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Abstract. This paper investigates whether the machine learning framework

of statistical learning theory can offer an epistemic justification for a sim-
plicity preference in inductive inference. Uniting elements from both earlier

arguments suggesting and rejecting such a justification, the paper spells out a

qualifiedmeans-ends andmodel-relative justificatory argument, built on statis-
tical learning theory’s central mathematical learning guarantee for the method

of empirical risk minimization.

1. Introduction

Statistical learning theory is the standard framework for the mathematical anal-
ysis of machine learning methods (Vapnik, 2000; Shalev-Shwartz and Ben-David,
2014). The framework offers theoretical learning guarantees for certain algorithmic
learning methods, thus providing a foundation for asserting that such methods are
good methods.

An old trope in machine learning, usually evoked under the label of Occam’s
razor, is that a shared trait of many good methods is a bias towards simplicity
(Mitchell, 1997; Duda et al., 2001; Shalev-Shwartz and Ben-David, 2014; Goodfel-
low et al., 2016; Alpaydin, 2020). Occam’s razor, understood as the principle that
a simplicity preference is integral to good scientific or inductive reasoning, is also
a long-standing topic of debate in the philosophy of science (Sober, 2015; Baker,
2022). The central question here is whether we actually have some epistemic jus-
tification for Occam’s razor. That is, we seek a rational reason for thinking that
a simplicity preference is good in helping us attain desirable epistemic ends, like
minimizing error.

A step forwards in the wider debate would be a justification for Occam’s razor
in machine learning methods, and an obvious place to look for such a justification
is statistical learning theory. Indeed, formal results in this framework have been
quoted in support of such a justification (e.g., Blumer et al., 1987; Shalev-Shwartz
and Ben-David, 2014). On the other hand, computer scientists and philosophers
alike have also relied on formal results to argue against such a justification in this
framework (e.g., Domingos, 1999; Herrmann, 2020).

In this paper, I develop a qualified epistemic justification for Occam’s razor in sta-
tistical learning theory, that accommodates the intuitions and arguments from both
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sides. An important component of my account is themodel-relativity of the justifica-
tion obtainable from theoretical learning guarantees, as highlighted by Sterkenburg
and Grünwald (2021). Another important characteristic is the means-ends nature
of the justificatory reasoning. The result—with a label that is testimony to its
highly qualified nature—is a means-ends model-relative justification for Occam’s
razor in statistical learning theory.

The argument I present here is based on the first of the two “inductive princi-
ples” (Vapnik, 2000) central to statistical learning theory, namely the method of
empirical risk minimization. My argument does further inherit from this method
a corresponding restriction in applicability. However, the method of empirical risk
minimization also underlies the more general method of structural risk minimiza-
tion. This paper’s argument based on empirical risk minimization already exhibits
the main components, I think, for an extended justification based on structural risk
minimization. But that is work for a follow-up paper.

Apart from this restriction in scope, there is a worry about the paper’s general
project that I should acknowledge. This worry is that the project engages with a
debate of a bygone era. It has been well over a decade since Harman and Kulkarni
(2007) initiated a small wave of philosophical interest in statistical learning theory,
and Steel (2011, p. 860) concluded that the theory is “worthy of further sustained
interest from philosophers of science.” This sustained interest has not materialized,
while the landscape of machine learning has altered significantly. Especially the
advent of deep neural networks (DNN’s) has caused a shift in what seem the more
pertinent epistemological issues: from the traditional questions around the relia-
bility of inductive inference to questions around interpretability and explainability
(Beisbart and Räz, 2022; Freiesleben and König, forthcoming). Moreover, the ad-
vent of these algorithms has problematized the very utility of theoretical analysis
(Sculley et al., 2018), and the utility of statistical learning theory in particular.
Namely, statistical learning theory seems simply not equipped to explain the gener-
alization behaviour of machine learning algorithms like DNN’s (Belkin, 2021; Hardt
and Recht, 2022; Berner et al., 2022), prompting a “quest for a new framework for a
‘theory of induction’” (Belkin, 2021, p. 217). To put it bluntly: why a renewed sus-
tained philosophical engagement with the framework of statistical learning theory,
if this framework is starting to look like a thing of the past?

