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Árpád Beszédes, PhD, associate professor

Doctoral School of Informatics
Department of Software Engineering

Faculty of Science and Informatics
University of Szeged

Szeged, Hungary, 2023





Acknowledgments

First of all, I would like to praise and thank God for everything. Then,
I would like to thank my supervisor, Dr. Árpád Beszédes, for guiding
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Chapter 1

Introduction

1.1 Motivation

Software 1 products cover many aspects of our everyday life as they are used in dif-
ferent application domains, such as communication, healthcare, military, and trans-
portation. Thus, our modern life cannot be imagined without software. The ex-
tensive demand and use of different software products in our day-to-day activities
have significantly increased their functionality, size, and complexity. As a result, the
number and types of software faults 2 have also increased [97]. Software faults not
only lead to financial losses but also loss of lives. Therefore, faults should be fixed
as soon as they are found. Finding the locations of faults in software systems has
historically been a manual task that has been known to be tedious, expensive, and
time-consuming, particularly for large-scale software systems [44]. Besides, manual
fault localization depends on the developer’s experience to find and prioritize code
elements that are likely to be faulty.

Developers spend almost half or more of their time on finding faults alone [128].
Therefore, there is a serious need for automatic fault localization techniques to help
developers effectively find the locations of faults in software systems with minimal
human intervention [28]. Researchers and developers have proposed and imple-
mented different types of such techniques. However, Spectrum-based Fault Localiza-
tion (SBFL) is considered amongst the most prominent techniques in this respect due
to its efficiency and effectiveness [47], lightweight, language-agnostic [108], easy-
to-use [136], and relatively low overhead in execution time [117] characteristics.

In SBFL, the probability of each program element (e.g., statement, function 3, or
class) being faulty is calculated based on the results of executing test cases and their
corresponding code coverage information [99]. Currently, SBFL is not yet widely
adopted in the industry [43, 175] as it poses several issues and its performance is
affected by several influential factors [63, 159]. Therefore, addressing SBFL issues
can lead to improving its effectiveness and making it widely used.

1In this PhD thesis, the terms ‘software’ and ‘program’ are used interchangeably.
2In this PhD thesis, the terms ‘defect’, ‘fault’, and ‘bug’ are used interchangeably.
3In this PhD thesis, the terms ‘function’ and ‘method’ are used interchangeably.
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2 Introduction

1.2 Contributions of Thesis

In this PhD 4 thesis, the aim was to enhance SBFL by introducing new methods
and enhancing previous approaches by addressing some of SBFL’s main issues and
challenges. This is achieved by conducting a systematic literature survey to identify
several issues and challenges in SBFL that are still not addressed, and then I started
to tackle them one by one by conducting several lab experiments. As a result, several
articles on the topic have been published or accepted for publication in well-known
venues (conferences and journals). The scientific results I achieved and report in this
thesis are grouped into several thesis points, as presented in Table 1.1.

Table 1.1: Mapping of PhD thesis points, chapters, and publications

No. PhD Thesis Points Chapters Publications
I. Systematic Survey of SBFL Challenges Chapter 3 [122]
II. Tie-Breaking Method for SBFL Chapter 4 [60]
III. Emphasizing SBFL Formulas with

Importance Weights
Chapter 5 [119], [121]

IV. New Formulas for SBFL Chapter 6 [120], [123], [124]
V. Supporting Tools for SBFL Chapter 7 [127], [134], [125], [126]

1.3 Structure of Thesis

The structure of this thesis also follows the grouping of thesis points, hence it consists
of several chapters, as follows:

Chapter 2 introduces an overview of software testing and fault localization. Then,
it introduces SBFL, its concepts, how it works, and the terms that are needed to un-
derstand the contents of this thesis.

Chapter 3 presents the results of a systematic literature survey on the challenges
of SBFL where different issues and challenges that affect the effectiveness of SBFL
and thus prevent it from being widely used were presented and discussed. Also,
different potential solutions to improve/enhance SBFL were given. This systematic
survey study was the basis for the experimental contributions presented in the sub-
sequent chapters.

Chapter 4 introduces the ties in SBFL and a novel proposed approach to address
this issue. Often, SBFL formulas produce the same suspicion score for more than
one code element. Thus, ties emerge between the code elements. To solve this
issue, a method based on method call frequency in failed test cases to break ties
is proposed and discussed. The idea is that if a method appears in many different
calling contexts during a failing test case, it will be more suspicious and thus gets a
higher rank position compared to other methods with the same scores.

4The type of this PhD thesis is a thesis by publication (also called a paper-based thesis).
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Chapter 5 introduces importance weights to improve SBFL by addressing the
issue of unbalanced test suites where the number of passed tests is much higher than
the number of failed tests. This is achieved by emphasizing the factor of failing tests
in SBFL formulas by giving more importance to code elements that are executed by
more failed tests and appear in more failing method call contexts compared to other
elements. Thus, such elements get higher ranks than others and get examined first
by software developers.

Chapter 6 introduces a new manually crafted SBFL formula based on the “guess”
or “intuitive” method. The new formula breaks ties between the elements that share
the same suspicion score by emphasizing the high number of failing test cases and
the low number of passing ones for a particular code element. This chapter also
introduces a systematic search method to generate new SBFL formulas instead of
the heuristic and ad-hoc approaches. This is achieved by examining existing for-
mulas, defining formula structure templates, generating formulas from the defined
templates, and finally comparing them to each other. All the new formulas, which
are not reported in the literature, outperform many well-known existing ones.

Chapter 7 introduces two software fault localization tools that employ SBFL,
namely “CharmFL” and “SFLaaS”, for Python developers. The tools are designed
with a lot of useful features to help Python programmers debug their code. Through
several lab settings, the usefulness of both tools has been assessed. In addition to
being simple to use, the tools have been shown to be helpful for identifying faults in
various programs.

Chapter 8 gives our conclusions and future work plan. Finally, this thesis is briefly
summarized in English and Hungarian in Appendices A and B, respectively.



Chapter 2

Spectrum-based Fault Localization
(SBFL)

2.1 Software Testing

Software products are an integral part of our lives as they cover a wide range of ap-
plication domains, such as healthcare, military, industry, etc. The majority of people
have encountered software that did not function as expected. Incorrectly function-
ing software can cause a variety of issues, such as financial loss, lost productivity,
damage to a company’s brand, and even physical harm or death. Therefore, software
testing is necessary for evaluating the software’s quality and lowering the possibility
of software failures.

2.2 Testing Principles

The main principles of software testing can be listed as follows:

• Testing is done to increase trust in the program’s quality level.

• The appropriate resources (e.g., programs, codes, requirements, testers, etc.)
should be available before starting testing.

• Before carrying out any testing, all tests should be well planned and meet the
user requirements because random testing, in which you simply try something
and see if it works, is less likely to find bugs.

• Since the space of potential test cases is typically too large to be thoroughly
covered, exhaustive testing is not practicable.

• Test with little code parts first, then move on to larger ones.

• As you write code, test it because debugging becomes more difficult and time-
consuming when testing is left until the very end.

4
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2.3 Testing Types

In software engineering, testing can be classified into several main types [168], as
follows:

2.3.1 White-box/Black-box Testing

It refers to the tester’s knowledge and understanding of the internal workings and
details of the software under test.

• White-box testing: Here, the developer focuses on the code and its implemen-
tation details by examining every written programming statement. As the code
is visible and accessible to developers during the testing process this type of
testing is called a white-box. The goal of white-box testing is to know how the
output is achieved exactly. This is performed mainly by testing the control flow
and data flow of the program under test.

• Black-box testing: Here, the developer ignores the code and its implementa-
tion details and focuses instead on what is the output only. This is performed
mainly by testing the functional (e.g., unit testing, integration testing, and sys-
tem testing) and non-functional (e.g., performance testing, usability testing,
and compatibility testing) requirements of the program under test. As the code
is not visible and accessible to developers during the testing process this type
of testing is called a black-box.

2.3.2 Static/Dynamic Testing

It refers to the state of the software under test; whether it is running or not.

• Static testing: Here, a code is tested without running it and it is performed in
the early stages of software development to prevent defects.

• Dynamic testing: Here, a code is tested while it is running and it is performed
at the later stages of software development to find and fix defects.

It is worth mentioning that white-box testing can be static or dynamic. For ex-
ample, testing data flow can be static when the declaration, usage, and deletion of
variables are examined without executing the code. Or, it can be dynamic when
the variables and data flow are examined with the execution of the code. Black-box
testing can also be static or dynamic. For example, reviewing the requirement, speci-
fication, or design documents and looking for errors is static. Or, running a code with
various inputs and checking the outputs is dynamic.
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2.4 Errors, Defects, and Failures

An error (mistake) made by a person in a program’s design, development, or oper-
ation that results in a program failure (unexpected or wrong output) is known as a
defect, bug, or fault in the field of software engineering [34]. Generally speaking,
bugs are classified into two main types: logical and illogical. Logical bugs appear
due to a mistake in the workflow of the software. For example, passing parameters
in incorrect order could cause a logical error. Logical bugs cannot be detected by the
compiler; thus finding and locating them requires fault localization techniques to be
used. Illogical bugs appear due to syntax or type errors. For example, a single miss-
ing bracket could cause a syntax error. Error messages are always generated by the
compiler when it finds illogical bugs. In most cases, an error message provides abun-
dantly clear information about the source of the bug, such as what caused the bug,
the line number, the impacted code elements, and a justification. These messages
typically include sufficient details regarding the bug and the recommended course of
action to fix it. In other words, they can be found and located easily.

2.5 Testing vs. Debugging

Bugs are so prone to be found in programs because they are written by humans and
humans make mistakes due to many reasons (e.g., when they work longer hours,
work under pressure, or when do not map properly between a program and its re-
quirements) and it is very normal. Bugs have the potential to cause severe finan-
cial losses and perhaps fatalities. Therefore, a program should be tested to ensure
it is bug-free. The common way to test a program is to execute it against several
test inputs. The output for each input test case is then observed by developers as
input-output relationships. For each test case, the program is successfully tested if it
generates the required output.

However, if one of the test cases’ output differs from what was expected, the
program is incorrect and contains bugs. In such cases, testing just identifies the ex-
istence of bugs but does not provide any information regarding their types, their
locations, or how they should be fixed. Testing, in other words, exposes bugs’ effects
(or symptoms), not their root causes. The developer must next go through a debug-
ging process (i.e., fault localization) to locate the bugs’ root causes and resolve them.
Figure 2.1 shows the debugging process.

When an error is detected in a program, the developer begins by identifying the
error that caused the program’s failure. For example, the developer can try to repro-
duce the error to ensure it is legit. Then, the developer needs to go through the code
to pinpoint exactly where the error is. After identifying the location of the error, it is
crucial to understand the error (e.g., by checking around it) and know its potential
impact on other parts of the code to fix it properly. Finally, regression testing is per-
formed to ensure that the program works as expected after any code fixes/changes.



2.6 Software Fault Localization 7

Figure 2.1: Debugging process

2.6 Software Fault Localization

2.6.1 Manual Fault Localization

Fault localization’s purpose is to locate faults; historically, this has been done manu-
ally and has been found to be laborious, time-consuming, and excessively expensive.
Additionally, manually locating faults heavily depends on the expertise, judgment,
and intuition of the software developer to recognize and put more emphasis on code
elements that are more likely to be buggy. The main manual techniques are summa-
rized below [155]:

• Logging-based Fault Localization: The most common way of manual fault local-
ization is to use “Print” debugging. “Print” debugging is the print statements,
such as “print()” in Python or “System.out.print()” in Java, that developers in-
sert in their source code to print out or save program state details (such as the
values of variables) to the console or to a log file to get a better sense of what
is happening while the program is executing. Developers look to the program
log (i.e., printed runtime information or saved log files) when unexpected pro-
gram behavior is discovered to identify the root cause of the problem. Thus,
these printed statements can help find bugs, especially when a variable has an
unexpected value.
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• Assertions-based Fault Localization: Assertions are checks added to a program
code to test if certain assumptions remain true while developing or executing it.
However, the program code is considered buggy if any of the added assertions
prove to be false.

• Breakpoints-based Fault Localization: With the use of breakpoints, a program
may be paused when it reaches a specific point in its execution so that the
developer can review the program status at that time. When a breakpoint is
hit, the developer has the option of changing a variable value or continuing the
program’s execution to track the development of a bug. It is possible to set up
data breakpoints such that they activate whenever the value of certain variable
changes, for example. Such breakpoints are called conditional breakpoints.
In other words, only when a specified condition is satisfied, do conditional
breakpoints pause program execution.

Manual debugging is an easy technique to locate faults if the program scale is
small; but it is a time-consuming and tedious process if the developer is dealing
with a large-scale program that has several modules, functions, and variables. If the
developers find themselves locating faults in large-scale programs, then it is time to
switch to an automatic debugging way as follows.

2.6.2 Automatic Fault Localization

Due to the limitations of manual fault localization approaches, there is a growing
interest in developing techniques that can locate faults in program code automati-
cally with the least amount of human participation. There have been several fault
localization strategies developed and each is unique in the sort of data it uses, the
program elements it concentrates on, and its success. Although each technique tries
to address the problem of fault localization from a different viewpoint, it frequently
has both advantages and disadvantages when compared to other techniques. The
main automatic techniques are summarized below [155]:

• Slicing-based Fault Localization: A technique to generate a reduced part of a
program for testing particular test conditions or cases based on program data
and control dependence information; it was proposed first in 1979 by Mark
Weiser [148]. It generates a group of program statements in the program
(called a slice) that may influence a value at a specific place of interest in the
program (called a slicing criterion). Thus, it helps developers to narrow the
search space while finding program faults. Consider a test case that fails due to
an invalid value of a variable at a statement as an example. In this situation,
the faulty program element must be in the slice that is associated with that
variable-statement pair. Developers will be able to concentrate their search on
that slice rather than having to look through the full program to find the bug.
Bogdan Korel and Janusz Laski [78] proposed dynamic slicing to reduce static
slice size. Dynamic slices contain only executed statements during the test
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cases. Even though the amount of code that should be examined is decreased
by dynamic slicing, the quantity of the code that is left is still too much to be
examined.

• Model-based Fault Localization: When using this technique, it is expected that
each program under test has a correct model that is available and accessible.
Models can act as the programs’ oracles. Finding bugs involves comparing a
model’s behavior to the program’s actual observed behavior. Models can be
generated either from clean actual programs or by developers before develop-
ing the actual programs.

• Coverage-based Fault Localization: Recently, many fault localization techniques
employing the relationship between reasons (faults in our case) and results (ex-
ecution failures in our case) have appeared. Among these, the most common
fault localization techniques for locating suspicious code that causes execution
errors are SBFL techniques. As the aim of this thesis is to enhance SBFL, the fol-
lowing sections elaborate on this technique and how it can be used for locating
faults in programs.

2.7 Fault Localization Using SBFL

2.7.1 SBFL Process

SBFL is a popular dynamic program analysis technique that uses code coverage infor-
mation, often known as program spectra, and is collected via executing tests against
various program elements along with tests’ results, to locate faults [34]. When a test
case is executed, code coverage shows which program elements were executed and
which ones were not, whereas there are two possible test results: passed or failed.
Tests fail when a program’s output is unexpected during its execution, whereas they
pass when the output is expected. After that, a ranking formula uses this informa-
tion to determine the buggy likelihood of elements (e.g., statements, functions, or
classes). The main steps of the SBFL process are shown in Figure 2.2.

In 1987, the concept of program spectra was introduced [27]. However, research
on the year 2000 (also called Y2K) problem to identify bugs in formatting and stor-
ing dates before and after the year 2000 utilized program spectra for fault localiza-
tion [116]. “Tarantula” was one of the first approaches in this respect, proposed in
2002 [67], that used a formula to compute the suspicion scores for program ele-
ments in SBFL [34]. After that, other additional formulas were introduced, many of
which had a biological basis. Examples of these formulas include “Ochiai” [102] and
“Binary” [22].
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Figure 2.2: SBFL process

2.7.2 SBFL Code Example

The work of SBFL is simple, it only needs the information of executing several tests
on a program’s elements to locate faults. Suppose a Python function called mid()
accepts three values as input and outputs the median of the three values. The mid()
function, a widely used code example in fault localization research [73], consists of
12 statements Si (1 ≤ i ≤ 12) and 6 tests Tj (1 ≤ j ≤ 6), as shown in Figure 2.3. In
statement 7, there is a fault (the valid statement is m = x).

Then, the function was tested with all the tests, and the spectra (the execution
information of statements in failed and passed tests) were recorded, as presented in
Table 2.1. A 1 in the cell corresponding to the statement Si and the test case Tj indi-
cates that the test case Tj executed the statement Si, otherwise it is 0. Additionally,
a 1 in the row labeled “Results” denotes a failed test, whereas a 0 denotes a passed
test. In SBFL, a program element (e.g., a statement in our example) that is executed
in more failed test cases would be more likely to be faulty.
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Figure 2.3: SBFL example: code and test cases

Table 2.1: SBFL example: spectra information

Statement T1 T2 T3 T4 T5 T6 ef ep nf np
1 1 1 1 1 1 1 1 5 0 0
2 1 1 1 1 1 1 1 5 0 0
3 1 1 1 1 1 1 1 5 0 0
4 1 1 0 0 0 1 1 2 0 3
5 0 1 0 0 0 0 0 1 1 4
6 1 0 0 0 0 1 1 1 0 4
7 1 0 0 0 0 1 1 1 0 4
8 0 0 1 1 1 0 0 3 1 2
9 0 0 1 0 1 0 0 2 1 3
10 0 0 0 1 0 0 0 1 1 4
12 1 1 1 1 1 1 1 5 0 0

Results 0 0 0 0 0 1

2.7.3 SBFL Formulas

An SBFL formula is applied to the spectra information to calculate each program
element’s suspicion score. Table 2.7 presents several existing SBFL formulas. The fol-
lowing four statistical numbers, computed from the program spectra, are frequently
used to express a formula:

• ef : the number of failed tests that executed (e) a program element.

• ep: the number of passed tests that executed (e) a program element.

• nf : the number of failed tests that did not execute (n) a program element.

• np: the number of passed tests that did not execute (n) a program element.
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2.7.4 SBFL Scores and Ranks

After calculating the suspicion score for each program element, a statement in our
example, the statements are ranked based on the scores after they get sorted in
ascending order from the most suspicious to the least suspicious to be examined
by developers. Table 2.2 presents this information. For example, the “Tarantula”
formula scores both statements 6 and 7 greater than others; thus they are more
suspicious and should be examined before others. While it gives statement 4 the
third greatest score, and so on. However, no score was given to statement 11 because
it has no spectra information (i.e., no test has executed it).

Table 2.2: SBFL example: scores and ranks

Tarantula Rank Ochiai Rank Overlab Rank Wong II Rank Goodman Rank
score score score score score

1 0.5 4 0.41 4 0 1 -4 8 -0.43 4
2 0.5 4 0.41 4 0 1 -4 8 -0.43 4
3 0.5 4 0.41 4 0 1 -4 8 -0.43 4
4 0.71 3 0.58 3 0 1 -1 3 0 3
5 0 8 0 8 0 1 -1 3 -1 8
6 0.83 1 0.71 1 0 1 0 1 0.33 1
7 0.83 1 0.71 1 0 1 0 1 0.33 1
8 0 8 0 8 0 1 -3 7 -1 8
9 0 8 0 8 0 1 -2 6 -1 8

10 0 8 0 8 0 1 -1 3 -1 8
12 0.5 4 0.41 4 0 1 -4 8 -0.43 4

2.8 Experimental Design and Evaluation

This section presents the considerations necessary for designing and evaluating the
SBFL experiments of this thesis.

2.8.1 Evaluation Metrics

For evaluating SBFL’s effectiveness, we use evaluation metrics that have also been
used by other researchers in the literature for this purpose [18, 65, 165], as follows.

Achieved Improvements in Average Ranks

An SBFL formula assigns a suspicion score to each program element. Then, all el-
ements are ranked based on the scores from the most suspicious to the least to be
examined by the developer.

The obtained ranks can be used to evaluate the effectiveness of an SBFL approach.
To illustrate this, let us consider that we have a buggy program with 1000 program
elements (e.g., statements). Then, two SBFL approaches, A and B, were applied to
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that buggy program. Approach A put the buggy element at the 500th position in
the ranking list. While approach B put the buggy element at the 50th position in the
ranking list. The Exam metric (also called Expense or Average Rank Percentage [101]),
Equation 2.1, which measures the percentage of program elements that the program-
mer needs to examine to find the bug, can be used to evaluate the effectiveness of
both SBFL approaches. The Exam value for approach A will be 50% and for approach
B will be 5%. As the Exam value of approach B is lower than the Exam value of
approach A, approach B is considered better because the programmer will examine
a lower number of elements to find the buggy element compared to approach A.

Exam =

(
E
N

)
· 100% (2.1)

Where E is the position of the faulty element in the ranking list and N is the total
number of statements in the ranking list.

Often, different elements are assigned the same suspicion score and this is preva-
lent in software fault localization [60]. To rank such elements that are “score tied”
to each other (also called tied elements), many approaches [156] were proposed, as
follows:

• Minimum (MIN) Rank: It considers the top position of the set of elements hav-
ing the same suspicion score as the rank of each element in that corresponding
set (it is also called the optimistic or best case).

• Maximum (MAX) Rank: It considers the bottom position of the set of elements
having the same suspicion score as the rank of each element in that correspond-
ing set (it is also called the pessimistic or worst case).

• Average (MID) Rank: It considers the medium position of the set of elements
having the same suspicion score as the rank of each element in that correspond-
ing set (it is also called the average case). The average rank is calculated using
Equation 2.2.

MID = S +

(
E - 1

2

)
(2.2)

where S represents the starting position of a tie and E represents its size.

Tied element ranking approaches are particularly crucial for assessing the efficacy
of SBFL formulas in terms of in which location they put the faulty element in the
produced ranking list. Table 2.3 presents an example of the aforementioned different
ranking approaches using the scores calculated in section 2.7.4.

From Table 2.3, it can be noted that the ranking approaches must be applied after
the suspicion scores get sorted in ascending order. As the MID ranking approach
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Table 2.3: Tied elements ranking approaches

Statement Sorted Tarantula Score MIN Rank MAX Rank MID Rank
6 0.83 1 2 1.5
7 0.83 1 2 1.5
4 0.71 3 3 3
1 0.5 4 7 5.5
2 0.5 4 7 5.5
3 0.5 4 7 5.5

12 0.5 4 7 5.5
5 0 8 11 9.5
8 0 8 11 9.5
9 0 8 11 9.5

10 0 8 11 9.5

considers the average position of all possible positions, compared to the other two
approaches, it is more commonly used for evaluation. In this thesis, we use the MID
ranking approach in Equation 2.2 to analyze SBFL efficiency in general.

It is important to note that relying solely on the MID ranking approach as a metric
for measuring SBFL efficiency has several disadvantages:

• The information on the effectiveness of any SBFL technique may be distorted
by outlier average ranks.

• It provides no information regarding the rank values’ distribution or how they
change before and after using a suggested SBFL technique.

Therefore, there is a more significant evaluation metric than the MID ranking ap-
proach. This metric measures the improvements that an SBFL technique can achieve
in the “Top-N” ranks. Thus, as presented below, the evaluation benefits are more
clear.

Achieved Improvements in Top-N Categories

Based on many studies including [77] and [158], it is considered acceptable by de-
velopers to examine the top ten ranked program elements recommended by an SBFL
technique. Therefore, these rank positions (also known as “Top-N” categories) can
also be used to assess SBFL’s effectiveness, as follows:

• Top-1: It refers to how many faulty program elements in the ranking list are
ranked first.

• Top-3: It refers to how many faulty program elements have a rank less than or
equal to three.

• Top-5: It refers to how many faulty program elements have a rank less than or
equal to five.
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• Top-10: It refers to how many faulty program elements have a rank less than
or equal to ten.

• Other: It refers to how many faulty program elements have a rank greater than
ten.

Suppose two approaches A and B were applied to a dataset of 297 bugs and they
have been compared to each other based on the “Top-N” categories as presented in
Table 2.4. For each approach, it presents the number of bugs in the Top-N categories
(cumulative), their percentages for the used dataset, and the difference between
them. It can be noted that approach B is more effective than approach A as it puts
fewer bugs in the “Other” category (this kind of improvement is also known as en-
abling improvement [18]) and more bugs in any Top-N category.

Table 2.4: Top-N categories example

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Approach A 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
Approach B 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1

Diff. 11 22.9 13 11.7 11 8.0 11 6.6 -11 -8.5

We also used a special non-accumulating form of Top-N categories that counts
the cases where the bug fell in non-overlapping intervals of [1], (1, 3], (3, 5], (5, 10],
or (10, ...]. These categories illustrate how often a bug is moved into a better (e.g.,
from (5, 10] to (1, 3]) or worse (e.g., from [1] to (1, 3]) category when using an SBFL
technique. To put it another way, how many times do the bugs move to a higher-
ranking category and how many times do they move to a lower-ranking category? As
a result, an SBFL approach that improves Top-N categories by moving a large number
of bugs to higher-ranked categories performs better.

2.8.2 Subject Programs

Evaluating SBFL techniques requires a suitable faults dataset to be used. In all our
experiments, we used Defects4J; the popular bug dataset for Java programs [58]. It
is a collection of non-trivial real single and multiple faults which enables reproducible
experimental research in software fault localization [71, 89]. Defects4J version 1.5
1 was used in most of our studies; it has 438 faults extracted from 6 open-source
Java programs. However, some faults were excluded due to technical limitations.
Consequently, 411 bugs were present in the final dataset that was used. Table 2.5
presents the main details of Defects4J version 1.5.

1https://github.com/rjust/defects4j/tree/v1.5.0

https://github.com/rjust/defects4j/tree/v1.5.0
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Table 2.5: Details of Defects4J 1.5

Project
Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 25 96 2.2k 5.2k
Closure 168 91 7.9k 8.4k

Lang 61 22 2.3k 2.4k
Math 104 84 4.4k 6.4k

Mockito 27 11 1.3k 1.4k
Time 26 28 4.0k 3.6k
Total 411 332 22.1k 27.4k

However, Defects4J version 2.0 2 was also used in some of our studies, where 17
open-source Java programs have 835 real single and multiple faults. We excluded
some faults in this study due to instrumentation errors or unreliable test results.
Thus, a total of 782 faults were included in our final dataset. Table 2.6 presents the
main details of Defects4J version 2.0.

Table 2.6: Details of Defects4J 2.0

Project
Number
of bugs

Size
(KLOC)

Number
of tests

Number
of methods

Chart 25 96 2.2k 5.2k
Cli 39 4 0.1k 0.3k

Closure 171 91 7.9k 8.4k
Codec 17 10 0.4k 0.5k

Collections 1 46 15.3k 4.3k
Compress 36 11 0.4k 1.5k

Csv 16 1 0.2k 0.1k
Gson 15 12 0.9k 1.0k

JacksonCore 25 31 0.4k 1.8k
JacksonDatabind 101 4 1.6k 6.9k

JacksonXml 5 6 0.1k 0.5k
Jsoup 90 14 0.5k 1.4k
JxPath 21 21 0.3k 1.7k
Lang 60 22 2.3k 2.4k
Math 104 84 4.4k 6.4k

Mockito 30 11 1.3k 1.4k
Time 26 28 4.0k 3.6k
Total 782 492 42.3k 47.4k

2https://github.com/rjust/defects4j

https://github.com/rjust/defects4j
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2.8.3 Granularity of Data Collection

Method-level granularity was used as the basic element for localizing faults. It
has several advantages over the commonly used level of granularity, statement-level
granularity [130], as follows:

• It offers more contextual details regarding the element under examination.

• It reduces the number of tied program elements.

• It is more scalable to the execution of large-scale programs.

• It is preferable for the users according to several studies [11, 183].

However, there is no theoretical barrier preventing further research into lower
granularity levels.

2.8.4 Evaluation Baselines

Several well-known SBFL formulas [1, 2, 67, 99, 135, 142, 153], which are presented
in Table 2.7, were employed as the benchmarks to assess and contrast our proposed
solutions with. Also, the selected formulas were widely used in other research on
software fault localization.

Table 2.7: Used SBFL formulas

No. Name Formula No. Name Formula

1 Tarantula
ef

ef+nf
ef

ef+nf
+ ep

ep+np

11 Cohen 2∗(ef∗np)−2∗(nf∗ep)
(ef+ep)∗(ep+np)+(nf+np)∗(ef+nf)

2 Ochiai ef√
(ef+nf)∗(ef+ep)

12 Confidence ef
ef+nf

− ep
ep+np

3 Jaccard ef
ef+nf+ep

13 GP13 ef ∗ (1 + 1
2∗ep+ef

)

4 Barinel = SBI ef
ef+ep

14 Wong I ef

5 SorensenDice 2∗ef
2∗ef+nf+ep

15 Wong II ef − ep

6 DStar ef∗ef
ep+nf

16 Overlab ef
min(ef,nf,ep)

7 Dice 2∗ef
ef+nf+ep

17 Goodman 2·ef−nf−ep
2·ef+nf+ep

8 Interest ef
(ef+nf)∗(ef+ep)

9 Baroni
√
ef∗np+ef√

ef∗np+ef+nf+ep

10 Kulczynski1 ef
nf+ep
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2.8.5 Division by Zero Problem

A program element is given the 0.0 suspicion score when the denominator of a for-
mula is 0 for that particular element to avoid the division by zero exception.

2.8.6 Ranking of Multiple Bugs

The Defects4J dataset contains single and multiple buggy versions of programs. If a
program version has multiple bugs, we take into account the highest rank among the
bugs.

2.8.7 Threats to Validity

Every survey or experiment faces some validity threats. To avoid or reduce the impact
of such threats, the following steps were taken into consideration:

Survey Validity Threats

• Finding related papers: We cannot guarantee that every publication that is
relevant to our study was found. To reduce the effect of this threat, we used
different synonyms to define a search string that then was used to search for
relevant publications in different literature sources. Even so, there can still be
some missing related publications. The risk of missing them was reduced by
using the snowballing search approach.

• Paper selection criteria: There is always a risk of bias when choosing relevant
papers. The publications were thus only included or removed from this study
when the authors agreed.

• Study reproducibility: This threat concerns whether other researchers can con-
duct a similar study and come to the same conclusions. By detailing the steps of
how the survey study was conducted, this threat can be addressed. Therefore,
Section 3.3 describes all the steps that were employed to conduct the study in
great detail.

Experiment Validity Threats

• Selection of evaluation metrics: We used well-known and widely-used evalu-
ation metrics to ensure the validity of our experimental results. This is very
important as it makes our results reliable and comparable to other researchers’
results.

• Correctness of implementation: To ensure that the implementations of our ex-
periments have no issues and their outputs are correct, code reviews were done.
We have also tested our proposed approaches numerous times to make sure
they work as intended.
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• Selection of subject programs: In our experiments, we selected the programs of
the Defects4J dataset as our subjects. Thus, we cannot ensure that the same re-
sults can be obtained by using other different programs. However, as Defects4J
programs are representative and include bugs of various types and complexity
levels, we think this threat is minimal. In addition, Defects4J is often used in
various fault localization studies.

• Exclusion of faults: We had to exclude a small number of faults from the De-
fects4J dataset owing to technical restrictions. The issue is whether or not our
findings will be repeatable by other researchers using the same dataset. We
feel that this threat is extremely minimal because our results were unaffected
by the excluded faults. Besides, the used dataset had almost a homogeneous
distribution of such faults.

• Selection of SBFL formulas: To assess the efficacy of our approaches, we con-
ducted experiments using a selection of popular SBFL formulas, which account
for a tiny portion of the published formulas in the literature. We cannot, how-
ever, guarantee that the same results would be obtained by utilizing other for-
mulas. To reduce the impact of this problem, we applied formulas that were
used in other research works as well.

• Granularity level: In our experiments, we verified the proposed solutions/concepts
on the granularity of functions. However, in certain applications, such as auto-
mated program repair, statement granularity is required. It is unclear at present
if the findings in this thesis are generalizable to statements as well.



