.57080-0.86128i

40 0.20450i 0.39770-0.07752i -0.39770-0.07752i -1.57080-0.04947i

41 -0.12135i 0.99398i

42 0

Table 5: Bethe root content in the first few states at ∆ = 0.7, L = 8. Note that here the ground state
rapidities are all purely imaginary and in the excited states the strings are centered around the imaginary
axis; this is simply a result of our intentions to apply the same conventions for both the ∆ < 1 and ∆ > 1
regimes, as explained in the main text. Whenever degenerate states are connected to each other by space
or spin reflection we only kept one of them in the list. States marked with a star include the singular
rapidities ±iη/2.
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E N J 〈σ12〉 〈σ13〉 〈σ14〉

1 -22.60437 4 0 -0.60852 0.26104 -0.25194

2 -20.51368 3 4 -0.52140 0.23367 -0.12039

3* -18.79851 4 4 -0.44994 -0.06564 0.19466

4 -17.83495 3 1 -0.40979 0.04117 0.12669

5 -16.58059 3 3 -0.35752 0.10082 -0.04167

6 -15.41855 3 2 -0.30911 -0.01099 -0.10432

7 -15.20775 2 0 -0.30032 0.27600 -0.09850

8 -14.82843 4 3 -0.28452 -0.16667 -0.04882

9 -14.47214 4 2 -0.26967 -0.09213 0.02847

10 -13.06814 2 2 -0.21117 0.03583 0.19537

11 -12.80656 3 4 -0.20027 0.00522 -0.05067

12 -12.57649 2 1 -0.19069 0.10541 0.08528

13* -12.00000 3 0 -0.16667 -0.16667 0

14 -11.43569 3 3 -0.14315 -0.16631 0.01031

15* -11.04351 4 4 -0.12681 -0.24628 -0.13355

16 -10.90444 4 0 -0.12102 -0.16067 -0.21444

17 -10.51351 3 1 -0.10473 -0.02145 -0.16411

18 -10.38787 3 2 -0.09949 -0.19118 -0.07307

19 -10.05073 3 1 -0.08545 -0.16809 0.03510

20 -9.78017 2 0 -0.07417 -0.07899 0.05466

21 -9.74806 2 3 -0.07284 0.10541 -0.03257

22 -9.17157 4 1 -0.04882 -0.16667 -0.28452

23 -9.03461 2 2 -0.04311 0.08643 -0.02556

24 -8.00000 2 4 0 -0.16667 0.08333

25 -8.00000 1 4 0 0.33333 0

26 -8.00000 3 0 0 -0.16667 -0.08333

27 -6.93819 3 3 0.04424 -0.24910 -0.09301

28 -6.82843 1 3 0.04882 0.16667 0.28452

29 -6.49119 4 0 0.06287 -0.43370 -0.20029

30 -6.25194 2 1 0.07284 -0.10541 0.03257

31 -6.19358 3 2 0.07527 -0.29784 -0.15595

32 -5.52786 4 2 0.10301 -0.24120 -0.19514

33 -4.42923 3 1 0.14878 -0.18496 -0.21317

34* -4.00000 2 4 0.16667 -0.16667 0

35 -4.00000 1 2 0.16667 0 0.16667

36 -3.42351 2 3 0.19069 -0.10541 -0.08528

37 -3.01208 2 0 0.20783 -0.03034 -0.12283

38 -2.67977 3 4 0.22168 -0.07222 -0.32894

39 -2.21710 3 3 0.24095 -0.01875 -0.32682

40* -2.15798 4 4 0.24342 -0.02141 -0.39445

41 -1.89725 2 2 0.25428 0.04441 -0.16981

42 -1.17157 1 1 0.28452 0.16667 0.04882

Table 6: List of the correlation functions in the highest weight states of the XXX model for L = 8.
Whenever degenerate states are connected to each other by space reflection we only kept one of them in
the list. In the table N denotes the number of Bethe particles, J = 0 . . . (L/2) is the overall momentum
quantum number. States marked with a star include the singular rapidities ±i/2. The factorized formulas
correctly reproduce the correlators in all cases except the singular states.
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1 -0.12947 0.12947 0.52501 -0.52501

2 0 -0.26391 0.26391

3* -0.14247 0.14247 0.50000i -0.50000i

4 0.05372 -0.19358 -0.65085

5 0.02382 0.28883 -0.72050

6 -0.20971 0.30632 -0.68166

7 -0.11412 0.11412

8 0.12119 0.22521+0.50003i 0.22521-0.50003i -0.57161

9 -0.14701 -0.55707 0.35204-0.50056i 0.35204+0.50056i

10 0.08200 0.35910

11 0 0.76302 -0.76302

12 -0.13044 0.37844

13* 0 -0.50000i 0.50000i

14 -0.23264 -0.72324 0.79382

15* 0.50000i -0.50000i -0.56383 0.56383

16 -0.04131 0.04131 -1.02571i 1.02571i

17 -0.08884 0.62094-0.51103i 0.62094+0.51103i

18 0.13981 0.55039-0.50687i 0.55039+0.50687i

19 0.27866 -0.11627+0.50000i -0.11627-0.50000i

20 0.39874 -0.39874

21 0.05396 0.91480

22 -0.08379 0.24433 -0.08027+1.00559i -0.08027-1.00559i

23 -0.15507 0.94957

24 0.28868 0.86603

25 0

26 0.34781 -0.67391-0.51443i -0.67391+0.51443i

27 0.31492+0.50018i 0.31492-0.50018i 0.59567

28 -0.20711

29 0.46326-0.50229i -0.46326+0.50229i -0.46326-0.50229i 0.46326+0.50229i

30 -0.42841 0.98514

31 -0.21341-0.49999i -0.21341+0.49999i 0.77127

32 -0.22056 0.66912 -0.22428+1.00225i -0.22428-1.00225i

33 0.86575 -0.74066-0.51922i -0.74066+0.51922i

34* 0.50000i -0.50000i

35 -0.50000

36 -0.41534+0.49953i -0.41534-0.49953i

37 -1.03826 1.03826

38 0 1.00092i -1.00092i

39 -0.63120 -0.61576-0.98815i -0.61576+0.98815i

40* 0.50000i -0.50000i 1.55613i -1.55613i

41 -0.95114-0.54450i -0.95114+0.54450i

42 -1.20711

Table 7: Bethe root content in the heighest weight states of the XXX model for L = 8. Whenever
degenerate states are connected to each other by space reflection we only kept one of them in the list.
The singular states including rapidities ±i/2 are denoted by a star.
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