One answer is simply that it is still of philosophical interest if and how the
standard framework already offers some justification for Occam’s razor. Curiously,
statistical learning theory is largely left out the modern shift of the philosophical
debate towards various frameworks in mathematical statistics (Sober, 2015, ch.
2; Baker, 2022, sect. 5), with Sober (2015, p. 140) perceiving statistical learning
theory to be “dramatically” different from the “Bayesian and frequentist ideas”
that have informed this modern debate so far. The current project thus fills a clear
gap in the philosophical literature. But a further answer is that the current project
is a stepping stone towards the philosophical analysis of any new “framework for
a theory of induction” in machine learning. Belkin indeed evokes “a very pure
form of Occam’s razor” as the “guiding principle” in a new framework (2021, p.
218). To properly assess the role and justification of simplicity in such an emerging
new framework, it will at the very least be helpful to actually have clarity on its
role in the standard framework. The “generalization puzzle” (Berner et al., 2022,
p. 25) that is now hotly debated in the machine learning community is indeed a
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modern reincarnation of exactly those traditional philosophical questions around
the reliability of induction. Work like the current project can, I hope, provide a
basis for philosophers to engage with this exciting but complex debate.

The plan of this paper is as follows. In section 2, I present the framework of
statistical learning theory and the main technical ingredients for the argument for
Occam’s razor. These include the notions of empirical risk minimization, learnabil-
ity, uniform convergence, and VC dimension, and the fundamental theorem that
ties these notions together. In section 3, I argue that VC dimension is a robust
notion of the simplicity of a hypothesis class. In section 4, I present the justifi-
catory argument. This argument relies, as mentioned, on the model-relativity of
learning-theoretic justification, and more generally on an epistemological perspec-
tive on machine learning methods that calls for this type of normative element. I
conclude in section 5.

2. The formal ingredients

In my presentation of the framework of statistical learning theory, I mainly
follow Shalev-Shwartz and Ben-David (2014).1,2 I restrict attention to the most
basic learning paradigm in this framework, the paradigm of binary classification.

2.1. Binary classification. In this learning problem, we have a domain X of
instances (say, images of animals). We seek to assign these instances binary labels
(say, cat or not cat). More precisely, we seek to find a general classifier or hypothesis
h : X → Y that maps all instances in X to a label in the binary label set Y.3

This is a learning problem because we first draw a finite training sample of la-
beled instances, on the basis of which we then seek to find—to learn—a general
hypothesis. The assumption in statistical learning theory is that there always is
some true but unknown distribution D over X × Y, that governs both the sam-
pling of instances and (via the conditional Y | X ) the connection between instances
and labels. It is assumed we obtain labeled instances by repeatedly drawing from
this same distribution: the labeled instances are independently and identically dis-
tributed (i.i.d.). In this way, we draw a training sample S, that is a finite ordered
sequence of input-label pairs. Based on the training sample, we seek to learn a
good hypothesis.

To assess hypotheses, we use some error function. The standard choice in binary
classification is the 0/1 error function, that returns error 0 (error 1) for a correct

1Their presentation is essentially a synthesis of Vapnik’s (1999; 1998; 2000) “general setting of
learning” and Valiant’s (1984) model of “probably approximately correct” (PAC) learning (Shalev-

Shwartz and Ben-David, 2014, p. 28). The main concern in Vapnik’s setting is the statistical
analysis of uniform convergence of learning algorithms, and this approach is also simply called VC
theory after the groundbreaking early work of Vapnik and Chervonenkis (1971). The tradition

initiated by Valiant is also called computational learning theory (see Anthony and Biggs, 1992;

Kearns and Vazirani, 1994), and an essential component is the computational efficiency of learning.
This computational component is separated from the statistical component in Shalev-Shwartz and

Ben-David’s presentation, and I will likewise not be concerned with computational considerations
in this paper.

2A chapter-length introduction to statistical learning theory aimed at philosophers, that I also

draw from, is (von Luxburg and Schölkopf, 2011). A more basic philosophical introduction is
(Harman and Kulkarni, 2007).

3Hypotheses are often called models in the machine learning literature. I will stick here to the
terminology of Shalev-Shwartz and Ben-David (2014), also to not risk confusion with the notion

of inductive model (class of hypotheses) in the model-relative justification I discuss in section 4.
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(incorrect) classification. Then the empirical error of h on a sample S is given by
the mean 0/1 error of instances,

LS(h) :=
|{(x, y) ∈ S : h(x) ̸= y}|

|S|
.

But what we are actually interested in is the quality of a classifier over all possible
instances. We express this as the expected error or risk of h with respect to the
true distribution D over X × Y,

LD(h) := E(X,Y )∼D
[
L(X,Y )(h)

]
.

We thus seek to find a hypothesis, based on a training sample S, with a low risk
with respect to the true but unknown distribution D.