Chapter 3

Systematic Survey of SBFL Challenges

3.1 Introduction

SBFL techniques are not yet widely adopted in the industry. The rationale behind
this is that they pose several issues and their performance is affected by several influ-
ential factors. For example, the characteristics of bugs, target programs, test suites,
and supporting tools make their effectiveness differ dramatically from one case to
another.

In the literature, there are massive studies on SBFL covering its formulas, perfor-
mance, and applications. However, no dedicated survey points out comprehensively
the challenges and issues of SBFL. Thus, it is crucial to present and categorize various
SBFL challenges and issues to offer a comprehensive survey on the topic.

The main contributions in this chapter can be summarized as follows:

1. Conducting a systematic literature survey study on the challenges of SBFL.

2. Identifying and presenting 18 SBFL challenges and issues.

3. The study also raises awareness of the works being achieved to address the
identified challenges and issues and suggests some potential solutions to help
those working on this topic and those interested in making contributions to it.

The study begins with the formulation of a Research Question (RQ) that addresses
several aspects of the considered topic. It then identifies the related papers that
should be read to answer the defined RQ. Finally, it discusses potential research
opportunities in the field. To accomplish the aforementioned goals, relevant papers
were collected and thoroughly analyzed in a systematic manner.

It is worth mentioning that we started our thesis with this important systematic
survey study on the topic. As a result, this survey study was the basis for the experi-
mental contributions presented in the subsequent chapters as will be seen later.

20
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3.2 Related Works

SBFL has been an important and active research field for decades. However, a survey
study on the issues and challenges in this research field was lacking. A few general
survey studies on software fault localization have been found in the literature as the
most relevant publications. In this section, these studies are presented briefly.

The authors in [168] provided an overview of coverage-based testing and com-
pared 17 coverage-based testing tools including a tool called “eXVantage” which is
developed by the authors. The comparison was based on several factors but focused
more on coverage measurement. Then, they discussed various features (e.g., test
case generation, test report customization, and automation) that should make tools
more useful and practical. Also, they briefly mentioned that some tools have scala-
bility issues, which makes them only suitable for small-scale software systems. Many
others provide fine testing granularity, but the performance overhead prevents them
from being useful for testing. However, the study helps developers pick the right tool
that suits their requirements and development environment.

In [132], the authors presented evidence that the empirical evaluation of the ac-
curacy of coverage-based fault locators depends on many factors. They summarized
the problems that they encountered during their empirical evaluation of the accuracy
of fault locators and classified them into two main categories: threats to validity and
threats to value. Then, each category presents its own set of issues and their conse-
quences on accuracy, including fault injection, instrumentation, multiple faults, and
unrealistic assumptions.

In [6], the authors briefly provided a review of the previous studies on soft-
ware fault-localization in a table in terms of techniques, evaluation methods, and
the datasets used. However, their results are very abstract and no details have been
provided nor have issues and challenges been discussed.

In [155], the authors surveyed the fault localization techniques from 1977 to
2014. They classified the techniques into eight categories: program slicing, spectrum-
based, statistics, program state, Machine Learning (ML), data mining, model-based
debugging, and additional techniques. They also listed popular subject programs
used to study the effectiveness of different fault localization techniques. They also
discussed fault localization tools developed by the presented studies. Additionally,
they presented some research challenges with fault localization techniques such as
fault interference, programs with multiple faults, and granularity level selection.

In [34], the authors surveyed the state-of-the-art of SBFL research including the
proposed techniques, the type and number of faults they address, the types of spectra
they use, the programs they utilize in their validation, and their use in industrial
settings. Also, they highlighted some challenges (e.g., tied program elements, faults
introduced by missing code, and coincidental correctness) of SBFL that have to be
tackled to improve its effectiveness to be used in real development settings.

In [43], the authors briefly discussed two issues, granularity levels and program
elements having the same suspiciousness, based on what the authors encountered
in their collaboration with the industry. They highlighted that many different gran-
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ularity levels can be employed to generate a spectrum, but there is no guide for
practitioners to help them select the right spectrum granularity they require. Also,
they discussed ties within rankings due to having program elements with the same
suspiciousness. They concluded that this issue needs more attention and suggested
the proposal of new strategies for tie-breaking.

In [175, 176], the authors presented the issue of Multiple Fault Localization
(MFL) of software systems in the software fault localization domain. They identi-
fied three prominent MFL debugging approaches, i.e., one-bug-at-a-time debugging
approach, parallel debugging approach, and multiple-bug-at-a-time debugging ap-
proach. Also, they presented some challenges with the identified approaches and
provided some directions for future works.

All the survey studies mentioned earlier were general surveys that did not focus in
detail on the issues and challenges of SBFL. Some of them briefly highlighted a very
limited number of issues. However, most of them were not conducted systematically.
In contrast, our study provides a thorough and systematic survey based on a detailed
research methodology to examine different issues and challenges of SBFL alongside
possible solutions or research gaps for further investigations. As a result, our system-
atic survey study extends the aforementioned studies by identifying, categorizing,
and discussing 18 important issues comprehensively.

3.3 Research Methodology

The systematic process followed in this survey study is based on the guidelines pro-
vided by [110] and [75]. It consists of several stages as presented in the following
subsections.

3.3.1 Identification of Research Objective

The objective of this survey study is to answer the following RQ:

“What are the challenges and issues posed by SBFL?”

Answering the aforementioned question is achieved by providing a comprehen-
sive survey by reviewing the publications on the topic. Thus, helping software devel-
opers and researchers to better understand SBFL and contribute to its development
and research.

3.3.2 Search Strategy

Literature Sources

Five well-known online literature sources that index publications of software engi-
neering and computer science were used. Table 3.1 lists these sources as well as links
to their websites.
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Table 3.1: Literature sources used to search relevant studies

Source Link
IEEE Xplore http://ieeexplore.ieee.org
Elsevier ScienceDirect http://sciencedirect.com
ACM Digital Library http://portal.acm.org
Scopus http://scopus.com
SpringerLink http://springerlink.com

Search String

The following search string was used to find the relevant publications from the liter-
ature sources:

(“spectrum” OR “statistical” OR “coverage”) AND (“fault”) AND (“localization”)

In the defined search string, the Boolean operators were employed to link all the
selected terms with each other [19]. The “OR” operator was used to link synonyms
or related terms and the “AND” operator was used to link the major terms.

3.3.3 Paper Selection

Paper Inclusion and Exclusion Criteria

Several criteria for including and excluding papers (based on the titles, abstracts, and
full-text readings) were considered to decide whether a publication is relevant to our
study or not, as follows:

Inclusion criteria:

• Publications related directly to the topic of this survey study. This is ensured by
reading the title of each obtained paper. When the title reading was not enough,
the abstract or full-text reading has also been applied. It is worth mentioning
that in full-text reading/filtering, we eliminated those papers that do not talk
about issues or we could not use them to identify issues and challenges.

• Papers published online from 2002-2021.

Exclusion criteria:

• Publications that are not available in English.

• Duplicated publications.

Snowballing

In this survey study, the snowballing technique [151] was also used to reduce the
risk of missing some relevant papers. The newly found papers are then subjected to
the paper selection process recursively.
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Figure 3.1 shows the paper selection process and its outcome at each stage. In
addition, all the papers obtained after applying the paper selection process are listed
below:

[168], [132], [6], [155], [34], [43], [176], [175], [5], [54], [55], [1],[69], [129], [18], [4],
[142], [183], [11], [36], [156], [165], [174], [92], [141], [98], [99], [106], [127], [67], [25], [76],
[49], [61], [20], [143], [23], [118], [10], [41], [38], [139], [84], [79], [104], [112], [85], [9],
[17], [71], [48], [150], [62], [169], [73], [13], [46], [59], [90], [16], [77], [158], [144], [149],
[8], [47], [21], [140], [152], [74], [109], [178], [12], [88], [173], [154], [81], [172], [50], [100],
[180], [115], [147], [146], [32], [96], [91], [26], [138], [14], [167], [163], [31], [80], [103], [94],
[170], [70], [86], [171], [87], [72], [24], [162], [160], [57], [35], [82], [30], [137], [83], [56],
[164], [133], [42], [145], [107], [15], [64], [33], [45], [39], [68], [37], [157], [117], [182], [179],
[177], [93]

Figure 3.1: The outcome of the paper selection process
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3.4 Results

To answer the identified RQ of this survey study, all the related publications were
extensively read and analyzed. Thus, several challenges and issues posed by SBFL
have been identified alongside many directions, as shown in Figure 3.2, classified
into several categories, and then discussed, as follows.

Figure 3.2: Challenges and issues of SBFL

3.4.1 Statistical Analysis:

In SBFL, statistical analysis is used to correlate program elements with failures [5],
where similarity formulas from the statistics and data mining domains are used to
measure the likelihood of a program element being faulty. The issue here is that
software testers and researchers are not statisticians. Worse yet, most of them do not
have access to statisticians or cannot afford to send their data to one. As a result, they
often select SBFL formulas without statistical justifications. Another issue is that they
evaluate their contributions using statistics to demonstrate that their contributions
are significantly better than the state-of-the-art. In other words, they use statistics to
demonstrate that a proposed new technique locates faults “significantly” better than
the state-of-the-art. As they are not statisticians and do not have statisticians readily
available, this may lead to incorrect statistical analysis and conclusions about the
importance of their SBFL results [54].

To solve these issues, more studies are required to evaluate if some SBFL formulas
are statistically significantly better than others. Besides, statistical tools are needed
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to help developers evaluate their results. For example, the authors in [54, 55] pre-
sented the first such tool called “MeansTest”. The tool automates some aspects of the
statistical analysis of results by checking whether the statistical methods used and
the results obtained are both plausible. It examines the data under consideration for
several properties including normality and distribution. Then, it uses that informa-
tion to determine which statistical method to use to obtain better results. The tool
has been applied to the works presented in the papers at the 6th International Con-
ference on Software Testing, Verification, and Validation (ICST’13). Six papers were
discovered to have potentially misstated the significance of their findings because of
the selection of inappropriate statistical techniques.

3.4.2 Coverage Types:

Since the granularity of fault localization is determined by the granularity of code
coverage, the selection of which coverage type to use for SBFL is crucial, as each
coverage type influences the performance of SBFL techniques in one way or an-
other [155]. Program coverage elements can be divided into several common types,
as follows:

• Statement coverage: Different lines of code can be considered for statement
coverage. Thus, the issue is which line of code can be considered the most
suitable choice. In [1] for example, all the lines of code in the target program
are considered for statement coverage. While in [69], lines of code that are
preprocessor directives, variable declarations, and function declarations have
not been considered for statement coverage. The number and type of lines of
code considered for statement coverage may have a notable impact on the per-
formance (in terms of the average ranks [129]) of any SBFL formula based on
the location of the buggy line. Therefore, comprehensive experimental studies
have to be conducted to distinguish between different types of lines of code
and to analyze their impact on fault localization performance. For example,
an interesting investigation could be giving an importance score to each line of
code in the target program. Importance scores could be computed via the influ-
ence of a specific line of code on the behavior of the target program. However,
statement coverage is one of the most used coverage types as it often provides
the exact locations of faults [18].

• Branch coverage: Here, each one of the possible branches from each decision
point is considered for branch coverage. The issue in this type of coverage is
that a fault in the condition of an if-then-else may lead to the execution of
the else branch in all failed test cases. Thus, ranking the statements in this
branch higher than the faulty condition, which is also executed by passing test
cases [4, 132, 164].

• Block coverage: Here, several program statements are considered for block
coverage [142]. Block size is determined by the compiler and it depends on the
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program size and structure. The standard size of a block is 5-7 statements [97].
Using statement coverage may result in ties of scores between the statements
within the same block of a program. While this issue is reduced in the block-
based spectra coverage. However, the issue here is which types of statements
can be considered as a single block.

• Function coverage: Function (or method)-level granularity can also be em-
ployed as a program spectra or coverage type. Compared to statement-level
granularity, it has several advantages [11, 183] including providing global con-
textual information and understandability [145], scalability, reduced tied pro-
gram elements, and it was used as the basic program element for fault local-
ization research [18]. However, the number of statements in some functions
is huge sometimes. Thus, it would not be easy to locate a faulty statement in
such functions. Because of the aforementioned advantages, we selected this
coverage type as the basic program element for our experimental studies.

• Data flow coverage: This is about how variables are defined and then used in
a target program. Also, it concerns the relationships among them. Data flow
coverage provides more details than the standard coverage types but it requires
more execution and memory overheads during test cases execution [117].

3.4.3 Elements Tie:

In SBFL, program elements are ranked in order of their suspiciousness from the most
suspicious to the least. To decide whether an element is faulty or not, developers
examine each element starting from the top of the ranking list. To help developers
discover the faulty element early in the examination process and with minimal effort,
the faulty element should be put in the highest place in the ranking list. However,
ranking only based on the suspiciousness scores computed by SBFL formulas causes
an issue called elements tie [36].

Elements tie means having a similar suspiciousness score for more than one pro-
gram element in the target program [43]. Tied elements are usually ranked based
on three approaches [156] (see Section 2.8.1).

Ties among program elements can be divided into two types [165], as follows:

• Non-critical ties: This type refers to the case where only non-faulty elements
are tied together for the same position in the ranking list. Here, if the tied
elements have a higher suspiciousness score than the actual faulty element,
then every element will be examined before finding the faulty element. On
the other hand, if the tied elements have a lower suspiciousness score than
the actual faulty element, then the faulty element will be examined before the
tied elements. Thus, there is no need to continue examining the ranking list. In
both cases, the internal order in which the tied elements are examined does not
affect the performance of fault localization in terms of the number of elements
that must be examined before finding the faulty element.
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• Critical ties: This type refers to the case where a faulty element is tied with
other non-faulty elements. In this type, the internal order of examination af-
fects SBFL’s performance. It is worth mentioning that critical ties are not a rare
case in fault localization. Besides, a significant portion of the elements in the
program under consideration might be critically tied. Therefore, there is a need
for tie-breaking strategies to address this problem.

It is quite frequent that ties include faulty elements and it is not limited to any
particular SBFL technique or target program. Such elements are tied for the same
position in the ranking list. Also, it indicates that the used technique cannot distin-
guish between the tied elements in terms of their likelihood of being faulty. Thus, no
guidance is provided to developers on what to examine first [72]. In addition, the
greater the number of ties involving faulty elements, the more difficult it is to pre-
dict at what point the faulty element will be found during the examination process.
Therefore, tie-breakers are required to address this problem [174].

We handled the ties problem in the ranking list of program elements by propos-
ing a novel tie-breaker that uses information extracted from method calls (see Chap-
ter 4).

3.4.4 Division by Zero

There is always a possibility of the denominators of some SBFL formulas having zero.
As a result, error messages are produced. For example, when the formula “Overlab”
is applied to the information presented in Table 2.1; the error message “Division by
Zero” is printed for each program statement. Therefore, we considered the value
zero as a score for each statement as can be noted from Table 2.2. To overcome this
issue, several possible solutions have been proposed in the literature as follows:

• Considering zero as a result. The value zero is assigned to each program ele-
ment in which its denominator is zero [69, 92, 141].

• Adding a small fixed constant such as 10−6 to the denominator [98, 99].

• Adding a larger value such as the number of tests plus 1 to the denominator.
Such a value is larger than any value which can be returned with a non-zero
denominator [99, 141].

However, the aforementioned solutions may introduce undesired issues as well.
For example, more program elements will have the same suspiciousness score in the
ranking list, forming new ties. Often, scores generated using these solutions are
not considered by the researchers in the literature. Simply, they are removed from
the ranking list and thus not displayed to the developer. However, more studies are
required here to answer what is the rate of program elements having the same score
using these solutions and whether a faulty element could be within these elements
or not.



3.4 Results 29

3.4.5 Negative Suspiciousness Scores

In SBFL, most of the formulas used to compute suspiciousness scores of program el-
ements produce positive scores. However, few formulas (e.g., “Wong II” and “Good-
man”) produce both positive and negative scores. This may cause an issue when
a weighting method is applied to the generated scores for some valid reasons. For
example, the final score of each element in the whole program or a group of ele-
ments can be multiplied by a weighting value to determine which element is more
important than others based on a reason, such as which one contributes mostly to
the behavior of the program, which one appears more in failed test cases, which one
appears less in passed test cases, etc. Therefore, applying a weighting method to
the negative scores produced by such formulas will change the original rank order
of the scored elements. In other words, the rank order of the suspicious elements
after applying a weighting method will be different from the rank order of the same
elements before applying a weighting method.

To illustrate this, consider the scores produced by the Wong II formula in Ta-
ble 2.2. It can be noted that statements 4, 5, and 10 are assigned with the same
score (i.e., -1) and the same rank order (i.e., 3rd); but we would like to consider
statement 4 as the most suspicious element because it has been executed by a failed
test case while the two other statements were not. So, we decided to apply a simple
weighting method that multiplies the score of statement 4 by the weighting value
0.9 (more suspicious) and the scores of statements 5 and 10 by the weighting value
0.1 (less suspicious). The results of applying our weighting method will decrease the
score of statement 4 and thus put it in the worst position in the ranking list (i.e., 5th
rank instead of 3rd); while it does the opposite with both statements 5 and 10. A
possible solution to this issue is to apply the weighting method to each score gener-
ated by such formulas; then the absolute of each score has to be taken before ranking
the scores.

3.4.6 Source of Bugs

In the software development process, it is common to break the code of a program
into several source code files. For example, putting the functions in one file and
the classes using these functions into another. This practice is useful for structuring
source code files and for reusing existing code. However, it also has its drawbacks
in the context of software fault localization. In Figure 3.3 for example, File B in-
cludes two functions, LessThanFunction() and GreaterThanFunction(), with a bug in
statement 6 of the first function, it should be m = x instead of m = y. These two
functions have been imported into File A. Thus, File B propagated its bug to File A.
As a result, File A will also have a bug in statement 4. When File A is tested using the
statement granularity/coverage level, it will show that it has a bug in statement 4.
The developer will then examine statement 4 to find out that it calls a function from
File B. The issue here is that he/she will not be able to know which statement in the
called function caused the bug to be fixed.

In the literature, there is a lack of experimental studies that try to distinguish
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between propagated/imported bugs and not propagated bugs. Therefore, it would
be very useful to study this issue in many directions, such as deciding if a bug is
imported or not, specifying where it is imported from, how to locate it in its original
place, and measuring its impact on the whole fault localization performance and
process.

Figure 3.3: Fault propagation

3.4.7 Single and Multiple Bugs

In general, program failures are caused either by a single bug or multiple bugs [175,
176]. A single-bug problem is where all the failures of test cases are caused by just
one bug. In other words, whenever a test case fails, the same buggy element should
have been executed in that test case. On the other hand, a multi-bug problem is
where the failures of test cases are caused by more than one bug. Sometimes, a
bug could be in a preprocessor directive or an initialization element that is used at
multiple places in the target program. This issue shows that the target program has
multiple bugs. Another issue here is that as the bug is in a statement (e.g., initial-
ization statement) that is executed by all passed and failed test cases, that buggy
statement is mostly not to be ranked high; making it difficult to be identified [4].

To address this issue, further studies are required to know whether a program has
multiple different bugs or a single bug element that is used at multiple places. In the
case of the latter, it would be useful to specify the location of the first appearance
of the bug and consider it in the fault localization process while ignoring the other
places where it has been used. It is worth mentioning that many SBFL techniques are
designed for programs with a single bug only. Therefore, it would be interesting to
study the impact of multiple bugs on the performance of SBFL. A good starting point
on this is what has been performed in [160], where an empirical investigation on
multiple-fault versions from different open-source programs has been conducted to
study the negative impact of multiple faults on SBFL and to explore the fundamental
causes of this negative impact. Also, it has been found that some SBFL formulas are
more robust to multiple faults and showed the best performance among all others.
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In general, pure SBFL is not always sufficient for effective fault localization in
multi-fault programs [37, 42]. Other ways to address the issue of multiple bugs in
a program are to design novel suspiciousness formulas as in [133] or to divide the
failed test cases into different clusters. The test cases in a cluster fail due to the same
bug. In other words, each test cluster represents a different bug. Then, the failed test
cases in each cluster combined with all passed test cases are used to localize only a
single fault as in [39, 68, 157].

3.4.8 Ranked Elements

The Ranked List of Elements is Huge

Mostly, a large number of program elements are included in the ranking list gen-
erated by SBFL techniques [4, 106]. This is not preferable for the following main
reasons:

• The more ranked elements, the more ties are produced as many program ele-
ments exhibit the same execution patterns.

• It may increase the number of elements having a speciousness score of 0 due to
the issue of division by zero.

• A huge number of elements that are unrelated to suspects of a bug get consid-
ered in the ranking list.

Possible ways to address this issue are either combining the ranking with other
suspiciousness factors derived from the testing and program elements contexts, such
as using program slicing or reducing the length of the target programs via applying
code optimization and transformation techniques. To illustrate this, consider a Java
function called match() which takes two inputs s and w, and returns back whether the
sentence s contains the word w or not. The function code is written in two ways, an
unoptimized version of the code with a bug in statement 9 and an optimized version
of the code with the same bug in statement 8, as shown in Figures 3.4 and 3.5. The
unoptimized code of the function has 15 statements which all will be included in the
ranking list; while the optimized code of the same function has only 10 statements
to be included in the ranking list.

Table 3.2 presents the spectra and test case information of all the statements
alongside their speciousness scores before optimizing the code, and Table 3.3 presents
the same information but after applying code optimization. It can be noted that code
optimization reduces the number of ranked statements. We can see that it eliminates
some ties completely and reduces some others. Additionally, no statement has been
scored with the value 0.

However, it would be interesting to study code optimization and its impact on
the performance of SBFL in many directions. Many code optimization techniques
reduce the length of programs without changing their outputs. Thus, the effects of
these techniques have to be investigated experimentally and their feasibility has to
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Figure 3.4: Running example – unoptimized code

Figure 3.5: Running example – optimized code

be reported with evidence. A possible solution to the issue of the suspicious elements
are not related logically is to group them into different logically related categories
to at least understand why these elements were considered suspicious. Software
module clustering could be employed in this respect as a potential solution to this
issue. More studies are required to evaluate the usage of other potential factors and
to measure their impacts on SBFL’s performance. Here, we list out some factors that
we believe will have a positive impact on the ranking effectiveness, as follows:
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Table 3.2: Running example – spectra and four counters before optimization

T1 T2 T3 ef ep nf np Scores
1 1 1 1 1 2 0 0 0.5
2 1 1 1 1 2 0 0 0.5
3 1 1 1 1 2 0 0 0.5
4 1 1 1 1 2 0 0 0.5
5 1 1 1 1 2 0 0 0.5
6 1 1 1 1 2 0 0 0.5
7 1 1 0 1 1 0 1 0.67
8 1 1 0 1 1 0 1 0.67
9 1 0 0 1 0 0 2 1
10 1 0 0 1 0 0 2 1
11 0 1 1 0 2 1 0 0
12 0 1 0 0 1 1 1 0
13 0 1 0 0 1 1 1 0
14 1 1 1 1 2 0 0 0.5
15 1 1 1 1 2 0 0 0.5
R 1 0 0

Table 3.3: Running example – spectra and four counters after optimization

T1 T2 T3 ef ep nf np Scores
1 1 1 1 1 2 0 0 0.5
2 1 1 1 1 2 0 0 0.5
3 1 1 1 1 2 0 0 0.5
4 1 1 1 1 2 0 0 0.5
5 1 1 1 1 2 0 0 0.5
6 1 1 1 1 2 0 0 0.5
7 1 1 1 1 2 0 0 0.5
8 1 0 0 1 0 0 2 1
9 1 0 0 1 0 0 2 1
10 1 1 1 1 2 0 0 0.5
R 1 0 0

• The sequence, number, and coverage of executing failed test cases.

• The importance of each failed test case in the used test suit.

• The importance of each element in the target program. For example, the state-
ments that directly have an impact on the program’s output should be given
more importance than others.

• Using various software metrics (e.g., the complexity of functions, relationships,
elements types, etc.) to group the elements sharing similar metrics into differ-
ent categories and then relate them to the faulty element.

• All the elements near the faulty element may be given more importance than
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others when being ranked.

• Using the union of dynamic slices of failed test cases to reduce the number of
elements included in the ranking list.

The Ranked List of Elements is Practically Arbitrary

In SBFL, the ranked list of program elements is formed as follows: you can get a
statement from function a(), then another one from function b(), and so forth. As a
result, the ranking list suggested by SBFL is not followed linearly by developers [106]
because they have trouble understanding the context of the bug since they are only
given each bug location in isolation. Instead, they examine the statements that were
ranked high in the ranking list and then look for the location of the actual fault in the
surrounding function, class, or file. This suggests that pointing developers towards
good starting points with SBFL is more important than only improving the ranking of
program elements in the ranking list. Thus, many researchers worked on this aspect
of the problem too [107, 127].

In [107], the authors proposed a technique that reports the most suspicious pro-
gram regions instead of a single program element that is likely to be faulty. In other
words, each faulty element is reported together with its context. This is useful be-
cause the contexts can assist developers in identifying and comprehending the in-
fection flow of each faulty program element. This is performed by extracting the
execution traces of each program element in different failed and passing runs. Then,
a final execution sequence for each element is formed as a graph that represents
the faulty element and its context. Figure 3.6 shows program elements and their
execution contexts within suspicious regions.

Figure 3.6: Suspicious program regions

To address this problem, we also suggested a hierarchical ranked list of elements
(see Chapter 7). This is accomplished by placing all of each function’s statements un-
der the name of the corresponding function, followed by all of each class’s functions
under the name of the corresponding class. The classes are then sorted according
to their suspiciousness scores, followed by the functions, and lastly the statements.



3.4 Results 35

By using this approach, the user can get more helpful information about the faulty
elements across different levels of granularity.

3.4.9 Limitations of SBFL Tools

SBFL techniques require suitable tools to automatically collect spectra data and test-
ing information from the target programs [155]. However, the currently available
tools [20, 23, 25, 49, 61, 67, 76, 118, 143] suffer from some limitations [10], as
follows:

• Mostly, they only collect abstract and trivial testing information, such as whether
a program element is executed by a specific test case.

• Some of them collect more and different types of information (e.g., control flow
and data flow) that may be time-consuming, not well scalable for large-scale
target programs, and unusable in practice.

• Most of them are developed for programs written in Java or C/C++ program-
ming languages. This is because these languages have been used widely in
the past decades compared to other languages. Another possible reason is that
the choice of programming languages represents the target industries of each
company. For example, companies providing tools for embedded and real-time
software vendors focus more on supporting C/C++ [168]. Tools for helping
Python developers in their debugging process have not been proposed by the
researchers previously. Therefore, tools that target programs written in Python,
which is considered one of the most popular programming languages, are ex-
tremely required to be proposed and developed.

• They have the issue of inaccuracies in their results. The inaccuracy of a tool’s
recorded coverage data can lead to various problems. For example, false trust
in the result may be introduced by a code element that is falsely reported as
covered in a tool and not covered in another tool. Therefore, to guide how to
avoid the inaccuracies of the tools, further studies are needed. This can then
help testers to determine the degree of risk of measurement inaccuracies on the
performance of fault localization [41].

• Proposing and developing tools or plug-ins for specific IDEs is considered a
practical limitation of usage as not all developers use the same Integrated De-
velopment Environment (IDE) and many developers use more than one IDE.
Developers do the debugging during/within the development phase itself but
this is not always true and it is not a preferred practice. Therefore, developing
standalone software tools that do not depend on a specific IDE is a good option
in this respect. Perhaps the best option is to have some generic tool that can be
invoked from the command line or to use some APIs and then develop different
plugins for various development environments that are calling this generic tool.
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In order to make SBFL tools more useful and practical, they should be developed
with some important features [168], as follows:

• A user-friendly graphical interface is a crucial feature for users nowadays as
such interfaces act as the gates into using software systems interactively and
efficiently [53]. Thus, a proposed fault localization tool should also be run in
a Graphical User Interface (GUI) mode besides a command line mode to meet
the requirements of different users. For example, developers usually like to use
the GUI mode but the integrators usually like the command line mode.

• The results generated from a tool should be stored in various file formats ac-
cording to the user’s needs (e.g., CSV, XLS, or JSON). As a result, the results
will be useful for further processing or even for other testing tools.

• A tool should provide control to the user to change the settings and configura-
tions of its functionality, such as where to store the results, which task should
be automated, which results should be displayed first, etc.

We contributed to solving some of the aforementioned issues by providing two
supporting tools for SBFL, namely “CharmFl” and “SFLaaS” (see Chapter 7). These
tools target Python developers and provide them with many useful features to help
them debug their programs.

3.4.10 Bugs Due to Missing Code

Generally, software bugs appear due to wrongly written code (e.g., using a wrong
variable instead of another one or using a wrong arithmetic operator instead of an-
other one) or due to missing code (e.g., missing an element that performs a specif-
ically required operation or missing a required conditional element) [34]. In some
open-source projects, it has been found that missing code faults form the majority of
the total faults in these projects [38].

Locating a bug that is introduced by a missing code is a challenging task in SBFL.
This is because the code responsible for the bug is not in the program and SBFL
is designed to locate a faulty element, the execution of which triggers failure [24].
However, a missing code will have an impact on some other elements in the target
program. For example, some elements pose undesired behavior, get executed before
other program elements, or get executed where they should not be. This issue could
be addressed by analyzing the undesired behavior or the unexpected execution of
the elements impacted by a missing code. Such elements could be identified by their
high suspiciousness scores. Thus, the high scores of some elements may indicate that
some elements in their neighborhood (i.e., preceding or succeeding elements) are
missing [156, 162]. However, more work is needed to propose techniques to address
the issue of bugs caused by missing code.
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3.4.11 Simulation of SBFL

Implementing and using SBFL requires target programs, test cases, and different
types of coverage data. Providing these requirements is challenging for many rea-
sons, as follows:

• Executing test cases on the collected target programs requires that all the pro-
grams be provided with proper execution environments. Some programs de-
pend on external libraries to be executed properly. Many others require some
configuration settings to be set.

• There is a lack of tools that extract various spectra data from the target pro-
grams.

Therefore, advanced SBFL simulation tools are very useful to be proposed and
implemented to support researchers in this respect [131]. They should be able to
simulate various program structures and behaviors, relationships among elements,
different coverage types and test cases, different numbers and types of faults, and
calculate suspicion scores using various ranking formulas. Such tools can be used to
validate new ideas or concepts before starting the actual and concrete experiment
and development.

3.4.12 Test Flakiness

SBFL depends on the results of executing several test cases. Sometimes, a test case
may pose an issue called “test flakiness”, which refers to a test case with a non-
deterministic result. In other words, sometimes it passes and sometimes it fails on
the same code depending on unknown circumstances [139]. This issue negatively
impacts the effectiveness of SBFL techniques as it provides misleading signals during
the fault localization process [84]. It has been found that the flakiness of individual
test cases influences fault localization scores and ranks, and that some SBFL formulas
(e.g., “Tarantula”) are more sensitive to this issue than others (e.g., “Ochiai” and
“DStar”).

The dominant approach when addressing this issue is to detect and then remove
all the identified flaky test cases from the test cases’ execution. However, it has been
found that the number of flaky test cases is sometimes so high that removing them is
not considered a practical solution [79]. Therefore, proposing new approaches which
give good performance even with the existence of flaky test cases is preferable. Flaky
test cases can be detected in many ways, as follows:

• Re-run a test case several times after it has failed. If some re-runs pass, then
the test case is considered a flaky one. One issue here is how many times
a failed test case has to be re-run. Different studies used different numbers.
For example, in [104], each test case has been re-run 10 times. In [112], 30
times. In [139], 100 times. In [85], 4000 times. In [9], 10000 times, and
even with this huge number of re-runs, the authors interestingly found that
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some of the previously identified flaky tests were still not detected. The re-run
approach suffers from several issues [17] such as: (a) flaky test cases are non-
deterministic. Therefore, there is no guarantee that re-running a flaky test case
will change its outcome; (b) there is no guidance for how many times a failed
test case has to be re-run to maximize the likelihood of considering it flaky; (c)
the performance overhead of re-runs scales with the number of failed tests.

• Monitor only the coverage of the most recent code changes rather than the
entire target program and mark as flaky any newly failed test case that did
not execute any of the changes without re-running and with minimal runtime
overhead. In other words, a test case is considered flaky if it passes in the
previous version of the code but fails in the current version [17].

3.4.13 Seeded and Real Bugs

Artificial faults (also called seeded faults) are made when a researcher places a fault
in a program source code to intentionally break its functionality. This is performed
with the hope that the SBFL techniques under study will be able to identify the loca-
tion of the seeded fault in the modified source code.

Seeded faults are often used to replicate real fault behavior, especially when the
real faults cannot be reproduced due to many reasons including technical ones, or
because they are not available for programs written in certain programming lan-
guages. Also, they can be used to solve the issue of unbalanced test suits in real
fault datasets, such as Defects4J [71] for Java programs, BugsJS [48] for JavaScript
programs, and BugsInPy [150] for Python programs, where the passed test cases are
much more common than the failed test cases. It is worth mentioning that seeded
faults are widely used in multiple fault localization studies. However, the issues with
these faults are, as follows:

• They may be picked arbitrarily.

• There is a potential for bias in the selection of the faults.

• They may not be representative of real industry faults.

To overcome these issues, it is recommended to use real faults, such as the faults
presented in Defects4J and BugsInPy datasets, or to seed faults in well-known and
complex software systems and provide all the created faulty versions publicly online,
which legitimizes the experimental results by reducing bias and enhancing result
generalization [176].

As mentioned before in Chapter 2, in this thesis we used real faults from well-
known faulty programs to avoid some of the aforementioned issues. Also, it is worth
mentioning that we addressed the issue of unbalanced test suites where the number
of passed tests is much higher than the number of failed tests and many SBFL formu-
las treat passing and failing tests equally by proposing to use the importance weight
to emphasize the factor of failing tests in SBFL formulas to enhance the overall effec-
tiveness (see Chapter 5).
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3.4.14 Spectra Formulas Selection

There are many SBFL formulas proposed in the literature. However, still, there is a
lack of guidance on how to select the right formula for a specific purpose. In [62],
SBFL formulas were divided into three groups based on how the formulas of each
group are affected by the number of failed test cases. It has been found that some
formulas (e.g., “Ochiai” and “Tarantula”) are more sensitive to the number of failed
test cases than others. In [169], several formulas generated by genetic algorithms
have been evaluated, and it has been found that the “Genetic Programming (GP)13”
formula is one of the best-performing formulas of its kind. In [139], it has been
found that some SBFL formulas (e.g., “Tarantula”) are more sensitive to the issue of
test flakiness than others.

However, many other aspects are not yet evaluated, for example, which formula
is more sensitive to the tie issue or which formula performs better with a specific
type of fault. In Chapter 4, we analyzed several well-known formulas and measured
their outputs regarding both critical and non-critical ties. We also introduced many
new formulas that can enhance SBFL’s effectiveness by breaking ties among program
elements or by putting more faulty elements in higher-ranked Top-N categories (see
Chapter 6).

It is worth mentioning that multiple formulas can be combined into a single new
formula. The resulting formula is called a hybrid formula; which combines the ad-
vantages of other existing formulas that have been used in the combination. As a
result, a hybrid formula should outperform other existing formulas as in [73]. To
produce an effective hybrid formula, more experimental studies are required to be
conducted to understand the behavior and characteristics of each existing formula,
as each has its strengths and weaknesses at the same time. Thus, providing a detailed
guideline with experimental evidence to help researchers select the right formulas for
the combination will help a lot in this respect. Also, the computed suspiciousness is
different for every formula according to its peculiarity for the same target program.
Thus, it would be interesting to investigate the relationship between the used formula
and the target program. This may lead to the introduction of some improvements in
the combination process. All the aforementioned issues are possible avenues worthy
of further exploration.

3.4.15 No Interactivity

Often, SBFL techniques compute the suspiciousness scores of program elements with-
out involving the user. In other words, only the statistical analysis of program spectra
is used for this purpose. Thus, the user’s previous knowledge about the program un-
der test is not utilized to improve the fault localization performance [13]. This issue
can be addressed by involving user interactivity. Involving the user and considering
their feedback on the suspicious elements and their ranks can help to re-rank them,
thus improving the fault localization process.

Figure 3.7, which is adapted from [46], shows the difference between the static
SBFL (i.e., without user interactivity) and the interactive SBFL (i.e., with user inter-
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activity).

Figure 3.7: Static vs. interactive SBFL

In [59], the authors proposed and implemented an approach called “Interactive
Fault Localization (iFL)” to support user interactivity in the SBFL process. Their
approach allows the user to interact with the output of the SBFL process based on
their understanding of the system elements and their contexts by considering the
following three feedback actions: (a) the user decides that a proposed suspicious
element is faulty. Thus, the SBFL process will stop as the faulty element is found; (b)
the user decides that a proposed suspicious element and its context are not faulty.
Thus, it can be given low importance and then moved lower in the ranking list; (c)
the user decides that a proposed suspicious element is not faulty but its context is
suspicious. Thus, it can be given high importance and then moved higher in the
ranking list.

In [46, 49], the authors also proposed an interactive fault localization approach
that leverages simple user feedback. The user can interact with their approach by
labeling a suggested suspicious element as faulty or not. Following that, the proposed
approach utilizes such simple user feedback and re-orders the rest of the suspicious
program elements based on that, intending to put truly faulty elements higher in the
ranking list.

In [90], the authors proposed an approach called “Enlighten” which is similar
to the previous approach except that it uses dynamic program slicing to form a Dy-
namic Dependence Graph (DDG) for every failed test in the test suite. In the DDG,
nodes represent occurrences of statements in the program, whereas edges represent
dynamic (data or control) dependencies between these statements. This information
will then be used to create queries for the user to interact with. Each query consists
of a method invocation, together with its input and output values, which the user
can mark as correct or not. This approach is also iterative and in each iteration, it
updates the debugging data and the ranking list based on the user feedback until the
fault is found.
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In [16], the authors proposed an interactive approach to use user feedback about
the correctness of a set of statements to estimate the number of coincidentally correct
test cases (those that execute faulty statements but do not cause failures).

Despite the attempts to propose and improve interactive fault localization ap-
proaches, many issues are still not addressed comprehensively in the literature. For
example, more studies are required to investigate the effectiveness of different pro-
posed approaches and the comparison among them. Performing user studies to eval-
uate the usability of the tools implemented in this context is also required. It would
be interesting to investigate cases when developers or users make the wrong estima-
tion and give incorrect feedback due to mistakes or not being quite familiar with the
faulty program as they are not the actual developers of it. This could be addressed
by proposing new methods to allow users to roll back their feedback if they made
mistakes. Enabling users to provide multiple feedback at the same time rather than
one by one following the recommended list, especially in scenarios where multiple
bugs exist is also recommended.

3.4.16 Top-N Ranking

Due to the nature of SBFL, a faulty element cannot always be ranked at higher-
ranked Top-N categories (i.e., within the acceptable top 10 ranks [18, 77, 158]).
This issue is the biggest obstacle to the usefulness of SBFL in practice [144]. It
is worth mentioning that many SBFL studies published in the literature specifically
addressed this crucial issue compared to the other issues. Therefore, we will list them
in Table 3.4 with a brief description of each proposed solution.

It is worth mentioning that all the solutions proposed in this thesis (see Chap-
ters 4, 5, and 6) address this issue and enhance the effectiveness of SBFL by putting
more buggy program elements at higher-ranked Top-N categories.

3.4.17 Results Visualization

During testing a program, software developers gather a large amount of testing data.
These data can be used for the following two main purposes [67]:

• To identify failures and to help developers locate the faults causing these fail-
ures.

• To identify program elements that were not executed by the used test suite. As
a result, more test cases can be added to cover these elements.

SBFL uses such data to compute the suspiciousness of program elements under
test and often displays them in a table of many fields as in Table 3.5. This form of
output helps the users know which program elements are suspicious, their locations
in the source files, their suspiciousness scores, and their ranks.

However, there are two main issues with this approach of displaying the results
of SBFL, as follows:
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Table 3.4: Proposed solutions to address the Top-N issue

Solution Description Reference
Removing non-
faulty elements

Improving fault absolute ranking for SBFL if some non-faulty elements ranked
higher were excluded from the ranking list of a target program based on the
failed test cases.

[144, 146]

Categorizing pro-
gram elements

The ranking list of SBFL can be improved if program elements get categorized
into “suspicious group” and “unsuspicious group”. Under such categorization,
we only need to calculate the risks for suspicious statements, and simply assign
the risks of unsuspicious statements as the lowest value.

[163]

Using program
slicing

Deleting program elements that have no dependence on faulty elements to
improve the precision of locating faults.

[70, 87, 96, 115,
138, 149, 172]

Introducing new
ranking formulas

Proposing new risk evaluation formulas that outperform the existing ones. [8, 50, 86, 91, 100,
152, 154, 167, 170,
171, 173, 177]

Combining ex-
isting ranking
formulas

Combining multiple formulas into a single formula. The resulting formula is
called a hybrid formula that has the advantages of the formulas used in the
combination.

[12, 73, 93]

Optimizing test
cases

Optimization methods can maximize SBFL’s performance using a minimum
(e.g., by removing redundant test cases) or a balanced number of test cases
used by SBFL formulas.

[26, 32, 74, 80, 88,
94, 109, 147, 180]

Weighting and pri-
oritizing test cases

The performance of SBFL can be improved by differentiating the importance of
different test cases. In other words, not all test cases have the same importance
(e.g., some test cases are more important than others).

[15, 33, 45, 64, 179]

Mitigating the im-
pact of coinciden-
tal correctness

Coincidentally correct test cases execute faulty program elements but do not
cause failures. Such test cases reduce the effectiveness of SBFL. Therefore,
removing or reducing such cases can improve the SBFL.

[14]

Increasing failed
test cases

Some SBFL formulas may become less accurate if there are very few failed test
cases. Therefore, cloning the whole set of failed test cases or adding some more
to enlarge them can improve their performance.

[31, 81, 103, 178]

Table 3.5: Traditional output of SBFL

Element Source file Line number Score Rank
1 Processing.py 100 0.98 1
2 Processing.py 150 0.98 1
3 Processing.py 200 0.5 2
4 Processing.py 500 0.3 3

• The huge amount of displayed results is not attractive and difficult to interpret
when large-scale programs and test suites are used.

• It causes developers to focus their attention locally rather than providing a
global view of the target program. Therefore, there is a need for different
approaches that provide users with a global view of the program under test,
while still giving access to the local view. This can be achieved by visualizing
the whole source code of the program in which each program element is colored
according to its state (i.e., executed or not) in the passed and failed test cases.

To address the aforementioned issues, two main visualization approaches for the
results of SBFL have been proposed in the literature, as follows:

• The discrete coloring scheme. In this simple scheme, if a program element
is only executed by failed test cases, then its color will be red. If a program
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element is only executed by passed test cases, then its color will be green. If a
program element is executed by both the passed and failed test cases, its color
will be yellow. The problem with this approach is that it is not considered very
informative because the majority of program elements are in yellow, and the
developer is not provided with helpful hints about the location of faults. It is
worth mentioning that the red, green, and yellow colors were selected because
they are convenient for viewing [67].

• The continuous coloring scheme. This scheme uses colors and brightness to
denote how program elements participate in the passed and failed test cases.
It colors the elements according to their suspiciousness scores, from higher
(red) to middle (yellow) to lower (green) scores. Thus, an element’s color
can range from red to yellow to green. Then, it presents different brightness
levels according to the frequency at which an element is executed by the test
cases. Elements more frequently executed are the brightest ones. If a greater
proportion of failed test cases execute an element, the element turns red (i.e.,
highly suspicious as being faulty). The element appears greener (i.e., not likely
to be faulty) if a greater proportion of passed test cases execute it. Elements
are colored in yellow (i.e., not suspicion nor completely safe) when they are
executed by nearly equal percentages of passed and failed test cases. The vi-
sualization based on this scheme can be displayed to the user in many forms
as shown in Figure 3.8: (a) coloring program elements in the source code it-
self [23, 61, 67, 118]; (b) visualizing the results as a “Sunburst” [20, 21, 47];
(c) visualizing the results as a “Treemap” [20, 47]. (d) visualizing the results
as a “Bubble Hierarchy” [47].

Figure 3.8: Different visualization schemes.
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We addressed the issue of displaying SBFL results by providing a tool called
“CharmFl” (see Chapter 7) that offers a layered approach to examine the ranking
list produced by an SBFL technique. Instead of displaying program elements without
showing any relationship among them in terms of which element belongs to which
higher granularity level, our approach allows the user to examine the elements at
different layers or granularity levels (i.e., classes, functions, and statements. Thus,
the ranking list becomes more understandable to the user.

However, more studies are required to propose new approaches or to improve the
usability and effectiveness of the existing approaches in many directions. For exam-
ple, providing a zoomable user interface that lets the user view the results at various
abstraction levels is essential, especially for large-scale software systems. Also, pro-
viding users with interactive visualization filtering options is an interesting area to
be investigated.

3.4.18 No Contextual Information

In SBFL, the ranking is performed only based on the suspiciousness score of each
program element. An element with a high score will get positioned at the beginning
of the ranking list and vice versa. Thus, SBFL cannot distinguish between program
elements that exhibit the same execution patterns. The reason behind this issue is
that SBFL techniques leverage hit spectra (i.e., whether an element is executed or
not) only as the abstraction for program executions without considering any other
useful contextual information [57]. In other words, they represent a program’s be-
havior as an abstract hit spectra model that cannot capture the semantics of each
program element individually [4].

Recently, the authors in [140] addressed this issue by using method call frequency.
The frequency of the investigated methods occurring in call stack instances during
the execution of failed test cases is used to modify the standard SBFL formulas. The
basic idea is that if a method is called multiple times in a failed test case, it is more
likely to be faulty than others. Thus, the ef of each formula was changed to the
frequency ef . Their experimental results showed that adding this new information
to the existing formulas can lead to improvements in the effectiveness of SBFL. How-
ever, this approach can only be applied to the formulas that have the ef numerator.
Also, it is considered heavy, as it requires tracing the execution of each method call,
as caller or callee, in the failed test cases.

In [56, 182], the authors also utilized the relations of software methods. Par-
ticularly, they investigated the fault influence propagation implied in method calls.
The basic idea is that a caller method often calls several callee methods with com-
plex logical controls, making the complexity of the caller method usually higher than
the callee methods. According to the complexity degree, fault influence may often
propagate from the callee method to the caller method. Also, the callee’s influence is
statistically the most crucial factor, and this influence can be utilized to improve the
suspiciousness estimation. From the caller’s perspective, the caller’s suspiciousness
evaluation often contains multiple callees’ behaviors and influences. Also, propagat-
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ing redundant fault influence reduces the accuracy of the suspiciousness computa-
tion. Therefore, the authors extended the basic intuition of SBFL (i.e., a program
element executed in more failed test cases is more likely to be faulty) with a hypoth-
esis that the method linked with more and higher suspicious methods is more likely
to be the root cause. Based on such intuitions, a heuristic approach called “Fault Cen-
trality” was proposed in this paper to capture the local faulty suspiciousness influence
of the callee method on the caller for boosting SBFL.

Method call sequence mining with a slide-window method has been used in [82]
to boost the performance of SBFL. The authors achieved this by splitting each method
call sequence into different sub-sequences. Then, they computed the hit spectra for
each sub-sequence. After that, they took the maximum suspicion score of the sub-
sequences that contain the target method as its final score. In [30, 35, 83, 137], the
method call sequences have also been employed to highlight the methods that are
more often related to other methods in the failed executions of test cases.

We addressed this issue by utilizing contextual information extracted from method
call frequency to break ties among program elements and thus enhance the effective-
ness of SBFL (see Chapter 4). Also, we used contextual information-based impor-
tance weights to improve the SBFL ranks by giving more importance to code ele-
ments that are executed by more failed tests and appear in more failing call contexts
compared to other elements (see Chapter 5). However, many such studies and other
contextual information can be considered to improve the effectiveness of SBFL.

3.5 Contributions

In this chapter, the following points summarize my main contributions to the topic of
thesis point I. The results of this chapter were published in [122].

• Providing a theoretical background on the topic of SBFL and its main concepts.

• Conducting a systematic survey study that discussed the papers related to SBFL
and the challenges and issues preventing it from being widely used. The results
of the systematic survey showed that SBFL still poses many problems that have
not yet been addressed despite their importance to the effectiveness of SBFL.

• Categorizing the identified challenges and issues into 18 categories. Addressing
SBFL challenges can enhance the performance of SBFL in many directions, as
will be seen in the subsequent chapters.

Finally, Figure 3.9 shows the connections between the main issues of SBFL in
Chapter 3 and the subsequent Chapters (4, 5, 6, and 7) that address them.
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Figure 3.9: Connections between thesis chapters and main SBFL issues



Chapter 4

Tie-Breaking Method for SBFL

4.1 Introduction

In SBFL, program elements (e.g., statements, methods, or classes) are ranked in
order of their suspiciousness from most suspicious to least. To decide whether an
element is faulty or not, programmers examine each element starting from the top
of the ranking list. To help developers discover the faulty element early in the ex-
amination process and with minimal effort, the faulty element should be put near
the highest place in the ranking list. However, ranking based only on suspiciousness
scores inevitably involves a problem called rank ties [122]. When different code ele-
ments are tied this means that they have the same suspiciousness scores, so they are
indistinguishable from each other in this respect. If the faulty element falls within a
tie (this is called a critical tie) then the overall performance of the SBFL method will
be reduced.

Probably none of the known SBFL formulas are guaranteed to produce different
scores for all the program elements, hence ties inevitably emerge between the code
elements. In fact, as we shall see in this study, ties in SBFL are prevalent regardless of
the underlying formula. In this study, we propose a tie-breaking strategy to improve
the performance of SBFL by utilizing contextual information extracted from method
call chains (our strategy is at method-level granularity, meaning that the basic pro-
gram element considered for fault localization is a method). Method call chains are
the call sequences of methods in the call stack during their executions. Both call
chains and call stack traces can provide valuable context to the fault being traced.
For example, a method may fail if called from one place and performs successfully
when called from another.

The proposed strategy is based on how often a method has been called, directly
or indirectly, during the execution of failed test cases in different contexts. However,
here we do not count all occurrences of a method call but only those that occur in
unique call contexts. Thus, repeating sequences of method calls due to, e.g., loops
are not considered. The intuition is that if a method is present in many different
calling contexts during a failing test case, it will be more suspicious and get a higher
rank position compared to other methods with the same scores. The strategy can be
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applied to any underlying SBFL formula, and, as we will see, it can favorably break
the occurring ranks in the ties in many cases.

We empirically evaluated the approach using 411 real faults from the Defects4J
dataset and five well-known SBFL formulas. The obtained results indicate that for
all the selected formulas, the call frequency-based tie-breaking strategy can improve
localization effectiveness in many ways. For example, it completely eliminated 72–
73% of the critical ties over the full dataset. In other cases, it reduced their sizes
significantly. Ranks of buggy elements improved by two positions on average. The
approach achieved positive movement of bug ranks in most Top-3/Top-5/Top-10 rank
categories and in particular, the number of cases where the faulty method became
the top-ranked element increased by 23–30%.

The main contributions in this chapter can be summarized as follows:

1. Analysis of rank tie prevalence in the benchmark programs.

2. A new tie-breaking algorithm that successfully breaks critical ties in many cases.

3. The analysis of the impact of tie-breaking on the overall SBFL’s effectiveness.

In terms of the concrete research goals, we defined the following RQs for this
study:

RQ1 How prevalent are rank ties when applying a selection of different SBFL formu-
las? In particular:
- How common are rank ties in the Defects4J benchmark and what are their
sizes?
- What would be the theoretically achievable maximum improvement if all crit-
ical ties were broken?

RQ2 What level of tie-breaking can we achieve using the call frequency-based strat-
egy?

RQ3 What is the overall effect of the proposed tie-breaking on SBFL’s effectiveness
in terms of global rank improvement?

4.2 Related Works

Many fault localization techniques, in addition to the ones used in this study, have
been proposed and discussed in the literature [34, 132, 168] and various empiri-
cal studies [62, 183] performed to compare the effectiveness of various techniques.
However, systematic research work on the problem of addressing ties in the context
of fault localization is still modest. The most related publications are presented in
this section.

The authors in [174] proposed a tie-breaking strategy that first sorts program
statements based on their suspiciousness and then breaks ties by sorting statements
based on applying a confidence metric. The metric is intended to assess the degree of
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certainty in a given suspiciousness value. For example, when two or more statements
are assigned the same level of suspicion, the suspiciousness assigned to the state-
ments with a higher level of certainty is more reliable. As a result, the corresponding
statements are more likely to be faulty.

In [165], the authors presented the most systematic analysis of the problem asso-
ciated with critical ties (ties with faulty statements) where four tie-breaking strategies
were considered and evaluated via experimental case studies. Their results indicated
that some of the strategies can reduce ties without having an adverse impact on fault
localization effectiveness. Besides, they proposed some other tie-breaking techniques
to be studied and evaluated in the future, such as a slicing-based approach for break-
ing ties.

In [36], the authors proposed a grouping-based strategy that employs another
influential factor alongside the statements’ suspiciousness. This strategy groups pro-
gram statements based on the number of failed tests that execute each statement and
then sorts the groups that contain statements that have been executed by more failed
tests. Afterward, it ranks the statements within each group by their suspiciousness
to generate the final ranking list. Thus, the statements are examined firstly based
on their group order and secondly based on their suspiciousness. Their results show
that ranking based on several factors can improve SBFL’s effectiveness. Thus, the
grouping-based strategy could be effective in tie-breaking as well.

In [83], the authors employed the idea of utilizing method calls to improve the
performance of SBFL. In their proposed approach, they combined method calls and
their sequences with program slicing to extract spectra patterns from different con-
texts that can be used to effectively locate faults compared to only using the standard
SBFL formulas.

It can be noted that utilizing method calls to improve the performance of SBFL is
not new. However, using method call frequency for tie-breaking is a novel approach
that has not been investigated by other researchers previously.

4.3 Evaluation

4.3.1 Subject Programs

Here, we used the single and multiple faulty programs (i.e., 411 faults) of the dataset
Defects4J 1.5 (see Table 2.5).

4.3.2 Evaluation Baselines

In this study, five standard SBFL formulas “Confidence”, “DStar”, “GP13”, “Ochiai”,
and “Tarantula” which are presented in Table 2.7, were used as the baselines to
evaluate and compare our proposed method against. The reasons behind this are:
(a) there is no other proposed tie-breaking approach that works on the method-level
granularity as our method does; (b) our goal was to use contextual information
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from program executions only to break ties and not as the underlying SBFL formula
for all program elements (this was done in [140]). The authors in [165] used two
confidence formulas to break ties and data-dependency among program statements
as well, but these approaches are not directly comparable to ours.

4.4 Tie Statistics

In this section, we analyze the existence of rank ties in a set of benchmark programs.
Then, we present the properties of ties we obtained before applying our tie-breaking
strategy and to which extent they can be reduced.

As mentioned earlier, there is no guarantee that SBFL formulas produce unique
suspiciousness scores for all the elements of a program under test. As a result, many
elements may share the same scores and get tied with each other. Here, we present
brief yet informative statistics on the number of ties that the selected five SBFL for-
mulas produce when applied to the Defects4J dataset (see Table 4.1). It can be noted
that all the selected SBFL formulas produce ties across all the target programs. This
may indicate different things: (a) ties are not rare in fault localization; (b) ties can
be formed regardless of which subject program is under consideration; (c) different
SBFL formulas are affected.

Table 4.1: Number of ties: total and average per bug

Project
Confidence DStar GP13 Ochiai Tarantula

# avg # avg # avg # avg # avg

Chart 3656 146.24 508 20.32 512 20.48 506 20.24 490 19.60
Closure 86181 512.98 19069 113.51 19017 113.2 19043 113.35 19109 113.74

Lang 3430 56.23 185 3.03 188 3.08 187 3.07 187 3.07
Math 12856 123.62 844 8.12 846 8.13 854 8.21 851 8.18

Mockito 3381 125.22 779 28.85 780 28.89 779 28.85 789 29.22
Time 5776 222.15 589 22.65 571 21.96 597 22.96 609 23.42
All 115280 280.49 21974 53.46 21914 53.32 21966 53.45 22035 53.61

Table 4.2 presents the number of critical ties. An interesting observation is that
the number of ties is not related to program size. For example, smaller programs may
have more critical ties than larger programs as in the case of the “Lang” program
(22 KLOC) having more critical ties compared to the “Chart” program (96 KLOC).
The average number of critical ties per bug is an important indicator, as it means
in essence the probability that a buggy element will be tied (assuming a single-bug
scenario).
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Table 4.2: Number of critical ties: total and average per bug

Project
Confidence DStar GP13 Ochiai Tarantula

# avg # avg # avg # avg # avg

Chart 14 0.56 17 0.68 14 0.56 15 0.6 16 0.64
Closure 102 0.61 101 0.60 102 0.61 101 0.60 100 0.60

Lang 20 0.33 22 0.36 20 0.33 21 0.34 22 0.36
Math 65 0.62 69 0.66 65 0.62 65 0.62 65 0.62

Mockito 13 0.48 13 0.48 13 0.48 13 0.48 13 0.48
Time 9 0.35 9 0.35 9 0.35 10 0.38 10 0.38
All 223 0.54 231 0.56 223 0.54 225 0.55 226 0.55

We can conclude that more than half of the bugs (54–56%) are within critical
ties, i.e., in most cases, there is at least one method whose suspiciousness score is the
same as the score of the faulty method.

The sizes of ties is another important factor when considering the potential im-
provements by tie-breaking. This can be investigated by looking at the differences
between the MIN (best case) and the MID (average case) approaches described in
Section 2.8.1. Consider Table 4.3, which shows the number of critical ties for which
MIN and MID values are different in columns 2 and 3 (essentially, the critical tie
numbers as shown above), and also the sum of the corresponding rank differences
(column 4), and its average per critical tie (column 5). Put differently, the double
of the average difference is the average critical tie size in the benchmark, which is
around 7 methods. The difference between the different formulas is not notable.

It also follows that, ideally, the best improvement we could achieve using a tie-
breaking technique is these averages. From Table 4.3, we can see in how many
cases, based on critical tie numbers and average tie sizes, there is some possible
improvement, so we can use these numbers as a baseline for evaluating our tie-
breaking approach in subsequent sections.

Table 4.3: Improvement possibilities of critical ties

MIN != MID
(count)

MIN != MID
(%) Diff. Avg. diff.

Confidence 223 54.3 758.5 3.40
DStar 231 56.2 795.0 3.44
GP13 223 54.3 799.5 3.59
Ochiai 225 54.7 784.0 3.48

Tarantula 226 55.0 831.0 3.68

We examined the distribution of the critical tie sizes as well, which is shown in
Figure 4.1. The X-axis represents the number of methods involved in critical ties
and the Y-axis represents the percentage of method groups that have the same tie
size. As expected, most ties are relatively small (2–4 elements), 67% of the critical
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ties contain 5 or fewer methods, and sizes above 15 are rare (the average is 7.8,
the median is 3, and the maximum is 128). Interestingly, there are some outlier
cases where the tie sizes are very big, which is the explanation for the relatively large
average number.

Figure 4.1: Size distribution of critical ties

Answer to RQ1: Overall, it can be said that ties and critical ties are very common
(for the bugs in our benchmark). Each of the examined SBFL formulas created critical
ties for more than half of the bugs, and on average, the ranks could potentially be
improved by around 3.5 positions by eliminating the ties.

4.5 Call Frequency-based Tie-Breaking

In this section, we present the concepts of our proposed tie-breaking strategy and
how it works. Then, we present its effectiveness in reducing critical ties when applied
to our bug benchmark.

4.5.1 Frequency-based Tie Reduction

In Chapter 2, we introduced the basic concepts of hit-based SBFL. One disadvantage
of this approach is that it does not take into account the frequency of executing the
program elements, in our case methods, (also known as count-based SBFL). There
have been studies that used counts [51, 52], but recent results [3] have shown that
these are unable to improve the efficiency of SBFL.

The authors in [140] proposed a technique to replace the simple count-based
approach that proved to enhance hit-based spectra while eliminating the problems
of naive counts. It is based on replacing the value of ef in the SBFL formulas with
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the frequency of different call contexts in the call stack for failing tests, i.e., the
“frequency-based ef”. The basic intuition is that if a method participates in many dif-
ferent calling contexts (both as a caller and as a callee), it will be more suspicious. In
other words, the frequency of methods occurring in the unique call stacks belonging
to failing test cases can effectively indicate the location of the bugs. In this study, we
will employ this concept for the purpose of tie-breaking.

To illustrate the basic concept of frequency-based tie reduction, first, we define
the frequency-based SBFL matrix that replaces the traditional hit-based one. In the
new matrix, each element will get an integer instead of {0, 1} indicating the number
of occurrences of a particular code element in the unique call stacks (effectively, the
different contexts) when executing the given test cases.

To illustrate this, assume a simple Java program, which is adapted from [140],
that has four main methods (a, b, f , and g) and its four test cases (t1, t2, t3, and t4)
as shown in Figure 4.2. The program has a bug in the method g.

Figure 4.2: SBFL example: code and test cases

To obtain the call frequency matrix, we first build the call tree of each test case
during the execution and then we count the call frequency of each method without
considering the repetition. Figure 4.3, which is adapted from [140], shows for exam-
ple the frequency-based spectrum of all methods after executing the test t1. It can be
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seen that the call stacks of t1 are (a, f), (a, g), and (b, g), so the frequency of method
a, for example, will be 2 for the test t1 as it appeared twice in the call stacks.

Figure 4.3: Call frequency example: call tree and call stacks

Table 4.4 shows the complete frequency-based matrix for the example after exe-
cuting all the tests.

Table 4.4: Example frequency-matrix

a b f g Results

t1 2 1 1 2 Failed
t2 1 1 0 2 Failed
t3 1 1 0 1 Passed
t4 3 1 1 2 Passed
ϕ 3 2 1 4

In the next step, we define our metric to be used as a discriminating factor for
tie-breaking. The ϕ corresponds to the “frequency-based ef ” and is calculated by
summing the corresponding frequency-based values in the matrix for the failing test
cases (see Equation 4.1). For example, the ϕ value for method a is 3 by adding the
call frequency values of it in the failed tests t1 and t2. The values for our example
are shown in the last row of Table 4.4.
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ϕ(m) =
∑

t∈failed test

cm,t

m ∈ methods, cm,t ∈ frequency-matrix

(4.1)

Figure 4.4 shows our tie-breaking process, which can be seen as a two-stage pro-
cess. In the first stage, we compute the suspiciousness scores of program methods
and their ranks by applying different SBFL formulas to the program spectra (test cov-
erage and test results). The output of this stage is an initial ranking list of program
methods including critical and non-critical ties. In the second stage, we trace the ex-
ecution of program methods to obtain the ϕ, i.e., frequency-based ef . This will then
be used as a tie-breaker after re-arranging the order of the critically tied methods in
the initial ranking list based on the value of ϕ for each method. The output of this
stage is a final ranking list, where many critical ties are either eliminated or their
sizes were reduced.

Figure 4.4: The proposed tie-breaking process

Our proposed tie-breaking method uses the obtained ϕ call frequency values to
break the methods sharing the same score, by putting the methods with higher ϕ
higher in the rank. Thus, the most suspicious one will be the method that was called
in more different call stacks from failing test cases. The rationale behind using ϕ
rather than other contexts (such as the context of method calls in passing test cases)
is the intuition that a method is more likely to contain a fault when executed by more
failing test cases than passing ones, while non-suspicious when mostly executed by
passing tests. However, other different contexts could be considered in the future to
investigate their impacts on breaking ties.
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The ranks without (columns B) and with tie-breaking (columns A) with our ap-
proach for the example are presented in Table 4.5. Ties marked in gray were elim-
inated with the use of call frequency. As a result, we were able to differentiate
between the faulty method g and the other suspicious ones using all of the SBFL
formulas (the faulty method got the highest rank in all cases).