2.2. Hypothesis classes and learning methods. In the framework of statisti-
cal learning theory, we are fully agnostic about the shape of the distribution D.
However (as I discuss in more detail later), we cannot get anywhere unless we im-
pose restrictions elsewhere. The approach in statistical learning theory is to make
the analysis relative to some hypothesis class H. We then seek to select a hypoth-
esis h from H which has relatively low risk, among those hypotheses in H, with
respect to true but unknown D. That is, we seek to select, based on training data,
a hypothesis with risk close to minh′∈H LD(h

′).4

This is a machine learning problem because we want to specify an automated
learning procedure or learning method to do this selection—this learning—of hy-
potheses from samples. Formally, we treat a learning method as a function from
all possible samples to hypotheses.5

A basic such method is the procedure of empirical risk minimization (ERM) for
given hypothesis class H, that for given sample S simply selects a hypothesis in H
with minimal error on the sample.

Definition 1. Empirical risk minimization for hypothesis class H, write ERMH,
returns for each S ∈ S a hypothesis in argminh∈H LS(h).

What makes a learning method like ERM for H a good method? Given the
indicated goal of finding a relatively-low-risk hypothesis in H, method ERMH can
be called good if it has some sufficiently strong guarantee of attaining this goal; or
rather, of attaining some formally precise version of this informal goal.

2.3. Learnability. The main such formal guarantee of good learning is formulated
in terms of the following components.

First, we quantify the “relatively-low-risk” by an accuracy parameter ϵ. This
ϵ bounds the difference between the best possible risk minh∈H LD(h) and the risk
LD(AH(S)) of a hypothesis selected by method AH on sample S. This difference
is also called the estimation error.

Second, because of the randomness in the generation of samples from D, any
guarantee can at best be probabilistic. Intuitively, we can only expect a learning
method to select a good hypothesis based on samples that are in fact representative

4This is what Shalev-Shwartz and Ben-David (2014, p. 23) call agnostic learning, as opposed

to the more specific paradigm of realizable learning, where we make the (very strong) assumption

that H already contains an h∗ with zero true risk (ibid., def. 2.3). In computational learning
theory this assumption is actually standard.

5Again, I abstract away from computational considerations.
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of the true distribution D; but we cannot exclude that with small probability we
draw a sample that is not representative. Hence we also introduce a confidence
parameter δ that quantifies this probability.

Finally, again due to the randomness in drawing samples, the quality of an
estimate is inevitably connected to the size of the sample. We will thus formulate
our guarantee as a relation between sample size, confidence, and accuracy.

This guarantee is probably approximately correct (PAC) learnability6—or simply,
learnability. Hypothesis class H is learnable by a learning method AH if for any
given accuracy ϵ and confidence 1− δ, there is a large enough sample size m0 such
that for any m ≥ m0, we have the following, no matter the true distribution D.
With probability at least 1−δ over the possible size-m samples Sm drawn i.i.d. from
D, method AH, on receiving such a sample, returns a hypothesis with estimation
error below ϵ. To rephrase,

Definition 2 (Learnability). A hypothesis class H is learnable if there exists a
learning method AH : S → H and a sample size function mH : (0, 1)2 → N such
that for all ϵ, δ ∈ (0, 1), for all m ≥ mH(ϵ, δ) and any distribution D over X × Y,

ProbS∼Dm

[
LD(AH(S)) ≤ min

h∈H
(LD(h)) + ϵ

]
≥ 1− δ.(1)

Note that this guarantee (in particular, the minimum sample size mH(ϵ, δ) for
given ϵ and δ) only depends on the hypothesis class H. In line with the agnostic
approach in statistical learning theory, it is a distribution-free guarantee: the sample
size does not depend on the true distribution D.

Learnability is much related to another property of a hypothesis class, namely
uniform convergence. The former, as we have seen, concerns the estimation error of
a learning method; the latter concerns the difference between the empirical errors
and the true risks of all hypotheses in the class. This property will allow us to
relate the ERM method to learnability.

2.4. Uniform convergence and empirical risk minimization. The law of
large numbers already tells us that, for any fixed hypothesis h, as we draw larger
and larger samples Sm i.i.d. from true distribution D, the empirical error of h on
Sm will in probability converge to its true risk. However, in our learning problem,
we are not interested in fixing a particular hypothesis and estimating its true risk.
We are interested in the performance of a learning algorithm, which, based on the
data, can select different hypotheses. For this we need something stronger, namely
a “uniform law of large numbers,” which bounds the difference between empirical
errors and true risks of all hypotheses uniformly—simultaneously.