Table 4.5: Ranks Before and After using the tie-breaking strategy

Method ϕ
Confidence DStar GP13 Ochiai Tarantula

B A B A B A B A B A

a 3 2.5 2 2 2 2 2 2 2 2.5 2
b 2 2.5 3 2 3 2 3 2 3 2.5 3
f 1 2.5 4 4 4 4 4 4 4 2.5 4
g 4 2.5 1 2 1 2 1 2 1 2.5 1

4.5.2 Reduction of the Critical Ties

The Tie-Reduction metric, which was defined in [165], measures how much a critical
tie can be reduced/broken in terms of size. Here, size simply means the number of
code elements sharing the same score value, and obviously, the minimum tie size is
2. The goal of any tie-breaking strategy is to reduce the size of the tie or completely
eliminate it (when the resulting size is 1). We modified the original definition of this
metric to better reflect the actual gain in terms of what portion of the elements in a
tie can be eliminated (see Equation 4.2).

Tie-Reduction =

(
1− sizeafter − 1

sizebefore − 1

)
· 100% (4.2)

Here, sizeafter is the size of a critical tie after applying a tie-breaking strategy and
sizebefore is the size of a critical tie before applying a tie-breaking strategy. In an
ideal case, the critical tie is completely eliminated, in which case the value of the
tie-reduction is 100%. If no reduction can be obtained, this metric will give 0%. In all
other cases, it will show the percentage of the removed elements that share the same
score value as the faulty element.

In Figure 4.5, we visualized the amount of critical tie-reduction on our benchmark
using the Tie-Reduction metric. Each dot represents one bug in the dataset and the
violin plot offers a more general picture of the distribution of the data points. It
can be seen from the shape of the plots that in several cases, the reduction was
not possible but the majority of the ties were completely eliminated. Similar to the
number and size of critical ties, there was no significant difference in this aspect.
Regardless of what SBFL formula was used, we obtained very similar results.



4.5 Call Frequency-based Tie-Breaking 57

Figure 4.5: Tie-reduction distribution of critical ties

Table 4.6 shows some important statistical values for this dataset: mean, median,
and quartile 1 (the value in the middle between the smallest and the median points).
Since the median is 100%, we can state that the critical ties are eliminated by our
method in more than half of the cases (72–73%, as detailed below), and the reduc-
tion is between 83.9–91.5% for three-quarters of the bugs, while the average rate of
reduction is greater than 80% in all cases.

Table 4.6: Statistics of tie-reduction (in percentage)

Confidence DStar GP13 Ochiai Tarantula

Mean 81.8 80.5 81.8 81.5 81.8
Median 100.0 100.0 100.0 100.0 100.0
Q1 91.5 83.9 91.5 90.4 88.9

Table 4.7 presents the number of remaining critical ties for each program and
SBFL formula after applying the proposed tie-breaking method. The difference to
the previous values (shown in Table 4.2) is also included. For example, 15 bugs of
“Chart” were in critical ties with the “Ochiai” formula, but after applying the call
frequency-based tie-breaking method 11 critical ties are eliminated, which is 73.3%
of the initial ties. Overall, we achieved 72–73% improvement in the number of
critical ties over the full dataset, the best case being “Mockito” with over 84.6% and
the worst result was 54.5% on “Lang” using “Tarantula” and “DStar” formulas.
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Table 4.7: Changes in the number of critical ties after reduction

Chart Closure Lang Math Mockito Time All

Confidence
after 4 24 9 18 2 2 59

diff. (#) 10 78 11 47 11 7 164
diff. (%) 71.4 76.5 55.0 72.3 84.6 77.8 73.5

DStar
after 6 24 10 21 2 2 65

diff. (#) 11 77 12 48 11 7 166
diff. (%) 64.7 76.2 54.5 69.6 84.6 77.8 71.9

GP13
after 4 25 9 18 2 2 60

diff. (#) 10 77 11 47 11 7 163
diff. (%) 71.4 75.5 55.0 72.3 84.6 77.8 73.1

Ochiai
after 4 24 9 19 2 2 60

diff. (#) 11 77 12 46 11 8 165
diff. (%) 73.3 76.2 57.1 70.8 84.6 80.0 73.3

Tarantula
after 5 24 10 19 2 2 62

diff. (#) 11 76 12 46 11 8 164
diff. (%) 68.8 76.0 54.5 70.8 84.6 80.0 72.6

The sizes of the critical ties determine the level of achievable improvement after
applying a tie-breaking approach. However, it is also important in which direction
the faulty element moved in the new ranking after tie-breaking. Using the terminol-
ogy from the previous section, moving from the MID position towards MIN means
improvement. In the previous section, in Table 4.3, we presented the maximum
potential improvement that sets a theoretical constraint on SBFL’s effectiveness af-
ter tie-reduction. Table 4.8 presents what we actually achieved using our proposed
method (the meaning of the data is the same as in Table 4.3).

Table 4.8: Achieving the minimum ranks

MIN != MID
(count)

MIN != MID
(%) Diff. Avg. diff.

Confidence 59 14.4 53.5 0.9
DStar 65 15.8 61.5 0.9
GP13 60 14.6 54.0 0.9
Ochiai 60 14.6 55.5 0.9

Tarantula 62 15.1 94.0 1.5

We examined whether our method was able to reduce the number of cases where
the MIN (best case) and the MID (average case) approaches give different results. If
there were no such cases that would mean that the obtained new ranking after tie-
breaking would always be the best possible, the MIN case. Table 4.8 shows that, after
applying our approach, only around 15% of the bugs contained critical ties (column
3), compared to around 55% before tie-breaking.

Comparing this with the result of Table 4.3, we find that in more than 160 cases
we managed to achieve the ideal result with our method where the original formula
was not able to do so. It means that for nearly three-quarters of bugs in critical ties
(72–73%), the non-optimal result was improved to optimal.
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If we compare the sum of the rank differences (column 4) and their averages (col-
umn 5) in Tables 4.3 and 4.8, it can be seen that our approach was able to reduce the
sum significantly by 89–93%, and the average by 59–74%. Put differently, the overall
rank positions from the ideal case improved from around 3.5 to 1 in the cases when
we achieved optimal results, which essentially means a rank improvement between
2.2 and 2.5.

Answer to RQ2: By using the call frequency-based tie-breaking strategy, we achieved
a significant reduction in both the size and the number of critical ties in our bench-
mark. In 72–73% of the cases, the ties were completely eliminated, the average re-
duction rate being more than 80%. In nearly three-quarters of the cases (72–73%),
the faulty element got the highest rank among the tie-broken code elements, and
here it improved its position by 59–74% on average.

4.6 Experimental Results and Discussion

4.6.1 Achieved Improvements in Average Ranks

Table 4.9 presents the average ranks before (column 2) and after (column 3) apply-
ing our tie-breaking strategy and it shows the difference between the average ranks
before and after tie-reduction (column 4). If the difference is negative then this
means that we could achieve improvement with our proposed strategy.

Table 4.9: Average rank of faulty elements before and after tie-breaking

Before After Diff.

Confidence 55.16 53.11 -2.05
DStar 46.86 44.79 -2.07
GP13 68.79 66.68 -2.11
Ochiai 46.95 44.81 -2.14

Tarantula 50.39 48.33 -2.06

We can see that our strategy achieved improvements with all the selected SBFL
formulas: the average rank reduced by more than 2 in all cases, which corresponds
to 3.1–4.1% with respect to the total number of elements. Note that this average is
similar to what we got for RQ2, but it is not the same because for RQ2 we examined
only the cases when we achieved the optimal result, while in this section we are
interested in the global results.

We also examined how many times our tie-breaking strategy changed the rank of
bugs (in positive and negative directions) and what was the impact of the changes.
Table 4.10 presents the possible changes in several categories, as follows (B means
before, A means after applying tie-breaking):

• The faulty method moved to the top of the critical tie (column: best), when
BMIN = AMID (this is the case that we discussed using Tables 4.3 and 4.8)
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• It has moved up in the rankings (column: better), when BMID > AMID and
BMIN < AMID

• It remained in the same position (column: same), when BMID = AMID

• We worsened the result (column: worse), when
BMID < AMID and BMAX > AMID

• It slipped back to the worst place (column: worst), when BMAX = AMID

In addition, column “improve” represents improvements in rank modifications (i.e.,
best+better), while “disimprove” is worse+worst. The table also includes the aver-
age differences in rank positions for the given categories.

The results indicate that in about 3–4 times more cases we achieved improvement
than disimprovement of the ranking results. Moreover, the improvement differences
are much higher than the disimprovement differences (compare, for example, the
better cases of around -7 to worse cases of around 2). Another interesting insight is
that in the case of best, the difference is relatively small as the size of the ties broken
in this category was small as well (they contained 3–4 methods). Looking at the
overall result, the average rate of improvement ranged from -3.73 to -3.86, while the
disimprovement was only between 1.34 and 1.54 rank positions on average.

Table 4.10: Comparison of average ranks before and after tie-breaking

Best Better Same Worse Worst Improve Disimprove

Confidence
count 85 51 50 17 20 136 37

avg. diff. -1.71 -7.13 0 2.32 0.55 -3.74 1.36

DStar
count 85 53 53 18 22 138 40

avg. diff. -1.71 -7.32 0 2.31 0.55 -3.86 1.34

Gp13
count 85 51 50 17 20 136 37

avg. diff. -1.71 -7.39 0 2.32 0.55 -3.84 1.36

Ochiai
count 86 52 50 16 21 138 37

avg. diff. -1.70 -7.42 0 2.38 0.62 -3.86 1.38

Tarantula
count 83 58 47 17 21 141 38

avg. diff. -1.46 -6.97 0 2.68 0.62 -3.73 1.54

The overall rank position improvement might seem modest, but we must consider
the fact that the improvement can be achieved only by rearranging the positions in
the critical ties. Thus, the sizes of the critical ties serve as a hard constraint (as
discussed in the previous section).

4.6.2 Achieved Improvements in Top-N Categories

Table 4.11 presents the number of bugs belonging to the corresponding Top-N cat-
egories (cumulative) with their percentages, for the whole dataset, before and after
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applying our tie-breaking strategy, as well as the differences between them. A de-
crease in the number of cases of the “Other” category and an increase in any Top-N
means improvement.

Table 4.11: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Confidence 75 18.2 169 41.1 203 49.4 246 59.9 165 40.1
After tie-breaking 92 22.4 180 43.8 214 52.1 252 61.3 159 38.7

Diff. 17 22.7 11 6.5 11 5.4 6 2.4 -6 -3.6
DStar 65 15.8 172 41.8 210 51.1 249 60.6 162 39.4

After tie-breaking 84 20.5 186 45.4 222 54.1 257 62.7 153 37.3
Diff. 19 29.2 14 8.1 12 5.7 8 3.2 -8 -4.9
GP13 75 18.2 169 41.1 203 49.4 245 59.6 166 40.4

After tie-breaking 92 22.4 179 43.6 212 51.6 250 60.8 161 39.2
Diff. 17 22.7 10 5.9 9 4.4 5 2.0 -5 -3.0

Ochiai 68 16.5 173 42.1 210 51.1 250 60.8 161 39.2
After tie-breaking 87 21.2 186 45.3 222 54.0 257 62.5 154 37.5

Diff. 19 27.9 13 7.5 12 5.7 7 2.8 -7 -4.3
Tarantula 65 15.8 166 40.4 203 49.4 244 59.4 167 40.6

After tie-breaking 83 20.2 177 43.1 212 51.6 251 61.1 160 38.9
Diff. 18 27.7 11 6.6 9 4.4 7 2.9 -7 -4.2

It can be clearly seen that our proposed tie-breaking strategy achieves improve-
ments in all categories by moving many bugs to higher-ranked categories. On the
lower end of the scale (“Other” category with rank > 10), 5–8 bugs were moved into
one of the Top-N categories. This is important as it brings a “new hope” that a bug
could be found by the user with the proposed strategy while it was not very probable
without it. We can see a quite large number of improvements in higher categories
as well, around 18 bugs moved to Top-1, for instance. Note that the percentages of
bugs in each category before and after applying the strategy were calculated with
respect to the total number of bugs in the dataset. While the difference percentage
was calculated with respect to the number of bugs before applying the strategy.

To better understand the actual changes between the different Top-N categories
we can use the non-accumulating variant of these categories. This shows whether
there has been a beneficial change in the rank category. These moves between the
Top-N categories are presented in Table 4.12. The sign ✗ indicates the number of
changes in the negative direction (worsening result), and ✓ marks improvement. For
example, there were a total of 2 bugs with a rank greater than 1 but less than or
equal to 3 before reduction by “Tarantula”, but our method resulted in a rank value
greater than 3 (this is a negative result). In contrast, our method gave a rank of 1
for the faulty method 15 times which was previously greater than 1 but smaller than
3 (using “Tarantula”).

These numbers clearly show that the improvement was dominant: degradation
by the proposed method was observable only for 2–3 bugs in the dataset, while we
observed positive changes for 36–44 bugs.
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Table 4.12: Top-N moves

[1] (1, 3] (1, 3] (3, 5] (3, 5] (5, 10] (5, 10] Other ✗ ✓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

Confidence 0 1 13 1 8 0 11 6 2 38
DStar 0 1 15 1 10 0 11 8 2 44
GP13 0 1 13 1 8 0 10 5 2 36
Ochiai 0 1 15 1 9 1 11 8 3 43

Tarantula 0 2 15 1 11 0 8 7 3 41

Answer to RQ3: The efficiency of all investigated SBFL formulas could be improved
by using the proposed tie-breaking strategy: the average improvement of rank values
in the benchmark was about two positions, and we observed improvement about 3–4
times more frequently than disimprovement, such improvements being much higher
as well. Considering the Top-N categories, notable improvements could be observed:
all Top-N categories showed positive results (improvements in 36–44 cases), and at
the same time, in only a few (2–3) cases did Top-N categories worsen. We were
able to increase the number of cases where the faulty method became the top-ranked
element by 23–30%.

4.7 Contributions

In this chapter, the following points summarize my main contributions to the topic of
thesis point II. The results of this chapter were published in [60].

• Providing the idea of using tie-breaking to improve the effectiveness of SBFL.

• Providing a thorough background on the problem of ties in SBFL.

• Gathering and discussing the related papers.

• Developing a tie-breaking method based on method call frequency to enhance
the performance of SBFL.

• Evaluating and discussing the experimental results of the proposed tie-breaking
method.



Chapter 5

Emphasizing SBFL Formulas With
Importance Weights

5.1 Introduction

In this chapter, we are enhancing SBFL by presenting an approach that gives more im-
portance to program elements that are executed by more failed test cases compared
to other elements. The intuition is the following. A typical SBFL matrix is unbalanced
in the sense that there are many more passing tests than failing ones, and many SBFL
formulas treat passing and failing tests similarly. We propose to emphasize the factor
of the failing tests in the formulas, which is achieved by introducing a multiplication
factor to SBFL formulas. This factor is called the importance weight. This importance
weight can be used without contextual information (see Section 5.3) and is given as
the ratio of executed failing tests for a program element with respect to all failing
tests. Or, it can be used with contextual information (see Section 5.4) and is given
as the ratio of covering failing tests over all failing tests combined with the so-called
method call frequency in these tests. Thus, we multiply each element’s suspicion
score obtained by an SBFL formula by this importance weight. In other words, a pro-
gram element will be more suspicious if it is affected by a larger portion of the failing
tests. The proposed approach can be applied to SBFL formulas without modifying
their structures.

The experimental results of our study show that our approach achieved a bet-
ter performance in terms of average ranking and Top-N categories compared to the
underlying SBFL formulas.

The following are the study’s main contributions:

1. A new approach that successfully improves the performance of SBFL in many
cases is proposed.

2. The impact of the new approach on the overall effectiveness of SBFL is dis-
cussed.

And, our concrete RQs are:

63
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• RQ1: What level of average ranks improvements can we achieve using the
proposed approach?

• RQ2: What is the impact of the proposed approach on SBFL’s effectiveness
across the Top-N categories?

5.2 Related Works

This section briefly presents the most relevant works of improving SBFL by targeting
its formulas.

Forming new SBFL formulas is one of the ways of improving SBFL. Here, the re-
searchers attempt to introduce new formulas that outperform the existing ones. For
example, the authors in [153] proposed a new formula called “DStar”. The proposed
formula has been compared with several widely used formulas and it showed good
performance. SBFL formulas can also be automatically generated by using GP. The
authors in [8] used GP to automatically design SBFL formulas directly from the pro-
gram spectra. The authors were able to produce 30 different formulas. Their results
concluded that the GP is a good approach for producing effective formulas.

Modifying existing SBFL formulas also leads to improvements. The authors in [171]
also modified three well-known formulas based on the idea that some failed tests may
provide more information than others. Therefore, for the three used formulas, dif-
ferent weights for failed tests were assigned and then applied with multi-coverage
spectra.

A different approach is to combine existing SBFL formulas with each other. The
authors in [8] proposed a method for generating a new formula tailored to a cer-
tain program by combining 40 different formulas. The proposed method extracts
information from the program using mutation testing and then combines multiple
formulas based on the gathered information using different voting systems to gener-
ate a new formula. The results of the experiments show that the formula generated
by their method is better than several existing ones. It is worth mentioning that re-
searchers tried to merge numerous formulas to create new ones. Because the benefits
of several existing formulas have been merged, the new formula is known as a hybrid
formula. The performance of a hybrid formula should be superior to that of existing
formulas, as shown in [73, 105].

Another interesting way is to add new information to existing SBFL formulas.
The authors in [140] utilized the method call frequency of the subject programs
during the execution of failed tests to add new contextual information to the standard
formulas. Here, the frequency ef was substituted for the ef in each formula. The
results of their study demonstrated that employing new information from method
calls into the underlying formulas can improve SBFL’s effectiveness.

All the studies mentioned in this section improved the performance of SBFL for-
mulas in different ways. Our proposed approach also improves SBFL’s performance
by giving more importance to program elements that are executed by more failed
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test cases (when it is used without contextual information) and appeared in different
method calls contexts in failing tests (when it is used with contextual information).
The advantages of our proposed approach over others are: (a) it does not modify the
existing SBFL formulas. Thus, it could be applied to a wide range of formulas to en-
hance their effectiveness. This is very important as it makes the proposed approach
more applicable than other approaches; (b) it solves the issue of an unbalanced SBFL
matrix in the sense that there are many more passing tests than failing ones, and
many formulas treat passing and failing tests similarly.

5.3 Non-Contextual Importance Weight

5.3.1 The Proposed Approach

Figure 5.1 shows our proposed approach. Using the selected SBFL formulas on the
program spectra, we calculate the suspicion scores of program methods. The output
is the initial suspicion scores of methods. Then, we multiply each initial score of
each method by its importance weight which is computed via ef/(ef + nf) of each
corresponding method. This will improve the initial ranking list by emphasizing the
methods that are executed by more failing tests and lowering the rank of the methods
that are executed by fewer failing tests. As a result, a final improved ranking list is
produced. This approach does not require any additional information from a program
and the execution of its tests other than the basic statistics (i.e., ef and nf ) calculated
from program spectra. Thus, it is efficient and generalizable.

5.3.2 A Motivating Example From Defects4J

To show how our proposed approach works and how it achieves improvements, sev-
eral bugs from the used Defects4J dataset were carefully examined. Bug 6 from
the “Chart” project was one of the more interesting cases we looked into1. Thus,
we will illustrate using the basic statistics extracted from the spectra of 26 methods
(M1-M26), including the faulty method M21, as presented in Table 5.1.

The “Tarantula” formula was applied to the extracted execution information to
compute the suspicion score of each method as presented in Table 5.2. It can be
seen that the underlying “Tarantula” formula cannot put the faulty method M21 (it
is ranked 13 based on Equation 2.2) near the top of the ranking list suggested by
the formula. The reason is that “Tarantula” assigned higher scores to the other 11
methods (i.e., M6, M7, M15-M17, M19, and M22-M26) that have been executed by a
lower number of failed test cases (i.e, one failed test). As a result, these methods got
higher ranks in the ranking list and will be examined before the actual faulty method
M21.

In our example, the faulty method M21 was executed by two failed test cases.
As the faulty method M21 was executed by more failed test cases compared to the

1http://program-repair.org/defects4j-dissection/#!/bug/Chart/6

http://program-repair.org/defects4j-dissection/#!/bug/Chart/6
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Figure 5.1: The non-contextual based importance weight approach

other 11 methods, it should be the most suspicious method and it should get more
importance weight than the other 11 methods. To achieve this, we multiply the initial
suspicion score of each method by the importance weight ef/(ef + nf) of each one.

This will emphasize the methods that are executed by more failing tests and
lower the rank of the methods that are executed by fewer failing tests. The initial
“Tarantula” suspicion score for the faulty method M21 is 0.895 and its importance
weight will be 2/(2+0)=1.0. Thus, the final score of M21 will be the same which
is 0.895x1.0=0.895. However, the initial scores of all the other 11 methods will be
reduced and the ranks will be lower. For example, the final score of the method M6
will be 0.952x0.5=0.476 and its final rank will be 16.5 instead of 6.5. It can be noted
that the faulty method M21 has the second highest suspicion score and thus ranked
nearest to the top in the ranking list after applying our proposed approach (denoted
with * as presented in Table 5.2).
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Table 5.1: Motivating example’s basic statistics

ef ep nf np
M1 ..chart.util.SerialUtilities.readShape() 1 121 1 1759
M2 ..chart.util.SerialUtilities.writeShape() 1 121 1 1759
M3 ..chart.util.SerialUtilities.class$() 1 147 1 1733
M4 ..chart.util.ObjectUtilities.<clinit>() 1 221 1 1659
M5 ..chart.util.ObjectUtilities.equal() 2 683 0 1197
M6 ..chart.util.HashUtilities.hashCode(I) 1 47 1 1833
M7 ..chart.util.HashUtilities.hashCode(II) 1 54 1 1826
M8 ..chart.util.AbstractObjectList.<init>() 2 522 0 1358
M9 ..chart.util.AbstractObjectList.<init>(I) 2 522 0 1358

M10 ..chart.util.AbstractObjectList.<init>(II) 2 522 0 1358
M11 ..chart.util.AbstractObjectList.get() 2 237 0 1643
M12 ..chart.util.AbstractObjectList.set() 2 240 0 1640
M13 ..chart.util.AbstractObjectList.size() 2 429 0 1451
M14 ..chart.util.AbstractObjectList.equals() 2 259 0 1621
M15 ..chart.util.AbstractObjectList.hashCode() 1 47 1 1833
M16 ..chart.util.AbstractObjectList.writeObject() 1 78 1 1802
M17 ..chart.util.AbstractObjectList.readObject() 1 78 1 1802
M18 ..chart.util.ShapeList.<init>() 2 429 0 1451
M19 ..chart.util.ShapeList.getShape() 1 21 1 1859
M20 ..chart.util.ShapeList.setShape() 2 25 0 1855
M21 ..chart.util.ShapeList.equals() 2 221 0 1659
M22 ..chart.util.ShapeList.hashCode() 1 0 1 1880
M23 ..chart.util.ShapeList.writeObject() 1 65 1 1815
M24 ..chart.util.ShapeList.readObject() 1 65 1 1815
M25 ..chart.util.junit.ShapeListTests.testEquals() 1 0 1 1880
M26 ..chart.util.junit.ShapeListTests.testSerialization() 1 0 1 1880

5.3.3 Evaluation

Subject Programs

Here, we used the single faulty programs (i.e., 302 faults) of the dataset Defects4J
1.5 (see Table 2.5). However, 5 faults were excluded due to instrumentation issues.
Thus, the final used dataset contained a total of 297 faults.

Evaluation Baselines

In this study, 11 widely-studied SBFL formulas, the formulas “Tarantula”, “Ochiai”,
“Jaccard”, “Barinel”, “SorensenDic”, “DStar”, “Dice”, “Interest”, “Baroni”, “Kulczyn-
ski1”, and “Cohen”, which are presented in Table 2.7, were used as benchmarks
against our proposed approach. It is worth mentioning that the approaches men-
tioned in Section 5.2 are not directly comparable to ours as they applied modifi-
cations to the SBFL formulas. Our proposed approach can be applied to an SBFL
formula without modifying the formula itself.
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Table 5.2: Motivating example – scores and ranks

Tarantula score Tarantula rank Tarantula* score Tarantula* rank
M1 0.886 16.5 0.443 23.5
M2 0.886 16.5 0.443 23.5
M3 0.865 19 0.432 25
M4 0.810 22 0.405 26
M5 0.734 26 0.734 11
M6 0.952 6.5 0.476 16.5
M7 0.946 8 0.473 18
M8 0.783 24 0.783 9
M9 0.783 24 0.783 9
M10 0.783 24 0.783 9
M11 0.888 14 0.888 3
M12 0.887 15 0.887 4
M13 0.814 20.5 0.814 6.5
M14 0.879 18 0.879 5
M15 0.952 6.5 0.476 16.5
M16 0.923 11.5 0.462 21.5
M17 0.923 11.5 0.462 21.5
M18 0.814 20.5 0.814 6.5
M19 0.978 5 0.489 15
M20 0.987 4 0.987 1
M21 0.895 13 0.895 2
M22 1.000 2 0.500 13
M23 0.935 9.5 0.468 19.5
M24 0.935 9.5 0.468 19.5
M25 1.000 2 0.500 13
M26 1.000 2 0.500 13

5.3.4 Experimental Results and Discussion

This section presents and discusses the overall impact of the proposed approach on
SBFL’s effectiveness.

Achieved Improvements in Average Ranks

Table 5.3 presents the average ranks before (column 2) and after (column 3) applying
our proposed approach and also the difference between the average ranks (column
4) in both cases. If the difference is negative, it indicates that our proposed approach
has the potential to improve.

With all of the selected SBFL formulas, we can observe that our proposed ap-
proach improved the average rank; reduced by more than 3 overall, which corre-
sponds to 0.26–2.26% of the total number of methods in the used dataset. It can
be noted that the formulas “Cohen” and “Tarantula” reduced the average ranks quite
a lot compared to other formulas. Considering the formulas that have lower aver-
age ranks after applying our proposed approach, “Tarantula” and “Ochiai” are the
best ones, respectively. This is good, considering the fact that the improvement is
achieved only by using an importance emphasis from the basic statistics (i.e., ef and
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Table 5.3: Comparison of average ranks

Before After Diff.

Tarantula 83.05 76.94 -6.11
Ochiai 79.25 77.99 -1.26
Jaccard 82.08 79.05 -3.03
Barinel 83.05 79.24 -3.81

SorensenDice 82.08 79.01 -3.07
DStar 238.01 237.34 -0.67
Dice 82.08 79.05 -3.03

Interest 83.05 79.24 -3.81
Baroni 85.21 80.62 -4.59

Kulczynski1 240.98 238.01 -2.97
Cohen 86.56 79.84 -6.72

nf ) rather than other additional information.

Answer to RQ1: Our proposed approach enhanced all the SBFL formulas. The
improvement of average ranks by our approach in the used benchmark was about
3 positions overall. In a few cases, the improvement was even more than 6 posi-
tions. In terms of average ranks, our approach reduced more positions. This indi-
cates that using an importance weight could have a positive impact and enhance
the SBFL results. Also, it encourages us to investigate other forms of importance
weights in the future and measure their impacts on the effectiveness of SBFL.

Achieved Improvements in Top-N Categories

Table 5.4 presents the number of bugs in the Top-N categories (cumulative) as well
as their percentages for the entire dataset, before and after applying our proposed
approach (denoted with *), as well as the differences between them. Here, improve-
ment is defined as a decrease in the number of cases in the “Other” category and an
increase in any of the Top-N categories.

It is evident that by relocating many bugs to higher-ranked categories, our pro-
posed approach improved all Top-N categories. Also, 4–11 bugs were moved from
the “Other” category (with a rank > 10) into one of the Top-N categories. This is
significant since it raises the possibility of finding a bug with our approach while it
was not very probable without it. Table 5.5 presents the summary of the enabling
improvements achieved by our proposed approach.

It can be noted that each formula after applying our proposed approach achieves
enabling improvements for at least 1% of the total number of single faults in the
used dataset. In these cases, the basic SBFL formulas ranked the faulty method in
the “Other” category, but our approach managed to bring it forward into the Top-10
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Table 5.4: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Tarantula 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
Tarantula* 59 19.9 125 42.1 148 49.8 178 59.9 119 40.1

Diff. 11 22.9 14 12.6 11 8.0 11 6.6 -11 -8.5
Ochiai 52 17.5 118 39.7 143 48.1 171 57.6 126 42.4
Ochiai* 57 19.2 122 41.1 147 49.5 176 59.3 121 40.7

Diff. 5 9.6 4 13.6 4 2.8 5 2.9 -5 -4.0
Jaccard 49 16.5 113 38.0 138 46.5 168 56.6 129 43.4
Jaccard* 55 18.5 121 40.7 143 48.1 172 57.9 125 42.1

Diff. 6 12.2 8 7.0 5 3.6 4 2.4 -4 -3.1
Barinel 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
Barinel* 52 17.5 118 39.7 143 48.1 171 57.6 126 42.4

Diff. 4 8.2 7 6.3 6 4.4 4 2.4 -4 -3.1
SorensenDic 49 16.5 113 38.0 138 46.5 168 56.6 129 43.4
SorensenDic* 55 18.5 121 40.7 143 48.1 172 57.9 125 42.1

Diff. 6 12.2 8 7.0 5 3.6 4 2.4 -4 -3.1
DStar 51 17.2 103 34.7 127 42.8 151 50.8 146 49.2
DStar* 53 17.8 105 35.4 129 43.4 155 52.2 142 47.8

Diff. 2 3.9 2 1.9 2 1.6 4 2.6 -4 -2.7
Dice 49 16.5 113 38.0 138 46.5 168 56.6 129 43.4
Dice* 55 18.5 121 40.7 143 48.1 172 57.9 125 42.1
Diff. 6 12.2 8 7.1 5 3.6 4 2.4 -4 -3.1

Interest 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
Interest* 52 17.5 118 39.7 143 48.1 171 57.6 126 42.4

Diff. 4 8.3 7 6.3 6 4.4 4 2.4 -4 -3.1
Baroni 48 16.2 111 37.4 132 44.4 166 55.9 131 44.1
Baroni* 59 19.9 123 41.4 147 49.5 174 58.6 123 41.4

Diff. 11 22.9 12 10.8 15 11.4 8 4.8 -8 -6.1
Kulczynski1 46 15.5 96 32.3 123 41.4 147 49.5 150 50.5
Kulczynski1* 51 17.2 103 34.7 127 42.8 151 50.8 146 49.2

Diff. 5 10.9 7 7.3 4 3.3 4 2.7 -4 -2.7
Cohen 49 16.5 113 38.0 138 46.5 168 56.6 129 43.4
Cohen* 55 18.5 121 40.7 143 48.1 172 57.9 125 42.1

Diff. 6 12.2 8 7.1 5 3.6 4 2.4 -4 -3.1

Table 5.5: Enabling improvements

Rank > 10 (%) before our approach Enab. improv. (%)

Tarantula vs. Tarantula* 130 (43.8%) 11 (3.7%)
Ochiai vs. Ochiai* 126 (42.4%) 5 (1.7%)

Jaccard vs. Jaccard* 129 (43.4%) 4 (1.3%)
Barinel vs. Barinel* 130 (43.8%) 4 (1.3%)

SorensenDic vs. SorensenDic* 129 (43.4%) 4 (1.3%)
DStar vs. DStar* 146 (49.2%) 4 (1.3%)

Dice vs. Dice* 129 (43.4%) 4 (1.3%)
Interest vs. Interest* 130 (43.8%) 4 (1.3%)
Baroni vs. Baroni* 131 (44.1%) 8 (2.7%)

Kulczynski1 vs. Kulczynski1* 150 (50.5%) 4 (1.3%)
Cohen vs. Cohen* 129 (43.4%) 4 (1.3%)
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(or better) categories. Note that the formulas “Tarantula*”, “Ochiai*”, and “Baroni*”
are the best in this aspect. Overall, each formula based on our proposed approach
was able to achieve enabling improvements in the possible cases.

Higher categories have seen improvements as well, with 2–11 bugs moved to
Top-1, for example. It should be noted that the percentages of bugs in each category
before and after using the proposed method were computed based on the number of
single faults in Defect4J, while the difference percentages were computed based on
the number of single faults before applying our proposed approach.

We may utilize the non-accumulating variation of Top-N categories to better com-
prehend the actual changes across the different Top-N categories. This demonstrates
whether the rank category has changed for the better. Table 5.6 presents these moves
between the Top-N categories. The number of negative changes (worsening result)
is indicated by the sign ✗. For example, suppose there were 10 bugs with a rank
of more than 3 but less than or equal to 5 before we used our approach, but our
approach produced a rank value larger than 5 (this is considered a negative result).
The number of positive changes is indicated by the sign ✓ (improving result). For
example, if our approach resulted in a rank value less than 3 (this is considered a
positive result).

These numbers clearly show that improvement was dominant and degradation
by our proposed approach was not observed in the used dataset, while we observed
positive changes for 9–30 bugs.

Table 5.6: Top-N moves

[1] (1,3] (1,3] (3,5] (3,5] (5,10] (5,10] Other ✗ ✓

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

Tarantula vs. Tarantula* 0 0 7 0 6 0 6 11 0 30
Ochiai vs. Ochiai* 0 0 4 0 4 0 3 5 0 15

Jaccard vs. Jaccard* 0 0 5 0 4 0 4 4 0 17
Barinel vs. Barinel* 0 0 4 0 4 0 4 4 0 16

SorensenDic vs. SorensenDic* 0 0 5 0 4 0 4 4 0 17
DStar vs. DStar* 0 0 2 0 2 0 1 4 0 9

Dice vs. Dice* 0 0 5 0 4 0 4 4 0 17
Interest vs. Interest* 0 0 4 0 4 0 4 4 0 16
Baroni vs. Baroni* 0 0 7 0 3 0 10 8 0 28

Kulczynski1 vs. Kulczynski1* 0 0 4 0 5 0 3 4 0 16
Cohen vs. Cohen* 0 0 5 0 4 0 4 4 0 17

Answer to RQ2: Overall, it can be said that there were noticeable improvements in
terms of the Top-N categories with positive results (improvements in 9–30 cases).
Also, we were successful in increasing the number of cases in which the faulty
method was ranked first by 4–23%. Another interesting finding is that in some
cases we were able to achieve more than 3% enabling improvement by moving
4–11 bugs from the “Other” category into one of the higher-ranked categories.
These cases are now more likely to be discovered and then fixed than before.
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5.4 Contextual Importance Weight

5.4.1 The Proposed Approach

The results of using non-contextual importance weight to enhance the effectiveness
of SBFL encouraged us to continue the topic. Thus, we used contextual information,
method call frequency in failed test cases (see Chapter 4), as an additional factor to
be combined with the non-contextual importance weight. Using the selected SBFL
formulas on the program spectra, we calculate the suspicion scores of program meth-
ods. The output is the initial suspicion scores of methods. Then, we multiply each
initial score of each method by its importance weight, which is computed via Equa-
tion 5.1.

Contextual Importance Weight =
(

ef * ϕ

ef + nf

)
(5.1)

5.4.2 A Motivating Example From Defects4J

To show how our proposed approach works and how it achieves improvements, sev-
eral bugs from the used Defects4J dataset were carefully examined. Bug 5 from the
“Time” project was one of the more interesting cases we looked into2. Thus, we will
illustrate using the basic statistics extracted from the spectra of 6 methods (M1-M6),
including the faulty method M2, as presented in Table 5.7.

Table 5.7: Motivating example’s basic statistics

ef ep nf np ϕ
M1 ..org.joda.time.Period.withYears() 3 9 0 3999 15
M2 ..org.joda.time.Period.normalizedStandard() 3 18 0 3990 98
M3 ..org.joda.time.PeriodType.yearWeekDay() 1 3 2 4005 5
M4 ..org.joda.time.PeriodType.yearDay() 1 3 2 4005 4
M5 ..org.joda.time.PeriodType.months() 3 7 0 4001 4
M6 ..org.joda.time.PeriodType.forFields() 1 8 2 4000 80

The “Jaccard” formula was applied to the extracted execution information to com-
pute the suspicion score of each method as presented in Table 5.8.

It can be seen that the underlying “Jaccard” formula cannot put the faulty method
M2 (it is ranked 5 based on Equation 2.2) near the top of the ranking list suggested
by the formula. The reason is that “Jaccard” assigned higher scores to the other 4
methods (i.e., M1 and M3-M5). As a result, these methods got higher ranks in the
ranking list and will be examined before the actual faulty method M2.

In our example, the faulty method M2 was executed by three failed test cases and
has appeared in 98 different call contexts, more than any other method. Method

2http://program-repair.org/defects4j-dissection/#!/bug/Time/5

http://program-repair.org/defects4j-dissection/#!/bug/Time/5
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Table 5.8: Motivating example – scores and ranks

Jaccard score Jaccard rank Jaccard* score Jaccard* rank
M1 0.250 2 3.750 2
M2 0.143 5 14.014 1
M3 0.167 3.5 0.278 5
M4 0.167 3.5 0.222 6
M5 0.300 1 1.200 4
M6 0.091 6 2.424 3

M2 should be the most suspicious method and it should get more importance weight
than the other 5 methods. To achieve this, we multiply the initial suspicion score of
each method by the Equation 5.1 of each one.

This will emphasize the methods that are executed by more failing tests and lower
the rank of the methods that are executed by fewer failing tests. The initial “Jaccard”
suspicion score for the faulty method M2 is 0.143 and its importance weight will be
(3*98)/(3+0)=98.0 Thus, the final score of M2 will be 0.143x98.0=14.014. Thus,
the faulty method M2 has the highest suspicion score and is thus top-ranked in the
ranking list after applying our proposed approach (denoted with * as presented in
Table 5.8).

5.4.3 Evaluation

Subject Programs

Here, we used the single and multiple faulty programs (i.e., 411 faults) of the dataset
Defects4J 1.5 (see Table 2.5).

Evaluation Baselines

In this study, 8 widely-studied SBFL formulas, the formulas “Jaccard”, “Barinel”,
“SorensenDic”, “DStar”, “Dice”, “Interest”, “Kulczynski1”, and “Cohen”, which pre-
sented in Table 2.7, were used as benchmarks against our proposed approach. It is
worth mentioning that Vancsics et al’s approach proposed in [140] is comparable to
ours; thus, we will compare our results to it too.

5.4.4 Experimental Results and Discussion

This section presents and discusses the overall impact of the proposed approach on
SBFL’s effectiveness.

Achieved Improvements in Average Ranks

Table 5.9 presents the average ranks before and after using our proposed approach
(denoted with **) and Vancsics et al’s approach (denoted with *), as well as the
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difference between them. If the difference is negative, it indicates that the used
approach has the potential to improve.

Table 5.9: Average ranks comparison

Diff. Diff.

Jaccard = 38.51 Jaccard* = 23.58 Jaccard** = 21.83 Jaccard - Jaccard* = -14.93 Jaccard - Jaccard** = -16.68
Barinel = 38.5 Barinel* = 23.66 Barinel** = 21.7 Barinel - Barinel* = -14.84 Barinel - Barinel** = -16.8

SorensenDic = 38.51 SorensenDic* = 23.77 SorensenDic** = 21.96 SorensenDic - SorensenDic* = -14.74 SorensenDic - SorensenDic** = -16.55
DStar = 149.03 DStar* = 150.59 DStar** = 136.67 DStar - DStar* = 1.56 DStar - DStar* = -12.36

Dice = 38.51 Dice* = 23.58 Dice** = 21.83 Dice - Dice* = -14.93 Dice - Dice** = -16.68
Interest = 38.5 Interest* = 23.66 Interest** = 21.7 Interest - Interest* = -14.84 Interest - Interest** = -16.8

Kulczynski1 = 153.34 Kulczynski1* = 138.26 Kulczynski1** = 136.66 Kulczynski1 - Kulczynski1* = -15.08 Kulczynski1 - Kulczynski1** = -16.68
Cohen = 38.54 Cohen* = 20.76 Cohen** = 17.87 Cohen - Cohen* = -17.78 Cohen - Cohen** = -20.67

We can see that our proposed approach achieved improvements with all of the se-
lected SBFL formulas: the average rank got reduced by about 17 overall, which cor-
responds to 8–54% with respect to the total number of methods in the used dataset.
It can be noted that the “Cohen**” formula reduced the average rank more than the
others. Considering the formulas that have the lower average ranks after applying
our proposed approach, “Cohen**”, “Barinel**”, and “Interest**” are the best ones,
respectively.

Vancsics et al’s approach also achieved improvements in the average ranks of
all the selected formulas except in the case of the “DStar*” formula, where disim-
provement was observed. However, the average rank reduced by this approach was
about 13 overall. The difference is 4 positions between the two approaches. In other
words, our approach outperformed Vancsics et al’s approach by 4 positions in terms
of reducing the average rank.

Answer to RQ1: Our proposed approach enhanced all the SBFL formulas compared
to Vancsics et al’s approach. The improvement of average ranks by our approach in
the used benchmark was about 17 positions overall while in Vancsics et al’s approach
was about 13. In terms of average ranks, our approach reduced more positions. This
indicates that using an importance weight could have a positive impact and enhance
the SBFL results. Also, it encourages us to investigate other forms of importance
weights in the future and measure their impacts on the effectiveness of SBFL.

Achieved Improvements in Top-N Categories

Table 5.10 presents the number of bugs in the Top-N categories for each approach.
Here, improvement is defined as a decrease in the number of cases in the “Other”
category and an increase in any of the Top-N categories.

It is evident that by relocating many bugs to higher-ranked categories, our pro-
posed approach and Vancsics et al’s approach improved all Top-N categories. How-
ever, our approach placed more bugs (i.e., 19–25 bugs) into one of the Top-N cat-
egories from the “Other” category (with rank > 10) compared to Vancsics et al’s
approach (i.e., 16–21 bugs). This is significant since it raises the possibility of find-
ing a bug with our approach while it was not very probable without it. Table 5.11
presents the enabling improvements achieved by each approach.
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Table 5.10: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Jaccard 66 16.1 168 40.9 203 49.4 250 60.8 161 39.2
Jaccard* 77 18.7 185 45.0 223 54.6 269 65.5 142 34.5
Jaccard** 78 19.0 192 46.7 226 55.0 271 65.9 140 34.1

Barinel 65 15.8 165 40.1 201 48.9 248 60.3 163 39.7
Barinel* 74 18.0 179 43.6 222 54.0 269 65.5 142 34.5
Barinel** 79 19.2 194 47.2 227 55.2 273 66.4 138 33.6

SorensenDic 66 16.1 168 40.9 203 49.4 250 60.8 161 39.2
SorensenDic* 77 18.7 183 44.5 221 53.8 266 64.7 145 35.3
SorensenDic** 81 19.7 189 46.0 226 55.0 270 65.7 141 34.3

DStar 70 17.0 168 40.9 193 47.0 232 56.4 179 43.6
DStar* 71 17.3 185 45.0 178 43.3 222 54.0 189 46.0
DStar** 78 19.0 192 46.7 212 51.6 251 61.1 160 38.9

Dice 66 16.1 156 38.0 203 49.4 250 60.8 161 39.2
Dice* 77 18.7 145 35.3 223 54.6 269 65.5 142 34.5
Dice** 78 19.0 174 42.3 226 55.0 271 65.9 140 34.1
Interest 65 15.8 165 40.1 201 48.9 248 60.3 163 39.7
Interest* 74 18.0 179 43.6 222 54.0 269 65.5 142 34.5
Interest** 79 19.2 194 47.2 227 55.2 273 66.4 138 33.6

Kulczynski1 66 16.1 151 36.7 188 45.7 230 56.0 181 44.0
Kulczynski1* 76 18.5 166 40.4 211 51.3 248 60.3 163 39.7
Kulczynski1** 81 19.7 175 42.6 213 51.8 251 61.1 160 38.9

Cohen 66 16.1 168 40.9 203 49.4 250 60.8 161 39.2
Cohen* 77 18.7 186 45.3 224 54.5 270 65.7 141 34.3
Cohen** 80 19.5 191 46.5 231 56.2 272 66.2 139 33.8

Table 5.11: Enabling improvements

Rank > 10 (%) Enab. impr. (%) Enab. impr. (%)

Jaccard vs. Jaccard* vs. Jaccard** 161 (39.2%) 19 (4.6%) 21 (5.1%)
Barinel vs. Barinel* vs. Barinel** 163 (39.7%) 21 (5.1%) 25 (6.0%)

SorensenDic vs. SorensenDic* vs. SorensenDic** 161 (39.2%) 16 (3.9%) 20 (4.9%)
DStar vs. DStar* vs. DStar** 179 (43.6%) 10 (2.4%) 19 (4.6%)

Dice vs. Dice* vs. Dice** 161 (39.2%) 19 (4.6%) 21 (5.1%)
Interest vs. Interest* vs. Interest** 163 (39.7%) 21 (5.1%) 25 (6.0%)

Kulczynski1 vs. Kulczynski1* vs. Kulczynski1** 181 (44.0%) 18 (4.4%) 21 (5.1%)
Cohen vs. Cohen* vs. Cohen** 161 (39.2%) 20 (4.9%) 22 (5.4%)

It can be noted that each new formula achieves enabling improvements, the av-
erage enabling improvements was about 5% of the total number of faults in the used
dataset by our approach. In these cases, the basic SBFL formulas ranked the faulty
method in the “Other” category, but our proposed approach managed to bring it
forward into the Top-10 (or better) categories. Note that the formulas “Barinel**”,
“Interest**”, and “Cohen**” are the best in this aspect. Overall, each formula based
on our proposed approach was able to achieve enabling improvements in the possible
cases. It can be noted that the improvement of Vancsics et al’s approach was about
4% of the total number of faults in the used dataset with the formulas “Barinel*”,
“Interest*”, and “Cohen*” as the best ones. Here, this improvement seems modest
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considering the fact that only an importance weight was used. Other, more complex
weights may yield much more improvement which will be investigated in the future.
Higher categories have significant improvements as well, with roughly 8–15 bugs
moving to Top-1 by our approach compared to Vancsics et al’s approach with 1–11
bugs, for example. Here also, our approach outperformed Vancsics et al’s approach
by moving more bugs to the Top-1 category.

Answer to RQ2: We were able to raise the number of cases where the faulty
method was ranked first by 11–23%. While Vancsics et al’s approach moved a
lower number of bugs to the Top-1 category. Another interesting finding is that
our approach achieved more enabling improvement compared to Vancsics et al’s
approach by moving 19–25 bugs from the “Other” category into one of the higher-
ranked categories. These cases are now more likely to be discovered and then
fixed than before.

5.5 Non-contextual vs. Contextual Importance Weights

In this section, we will compare non-contextual and contextual importance weights
on the effectiveness of SBFL. For this purpose, we will use the single and multiple
faulty programs (i.e., 411 faults) of the dataset Defects4J 1.5 (see Table 2.5). In
terms of the achieved improvements in average ranks, Table 5.12 presents the aver-
age ranks using non-contextual importance weight (column 2) and using contextual
importance weight (column 3). It can be seen that using both types of importance
weights can improve the effectiveness of SBFL. However, employing contextual infor-
mation (i.e., method call frequency) into the importance weight gives more positive
results (i.e., it reduces the average ranks more than using the non-contextual impor-
tance weight).

Table 5.12: Comparison of average ranks

Non-contextual Contextual
importance weight importance weight

(+) (++)

Jaccard 34.21 21.83
Barinel 34.49 21.7

SorensenDice 34.18 21.96
DStar 148.49 136.67
Dice 34.21 21.83

Interest 34.49 21.7
Kulczynski1 149.03 136.66

Cohen 35.06 17.87

While in terms of the achieved improvements in the Top-N Categories, Table 5.13
presents the number of bugs in the Top-N categories for each approach. Here, im-
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provement is defined as a decrease in the number of cases in the “Other” category
and an increase in any of the Top-N categories. It is evident that by relocating many
bugs to higher-ranked categories, using the contextual importance weight (denoted
with ++) is better than using the non-contextual importance weight (denoted with
+) as it improved all Top-N categories. Also, it placed more bugs (i.e., 16–19 bugs)
into one of the Top-N categories from the “Other” category (with a rank > 10). This
is significant since it raises the possibility of finding a bug by using contextual impor-
tance weight while it was not very probable without it.

Table 5.14 presents the enabling improvements achieved by each approach. It can
be noted that each formula after applying the contextual importance weight approach
achieves enabling improvements for at least 4% of the total number of faults in the
used dataset. In these cases, using the non-contextual importance weight ranked the
faulty method in the “Other” category, but using the contextual importance weight
approach managed to bring it forward into the Top-10 (or better) categories. Over-
all, each formula based on the contextual importance weight approach was able to
achieve enabling improvements in the possible cases.

Table 5.13: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Jaccard+ 70 17.0 171 41.6 206 50.1 252 61.3 159 38.7
Jaccard++ 78 19.0 192 46.7 226 55.0 271 65.9 140 34.1
Barinel+ 68 16.5 172 41.8 209 50.9 254 61.8 157 38.2

Barinel++ 79 19.2 194 47.2 227 55.2 273 66.4 138 33.6
SorensenDic+ 70 17.0 171 41.6 206 50.1 254 61.8 157 38.2

SorensenDic++ 81 19.7 189 46.0 226 55.0 270 65.7 141 34.3
DStar+ 73 17.8 156 38.0 192 46.7 234 57.0 177 43.1

DStar++ 78 19.0 192 46.7 212 51.6 251 61.1 160 38.9
Dice+ 70 17.0 171 41.6 206 50.1 252 61.3 159 38.7

Dice++ 78 19.0 174 42.3 226 55.0 271 65.9 140 34.1
Interest+ 68 16.5 172 41.8 209 50.9 254 61.8 157 38.2

Interest++ 79 19.2 194 47.2 227 55.2 273 66.4 138 33.6
Kulczynski1+ 70 17.0 156 38.0 193 47.0 232 56.4 179 43.6

Kulczynski1++ 81 19.7 175 42.6 213 51.8 251 61.1 160 38.9
Cohen+ 70 17.0 171 41.6 206 50.1 254 61.8 157 38.2

Cohen++ 80 19.5 191 46.5 231 56.2 272 66.2 139 33.8

The results mentioned in this chapter show that both non-contextual and contex-
tual importance weights can improve the effectiveness of SBFL. However, the positive
impact of using the contextual importance weight is more obvious. This encourages
us to try other types of contextual information (other than the method call frequency
in failed test cases) and other forms of importance weights in the future.
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Table 5.14: Enabling improvements

Rank > 10 (%) of Enab. improv. (%)
non-contextual importance weight

Jaccard+ vs. Jaccard++ 159 (38.7%) 19 (4.6%)
Barinel+ vs. Barinel++ 157 (38.2%) 19 (4.6%)

SorensenDic+ vs. SorensenDic++ 157 (38.2%) 16 (3.9%)
DStar+ vs. DStar++ 177 (43.1%) 17 (4.1%)

Dice+ vs. Dice++ 159 (38.7%) 19 (4.6%)
Interest+ vs. Interest++ 157 (38.2%) 19 (4.6%)

Kulczynski1+ vs. Kulczynski1++ 179 (43.6%) 19 (4.6%)
Cohen+ vs. Cohen++ 157 (38.2%) 18 (4.4%)

5.6 Contributions

In this chapter, the following points summarize my main contributions to the topic of
thesis point III. The results of this chapter were published in [119] and [121].

• Providing the idea of using importance weights to improve the effectiveness of
SBFL.

• Gathering and discussing the related papers.

• Developing two methods based on importance weights. The first method im-
proves SBFL without using any contextual information and the second method
improves SBFL by using contextual information.

• Evaluating and discussing the experimental results of the proposed methods of
importance weights.



Chapter 6

New Formulas for SBFL

6.1 Introduction

The basic elements in SBFL are the risk evaluation formulas, which calculate a sus-
piciousness score for each program element based on test coverage and test case
outcome information. This score can be used in debugging to identify the faulty ele-
ment more efficiently. One of the main challenges in SBFL is how to introduce new
formulas to enhance SBFL’s performance by putting faulty elements at the beginning
of the ranking list produced by SBFL as much as possible [122]. Thus, they can be
examined and found efficiently.

In this chapter, we present two approaches for finding new SBFL formulas. In
the first approach (Section 6.3), we introduce a new formula based on the “guess”
or “intuitive” method. Our new SBFL ranking formula enhances a base formula by
ranking code elements slightly higher than others that are executed by more failed
tests and fewer passing ones. Its novelty is that it breaks ties between the elements
that share the same suspicion score of the base formula.

The new SBFL formula addresses the issue of ties by emphasizing the high number
of failing test cases and the low number of passing ones for a particular code element.
This way, typical situations of ties can be handled very simply. Our approach is to
add a small enhancement component to the base formula, which slightly modifies
the resulting value, only sufficiently to produce different suspicion values, hence
effectively breaking the ties.

Experiments were conducted on six single-fault programs of the Defects4J dataset
to evaluate the effectiveness of the proposed formula. The results show that our new
formula, when compared to three widely-studied SBFL formulas, achieved a better
performance in terms of average ranking. It also achieved positive results in all of
the Top-N categories.

This study’s main contributions are as follows:

1. A new SBFL formula that improves the performance of SBFL in many cases,
which is a good candidate for tie-breaking in combination with other formulas
as well.

79



80 New Formulas for SBFL

2. The analysis of the impact of the new SBFL formula on the overall SBFL’s effec-
tiveness is discussed.

While the RQs are as follows:

• RQ1: What level of average rank improvement can we achieve using the pro-
posed SBFL formula?

• RQ2: What is the overall effect of the proposed formula on SBFL’s effectiveness
in terms of Top-N categories?

In the second approach (Section 6.4), we introduce new SBFL formulas based
on systematic search. The majority of the published formulas have been manually
crafted, and some of the well-known examples include “Tarantula” [67], “Ochiai” [1],
and “DStar” [153]. All these are based on some intuition and/or previous results
from other domains. Researchers also experimented with combining existing for-
mulas, adding external information, or generating new formulas by meta-heuristic
search or artificial intelligence; and still, the number of possible formulas is infinite.
However, no systematic search for new formulas was reported in the literature. In
this study, we do so by examining existing formulas, defining formula structure tem-
plates, generating formulas automatically (including already proposed ones), and
comparing them to each other.

In this study, we propose to systematically search for SBFL formulas, based on
formula templates. First, we examine existing formulas reported in the literature to
define formula templates that describe the structure of the formula. Then, we sys-
tematically generate all possible formulas for these templates and examine them. To
eliminate redundancy in the work, we sort out useless (constant or duplicate) for-
mulas, determine equivalent (that produce the same rankings), inverse (that produce
exactly the opposite rankings), and mostly equivalent ones (that only differ from each
other in special cases).

To illustrate the concept, we performed a preliminary search with a simple for-
mula template. We used the generated formulas on the Defects4J dataset to compute
rankings and determine their effectiveness. While most of our preliminary expec-
tations about the performance of the formulas are supported by the results, some
numbers indicated that handling special cases can have a strong influence on the
effectiveness of similar formulas.

The main contributions of this study are as follows:

1. The idea of finding new SBFL formulas via a systematic search based on formula
templates.

2. A formula template based on existing formulas and an evaluation of formulas
derived from it.

While the RQ) is as follows:

• RQ1: Does using a systematic search approach for generating new SBFL for-
mulas deserves study and investigation?
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Previously, we proposed an approach based on systematic search – in contrast to
ad-hoc, intuitive, search-based, or ML methods – for introducing new formulas for
SBFL [123]. But, we were able to check only a limited number of generated formulas
and were not able to find new better formulas compared to other top existing ones.
This is not surprising since the template we used was very simple.

In this study, we extend our previous work by using more formula templates,
and we apply them to the Defects4J dataset to determine their effectiveness. The
systematic search for formulas means that we generate the formulas that conform to a
predefined formula template, and we enumerate all possible ones. Then, the formula
candidates are evaluated on a benchmark suite for fault localization effectiveness.

Our experimental results show that the systematic approach for finding new SBFL
formulas is successful. We were able to find two new formulas that are better than
all of the generated formulas presented in our preliminary study [123], and most of
the formulas from related literature as well. The two new formulas achieved better
performance in terms of average ranking compared to others. Also, they gained
positive improvements in the Top-N categories, as will be seen later.

The main contributions of this study are as follows:

1. A large number of SBFL formulas were systematically generated and evaluated
using two formula templates.

2. Two new SBFL formulas that are generated using a systematic approach based
on formula templates are proposed.

3. The analysis of the impact of the new SBFL formulas on the overall SBFL’ effec-
tiveness is discussed.

Note, that our approach significantly differs from heuristic approaches including
search-based and ML-based methods. We are checking all possibilities systematically,
and that way we can ensure that no option is left out in the search space.

While the RQs are as follows:

• RQ1: Can systematic search lead to new formulas that could outperform the
existing ones?

• RQ2: What level of average rank improvements can we achieve using the sys-
tematically generated formulas?

• RQ3: What is the overall effect of the systematically generated formulas on
SBFL’s effectiveness in terms of Top-N?

6.2 Related Works

There are many approaches proposed in the literature to enhance the performance of
SBFL. One enhancing approach is to improve SBFL formulas to more accurately guide
and pinpoint faults in the fault localization process. This is achieved by introducing
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new SBFL formulas, modifying currently used SBFL formulas, or combining existing
ones. The most important efforts that aim to improve SBFL by targeting its formulas
are briefly presented in this section.

6.2.1 Introducing New SBFL Formulas

The first approach is to design new SBFL formulas based on intuition, past experi-
ence, or by reusing results from other disciplines. For example, “Ochiai” [102] and
“Binary” [22] came from the fields of biological research. The authors in [153] and
in [2] proposed new SBFL formulas called “DStar” and “Barinel”, respectively, based
on intuition. Each proposed formula has been compared with several widely used
formulas and it showed good performance compared to others. The authors in [7]
proposed a new formula called Metrics Combination (MECO) which effectively finds
errors without the need for prior knowledge of program structure or semantics. Their
idea is that several metrics (e.g., failed execution flag, assumption proportion) can be
extracted from the target program spectra and combined to propose a new formula.
Many studies, such as [2] and [99] claimed (on a theoretical level) that an optimal
SBFL formula exists. However, this is not necessarily true in practice. The fact that
faulty programs in practice might not adhere to the same theoretical assumptions is
one potential explanation for the discrepancy between the theoretical and empirical
results of SBFL formulas, as discussed in [95, 166]. As shown in [170], there is no
optimal formula for all types of faults.

6.2.2 Modifying Existing SBFL Formulas

The second approach is formula modification. The authors in [91] improved the
performance of the “Tarantula” formula by modifying some parts of it to amplify its
scores. However, the improved Tarantula does not always make improvements in the
ranking. Also, the authors did not evaluate the improved Tarantula using well-known
evaluation metrics. The authors in [171] modified three well-known SBFL formulas
based on the idea that some failed test cases may provide more testing information
than other failed test cases. Therefore, for the three used formulas, different weights
for failed test cases were assigned and then applied with multi-coverage spectra.

6.2.3 Combining Existing SBFL Formulas

Another way is to combine existing formulas. The authors in [12] proposed a new
SBFL formula by combining 40 different formulas using different voting systems. The
proposed method extracts information from the program using mutation testing and
then combines multiple formulas based on the gathered information using different
voting systems to generate a new formula. The results of experiments have shown
that the formula generated by their method is better than several existing ones. Mul-
tiple formulas also can be combined into a single new one. The resulting formula is a
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hybrid formula; which combines the advantages of the formulas that have been used
in the combination as in [73].

6.2.4 Adding New Information to Existing SBFL Formulas

Involving new information in existing SBFL formulas can also lead to improvements.
For example, the authors in [140] utilized the method call frequency during the
execution of failed tests to add new contextual information to existing formulas.
Thus, the ef of each formula was changed to the frequency ef . The experiments
improved SBFL’s effectiveness. However, this approach can only be applied to the
formulas that have the ef numerator. Also, it is considered heavy as it requires
tracing the execution of each method call, as caller or callee, in the failed test cases.

6.2.5 Generating New SBFL Formulas by Meta-heuristic Search

The authors in [8] used GP to evolve new formulas from a hybrid dataset (i.e., from
different benchmark datasets). They were able to produce several new formulas that
outperformed many existing ones. However, this approach poses several issues: (a) it
is not systematic, thus it does not guarantee that even a simple formula is examined;
(b) the results of applying GP may vary greatly from one run to another as it depends
on the initial selection of the population; (c) a couple of parameters (e.g., population
size, number of generations, mutation rate, etc.) must be set by humans, thus the
probability of finding the optimal solution is not too high; (d) generating formulas
based on this approach has a disadvantage in that existing datasets do not cover all
possible types of bugs. Thus, a generated formula may fail to locate a bug that is not
included in the used datasets.

A final critique of this approach is that the generated formulas are often diffi-
cult to comprehend and non-intuitive, including complex computations and magic
constants, such as the following formulas:
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6.2.6 Machine Learning

ML has also been used for fault localization to learn scores from spectra [161, 181],
or to use likely invariant diffs and suspiciousness scores as features to learn the
ranks [11]. But, such approaches do not produce a resulting formula that can be
reused and are typically specific to a particular subject system. Also, the search space
cannot be meaningfully controlled, and the decisions made by ML and parts of the
search space explored will remain black-box.
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6.2.7 Systematic Formula Generation

To overcome the aforementioned problems assigned with meta-heuristic search or
ML to find new formulas, in this study, we follow a completely different direction to
automatically generate formulas, and explore the formulas in a systematic manner.
Of course, there is an infinite number of formulas that can be generated based on the
spectrum metrics, which makes it impossible to exhaustively examine all of them.
The idea we proposed in our previous study [123] was to limit the search space
using formula templates and explore a particular class of formulas exhaustively.

Also, using systematic search (in contrast to ad-hoc, intuitive, or heuristic meth-
ods) for introducing new formulas is a novel approach that has not been investigated
previously. We are doing this by defining formula templates (based on existing for-
mulas) and instantiating them in all possible ways.

Compared to heuristic search and machine learning approaches, our approach
is complementary and it cannot replace them because they can cover a much larger
search space but not completely; while our approach can cover a smaller search space
with each formula template but completely.

This approach also has limitations and may lead to problems. First, the more
generic a template is, the more combinatorial explosions we will face and the more
formula instances we will get. Second, as the authors in [99, 162] have shown, in
theory, several formulas can produce the same rankings. We can utilize this result
when a large number of new formulas are generated: it is enough to (and we practi-
cally have to) choose a single representative of the equivalent ones. Our goal is not
to show formula equivalences, but to find completely new formulas.

6.3 Manually Crafted New Formulas

6.3.1 The Proposed SBFL Formula

All the aforementioned studies improved the performance of SBFL formulas in dif-
ferent ways. Our proposed approach improves SBFL’s performance by introducing a
new SBFL formula. The main advantage of our proposed formula over others is that it
ranks program elements that are executed in more failed test cases and fewer passed
test cases higher than other elements, and at the same time it effectively breaks ties
in many cases. Our proposed formula is a sum of two parts: a base component and
a tie-breaking enhancement part. At present, we use the simplest possible SBFL for-
mula ef for the base part, but this can be replaced in theory by any other existing
formula. The second component serves the purpose of modifying the base part by a
slight amount, thus breaking ties with higher probability, and giving higher scores to
elements with more failing tests and/or fewer passing tests:

New Formula = ef +

(
ef − nf

ef + nf + ep

)
(6.1)
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The intuition behind the effect of the modification part is that the resulting value
of the formula will be dominated by ef because typically only a small value between
[0− 1] will be added to or removed from it. Since all four basic counters are positive,
ef + nf is bigger than their difference, and ep is typically much bigger than zero, the
result of this modification component will be probably closer to 0 than 1. Element
scores are often tied because they share the same ef and nf numbers, so the tie will
be broken by ep, which is more likely different in the two cases. Furthermore, if the
two elements differ in ef and nf , and since ef +nf is constant, the element for which
ef − nf is bigger (more failing tests that cover the element) will be ranked higher.
This will also help in the situation where ep is the same with the two elements.

6.3.2 A Motivating Example From Defects4J

To show how our proposed approach works and how it achieves improvements, sev-
eral bugs from the used Defects4J dataset were carefully examined. Bug 6 from
the “Chart” project was one of the more interesting cases we looked into1. Thus,
we will illustrate using the basic statistics extracted from the spectra of 26 methods
(M1-M26), including the faulty method M21, as presented in Table 6.1.

The “Tarantula” formula was applied to the extracted execution information to
compute the suspicion score of each method as presented in Table 6.2. It can be seen
that the “Tarantula” formula cannot put the faulty method M21 near the top of the
ranking list suggested by the formula (it is ranked 13 based on Equation 2.2). The
reason is that “Tarantula” assigned higher scores to the other 11 methods (i.e., M6,
M7, M15-M17, M19, and M22-M26) that have been executed by a lower number of
failed test cases (i.e., one failed test). As a result, these methods got higher ranks in
the ranking list and will be examined before the actual faulty method M21.

In our example, the faulty method M21 was executed by two failed test cases.
As method M21 was executed by more failed test cases compared to the other 11
methods, it should be the most suspicious method and it should get a higher rank
than the other 11 methods. After applying our proposed formula, the faulty method
M21 has the second highest suspicion score and thus is ranked nearest to the top of
the list.

This example clearly shows that the proposed formula works. It can be observed
that the obtained scores are only slight modifications of the respective ef values. It
is intuitive that code elements that have two failing tests rather than one should be
more suspicious. However, from the 11 elements having ef = 2, the ones that have
fewer passing tests will be ranked higher (smaller ep). This makes element M20 first
and M21, the faulty one, second in the ranked list.

1http://program-repair.org/defects4j-dissection/#!/bug/Chart/6

http://program-repair.org/defects4j-dissection/#!/bug/Chart/6
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Table 6.1: Motivating example’s basic statistics

ef ep nf np
M1 ..chart.util.SerialUtilities.readShape() 1 121 1 1759
M2 ..chart.util.SerialUtilities.writeShape() 1 121 1 1759
M3 ..chart.util.SerialUtilities.class$() 1 147 1 1733
M4 ..chart.util.ObjectUtilities.<clinit>() 1 221 1 1659
M5 ..chart.util.ObjectUtilities.equal() 2 683 0 1197
M6 ..chart.util.HashUtilities.hashCode(I) 1 47 1 1833
M7 ..chart.util.HashUtilities.hashCode(II) 1 54 1 1826
M8 ..chart.util.AbstractObjectList.<init>() 2 522 0 1358
M9 ..chart.util.AbstractObjectList.<init>(I) 2 522 0 1358

M10 ..chart.util.AbstractObjectList.<init>(II) 2 522 0 1358
M11 ..chart.util.AbstractObjectList.get() 2 237 0 1643
M12 ..chart.util.AbstractObjectList.set() 2 240 0 1640
M13 ..chart.util.AbstractObjectList.size() 2 429 0 1451
M14 ..chart.util.AbstractObjectList.equals() 2 259 0 1621
M15 ..chart.util.AbstractObjectList.hashCode() 1 47 1 1833
M16 ..chart.util.AbstractObjectList.writeObject() 1 78 1 1802
M17 ..chart.util.AbstractObjectList.readObject() 1 78 1 1802
M18 ..chart.util.ShapeList.<init>() 2 429 0 1451
M19 ..chart.util.ShapeList.getShape() 1 21 1 1859
M20 ..chart.util.ShapeList.setShape() 2 25 0 1855
M21 ..chart.util.ShapeList.equals() 2 221 0 1659
M22 ..chart.util.ShapeList.hashCode() 1 0 1 1880
M23 ..chart.util.ShapeList.writeObject() 1 65 1 1815
M24 ..chart.util.ShapeList.readObject() 1 65 1 1815
M25 ..chart.util.junit.ShapeListTests.testEquals() 1 0 1 1880
M26 ..chart.util.junit.ShapeListTests.testSerialization() 1 0 1 1880

6.3.3 Evaluation

Subject Programs

Here, we used the single faulty programs (i.e., 302 faults) of the Defects4J 1.5 dataset
(see Table 2.5). However, 5 faults were excluded due to instrumentation issues.
Thus, the final dataset used contained a total of 297 faults.

Evaluation Baselines

In this chapter, 3 widely-studied SBFL formulas, the formulas “Tarantula”, “Ochiai”,
and “Barinel” which are presented in Table 2.7, were used as benchmarks against our
proposed new formula.
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Table 6.2: Motivating example – scores and ranks

Tarantula score Tarantula rank New Formula score New Formula rank
M1 0.886 16.5 1.000 19
M2 0.886 16.5 1.000 19
M3 0.865 19 1.000 19
M4 0.810 22 1.000 19
M5 0.734 26 2.003 11
M6 0.952 6.5 1.000 19
M7 0.946 8 1.000 19
M8 0.783 24 2.004 9
M9 0.783 24 2.004 9

M10 0.783 24 2.004 9
M11 0.888 14 2.008 3
M12 0.887 15 2.008 4
M13 0.814 20.5 2.005 6.5
M14 0.879 18 2.008 5
M15 0.952 6.5 1.000 19
M16 0.923 11.5 1.000 19
M17 0.923 11.5 1.000 19
M18 0.814 20.5 2.005 6.5
M19 0.978 5 1.000 19
M20 0.987 4 2.074 1
M21 0.895 13 2.009 2
M22 1.000 2 1.000 19
M23 0.935 9.5 1.000 19
M24 0.935 9.5 1.000 19
M25 1.000 2 1.000 19
M26 1.000 2 1.000 19

6.3.4 Experimental Results and Discussion

Achieved Improvements in Average Ranks

Table 6.3 presents the average ranks of each SBFL formula compared to our proposed
formula and it shows the difference between the average ranks too. If the difference
is negative, it indicates that our proposed formula is better.

Table 6.3: Average ranks comparison

Average rank
Tarantula 83.05

New Formula 72.01
Diff. -11.04

Ochiai 79.25
New Formula 72.01

Diff. -7.24
Barinel 83.05

New Formula 72.01
Diff. -11.04
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We can see that our proposed formula achieved improvements, providing lower
average ranks, compared to all the selected SBFL formulas: the average rank was
reduced by about 10 positions overall, which corresponds to 2.4–3.7% with respect
to the total number of program elements (i.e., methods), demonstrating that our
proposed formula can provide significant improvements.

Answer to RQ1: The effectiveness of SBFL could be improved by using the pro-
posed formula: the average improvement of rank positions in the used benchmark
was about 10 positions overall. This indicates that the proposed formula could
have a positive impact and enhances the results.

Achieved Improvements in Top-N Categories

Table 6.4 presents the number of bugs in the Top-N categories (cumulative) as well
as their percentages for the entire dataset, of the baseline formulas and our proposed
one, as well as the differences between them. There has been an improvement if
there are fewer bugs in the “Other” category and more bugs in any Top-N category.

Table 6.4: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Tarantula 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
New Formula 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1

Diff. 11 22.9 13 11.7 11 8.0 11 6.6 -11 -8.5
Ochiai 52 17.5 118 39.7 143 48.1 171 57.6 126 42.4

New Formula 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1
Diff. 7 13.5 6 5.0 5 3.5 7 4.1 -7 -5.6

Barinel 48 16.2 111 37.4 137 46.1 167 56.2 130 43.8
New Formula 59 19.9 124 41.8 148 49.8 178 59.9 119 40.1

Diff. 11 22.9 13 11.7 11 8.0 11 6.6 -11 -8.5

It is clear that by relocating many bugs to higher categories, our new formula
improves all Top-N categories. 7–11 bugs were moved from the “Other” category
with a rank > 10 into one of the higher Top-N categories. This is important as it gives
a “new hope” that a bug will be discovered with our proposed formula while without
it, it was not very likely. A significant number of improvements are also visible in
higher categories; for example, about 10 bugs were located in the Top-1 category.
Note that the percentages of bugs in each category for each formula were computed
based on the number of faults in Defect4J. While the difference percentages were
computed based on the number of faults before applying our proposed formula.
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Answer to RQ2: Every Top-N category showed successful outcomes. Additionally,
we were able to raise the proportion of instances in which the faulty method was
the highest-ranked element by 13–23%. Another interesting finding is that in some
cases, we were able to achieve 11% enabling improvement by moving 7–11 bugs
from the “Other” category into one of the higher-ranked categories. Such cases are
now more likely to be discovered than before.
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6.4 Systematic Search for New Formulas: Preliminary
Study

6.4.1 Systematic Analysis

Several researchers have been trying to find new and better formulas, and numerous
formulas have been proposed in the literature in the past decades, but no research is
known to us that carried out a systematic search to find new possible formulas. On
the one hand, this is understandable since the number of possible formulas is infinite.

On the other hand, by examining the reported SBFL formulas, we found that
groups of them have similar structures, so they could be built using patterns, in other
words, formula templates. Using a single formula template, the number of formulas
that can be generated is finite, thus, the formulas can be systematically produced and
examined. Utilizing this property, we examined the set of already reported formu-
las and defined a single linear/reciprocal formula template for this study that covers
several existing formulas. In this template, Basic Statistical Numbers (BSN) will
denote the basic statistical numbers, i.e., BSN = {ef , ep, nf , np}. The following tem-
plate can literally yield in, for example, the “Barinel”, “Jaccard”, “Kulczynski1”, and
“Wong (I-II)” formulas, but also covers the ranking of e.g. “Statistical Bug Isolation
(SBI)” [101]. ∑

t∈BSN∪{1} ntt∑
t∈BSN∪{1} dtt

=
nef ef + nepep + nnf nf + nnpnp + n1

def ef + depep + dnf nf + dnpnp + d1
,

where {n, d}{ef ,ep,nf ,np,1} ∈ {−1, 0, 1} are the coefficients in the numerator and de-
nominator. This formula yields 29, 040 valid and usable formulas (division by zero
and constant formulas could be excluded, and a

b
= −a

−b
are the same). Among these

formulas, there are several groups, within which all the formulas have the same
ranking effect; the most obvious examples are a

b
≡ a+b

b
≡ a−b

b
≡ a+1

b
≡ a−1

b
.

6.4.2 Formula Template for the Experiments

In this study, we illustrate the method using a simplified version of the first formula
template: ∑

t∈{ef ,ep} ntt∑
t∈{ef ,ep} dtt

=
nef ef + nepep

def ef + depep
,

where {n, d}{ef ,ep} ∈ {−1, 0, 1} are the coefficients in the numerator and denomina-
tor, and 0ef + 0ep is treated as constant 1. This template yields 81 formulas. 32 of
these formulas are mathematical duplicates (−a

−a
= a

a
), 9 of the rest are constants (in

forms 1
1
, a
a

and −a
a

). These can be excluded from the examination. The remaining 40
formulas are 20 normal and inverse pairs (a

b
and −a

b
), that will produce exactly the

reverse rankings.
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It is theoretically possible that both formulas of a pair produce good results for
different subsets of bugs, thus, we cannot leave out either of them from the measure-
ment. However, a normal and its inverse formula have similar attributes and rela-
tions to other formulas (Note, that it is arbitrary which element of a pair is treated
as normal or inverse).

Formulas in the form a
1

are similar in their rankings with their 1
−a

versions (the
latter are denoted by the orange background in Table 6.5). Differences are due to
program elements for which the denominator of the used formula equals zero. This
gives 8 formulas (plus 8 inverses).

The remaining 12 formulas have 4 denominators, 3 formulas sharing each one.
The 3 formulas with the same denominator are equivalent to each other regarding
the rankings they produce (their computed suspicion scores differ only by a constant
from each other), thus, any two of them can be eliminated from the measurements.
Furthermore, the 4 remaining formulas (and their inverses, denoted by green back-
ground) are also mostly equivalent to each other as they produce similar rankings
except for elements with zero denominators.

Thus, we have 8 + 4 formulas and their 12 inverses. The 24 formulas to be mea-
sured are shown in Table 6.5, which includes well-known formulas “Barinel” (F10),
“Wong I” (F2), and “Wong II” (F16). Formulas in the same row are equivalent to
each other under the condition in the column header. Formulas F13-F24 are the in-
verses of formulas F1-F12. Note that if we had no program elements for which ep or
ef is zero or ep = ef , then the formulas in the same row would produce the same
rankings, thus, it would be enough to measure only 5 different formulas and their 5
inverses.

Table 6.5: Variants of formulas.

conditions → ep ̸= 0 ef ̸= 0 ep + ef ̸= 0 ep ̸= ef

F1 = ep F5 = 1
−ep

F2 = ef F7 = 1
−ef

F3 = ep + ef F9 = 1
−ep−ef

F4 = ep − ef F11 = 1
−ep+ef

F6 = ef
ep

F8 = −ep
ef

F10 = ef
ep+ef

F12 = ef
ep−ef

F13 = −ep F17 = 1
ep

F14 = −ef F19 = 1
ef

F15 = −ep − ef F21 = 1
ep+ef

F16 = −ep + ef F23 = 1
ep−ef

F18 = −ef
ep

F20 = ep
ef

F22 = −ef
ep+ef

F24 = −ef
ep−ef

In the analysis above, we examined the formulas to find equivalences and similar-
ities. Finding equivalences was not our goal, but it reduced the number of formulas
to be evaluated. However, for a larger number of automatically generated formulas,
this analysis should be performed automatically as well. This issue seems to be a
non-trivial mathematical problem that we are planning to investigate in the future.
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6.4.3 Evaluation

In this study, we compare all the generated SBFL formulas, presented in Table 6.5,
on Defects4J 1.5 (see Table 2.5) to each other to measure the effectiveness of each
generated formula.

6.4.4 Experimental Results and Discussion

Achieved Improvements in Average Ranks

Table 6.6 presents the average rank of each generated SBFL formula. It can be noticed
that F10 (“Barinel”) performs the best, and formulas F2 (“Wong I”), F6, and F19 also
produce much better average ranks than all other formulas. It is worth mentioning
that according to [99], F6 is equivalent to F10 in ranking. However, the difference
in results shows that div/0 conditions (ef ̸= 0 and ef + nf ̸= 0) make a difference
in practice even for theoretically equivalent formulas. Also, the result of F19 is a bit
surprising at first glance, as it is similar to F14, which is the inverse of F2 (“Wong
I”). However, F19 fails to handle program elements that do not fail (ef = 0). We
assign a 0 suspicion score to these elements, thus ranking them lowest in the list,
while F2 (“Wong I”) also ranks them lowest due to their natural 0 score. This shows
how handling special cases, like div/0, can influence the performance of otherwise
similar formulas.

Table 6.6: Average ranks of the generated SBFL formulas

Name Average rank Name Average rank

F1 1956.0 F13 4129,55
F2 (Wong I) 156.61 F14 6052.76

F3 1751.38 F15 4381.29
F4 2198.84 F16 (Wong II) 3833.54
F5 2963.85 F17 3119.95
F6 216.16 F18 5899.8
F7 6012.12 F19 205.77
F8 5655.43 F20 497.87
F9 3193.56 F21 2940.67

F10 (Barinel) 38.5 F22 6160.15
F11 2674.05 F23 3373.45
F12 614.03 F24 5393.14

Achieved Improvements in Top-N Categories

Table 6.7 presents the number of bugs in the Top-N categories and their percentages
for the dataset.

This evaluation also shows that F10 (“Barinel”), F6, and F12 are the best three
formulas from this set. Surprisingly, at least at first glance, the similar F8 performs
very badly. The reason is again the handling of program elements with ef = 0 value,
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Table 6.7: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

F1 0 0 0 0 0 0 0 0 411 100
F2 10 2 57 14 72 18 110 27 301 73
F3 0 0 0 0 0 0 0 0 411 100
F4 0 0 0 0 0 0 0 0 411 100
F5 0 0 0 0 0 0 0 0 411 100
F6 64 16 142 35 180 44 223 54 188 46
F7 0 0 0 0 0 0 0 0 411 100
F8 0 0 0 0 0 0 0 0 411 100
F9 0 0 0 0 0 0 0 0 411 100
F10 65 16 165 40 201 49 248 60 163 40
F11 15 4 31 8 35 9 38 9 373 91
F12 57 14 124 30 158 38 199 48 212 52
F13 0 0 0 0 0 0 0 0 411 100
F14 0 0 0 0 0 0 0 0 411 100
F15 0 0 0 0 0 0 0 0 411 100
F16 17 4 34 8 36 9 39 9 372 91
F17 0 0 0 0 0 0 0 0 411 100
F18 0 0 0 0 0 0 0 0 411 100
F19 6 0 55 13 71 17 107 26 304 74
F20 13 3 37 9 51 12 74 18 337 82
F21 0 0 0 0 0 0 0 0 411 100
F22 0 0 0 0 0 0 0 0 411 100
F23 0 0 0 0 0 0 0 0 411 100
F24 16 4 32 8 34 8 38 9 373 91

to which elements we assign the 0 scores. As the other scores are negative (at most
0), these not failing elements will be ranked at the top of the list. Other interesting
results are those of F12 and F24. These are inverses of each other, yet F24 also
ranks 4% of the buggy elements in the Top-1 category. We think the main reason
for this (besides the zero denominators, i. e. when ep = ef ) is that when ef > ep
(i. e. more failing tests cover the element than passing ones), F12 turns the score
into negative, ranking these elements low, while F24 will result in a positive score
(negative numerator divided by the negative denominator), ranking them in the top
of the list. The F12 and F24 pair is practical proof that inverse rankings can perform
well on different spectra, thus both of them need to be examined.

Answer to RQ1: This study presented a systematic search approach based on a
formula template for new SBFL formulas. The results of our preliminary research
indicate that the proposed approach deserves further investigation. In this pre-
liminary study, we did not find an automatically generated formula that is not
published in the literature but outperforms existing ones (though F6 was a strong
candidate and it outperformed “Wong II”). However, since the template we used
was very simple, this is not surprising. We hope that by extending the template to
other forms, we will be able to identify new formulas which outperform existing
ones.
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6.5 Systematic Search for New Formulas: Extended
Study

In the mentioned preliminary study, we found formulas that outperformed some ex-
isting ones but failed to achieve significant improvement over the most successful
existing techniques.

In this extended study, we introduce our experimental results with extended for-
mula templates compared to [123]. Our goal is to systematically examine a broader
set of formulas and to find out how different the generated formulas will be in terms
of their ranking ability. We also outline the possible extensions for future work, pri-
marily in terms of more advanced formula templates. The goal is to be able to cover
some already published formulas (as a sanity check that the method is meaningful),
and potentially discover new, better ones as we managed to do in this study.

6.5.1 Formula Templates for the Experiments

The basic idea of systematic formula generation is that we combine the four spec-
trum metrics ef , ep, nf , and np using mathematical operations in all possible com-
binations. While at first, this seems straightforward, systematic enumeration of all
possible SBFL formulas is not simple. Since, in general, the number of possible for-
mulas is infinite, we must limit the types of formulas to a meaningful subclass. For
example, all four values can have a fixed exponent at most. But even using basic
mathematical operations only, like addition, multiplication, fraction, and only linear
combinations of the elements we will face a combinatorial explosion.

Further issues are that many generated formulas will contain elements that can
be mathematically simplified or rewritten and that they will still sometimes produce
syntactically different, but semantically equivalent formulas to each other.

Furthermore, even if two formulas are not mathematically equivalent, they can
be rank-equivalent. This means that they will produce the same ranking lists; despite
the score values being different, in this case, there is a monotonic transformation
between the values [162].

At the same time, many of the previously published, manually crafted formulas
can fit a relatively simple structure (as opposed to GP-generated ones). Hence, our
goal in this research is an exhaustive exploration of all possible formulas that conform
to a specific formula template. Our goal is to define templates that have the following
properties:

• They cover as many existing formulas as possible (this means these are probably
useful structures).

• Are combinatorically feasible.

• Can be competitive with manually crafted formulas.
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We build on our previous work, where we proposed a systematic search to evalu-
ate SBFL formulas and possibly find new ones [123]. We reported the evaluation of
24 formulas generated by a simple template (see Table 6.5).

The template in Equation 6.2 covers previously reported formulas “Barinel” (=
“Braun” = “Coef” = “SBI” = F10) and “Wong I” (= F2) and “Wong II” (= F16) [101].

∑
t∈{ef ,ep} ntt∑
t∈{ef ,ep} dtt

=
nef ef + nepep

def ef + depep
, (6.2)

where nef , nep , def , dep ∈ {−1, 0, 1}.

In this study, we define more elaborate formula templates. The template in Equa-
tion 6.3 extends the template in Equation 6.2 with a single spectrum metric (ef , ep,
nf , np) by applying a simple arithmetic operation (+, −, ·, /) between them.

∑
t∈{ef ,ep} ntt∑
t∈{ef ,ep} dtt

⊗ {ef , ep, nf , np} =

nef ef + nepep

def ef + depep
⊗ {ef , ep, nf , np} ,

(6.3)

where n{ef ,ep}, d{ef ,ep} ∈ {−1, 0, 1} and ⊗ ∈ {+,−, ·, /}.

Equation 6.2 resulted in 81 literal templates, 24 of which remained after sorting
out constant and equivalent ones. Equation 6.3 results in 4 · 4 · 81 = 1, 296 for-
mulas literally. However, based on the 24 different non-trivial formula instances of
paper [123], there remain only 4 ·4 ·24 = 384 candidates. Plus 4 ·2 = 8, the four basic
mathematical operations for the two additional spectrum metrics nf and np, which
are added because the 24 formula instances from [123] do not include constant-
equivalent ones. For example, ef

ef
was not examined in [123], but ef

ef
· nf = nf is a

valid formula instance. At least 80 formula instances generated from this new tem-
plate have already been covered in [123], and there are at least two pairs of newly
generated formulas that are equivalent to each other.

The next formula template we examined is shown in Equation 6.4:

∑
t∈{ef ,ep} n1,tt∑
t∈{ef ,ep} d1,tt

⊗
∑

t∈{ef ,ep} n2,tt∑
t∈{ef ,ep} d2,tt

=

n1,ef ef + n1,epep

d1,ef ef + d1,epep
⊗ n2,ef ef + n2,epep

d2,ef ef + d2,epep
,

(6.4)

where n{1,2},{ef ,ep}, d{1,2},{ef ,ep} ∈ {−1, 0, 1} and ⊗ ∈ {+,−, ·, /}.

In this template, we have put together two instances of the formulas generated
by the template in Equation 6.2 using a basic arithmetic operation. This would
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result in 81 · 81 · 4 = 26, 244 formula instances literally. However, counting on
the non-equivalent formulas defined in [123], we can restrict our measurements to
24 · 24 · 4 = 2, 304 literally generated formulas. Furthermore, addition and multiplica-
tion are commutative operations, technically halving the resulting formula instances,
while addition-subtraction and multiplication-division are inverses that can also yield
the same formula when applied on different operands (e.g. F1 + F2 = F2 − F13).
Subtraction and division can result in identical (constant) formulas, and some com-
binations can also yield formulas already reported in our previous work [123]. Thus,
by rough calculation, at most 400 different formulas exist, but these formulas may
contain equivalent ones too.

The two presented formula templates also overlap, generating literally equivalent
formulas. However, we did not make a thorough equivalence or ranking equivalence
analysis of the resulting formulas for either of the formula templates (the equivalence
proofs of different SBFL formulas have been investigated in [162] via a theoretical
comparison approach). Instead, we utilized previous equivalence calculations and
ran the measurements for all the resulting formulas (including the equivalent ones)
and sanity-checked the results based on the discovered equivalences (i.e., checked
manually by random sampling if two formulas that should be equivalent really pro-
duce the same results).

The above templates cover “Hamming” (= “Lee” = “NFD”) and equivalents of
“Euclid” and “Ochiai3” formulas. These formulas [66] are presented in Table 6.8.

Table 6.8: Formulas covered by new templates (∗: only rank-equivalents are covered)

Formulas

Hamming ef + np
Euclid∗ √

ef + np

Ochiai3∗ ef 2

(ef+ep+nf+np)·(ef+ep)

Figure 6.1 shows the systematic steps followed in this extended study to search
for new SBFL formulas.

6.5.2 Evaluation

Subject Programs

In this study, we performed two types of measurements. In the first, lightweight
measurement, we generated all the formulas from our templates and checked their
fault localization performance on Defects4J 1.5 (see Table 2.5).

We used this measurement to check the potential of all the generated formulas.
Note that we did not filter out equivalent formulas, all generated ones were mea-
sured. We used the results as a sanity check of our implementation: after the mea-
surement, we checked if some theoretically equivalent formulas produce the same
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Figure 6.1: Systematic search for new SBFL formulas

numbers. The results are presented in the subsection “Generated formulas” of Sec-
tion 6.5.3.

Then, based on the results of this first measurement, we re-measured the most
promising well-performing formulas (together with the chosen existing baseline for-
mulas) on Defects4J 2.0 (see Table 2.6) as it has more programs and bugs. The other
subsections of Section 6.5.3 present the results of this second measurement.

Evaluation Baselines

In this chapter, 9 widely-studied SBFL formulas, the formulas “Barinel”, “Cohen”,
“Dice”, “DStar”, “Jaccard”, “Kulczynski1”, “Ochiai”, “SorensenDic”, and “Tarantula”,
which are presented in Table 2.7, were used as benchmarks against our new formu-
las.
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6.5.3 Experimental Results and Discussion

Generated formulas

Our template in Equation 6.3 generates 1,296 formula instances, while Equation 6.4
yields 26,244 formula instances. Based on the equivalence calculations of the pre-
vious work [123], we generated 392 and 2,304 candidate formulas, respectively.
All formulas left out are equivalent with one or more of the candidate ones, and
there were several equivalent formulas within these candidate sets too. However,
we did not further filter the set, but measured all of the formulas in it, performing a
lightweight analysis as described in Section 6.5.2.

As we started to generate formula instances from the ones reported in [123], we
could check if the resulting combined formula instance improved fault localization
performance. Based on the average ranks, 25.97% of the newly generated formu-
las improved the ones used in the combination. However, we found 8 formulas
that made absolute improvement, i.e., better average ranks than any of the formulas
in [123]. By examining each Systematically Generated Formula (SGF) of these 8
formulas, there were equivalent versions of two formulas. The two new formulas are
the following:

SGF-1 =
ef 2

ef + ep
(6.5)

SGF-2 = ef · np (6.6)

After finding these formulas, we performed a further analysis of our full set of
subject programs using these two new formulas. We compared them to our baselines,
that is, to some of the state-of-the-art SBFL formulas listed in Table 2.7. This second
analysis has shown that these two formulas can outperform many already published
state-of-the-art formulas too (details are presented in the next sections).

One of the advantages of our new formulas is that they produce fewer ties (i.e.,
fewer number of program elements that share the same suspicion score [60]) com-
pared to the existing ones used in this study. Take this example: we have two program
elements with the following spectrum metrics: Element A (ef = 1, ep = 0, nf = 3,
np = 6 ) and Element B (ef = 2, ep = 0, nf = 2, np = 6). Applying “Tarantula” will
result in the same suspicion score (i.e., 1.0) for both elements; this is considered an
issue for the developer to which element he/she will examine first. However, SGF-1
will result in a different score for each element; a score of 1.0 for Element A and a
score of 2.0 for Element B, while SGF-2 gives a score of 6.0 to Element A and a score
of 12.0 to Element B. As a result, this reduces the ties between program elements
and the new formulas give greater suspicion scores to program elements that are
executed by more failed test cases compared to others.

Also, notice the similarity of SGF-1 with Barinel. The difference is the square of
ef in the numerator, which essentially means that our new formula puts a bigger
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emphasis on the failed tests executing the code element, which is the most important
constituent of SBFL.

The success of SGF-2 also seems logical, as it combines the previously mentioned
important element ef with the counter of passing tests that are not executing the
element in question. This measure, np is in essence the opposite of the former, and
intuition dictates that the bigger this number the more suspicious the current ele-
ment should be.

Answer to RQ1: Analysis shows that systematic search can lead to new SBFL
formulas not present in the literature, whose performance is comparable to or can
even outperform existing ones.

Achieved Improvements in Average Ranks

Table 6.9 presents the average ranks of SGF-1 and SGF-2 in equations 6.5 and 6.6
compared to our baseline formulas, for each subject system separately.

Table 6.9: Average ranks (the best values for a particular row are shown in bold)

Project Barinel Cohen Dice DStar Jaccard Kulczynski1 Ochiai SorensenDice Tarantula SGF-1 SGF-2
Chart 15.94 9.42 9.46 9.18 9.46 609.54 8.82 9.46 15.94 8.82 34.34

Cli 16.68 16.63 16.58 15.29 16.58 19.64 15.4 16.58 16.68 15.4 14.01
Closure 97.27 98.67 98.58 87.61 98.58 98.55 88.48 98.58 97.27 88.46 84.23
Codec 28.29 26.44 28.06 28.03 28.06 28 28.06 28.06 28.29 28.06 26.85

Collections 1 1 1 1 1 2155 1 1 1 1 1
Compress 17.62 17.62 17.54 16.01 17.54 43.43 16.12 17.54 17.62 16.12 15.54

Csv 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
Gson 19.27 19.17 19.17 19.23 19.17 18.9 19.23 19.17 19.27 19.23 19.23

JacksonCore 6.84 6.36 6.36 6.64 6.36 136.64 6.92 6.36 6.78 6.92 7.36
JacksonDatabind 59.53 59.56 59.57 59.11 59.57 234.04 59.12 59.57 59.53 59.12 61.39

JacksonXml 18.6 18.6 18.6 18.6 18.6 72.3 18.6 18.6 18.6 18.6 18.6
Jsoup 34.77 35.88 34.71 34.01 34.71 45.15 33.97 34.71 34.77 33.97 34.29
JxPath 44.24 44.81 45 54.36 45 97.02 54.07 45 44.24 54.07 74.38
Lang 5.37 4.74 4.72 4.62 4.72 147.77 4.67 4.72 5.37 4.67 4.72
Math 9.94 9.81 9.82 9.94 9.82 190.04 10 9.82 9.94 10 10.56

Mockito 32.15 31.07 30.77 28.57 30.77 30.77 28.73 30.77 32.15 28.73 32.17
Time 19.71 19.67 19.63 18.69 19.63 106.5 18.4 19.63 19.71 18.4 21.79

Total Average Rank 41.38 41.46 41.33 38.80 41.33 132.07 38.99 41.33 41.38 38.99 39.97

We can observe that some of the new formulas SGF-1 and SGF-2 can outperform
almost all the selected formulas in terms of reducing the average rank or producing
the same results. Interestingly, the two formulas are better performing in mutually
exclusive cases. For 3 projects almost all of the formulas produced the same ranks,
in 3 cases SGF-1 (together with “Ochiai”) produced the best average ranks, while
in 3 cases SGF-2 was the best ranking formula in average. Regarding the median
values, in 12 projects SGF-1 could produce the best value of the other formulas, while
SGF-2 did the same for 7 projects and produced even better medians in 5 additional
cases. In two cases, SGF-2 produced better maximum ranks than any other examined
formula. Overall, “DStar” is still the best average performing formula, but as we can
observe, the margin is very small, and we can see later on the detailed data it is not
necessarily a clear winner.
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Another interesting phenomenon is that SGF-1 produced the same average ranks
as “Ochiai” for all but one case; for the “Closure” program it was 0.02 ranks better.
A possible explanation for this is the following. By squaring the “Ochiai” formula,
– this transformation being monotonic – it will result in the same ranking in many
cases because we get SGF-1 divided by ef + nf . But, in most of the cases, we have
only a single failing test case, which means this factor will be 1, not modifying the
score and the rank of the two formulas.

Answer to RQ2: We noticed that the two new formulas can improve the perfor-
mance of SBFL by reducing the ranks compared to most of the baseline formulas,
while the results are very similar to some of the existing ones. The two formulas
produce better results in mutually exclusive cases. The average improvement of
rank positions in the used benchmark was about 2 positions overall.

Achieved Improvements in Top-N Categories

Table 6.10 presents the number of bugs in the Top-N categories and their percentages
for the used dataset. It can be noted that the newly generated formulas achieve
improvements in all categories by moving many bugs to higher-ranked categories
compared to almost all the other formulas. For example, both new formulas move
more bugs to the Top-1 category compared to almost all the other formulas and move
more bugs also from the “Other” category to the higher ranks categories compared to
almost all the others. In particular, SGF-2 managed to put most bugs into first place,
compared to any of the baselines, and to SGF-1 too.

Table 6.10: Top-N categories

Top-1 Top-3 Top-5 Top-10 Other
# % # % # % # % # %

Barinel 98 12.53 265 33.89 344 43.99 437 55.88 345 44.12
Cohen 104 13.30 271 34.65 344 43.99 438 56.01 344 43.99
Dice 104 13.30 271 34.65 344 43.99 438 56.01 344 43.99

DStar 103 13.17 274 35.04 352 45.01 450 57.54 332 42.46
Jaccard 104 13.30 271 34.65 344 43.99 438 56.01 344 43.99

Kulczynski1 103 13.17 251 32.10 319 40.79 407 52.05 375 47.95
Ochiai 106 13.55 276 35.29 353 45.14 450 57.54 332 42.46

SorensenDice 104 13.30 271 34.65 344 43.99 438 56.01 344 43.99
Tarantula 98 12.53 265 33.89 344 43.99 437 55.88 345 44.12

SGF-1 106 13.55 276 35.29 353 45.14 450 57.54 332 42.46
SGF-2 119 15.22 275 35.17 348 44.50 449 57.42 333 42.58
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Answer to RQ3: The two new formulas showed improvements in the Top-N cat-
egories. Using SGF-1, we were able to increase the number of cases where the
faulty method became the top-ranked element by 2–8%, and by using SGF-2 this
rate was 13–21%. SGF-2 produced the most Top-1 elements overall. In some
cases, we were able to achieve 13% enabling improvement by moving 12–43 bugs
from the “Other” category into one of the higher-ranked categories by using the
formula SGF-1, while by using SGF-2 this rate was 12% (enabling improvements
for 11–42 bugs).

6.6 Contributions

In this chapter, the following points summarize my main contributions to the topic of
thesis point IV. The results of this chapter were published in [120], [123], and [124].

• Providing the idea of introducing new formulas to improve the effectiveness of
SBFL.

• Gathering and discussing the related papers.

• Developing several new formulas and comparing their effectiveness to the ex-
isting formulas.

• Evaluating and discussing the experimental results of the proposed new SBFL
formulas.



Chapter 7

SBFL Supporting Tools

7.1 Introduction

Fault localization is a time-consuming task in software debugging. Several tools are
available to aid developers with the fault localization process and its automation.
However, they mostly target programs written in Java and C/C++ programming
languages. Although these existing tools are helpful, we must not overlook the fact
that Python is currently the most widely used programming language. For Python
developers, there are still not enough fault localization tools with various features
available to help them debug their programs.

In this chapter, we present two software fault localization tools, namely “CharmFL” 1

and “SFLaaS” 2, for Python developers. “CharmFL” (see Section 7.3) is a plug-in for
PyCharm IDE, a popular Python development platform [113]. And “SFLaaS” (see
Section 7.4) is provided in the form of software as a service.

The tools employ SBFL to help Python developers automatically analyze their
programs and generate useful data at runtime that can then be used to generate a
ranked list of potentially faulty program elements. Thus, the proposed tools support
different code coverage types with the possibility to investigate these types in a hi-
erarchical approach. To determine whether an element is faulty or not, developers
examine each element in turn, beginning at the top of the list (the most suspicious
element). Also, the tools are implemented with many other helpful and practical fea-
tures to aid Python developers in debugging their programs. Several lab experiments
with Python projects were conducted to assess the applicability of our tools. The re-
sults indicate that the tools are useful for locating faults in various types of programs
and are easy to use.

1https://sed-szeged.github.io/SpectrumBasedFaultLocalization/
2https://sflaas.daxazi.com/
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7.2 Related Works

There are many software fault localization tools implemented and proposed in the
literature. This section briefly presents them. The authors in [67] proposed a stan-
dalone software fault localization tool called “Tarantula” to help C programmers de-
bug their programs. The tool assigns different colors to program statements based
on how suspicious they are, ranging from red (most suspicious) to green (not suspi-
cious). Besides, the tool displays varying brightness levels based on how frequently
the tests execute a statement. The brightest statements are those that are most com-
monly executed. However, the tool does not run test cases and record their results; it
takes as input a program’s source code and the results of executing a test suite on the
program. Furthermore, the tool’s only supported formula is the Tarantula formula.

In [25], the authors proposed an Eclipse plug-in tool called “Crisp”, which helps
developers identify the reasons for a failure that occurs due to code edits by con-
structing intermediate versions of a program that is being edited. For example, if
a test case fails, the tool will identify parts of the program that have been changed
and caused the failing test. Thus, developers can concentrate only on those affecting
changes that were applied.

In [76], the authors proposed a standalone debugging tool called “Whyline” for
Java programs. The tool employs both static and dynamic slicing to formulate why
and why-not questions, which are then presented in a graphical and interactive way
to help developers in understanding the behavior of a program under test. It also
records program execution traces and the status of each used class whether it is
executed or not. Using the tool also allows the user to load the execution trace of a
program and select a program element at a specific point during its execution. Then
he/she can click on the selected element to bring up a pop-up window containing
a set of questions that include data values gathered during the execution as well as
information about the properties of the selected element.

In [49], the authors proposed an Eclipse plug-in tool called “VIDA” for programs
written in Java. The tool extracts the hit spectra of statements from the target pro-
grams, executes JUnit tests, and based on their results, calculates suspiciousness. It
also provides a list of the ten most suspicious statements as potential breakpoints.
It displays the history of breakpoints including the developers’ previous estimates
of the correctness of the breakpoint candidates as well as their current suspicious-
ness. Moreover, it employs colors to distinguish between the developers’ estimations,
ranging from red (wrong) to green (correct), and suspiciousness, ranging from black
(very suspicious) to light gray (less suspicious). Additionally, it provides the users
with the ability to extract static dependency graphs from their programs to assist de-
velopers with their estimations and also to help them understand the relationships
among different program elements.

In [20, 61], the authors proposed a fault localization tool that adopts SBFL and
it is available as a command line tool called “Zoltar” and as an Eclipse plug-in called
“Gzoltar”. The tool provides a complete infrastructure to automatically instrument
the source code of the programs under test in order to generate runtime data, which
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is then used to return a ranked list of faulty locations. It also uses colors to mark
the execution of program elements from red to green based on their suspiciousness
scores. The tool only employs the “Ochiai” formula to compute suspiciousness.

In [143], the authors proposed a fault localization tool called “FLAVS” for devel-
opers using the Microsoft Visual Studio platform. The tool provides an automatic
instrumentation mechanism to record program spectra information during the exe-
cution. It also provides a user with two options to either automatically or manually
mark the result of each used test case; whether it is successful or not. Additionally,
it monitors each test environmental factor of the running program, such as memory
consumption, CPU usage, and thread numbers. For example, the developer can no-
tice that there is something wrong when the CPU time drops to zero and never gets
increased again during the running of a test case. The tool provides different levels
of granularities for fault localization analysis, such as statement, predicate, and func-
tion. Using the tool allows the users to examine the correct positions in the source
code files by clicking on the suspicious units, which are displayed and highlighted
in different colors as well. The functionalities of “FLAVS” have been extended by
the authors in [23] in another tool called “UnitFL”. The tool uses program slicing to
decrease the program execution time. Besides, it provides different levels of granu-
larities for fault localization analysis to provide different aspects of execution during
the program analysis. Moreover, it shows fault-related elements with different colors
based on their suspiciousness; ranging from green to red.

In [118], the authors proposed an SBFL tool called “Jaguar” for Java developers.
The tool supports two advanced spectra types, which are control flow and data flow.
Also, it visualizes suspicious program elements where the user can easily inspect
suspicious methods, statements, or variables. Although the data flow spectra provide
more information, it is not widely adopted in SBFL because of the high costs of
execution. To overcome this issue, the tool utilizes a lightweight data flow spectra
coverage tool called “ba-dua”. This enables the tool to be used for testing large-scale
programs at affordable execution costs. The tool can be used as an Eclipse plug-in or
as a command line tool.

All the previous tools target programs written in Java and C/C++ programming
languages. Tools for helping Python developers in their debugging process have not
been previously proposed in the literature by other researchers. However, two open-
source fault localization tools for Python’s pytest testing framework are available,
namely, “Fault-Localization” [40] and “PinPoint” [111]. In this chapter, we propose
the “CharmFL” and “SFLaaS” tools with more features to target programs written in
Python; which is considered one of the most popular programming languages nowa-
days. Compared to the other two tools, our proposed tools support different types
of code coverage (i.e., class, method, and statement), display the fault localization
results in different ways, provide a graphical user-friendly interface to examine the
suspicious elements, and enable the user to smoothly examine any suspicious ele-
ment via clickable links to the source code. Table 7.1 summarizes the features of our
proposed tools compared to the others.
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Table 7.1: Comparison among Python fault localization tools

Features Fault-Localization PinPoint CharmFL SFLaaS
Statement hit coverage Yes Yes Yes Yes
Method hit coverage No No Yes No
Class hit coverage No No Yes No
Supported SBFL formulas 1 5 4 80+
User-defined formulas No No No Yes
Shows ranking Color-based Value-based list Colors and values Colors and values
Shows suspicion scores Yes No Yes Yes
Ties ranking No No Min, Max, or Average Min, Max, or Average
GUI No No Yes Yes
Command line interface Yes Yes Yes No
Elements investigation Flat Flat Hierarchy Flat
Elements navigation No No Via clickable links to

each element in the
source code

Via clickable links to
each element in the
source code

Tool type An option for
pytest framework

An option for
pytest framework

A plug-in for PyCharm
IDE

Software as a service

Installation Required Required Required Not required

7.3 CharmFL Tool

This section presents an overview of the tool’s user interface, architecture, and how
it can be used. The tool is divided into two parts: plug-in and framework. The devel-
oper can use the plug-in for the PyCharm IDE when debugging inside PyCharm (see
Section 7.3.1). Or, the developer can use the framework to integrate the functionality
of “CharmFL” into other development environments (see Section 7.3.2).

7.3.1 CharmFL’s User Interface

The interface of the plug-in part of the tool is shown in Figure 7.1. After installing
the plug-in in PyCharm, the developer can see a simple “CharmFl” menu with several
options. To start the fault localization process, the developer has to open a Python
project (which includes source code and tests) and then select the option “Run” to
get the ranking list of suspicious program elements.

Figure 7.1: CharmFL GUI
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Figure 7.2) shows the list of program elements hierarchically. For each program
element, the developer can see the line/location number of the element in the source
code file, its suspicion score, and its rank. In the “Action” column, the developer
can hide/show the elements inside each level of the hierarchy (e.g., to show all the
statements inside a method). Then, he/she can navigate to a specific element in the
source code file by clicking on its corresponding document icon. If the results table is
closed by mistake, the developer can reopen it again by clicking on the “View” option
in the “CharmFL” menu.

Figure 7.2: CharmFL rankling list output

The program elements in the source code file will be highlighted with different
colors, ranging from red (most suspicious) to green (not suspicious), based on the
suspicion scores as shown in Figure 7.3.

It is worth mentioning that the developer can click on the “Options” button of the
menu to show some advanced options as shown in Figure 7.4. These options allow
the developer to select different formulas and tie-breaking methods. A results table
will be provided for each formula the developer chooses. This is especially good for
comparing the output of different formulas.

7.3.2 CharmFL’s Architecture

The framework part of the tool is responsible for gathering and processing the code
coverage and test result data. It can be used as an independent tool that can be run
via a command line interface or as a plug-in within other IDEs.
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Figure 7.3: Highlighted statements based on suspicion scores

Figure 7.4: CharmFL advanced options

Code coverage measurement is required to gather the program’s spectra. To do
so, the framework uses “coverage.py” [29], the popular code coverage measuring
tool for Python. It shows which parts of the target program are being executed by
tests and which are not. “coverage.py” only measures either statement or branch
coverage levels. Our framework transforms the statement level coverage to method
and class levels as shown in Figure 7.2. This is achieved by putting all the statements
of each function under the corresponding function’s name and then putting all the
functions of each class under the corresponding class’s name. Thus, each function
will have its own set of statements, and each class its own set of functions includ-
ing the statements. Afterward, the classes are sorted based on their suspiciousness
scores, then the functions, and finally the statements. For example, the statement in
line 37 will not be examined before the statement in line 8 because the latter belongs
to a function of higher rank in the ranking list.

This hierarchical coverage feature gives additional useful information about the
suspicion scores on all layers to the user. The user can examine the suspicious el-
ements from the highest level in the hierarchy (i.e., classes) to lower levels (in the
hierarchy) and repeat the steps above until he/she reaches the lowest level, which is
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the statements level. This is better than only one level of granularity as the developer
can exclude methods or even classes from the ranking list. As a result, debugging
time is reduced.

The framework also uses the “pytest” [114] to run the test cases and get their re-
sults after gathering the coverage report. Then, the coverage and test results matrix
will be built according to Jones et al. [67]. The framework calculates the suspicious-
ness score for each program element in the matrix based on the selected SBFL for-
mula. The framework provides different code coverage levels, test results, a coverage
matrix, and a hierarchical ranking list. Table 7.2 lists some of the main commands of
how to use the framework from a command line interface.

Table 7.2: Framework usage commands

Command Purpose
main.py -d <project directory> To start the fault localization process
main.py -c <file name> To get class coverage
main.py -m <file name> To get method coverage
main.py -s <file name> To get the spectra
main.py -r <rank type> To apply a specific tie-breaking method

7.3.3 How to Use CharmFL

A Python program of four methods and four test cases, shown in Figure 7.5, will be
used to illustrate how “CharmFL” can be used for fault localization. In order to keep
things simple, we will refer to the four test cases in the text as T1, T2, T3, and T4 in
the order they appear in the figure.

It can be seen that the highest granularity in the example program is the method
level as there are no classes. Table 7.3 presents the method-level coverage matrix
and the basic statistical numbers.

Table 7.3: Method hit spectra (with four basic statistics)

T1 T2 T3 T4 ef ep nf np
addToCart 1 1 1 1 2 2 0 0
removeFromCart 0 1 1 0 1 1 1 1
printProductsInCart 0 0 0 0 0 0 2 2
getProductCount 1 1 1 1 2 2 0 0
Test results 0 0 1 1

Any formula, such as “Tarantula”, can be used to generate a list of elements (e.g.,
methods) with scores indicating their level of suspiciousness, as presented in Ta-
ble 7.4. The developer starts examining the elements with the highest scores until
he/she finds the bug. It can be noted that the “addToCart” method has the highest
suspiciousness score. Thus, all the statements in the “addToCart” method have to be
examined first.
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Figure 7.5: Running example – program code and its tests

Table 7.4: Tarantula suspiciousness scores

Method Score
addToCart 0.58
removeFromCart 0.41
printProductsInCart 0.00
getProductCount 0.48

Developers can use the “CharmFL” tool in different scenarios when debugging
their programs, as follows:

1. Executing the test suite and then using the “CharmFL” tool.

2. Using the “CharmFL” tool and then injecting breakpoints.

The developer begins each scenario at the moment when the bug was first dis-
covered (i.e., when it was reported by a user of the software). The same example
program, shown in Figure 7.5, will be used here for the demonstration; nevertheless,
any other Python program can also be used. The program has a bug, in the “ad-
dToCart” method, that has been executed by two failed tests (i.e., T3 and T4). The
“CharmFl” tool is considered effective if the bug appears in the Top-10 of the ranking
list and debugging is considered successful if the tests pass after the bug is corrected.

In the first scenario, the developer runs the test cases using “pytest”. From the
generated test report, he/she will know that there are two failed tests. In the failed
tests, the method “addToCart” is called two times, and the method “removeFromCart”
is called once. Thus, the developer starts examining the method “addToCart” first.
Examining the method “addToCart” shows that it has three statements, including the
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buggy one. The developer then starts the “CharmFL” tool and uses it to decide which
statement to examine first. The tool suggests that the third statement is the most
suspicious one, as shown in Figure 7.2. Here, the developer has to navigate to the
element with the highest score in the ranking list and fix the bug in it. Then, the
developer will once again run the tests to see that all of them now pass as the bug
is corrected. In this scenario, the “CharmFL” tool assisted the developer in selecting
the first statement to be examined, thus saving time during debugging.

In the second scenario, the developer runs the “CharmFL” tool and then clicks on
the element with the highest score in the suspiciousness list, shown in Figure 7.2. The
tool will redirect the developer to the location of the statement in the source code file.
Here, he/she can insert breakpoints (to and around the clicked suspicious statement)
and then start the debugging session to look into what values the variables take and
what is not working out as expected. The developer then fixes the buggy statement
and runs the tests to ensure all of them pass.

7.4 Software Fault Localization as a Service (SFLaaS)
Tool

We also developed another tool named “SFLaaS” for locating faults in programs writ-
ten in Python, a popular programming language, and is provided as a service rather
than as a plugin or a command line tool that needs to be installed. Thus, our tool,
which also employs SBFL, does not require any installation from the user side and
can be accessed anytime and from anywhere. Our proposed tool supports different
important features in fault localization, such as supporting about 80 SBFL formulas,
different tie-breaking methods, showing code elements with different colors, ranging
from most suspicious (red) to not suspicious (green) based on their suspicion scores,
allowing the user to define his/her own formula, etc. Because of the aforementioned
features, using our tool could be useful for educational purposes, such as teaching
students fault localization. Also, it could help developers efficiently find the locations
of different types of faults in their programs.

7.4.1 SFLaaS’s User Interface

The user interface of “SFLaaS” is shown in Figure 7.6. It can be noted that many
options are provided for the user to start the software fault localization process.

The main features of “SFLaaS” are listed below:

Accessibility

Unlike plugins, command line, or standalone tools, our tool can be accessed anytime
and from anywhere as it is provided as a service. Thus, the user only needs a browser
and an Internet connection.
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Figure 7.6: SFLaaS GUI

Easy upgrades

It does not require manual installation, configuration, or updates on the user’s side as
the service provider deals with hardware and software updates; thus removing this
workload and responsibility from the user.

Code Editor

It enables the user to write the code of his/her Python program and its test cases
directly into an editor provided by “SFLaaS”. This is useful especially when the tool
is used for educational purposes, such as teaching students fault localization.

Tie-breaking methods

It enables the user to select a tie-breaking method (e.g., Min, Max, or Average) and
apply it to the elements sharing the same suspicion score in the ranking list.

Formulas selection

It enables the user to select one or more SBFL formulas (e.g., “Tarantula”, “Ochiai”,
“Barinel”, etc.). In our tool, we have implemented about 80 formulas that have been
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proposed in the literature. This is especially important for researchers who would
like to compare the efficiency of different SBFL formulas with each other.

User-defined formulas

It enables the user to define his/her own formula either by combining existing formu-
las or by introducing new formulas via combining different statistical numbers (i.e.,
ef , ep, nf , and np). This is crucial when comparing newly proposed formulas to the
existing ones.

Highlighted code elements

When SBFL is performed, the corresponding code elements are highlighted with dif-
ferent colors, ranging from red (most suspicious) to green (not suspicious), based on
the suspicion scores as shown in Figure 7.7.

Figure 7.7: Highlighted statements based on suspicion scores

Navigation

The SBFL results in Figure 7.7 present the program elements with their positions in
the source code, ranks, and scores. Clicking on an element in the SBFL results table
puts the cursor at the element’s location in the source code to be easily examined by
the user.

7.4.2 SFLaaS’s Architecture

The architecture of our tool is shown in Figure 7.8. We run the test cases on the target
program using “pytest” [114] to fetch the results. To collect the program’s spectra
on the statements level, code coverage measurement is required. The program must
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Figure 7.8: Architecture of SFLaaS

be instrumented to generate code coverage. Therefore, the famous Python coverage
measuring framework, called “coverage.py” [29] has been used in our tool.

Next, the tool constructs coverage and test results from the gathered data. Then,
based on the specified SBFL formulas, it scores the suspiciousness of each program
element. It is worth mentioning that all the aforementioned steps are performed on
the server side. Also, there are no mandatory elements (other than a Python code and
its tests to be given) for using the tool. For instance, if the developer writes/uploads a
piece of code, it is not mandatory to install/upload the Pytest, Coverage.py, or Python
as all the necessary elements for running the tool are already installed on the server
side. Figure 7.9 shows the technical details of how our tool works.

The front-end interface allows users to submit their Python programs to be de-
bugged. Upon submission, the PHP back-end stores the program files and user set-
tings in a MySQL database. The front-end then waits for the response. A C# appli-
cation constantly listens for new program submissions. When a new submission is
detected, the C# application downloads the program files and user settings from the
MySQL database to the server. The C# application then runs the SBFL algorithm.
After the program has completed executing, the results are stored in the database,
and the files are deleted from MySQL and the server. The front-end of the application
retrieves the results and displays them to the user.
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Figure 7.9: Technical details of SFLaaS

7.4.3 How to Use SFLaaS

In this section, we will describe how our tool can be used to locate faults in Python
programs with an applicability scenario. The user has two options to submit his/her
program and its tests to the tool: (a) the user uploads a Python program file and its
related tests file using the buttons made for this purpose; (b) the user writes his/her
program and its tests in a particular editing area specified for this purpose. Then,
he/she starts the fault localization process by clicking on the “Submit” button as
shown in Figure 7.6. The tool then provides the ranking list of suspicious statements
of the uploaded program. The user clicks on the first statement in the list with the
highest score, and the tool redirects the user to the statement location in the source
code for investigation. If it is a bug, then the user can fix it. Then, the user re-runs
the tests and notices the pass state of all the test cases. This indicates that the bug is
fixed and the task terminates. If the statement, however, did not lead to the error, the
user may go on to the following statement in the list based on the ranks. The user
goes through the statements one by one until he/she finds the one that is causing
the fault. It is worth mentioning that each uploaded program gets deleted after its
execution on the server side; this is very important to ensure privacy. Only the top
ten elements from the ranking list are explored by the developers because, after that,
they begin to lose the desire to follow up the fault localization tools [77, 158]. Thus,
a tool is considered successful, if it puts the most faulty elements in the Top-10 ranks.

We tested the tool in lab settings with researchers and students, but we do not
have much practical experience with its usefulness among professional programmers.
Hence, we would also like to draw the attention of the developers and research
communities and invite them to test the tool to understand its benefits and provide
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constructive feedback about enhancing its usability and user experience.

7.5 Contributions

In this chapter, the following points summarize my main contributions to the topic of
thesis point V. The results of this chapter were published in [127], [134], [126], and
[125].

• Regarding the “SFLaaS” tool, I did the following:

– Developed the fault localization tool as a service to support SBFL for
Python developers.

– Performed the literature review of the currently available tools.

– Prepared the use cases of the tool.

• Regarding the “CharmFL” tool, I participated in the following:

– Developed the fault localization tool to support SBFL for Python develop-
ers.

– Performed the literature review of the currently available tools.

– Prepared the use cases of the tool.



Chapter 8

Conclusions and Future Work

Software products cover many aspects of our day-to-day life and our world could
not be imagined without different types of software products that automate most of
our activities. Therefore, developing high-quality software is crucial. However, faults
are almost unavoidable in software products even with all the current advancements
in software development. Locating faults in software is a difficult, time-consuming,
tedious, and costly task. To overcome this issue, many fault localization techniques
have been proposed in the literature. Compared to other available techniques, SBFL
is considered the most prominent one. It computes the suspiciousness of each pro-
gram element of being faulty based on execution information gathered from test
cases, their results, and their corresponding code coverage.

However, SBFL poses many issues and challenges that prevent software develop-
ers from using it widely in the industry. In this thesis, we first tried to identify what
exactly these issues and challenges are. Then, we tried to tackle many of them to
improve the effectiveness of SBFL and make it more applicable in different contexts.

8.1 Conclusions and Future Work

In this section, the content of each chapter is summarized and concluded.
In Chapter 3, we started our thesis with an important systematic survey study

on the topic. As a result, several important issues and challenges of SBFL have been
identified and categorized in this survey study. In each category, the most important
issues have been briefly presented with some possible ideas to address them.

In Chapter 4, we proposed a method to break the ties between program elements
when they are ranked by an SBFL formula. Rank ties in SBFL are very common
regardless of the formula employed, and by breaking these ties, improvements to lo-
calization effectiveness can be expected. We propose the use of method call contexts
for breaking critical ties in SBFL. We rely on instances of call stack traces, which are
useful software artifacts during runtime and can often help developers in debugging.
The frequency of the occurrence of methods in different call stack instances deter-
mines the position of the code elements within the set of other methods tied together
by the same suspiciousness score.

116
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Experimental results show that the proposed tie-breaking strategy, using the De-
fects4J benchmark, (a) completely eliminated many critical ties with a significant
reduction of others, and (b) achieved improvements in average rank positions for
all investigated SBFL formulas by moving many bugs to the highest Top-N rank po-
sitions. However, there are limits to how much improvement one can expect from
tie-breaking alone (we analyzed this limit and compared it to the results achieved).
This means that no matter how clever a tie-breaking method is, it cannot rearrange
code elements outside of the tied ranking positions. Since ties seem to be prevalent,
it could be interesting further research to devise specific tie-aware approaches or
modified formulas that minimize ties in the scores and/or break them automatically.

In the future, we would like to do the following:

• Measure the effectiveness of the proposed tie-breaking strategy on other levels
of granularity, such as statement, branch, etc.

• Employ other SBFL formulas across a much broader range of programs in terms
of numbers, types, sizes, and used programming languages, to capture the ties
problem characteristics and identify what factors affect them would be inter-
esting for further investigation.

• Employ other contextual factors beyond method call frequency to tackle the ties
problem and to measure their impacts on SBFL.

In Chapter 5, we enhanced SBFL by proposing the use of emphasis on the failing
tests that execute the program element under consideration in SBFL. We rely on the
intuition that if a code element gets executed in more failed test cases compared to
the other elements, it will be more suspicious, and it will be given a higher ranking.
This is achieved by multiplying the initial suspicion score, computed by underlying
SBFL formulas, of each program method by an importance weight that represents the
rate of executing a method in failed test cases.

The main features of the proposed approach are: (a) it can be applied to a wide
range of SBFL formulas without modifying a formula’s structure or its concept; (b)
it solves the issue of an unbalanced SBFL matrix in the sense that there are many
more passing tests than failing ones, and many formulas treat passing and failing
tests similarly. The experimental results of this study show that by shifting several
bugs to the highest Top-N ranks, our approach improved the average ranks for all
investigated formulas.

In the future, we would like to do the following:

• Assess the effectiveness of our approach at different levels of granularity, such
as the statement level.

• Involve other SBFL formulas in the study to identify which formulas give the
best results and categorize them according to that into groups would be inter-
esting for further investigation.



118 Conclusions and Future Work

• Employ other contextual/importance weights beyond method executions in
failed test cases and determine how they affect SBFL’s efficiency.

In Chapter 6, we proposed a new SBFL ranking formula to automatically lead
developers to the locations of faults in programs. It is based on the intuition that ties
often happen because of shared ef and nf values, and in this case, more failing tests
(larger ef ) and/or fewer passing ones (smaller ep) will determine the outcome.

Via an evaluation across 297 different single-fault programs of Defects4J, the pro-
posed formula is shown to be more effective than all the selected SBFL formulas in
this study. It approves the average rank and the Top-N categories as well.

Introducing new SBFL formulas is an interesting line of research. Sometimes we
can get good results from not-so-obvious formulas or a simple combination of ef , ep,
nf , and np. Therefore, we performed a more systematic approach to finding new
formulas.

In this systematic search approach for new formulas, we use only the four basic
statistical numbers from the spectra. For this purpose, formula templates are deter-
mined and the possible formulas are generated automatically. As a demonstration,
we used a formula template to systematically generate all formulas for that template,
then these were analyzed and their effectiveness was evaluated on the Defects4J
dataset. Interestingly, the analysis has shown that in theory several formulas gen-
erated from the same template are equivalent to or should similarly rank elements
to each other, while the handling of special cases (like division-by-zero) can signif-
icantly influence the practical performance of the formulas and thus the relations
among them. In the aforementioned preliminary study, we found formulas that out-
performed some existing ones but failed to achieve significant improvement over the
most successful existing techniques. Thus, we extended the effort to systematically
search for SBFL formulas in [123]. We defined new formula templates, which are
more elaborate and can cover more existing formulas. The results of our extended
formula templates show that the proposed approach led to new formulas reported in
the literature and also outperformed many well-known existing ones. In particular,
formula SGF-2 performed very well in all measurements, and being surprisingly sim-
ple, we think that it is very competitive against many previously advised and widely
used manually crafted formulas.

This proves that the concept is valid and research on systematic SBFL formula
generation is a promising direction. Compared to the GP-generated approaches or
ML (Section 6.2), our approach generates readable and explainable formulas.

In the future, we would like to do the following:

• Involve other existing SBFL formulas in the evaluation.

• Try the enhancement component of the proposed formula together with other
base formulas instead of only using ef .

• Investigate the effect of our formula in more detail, for instance, statistics about
how many ties are broken, how many times ep helped, and so on.
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• Extend the template to e.g. polynomial, exponential, and/or logarithmic to
generate more elaborate formulas and maybe get even better results.

• Compare the effectiveness of the formulas generated for all the identified tem-
plates with each other.

• Combine the best formulas from different templates into a single formula that
has the advantages of others.

• Expand the four spectrum metrics ef , ep, nf , and np of program spectra with
other contextual information or possibly involve count-based spectra too.

• Assess how the newly generated formulas perform at granularity levels other
than the method level.

• Perform a theoretical analysis of how formula equivalences can be automati-
cally detected.

• Involve other benchmark datasets to measure how much impact they have on
finding good formulas.

• Find new ways other than formula equivalences to limit the size of our search
space.

• Study how handling exceptional/special cases (e.g., division-by-zero) influ-
ences the performance of SBFL formulas.

• Assess the performance trade-offs between our approach and other heuristic
search and ML approaches.

In Chapter 7, we present “CharmFL”, an open-source fault localization tool for
Python programs. The tool is developed with many interesting features that can help
developers debug their programs by providing a hierarchical list of ranked program
elements based on their suspiciousness scores. Also, we present “SFLaaS”, a fault
localization tool for Python programs, which is provided in the form of software as
a service. It is implemented with many helpful and practical characteristics to aid
developers in debugging their programs. The applicability of both tools has been
evaluated via lab settings. The tools have been found to be useful for locating faults
in different types of programs and they are easy to use.

In the future, we would like to do the following:

• Implement interactiveness to enable the user to give his/her feedback on the
suspicious elements to help re-rank them, thus improving the fault localization
process of the tools.

• Add other features, such as displaying each tool’s output using different visual-
ization techniques.

• Assess the tools with real users and in real-world scenarios would also be a
valuable next step.
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8.2 Potential Impacts of the Thesis

This thesis could have several potential impacts on the SBFL research community, the
developers, and the industry, as follows.

Impact on the research community: For the research community, this thesis
has investigated the issues and challenges of SBFL and provided a comprehensive
survey study on them. Thus, other researchers will further contribute based on the
performed systematic survey study and the results presented in this thesis. In this
thesis, it has been found that addressing SBFL issues and challenges can lead to
improving the effectiveness of SBFL. However, some problems were not addressed
here due to the time limit, but others can start from where we ended. We have
provided the categorization of SBFL problems and how they could be addressed too.
Thus, we have established a complete understanding of how to enhance SBFL in
many directions, thus motivating other researchers to empirically demonstrate that
new and enhanced SBFL methods can be used to find more faults. Also, we provided
the source codes and results data in our all research papers to help other researchers
reuse them in their research or to be used as a benchmark, so other researchers can
compare our approaches with theirs and verify their findings, therefore, boosting the
work on enhancing SBFL.

Impact on the developers: There is always a desire and need for new tools
to help developers and testers understand and correct the bugs in their programs.
Therefore, this thesis has put substantial effort into tools that can help them auto-
matically locate bugs in their programs. Also, our solutions are useful for guiding
them to know different ways of improving the performance of software fault local-
ization.

Impact on the industry: In addition to being interesting for research, SBFL has
a wide range of industrial fault localization applications. Therefore, this thesis ad-
dressed some of the main demands of the industry. We proposed an effective tie-
breaking method to reduce the number of tied program elements in the ranking list
produced by SBFL. Also, we provided new SBFL tools for Python programs. These
solutions can significantly reduce the time for industry practitioners, who currently
do most of their fault localization tasks manually. We believe that our solutions
can also open the doors for more collaborations between researchers and industry
practitioners. As a result, academics and researchers can use real-world systems as
their study subjects. This could also help address the issue that currently there is no
method for researchers to determine whether the bugs they use in their studies are
representative of the bugs that appear in the industry.

Finally, we believe that all the results of this thesis will be of great interest to soft-
ware testers and researchers who would like to provide contributions to this inter-
esting field of research, such that additional studies can be carried out to overcome
the remaining issues or possible avenues can be suggested for further exploration.
We hope that this thesis will be regarded as a primary source of useful and relevant
information on enhancing SBFL in many directions.
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[141] Dániel Vince, Renáta Hodován, and Ákos Kiss. Reduction-assisted fault lo-
calization: Don’t throw away the by-products! In Proceedings of the 16th
International Conference on Software Technologies (ICSOFT), pages 196–206,
2021.

[142] R. Abreu, P. Zoeteweij, and A. J. C. Van Gemund. On the accuracy of spectrum-
based fault localization. In Testing: Academic and Industrial Conference Practice
and Research Techniques - MUTATION (TAICPART-MUTATION 2007), pages 89–
98, 2007.

[143] Nan Wang, Zheng Zheng, Zhenyu Zhang, and Cheng Chen. FLAVS: A fault lo-
calization add-in for visual studio. In Proceedings - 1st International Workshop
on Complex Faults and Failures in Large Software Systems, COUFLESS 2015,
pages 1–6, 2015.

[144] Yong Wang, Zhiqiu Huang, Bingwu Fang, and Yong Li. Spectrum-Based Fault
Localization via Enlarging Non-Fault Region to Improve Fault Absolute Rank-
ing. IEEE Access, 6:8925–8933, 2018.

[145] Yong WANG, Zhiqiu HUANG, Yong LI, RongCun WANG, and Qiao YU.
Spectrum-based fault localization framework to support fault understanding.
IEICE Transactions on Information and Systems, E102–D(4):863–866, 2019.

[146] Yong Wang, Zhiqiu HUANG, Rongcun WANG, Qiao Yu, and Qiao Yu. Spectrum-
based fault localization using fault triggering model to refine fault ranking
list. IEICE Transactions on Information and Systems, E101–D(10):2436–2446,
2018.

[147] Martin Weiglhofer, Gordon Fraser, and Franz Wotawa. Using spectrum-based
fault localization for test case grouping. In 2009 IEEE/ACM International Con-
ference on Automated Software Engineering, pages 630–634, 2009.

[148] Mark Weiser. Program slicing: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, University of
Michigan, Ann Arbor, USA, 1979.

[149] Wanzhi Wen. Software fault localization based on program slicing spectrum.
In 2012 34th International Conference on Software Engineering (ICSE), pages
1511–1514, 2012.

[150] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin
Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, Brian Goh,
Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and Eng Lieh Ouh.
BugsInPy: a database of existing bugs in Python programs to enable controlled
testing and debugging studies. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 1556–1560. ACM, 2020.



References 135

[151] Claes Wohlin. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering - EASE ’14,
pages 1–10. ACM Press, 2014.

[152] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. A crosstab-based statistical
method for effective fault localization. In 2008 1st International Conference on
Software Testing, Verification, and Validation, pages 42–51, 2008.

[153] W. Eric Wong, Vidroha Debroy, Ruizhi Gao, and Yihao Li. The dstar method
for effective software fault localization. IEEE Transactions on Reliability,
63(1):290–308, 2014.

[154] W. Eric Wong, Vidroha Debroy, and Dianxiang Xu. Towards better fault local-
ization: A crosstab-based statistical approach. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), 42(3):378–396, 2012.

[155] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A Survey
on Software Fault Localization. IEEE Transactions on Software Engineering,
42(8):707–740, 2016.

[156] W. Eric Wong, Yu Qi, Lei Zhao, and Kai Yuan Cai. Effective fault localization
using code coverage. In Proceedings - International Computer Software and
Applications Conference, pages 449–456, 2007.

[157] Yong-Hao Wu, Zheng Li, Yong Liu, and Xiang Chen. Fatoc: Bug isolation based
multi-fault localization by using optics clustering. Journal of Computer Science
and Technology, 35:979–998, 2020.

[158] Xin Xia, Lingfeng Bao, David Lo, and Shanping Li. Automated debugging con-
sidered harmful: A user study revisiting the usefulness of spectra-based fault
localization techniques with professionals using real bugs from large systems.
In 2016 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 267–278, 2016.

[159] Yan Xiaobo, Liu Bin, and Wang Shihai. How negative effects a multiple-fault
program can do to spectrum-based fault localization. In 2019 Prognostics and
System Health Management Conference (PHM-Qingdao), pages 1–6, 2019.

[160] Yan Xiaobo, Bin Liu, and Wang Shihai. An analysis on the negative effect
of multiple-faults for spectrum-based fault localization. IEEE Access, 7:2327–
2347, 2018.

[161] Huan Xie, Yan Lei, Meng Yan, Yue Yu, Xin Xia, and Xiaoguang Mao. A universal
data augmentation approach for fault localization. In 44th IEEE/ACM 44th
International Conference on Software Engineering, ICSE 2022, Pittsburgh, PA,
USA, May 25-27, 2022, pages 48–60. ACM, 2022.



136 References

[162] Xiaoyuan Xie, Tsong Yueh Chen, Fei-Ching Kuo, and Baowen Xu. A theoretical
analysis of the risk evaluation formulas for spectrum-based fault localization.
ACM Trans. Softw. Eng. Methodol., 22(4):31:1–31:40, 2013.

[163] Xiaoyuan Xie, Tsong Yueh Chen, and Baowen Xu. Isolating suspiciousness
from spectrum-based fault localization techniques. In 2010 10th International
Conference on Quality Software, pages 385–392, 2010.

[164] Sihan Xu, Jing Xu, Hongji Yang, Jufeng Yang, Chenkai Guo, Liying Yuan, Wenli
Song, and Guannan Si. An improvement to fault localization technique based
on branch-coverage spectra. In 2015 IEEE 39th Annual Computer Software and
Applications Conference, pages 282–287, 2015.

[165] Xiaofeng Xu, Vidroha Debroy, W. Eric Wong, and Donghui Guo. Ties within
fault localization rankings: Exposing and addressing the problem. Interna-
tional Journal of Software Engineering and Knowledge Engineering, 21(6):803–
827, 2011.

[166] Jifeng Xuan and Martin Monperrus. Learning to combine multiple ranking
metrics for fault localization. In Proceedings - 30th International Conference on
Software Maintenance and Evolution (ICSME), pages 191–200, 2014.

[167] Xiaozhen Xue and Akbar Siami Namin:. Measuring the odds of statements be-
ing faulty. In International Conference on Reliable Software Technologies, pages
109–126, 2013.

[168] Qian Yang, J. Jenny Li, and David M. Weiss. A Survey of Coverage-Based
Testing Tools. The Computer Journal, 52(5):589–597, 2009.

[169] Shin Yoo. Evolving human competitive spectra-based fault localisation tech-
niques. Lecture Notes in Computer Science, 7515 LNCS:244–258, 2012.

[170] Shin Yoo, Xiaoyuan Xie, Fei-Ching Kuo, Tsong Yueh Chen, and Mark Har-
man. Human competitiveness of genetic programming in spectrum-based
fault localisation: Theoretical and empirical analysis. ACM Trans. Softw. Eng.
Methodol., 26(1):1–30, 2017.

[171] Yi-Sian You, Chin-Yu Huang, Kuan-Li Peng, and Chao-Jung Hsu. Evaluation
and analysis of spectrum-based fault localization with modified similarity coef-
ficients for software debugging. In 2013 IEEE 37th Annual Computer Software
and Applications Conference, pages 180–189, 2013.

[172] Rongwei Yu, Lei Zhao, Lina Wang, and Xiaodan Yin. Statistical fault localiza-
tion via semi-dynamic program slicing. In 2011IEEE 10th International Confer-
ence on Trust, Security and Privacy in Computing and Communications, pages
695–700, 2011.



References 137

[173] Xiaoran Yu, Huanrong Tang, Juan Zou, and Fan Yu. An efficient software
faults localization method based on program spectrum. In 2020 IEEE Interna-
tional Conference on Information Technology,Big Data and Artificial Intelligence
(ICIBA), pages 88–93, 2020.

[174] Yanbing Yu, James A. Jones, and Mary Jean Harrold. An empirical study of
the effects of test-suite reduction on fault localization. In Proceedings of the
13th international conference on Software engineering (ICSE), pages 201–2010.
ACM Press, 2008.

[175] Abubakar Zakari, Shamsu Abdullahi, Nura Modi Shagari, Abubakar Bello
Tambawal, Nuruddeen Musa Shanono, Jaafar Zubairu Maitama,
Rasheed Abubakar Rasheed, Alhassan Adamu, and Salish Mamman Ab-
dulrahman. Spectrum-based Fault Localization Techniques Application on
Multiple-Fault Programs: A Review. Global Journal of Computer Science and
Technology, 20:41–48, 2020.

[176] Abubakar Zakari, Sai Peck Lee, Rui Abreu, Babiker Hussien Ahmed, and
Rasheed Abubakar Rasheed. Multiple fault localization of software pro-
grams: A systematic literature review. Information and Software Technology,
124:106312–106332, 2020.

[177] Abubakar Zakari, Sai Peck Lee, and Chun Yong Chong. Simultaneous lo-
calization of software faults based on complex network theory. IEEE Access,
6:23990–24002, 2018.

[178] Long Zhang, Lanfei Yan, Zhenyu Zhang, Jian Zhang, W.K. Chan, and Zheng
Zheng. A theoretical analysis on cloning the failed test cases to improve
spectrum-based fault localization. Journal of Systems and Software, 129:35–
57, 2017.

[179] Mengshi Zhang, Yaoxian Li, Xia Li, Lingchao Chen, Yuqun Zhang, Lingming
Zhang, and Sarfraz Khurshid. An empirical study of boosting spectrum-based
fault localization via pagerank. IEEE Transactions on Software Engineering,
47(6):1089–1113, 2021.

[180] Xiaohong Zhang, Ziyuan Wang, Weifeng Zhang, Hui Ding, and Lin Chen.
Spectrum-based fault localization method with test case reduction. In 2015
IEEE 39th Annual Computer Software and Applications Conference, pages 548–
549, 2015.

[181] Zhuo Zhang, Yan Lei, Xiaoguang Mao, Meng Yan, Ling Xu, and Junhao Wen.
Improving deep-learning-based fault localization with resampling. J. Softw.
Evol. Process., 33(3), 2021.

[182] Guyu Zhao, Hongdou He, and Yifang Huang. Fault centrality: boosting
spectrum-based fault localization via local influence calculation. Applied Intel-
ligence, 52:1–23, 2021.



138 References

[183] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang. An empirical study
of fault localization families and their combinations. IEEE Transactions on
Software Engineering, 47(2):332–347, 2021.



Appendices

139



Appendix A: Summary

Software fault localization is a significant research topic in software engineering.
Despite starting in the late 1950s, software fault localization research has gained
more attention in the last few decades. This is reflected in the increase in the number
of techniques, tools, and publications. The main reason for the increased attention is
the dramatic increase in software systems size due to the newly added functionalities
and features they provide. This also has led to an increase in the complexity of
these systems. As a result, more faults have also been reported. Here, software
fault localization is a good approach for reducing the number of faults and ensuring
software quality. This PhD thesis aims to improve the effectiveness of Spectrum-
based Fault Localization (SBFL), the most common fault localization technique, by
addressing some of the most important challenges and issues posed by this technique.

This PhD thesis consists of three parts. The first part (Chapters 1-2) is the in-
troductory part of our work, which defines the aim of this PhD thesis and the basic
definitions that are needed to understand the thesis points presented in the sub-
sequent chapters. The second part (Chapters 3-7) is the thesis points part, which
presents our contributions to enhance the effectiveness of SBFL by addressing some
of its main challenges and issues. The third part (Chapter 8) is the conclusions and
future work part, which concludes our contributions and proposes different paths
for future exploration. The scientific results I achieved and report in this thesis are
grouped into several thesis points, as presented below. The relationship between the
thesis points, the supporting publications, and the chapters is presented in Table A.1.

Thesis Point I: Systematic Survey of SBFL Challenges

In Chapter 3, we started our thesis with an important systematic survey study on
the topic. As a result, several important issues and challenges of SBFL have been
identified and categorized in this survey study. In each category, the most important
issues have been briefly presented with possible solutions. The experimental con-
tributions discussed in the following chapters were built upon the findings of this
comprehensive survey study.

In this chapter, the following points summarize my main contributions to the topic
of thesis point I. The results of this chapter were published in [122].

• Providing a theoretical background on the topic of SBFL and its main concepts.
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• Conducting a systematic survey study that discussed the papers related to SBFL
and the challenges and issues preventing it from being widely used. The results
of the systematic survey showed that still, SBFL poses many problems that have
not been addressed yet despite their importance to the effectiveness of SBFL.

• Categorizing the identified challenges and issues into 18 categories. Practically,
addressing SBFL challenges can enhance the performance of SBFL in many
directions, as will be seen in the subsequent chapters.

Thesis Point II: Tie-Breaking Method for SBFL

In Chapter 4, we proposed a method to break the ties between program elements
when they are ranked by an SBFL formula. Rank ties in SBFL are very common
regardless of the formula employed, and by breaking these ties, improvements to lo-
calization effectiveness can be expected. We propose the use of method call contexts
for breaking critical ties in SBFL. We rely on instances of call stack traces, which are
useful software artifacts during runtime and can often help developers in debugging.
The frequency of the occurrence of methods in different call stack instances deter-
mines the position of the code elements within the set of other methods tied together
by the same suspiciousness score.

In this chapter, the following points summarize my main contributions to the topic
of thesis point II. The results of this chapter were published in [60].

• Providing the idea of using tie-breaking to improve the effectiveness of SBFL.

• Providing a thorough background on the problem of ties in SBFL.

• Gathering and discussing the related papers.

• Developing a tie-breaking method based on method call frequency to enhance
the performance of SBFL.

• Evaluating the experimental results of the proposed tie-breaking method.

Thesis Point III: Emphasizing SBFL Formulas with Im-
portance Weights

In Chapter 5, we enhanced SBFL by proposing the use of emphasis on the failing
tests that execute the program element under consideration in SBFL. We rely on the
intuition that if a code element gets executed in more failed test cases compared to
the other elements, it will be more suspicious and be given a higher ranking. This
is achieved by multiplying the initial suspicion score, computed by underlying SBFL
formulas, of each program method by an importance weight that represents the rate
of executing a method in failed test cases.
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In this chapter, the following points summarize my main contributions to the topic
of thesis point III. The results of this chapter were published in [119] and [121].

• Providing the idea of using importance weights to improve the effectiveness of
SBFL.

• Gathering and discussing the related papers.

• Developing two methods based on importance weight. The first method im-
proves SBFL without using any contextual information and the second method
improves SBFL by using contextual information.

• Evaluating the experimental results of the proposed methods of importance
weights.

Thesis Point IV: New Formulas for SBFL

In Chapter 6, we proposed a new SBFL ranking formula to automatically lead de-
velopers to the locations of faults in programs. It is based on the intuition that ties
often happen because of shared ef and nf values, and in this case, more failing tests
(larger ef ) and/or fewer passing ones (smaller ep) will determine the outcome. Via
an evaluation across 297 different single-fault programs of Defects4J, the proposed
formula is shown to be more effective than all the selected SBFL formulas in this
study. It approves the average rank and the Top-N categories as well.

Introducing new SBFL formulas is an interesting line of research. Sometimes we
can get good results from not-so-obvious formulas or a simple combination of ef , ep,
nf , and np. Therefore, we performed a more systematic approach to finding new
formulas.

We proposed a systematic approach to search for new SBFL formulas using only
the four basic statistical numbers from the spectra. For this purpose, formula tem-
plates are determined and the possible formulas are generated automatically. As a
demonstration, we used a formula template to systematically generate all formulas
for that template, then these were analyzed and their effectiveness was evaluated on
the Defects4J dataset. Interestingly, the analysis has shown that in theory several for-
mulas generated from the same template are equivalent to or should similarly rank
elements to each other, while the handling of special cases (like division-by-zero) can
significantly influence the practical performance of the formulas and thus the rela-
tions among them. In the aforementioned preliminary study, we found formulas that
outperformed some existing ones but failed to achieve significant improvement over
the most successful existing techniques. However, since the template we used was
very simple, this is not surprising.

Thus, we extended the effort to systematically search for SBFL formulas in [123].
We defined new formula templates, which are more elaborate and can cover more
existing formulas. The results of our extended formula templates show that the pro-
posed approach led to new formulas (i.e., SGF-1 and SGF-2) that were not reported
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in the literature and that outperformed many well-known existing ones. In particu-
lar, formula SGF-2 performed very well in all measurements, and being surprisingly
simple, we think that it is very competitive to many previously advised and widely
used manually crafted formulas.

This proves that the concept is valid and research on systematic SBFL formula
generation is a promising direction. Compared to the GP-generated approaches or
ML, our approach generates readable and explainable formulas.

In this chapter, the following points summarize my main contributions to the
topic of thesis point IV. The results of this chapter were published in [120], [123],
and [124].

• Providing the idea of introducing new formulas to improve the effectiveness of
SBFL.

• Gathering and discussing the related papers.

• Developing several new formulas and comparing their effectiveness to the ex-
isting formulas.

• Evaluating the experimental results of the proposed new SBFL formulas.

Thesis Point V: Supporting Tools for SBFL

In Chapter 7, we present “CharmFL”, an open-source fault localization tool for
Python programs. The tool is developed with many interesting features that can
help developers debug their programs by providing a hierarchical list of ranked pro-
gram elements based on their suspiciousness scores. Also, we present “SFLaaS”, a
fault localization tool for Python programs, which is provided in the form of software
as a service. It is implemented with many helpful and practical characteristics to aid
developers in debugging their programs. The applicability of both tools has been
evaluated via different use cases. The tools have been found to be useful for locating
faults in different types of programs and they are easy to use.

In this chapter, the following points summarize my main contributions to the topic
of thesis point V. The results of this chapter were published in [127], [134], [125],
and [126].

• Regarding the “SFLaaS” tool, I did the following:

– Developed the fault localization tool as a service to support SBFL for
Python developers.

– Performed the literature review of the currently available tools.

– Prepared the use cases of the tool.

• Regarding the “CharmFL” tool, I participated in the following:



144 Appendix A: Summary

– Developed the fault localization tool to support SBFL for Python develop-
ers.

– Performed the literature review of the currently available tools.

– Prepared the use cases of the tool.

Table A.1: Mapping of PhD thesis points, chapters, and publications

No. PhD Thesis Points Chapters Publications
I. Systematic Survey of SBFL Challenges Chapter 3 [122]
II. Tie-Breaking Method for SBFL Chapter 4 [60]
III. Emphasizing SBFL Formulas with

Importance Weights
Chapter 5 [119], [121]

IV. New Formulas for SBFL Chapter 6 [120], [123], [124]
V. Supporting Tools for SBFL Chapter 7 [127], [134], [126], [125]



Appendix B: Összegzés

A szoftverhibák lokalizálása jelentős kutatási téma a szoftverfejlesztésben. Annak
ellenére, hogy az 1950-es évek végén kezdődött, a (szoftver)hibalokalizációs ku-
tatások az utóbbi évtizedekben egyre nagyobb figyelmet kaptak. Ezt tükrözi a tech-
nikák, eszközök és publikációk számának növekedése. A fokozott figyelem fő oka
a szoftverrendszerek méretének drámai növekedése az általuk biztośıtott újonnan
hozzáadott funkciók miatt. Ez egyben e rendszerek komplexitásának növekedéséhez
is vezetett. Ennek eredményeképpen több hibát is jelentettek. Itt a szoftverhibák
lokalizálása jó megközeĺıtés a hibák számának csökkentésére és a szoftver minőségének
biztośıtására. A jelen doktori értekezés célja a spektrumalapú hibalokalizáció (SBFL),
a legelterjedtebb hibalokalizációs technika hatékonyságának jav́ıtása azáltal, hogy
foglalkozik a technika által felvetett legfontosabb kih́ıvásokkal és problémákkal.

Ez a doktori értekezés három részből áll. Az első rész (1-2. fejezetek) munkánk
bevezető része, amely meghatározza a doktori értekezés célját és azokat az alapvető
defińıciókat, amelyek szükségesek a későbbi fejezetekben bemutatott tézispontok
megértéséhez. A második rész (3-7. fejezetek) a tézispontokat tartalmazza, amely
bemutatja az SBFL hatékonyságának növeléséhez való hozzájárulásomat azáltal, hogy
néhány fő kih́ıvással és problémával foglalkozik. A harmadik rész (8. fejezet) a
következtetések és a jövőbeli munka része, amely lezárja a dolgozatot, és különböző
utakat javasol a jövőbeli kutatáshoz. Az általam elért és ebben a szakdolgozatban
közölt tudományos eredményeket több tézispontba csoportośıtottam, az alábbiakban
bemutatottak szerint. A tézispontok, az azokat alátámasztó publikációk és a fejezetek
közötti kapcsolatot az A.1. táblázat mutatja be.

Tézis I pont: Az SBFL kih́ıvásainak szisztematikus átteki-
ntése

A dolgozat 3. fejezetében bemutatjuk a terület szisztematikus irodalmi áttekintését.
Ennek eredményeképpen az SBFL számos fontos kérdését és kih́ıvását azonośıtottuk
és kategorizáltuk ebben a felmérő tanulmányban. Minden kategóriában röviden be-
mutattuk a legfontosabb problémákat a lehetséges megoldásokkal együtt. A következő
fejezetekben tárgyalt ḱısérleti eredmények ezen tanulmánynak a megállaṕıtásaira
épültek.

Ebben a fejezetben a következő pontok foglalják össze az I. tézispont témájával
kapcsolatos főbb eredményeimet [122].
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• Elméleti háttér nyújtása az SBFL témájához és főbb fogalmaihoz.

• Szisztematikus irodalmi áttekintés késźıtése, amely megvitatta az SBFL-hez
kapcsolódó cikkeket, valamint a széles körű alkalmazását akadályozó kih́ıvásokat
és problémákat. A szisztematikus felmérés eredményei azt mutatták, hogy az
SBFL még mindig számos problémát vet fel, amelyekkel még nem foglalkoztak.

• Az azonośıtott kih́ıvások és problémák 18 kategóriába sorolása. A gyakor-
latban az SBFL kih́ıvásainak kezelése számos irányban jav́ıthatja az SBFL tel-
jeśıtményét, amint azt a következő fejezetekben látni fogjuk.

Tézis II pont: Holtverseny-feloldás módszere az SBFL
esetében

A 4. fejezetben javasoltunk egy megoldást a programelemek közötti holtverseny
megszüntetésére, amikor azokat egy SBFL-képlet alapján rangsorolják. Az SBFL-ben
az azonos gyanússági értékek az alkalmazott formulától függetlenül nagyon gyako-
riak, és ezen holtversenyek megszüntetése által a lokalizációs hatékonyság javulása
várható. Javasoljuk a eljárásh́ıvási kontextusok használatát az SBFL-ben a holt-
verseny feloldására. A h́ıvási vermek tartalmára támaszkodunk, amelyből hasznos
információk nyerhetőek ki a program futására vonatkozóan, és amelyek gyakran
seǵıthetik a fejlesztőket a hibakeresésben. A különböző h́ıvási vermekben előforduló
metódusok gyakorisága határozza meg a kódelemek egymáshoz viszonýıtott poźıcióját
az azonos gyanússági érték esetén.

Ebben a fejezetben a következő pontok foglalják össze a II. tézispont témájával
kapcsolatos főbb eredményeimet [60].

• Az SBFL hatékonyságának jav́ıtása érdekében a holtverseny feloldásának ötlete.

• Háttér nyújtása az SBFL-ben a holtversenyek problémájáról.

• A kapcsolódó cikkek összegyűjtése és feldolgozása.

• Az eljárás h́ıvási gyakoriságán alapuló holtverseny döntési módszer kidolgozása
az SBFL teljeśıtményének növelése érdekében.

• A javasolt holtverseny feloldási módszer ḱısérleti eredményeinek értékelése.

Tézis III pont: SBFL-képletek súlyozása fontossági súlyo-
kkal

Az 5. fejezetben továbbfejlesztettük az SBFL-t azzal, hogy az SBFL-ben a vizsgált
programelemet végrehajtó hibás tesztek súlyozását javasoltuk. Arra az intúıcióra
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támaszkodunk, hogy ha egy kódelemet a többi elemhez képest több sikertelen teszteset-
ben hajtanak végre, akkor az gyanúsabb lesz, és magasabb rangsorolást kap. Ezt úgy
érjük el, hogy az egyes program-eljárások SBFL-formulák alapján kiszámı́tott kezdeti
gyanússági pontszámát megszorozzuk egy fontossági súllyal, amely a módszer sik-
ertelen tesztesetekben történő végrehajtásának arányát jelzi.

Ebben a fejezetben a következő pontok foglalják össze a III. tézispont témájával
kapcsolatos főbb eredményeimet. E fejezet eredményeit az [119] és [121] cikkek
tartalmazzák.

• Az SBFL hatékonyságának jav́ıtása érdekében a fontossági súllyal való súlyozás
ötlete.

• A kapcsolódó cikkek összegyűjtése és feldolgozása.

• Két módszer kifejlesztése a fontossági súly alapján. Az első módszer a kontextus
információk felhasználása nélkül jav́ıtja az SBFL-t, a második módszer pedig
ezek felhasználásával jav́ıtja az SBFL-t.

• A javasolt fontossági súlyon alapuló módszerek ḱısérleti eredményeinek kiérték-
elése.

Tézis IV pont: Új képletek az SBFL számára

A 6. fejezetben egy új SBFL rangsorolási formulát javasoltunk. Ez azon az intúıción
alapul, hogy a kötések gyakran a közös ef és nf értékek miatt következnek be, és
ebben az esetben a több sikertelen teszt (nagyobb ef ) és/vagy a kevesebb átmenő
teszt (kisebb ep) határozza meg a végeredményt. A Defects4J 297 különböző egyetlen
hibát tartalmazó programjának kiértékelésén keresztül a javasolt képlet hatékonyabb-
nak bizonyul, mint a tanulmányban kiválasztott összes SBFL-képlet, úgy az átlagos
rangsor mint a Top-N kategóriák tekintetében.

Az új SBFL-formulák bevezetése érdekes kutatási irányvonal. Néha jó eredményeket
kaphatunk nem is olyan nyilvánvaló formulákból vagy a ef , ep, nf és np egyszerű
kombinációjából. Ezért szisztematikusabb megközeĺıtést végeztünk az új formulák
konstruálására.

Javasoltunk egy szisztematikus megközeĺıtést új SBFL-képletek generálására, amely
csak a spektrumokból származó négy alapvető statisztikai számot használja. Ehhez
képletsablonokat határozunk meg, és a lehetséges képleteket automatikusan generáljuk.
Demonstrációként egy képletsablon seǵıtségével szisztematikusan generáltuk az összes
képletet az adott sablonhoz, majd ezeket elemeztük és hatékonyságukat a Defects4J
adathalmazon értékeltük. Érdekes módon az elemzés azt mutatta, hogy elméletileg
több, ugyanabból a sablonból generált formula egyenértékű, vagy hasonlóan kell
rangsorolni az elemeket egymáshoz, mı́g a speciális esetek (például a nullával való
osztás) kezelése jelentősen befolyásolhatja a formulák gyakorlati teljeśıtményét és
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ı́gy a köztük lévő kapcsolatokat. A fent emĺıtett előzetes tanulmányban olyan for-
mulákat találtunk, amelyek felülmúltak néhány létező formulát, de nem sikerült je-
lentős javulást elérni a legsikeresebb létező technikákhoz képest. Ezért kiterjesztettük
a módszerünket az SBFL formulák szisztematikus keresésére [123]. Új képletsablono-
kat definiáltunk, amelyek kidolgozottabbak és több létező képletet képesek lefedni. A
kibőv́ıtett képletsablonjaink eredményei azt mutatják, hogy a javasolt megközeĺıtés
olyan új képleteket eredményezett, amelyekről a szakirodalomban nem számoltak
be, és számos jól ismert létező képletet felülmúlt. Különösen az SGF-2 formula
teljeśıtett nagyon jól minden mérésben, és mivel meglepően egyszerű, úgy gondo-
ljuk, hogy nagyon versenyképes számos korábban javasolt és széles körben használt,
kézzel késźıtett formulával szemben.

Ez azt bizonýıtja, hogy a koncepció működőképes, és a szisztematikus SBFL-
képletgenerálással kapcsolatos kutatás ı́géretes irány. A GP-generált megközeĺıtésekh-
ez vagy az ML-hez képest a mi megközeĺıtésünk olvasható és megmagyarázható for-
mulákat generál.

Ebben a fejezetben a következő pontok foglalják össze a IV. tézispont témájával
kapcsolatos főbb eredményeimet [120], [123], és [124].

• Az SBFL hatékonyságának jav́ıtása érdekében új formulák bevezetésének ötlete.

• A kapcsolódó cikkek összegyűjtése és feldolgozása.

• Több új formula kifejlesztése és hatékonyságuk összehasonĺıtása a meglévő for-
mulákkal.

• A javasolt új SBFL-képletek ḱısérleti eredményeinek értékelése.

Tézis V pont: Támogató eszközök az SBFL számára

A 7. fejezetben bemutatjuk a “CharmFL” nýılt forráskódú hibalokalizációs eszközt
Python programokhoz. Az eszköz számos hasznos funkcióval rendelkezik, amelyek
seǵıthetik a fejlesztőket programjaik hibakeresésében, mivel a gyanússági pontszámok
alapján rangsorolt programelemek hierarchikus listáját nyújtja. Emellett bemutatjuk
az “SFLaaS”-t, egy hibalokalizációs eszközt Python programokhoz, amelyet szoftver
mint szolgáltatás formájában nyújtunk. Számos hasznos és praktikus tulajdonsággal
van implementálva, hogy seǵıtse a fejlesztőket programjaik hibakeresésében. Mindkét
eszköz alkalmazhatóságát különböző felhasználási eseteken keresztül értékeltük. Az
eszközök hasznosnak bizonyultak a különböző t́ıpusú programok hibáinak lokalizálá-
sára, és könnyen használhatóak.

Ebben a fejezetben a következő pontok foglalják össze a V. tézispont témájával
kapcsolatos főbb eredményeimet [127], [134], [125], és [126].

• Az “SFLaaS” eszközzel kapcsolatban a következők az eredményeim:

– A hibalokalizációs eszköz fejlesztése szolgáltatásként az SBFL támogatására
Python fejlesztők számára.
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– A jelenleg elérhető eszközök szakirodalmi áttekintésének elvégzése.

– Az eszköz használati eseteinek előkésźıtése.

• A “CharmFL”-lel kapcsolatban a következőkben vettem részt:

– Hibalokalizációs eszköz fejlesztése az SBFL támogatására Python fejlesztők
számára.

– A jelenleg elérhető eszközök szakirodalmi áttekintésének elvégzése.

– Az eszköz használati eseteinek előkésźıtése.

Table A.1: PhD tézispontok, fejezetek és publikációk kapcsolata

Szám PhD tézispontok Fejezetek Publikációk
I. Az SBFL kih́ıvásainak szisztematikus

felmérése
Fejezet 3 [122]

II. Holtpont feloldás módszere SBFL-hez Fejezet 4 [60]
III. Az SBFL képletek súlyozása fontossági

súlyokkal
Fejezet 5 [119], [121]

IV. Új képletek az SBFL-hez Fejezet 6 [120], [123], [124]
V. Támogató eszközök az SBFL-hez Fejezet 7 [127], [134], [126], [125]
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