For given hypothesis class H, call a training sample ϵ-representative if simulta-
neously for all hypotheses h ∈ H the difference between h’s empirical error LS(h)
on S and h’s true risk LD(h) is smaller than ϵ,

(∀h ∈ H) [|LS(h)− LD(h)| ≤ ϵ] .(2)

On such a sample, all empirical errors give good indications of the true errors:
“what-you-see-is-what-you-get” (“wysiwyg”, terminology Belkin, 2021). Now a hy-
pothesis class has the uniform convergence property if there is a “wysiwyg” guar-
antee of drawing such representative samples. Precisely,

6This notion was formulated (with the additional component of computational complexity) by
Valiant (1984), while the term “pac-learning” appears to be due to Angluin and Laird (1988).
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Definition 3 (Uniform convergence). A hypothesis class H has the uniform con-
vergence property if there exists a sample size function muc

H : (0, 1)2 → N such that
for all ϵ, δ ∈ (0, 1), for all m ≥ muc

H (ϵ, δ) and any distribution D over X ×Y we have

ProbS∼Dm [(∀h ∈ H) [|LS(h)− LD(h)| ≤ ϵ]] ≥ 1− δ.(3)

To link this property to the ERM method, we first reformulate it. Namely, we
have stated it in terms of the minimum sample size muc

H (ϵ, δ) we need for given ϵ
and δ; but we can also formulate it as the bound on ϵ we get for given δ and sample
size m. Precisely, there is an accuracy function ϵucH (m, ϵ) such that for given δ and
m we have with probability at least 1− δ that

(∀h ∈ H) [|LD(h)− LS(h)| ≤ ϵucH (m, δ)] ,(4)

which in particular gives a uniform upper bound on true risk in terms of empirical
error,

(∀h ∈ H) [LD(h) ≤ LS(h) + ϵucH (m, δ)] .(5)

Now recall that the method ERMH for given sample S of length m selects an h
that minimizes LS(h). Since ϵ

uc
H (m, δ) is a constant term for fixed m and δ, method

ERMH can be seen to explicitly minimize this upper bound

LD(h) ≤ LS(h) + ϵucH (m, δ)(6)

on the true risk. Thus, given H satisfies uniform convergence, ERMH selects a
hypothesis with the sharpest uniform upper bound on its true risk.

This minimization property, under the assumption of uniform convergence, al-
lows us to derive that ERMH learns H. Informally,7 if we have a guarantee that
large enough samples are probably representative (uniform convergence), then in
particular the lowest-empirical-error hypotheses (selected by ERMH) probably have
approximately lowest true risk, and so small estimation error (learnability).

Uniform convergence thus gives us a sufficient condition for learnability, and
learnability by ERM. However, this is still a rather abstract property, that does
not give much intuition for what kind of hypothesis classes satisfy it. Fortunately,
it turns out that there is a more concrete and intuitive property of hypothesis classes
that is equivalent to learnability, and in fact already equivalent to learnability by
ERM. This property is a criterion of the simplicity of a hypothesis class.

2.5. The VC dimension. The crucial notion in demarcating classes that are and
that are not learnable builds on a notion that expresses that a given hypothesis
class H covers all possible labelings of a finite set of instances. Define, for given
hypothesis class H and finite instance set X = {x1, . . . , xm} ⊂ X , the restriction
of H to finite set X as the class H|X of functions f : X → Y such that f(x) = h(x)
for some h ∈ H and all x ∈ X . Then we say that H shatters finite X ⊂ X if the
restriction of H to X contains all functions f : X → Y. That is, each possible
labeling of the instances in X is covered by some hypothesis in H.

Now the Vapnik-Chervonenkis (VC, after Vapnik and Chervonenkis, 1971) di-
mension of hypothesis class H is the largest size of a subset X of instances for
which this is possible.

7See Shalev-Shwartz and Ben-David (2014, sect. 4.1, specifically lemma 4.2) for the (straight-
forward) formal derivation.
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Definition 4. The VC dimension of hypothesis class H is the maximal size of a
set X ⊂ X that is shattered by H. If H shatters sets of arbitarily large size, then
the VC dimension of H is infinite. A VC class is a class with finite VC dimension.

In machine learning terminology, VC dimension is a measure of the capacity
of a hypothesis class.8 It is a measure of the extent to which a hypothesis class
covers—contains hypotheses with good fit on—possible data samples. In that sense
VC dimension is a notion of the “richness” or complexity of a hypothesis class; and
finiteness of VC dimension a criterion of a hypothesis class being sparse or simple.
I discuss this simplicity interpretation in more detail in section 3 below.

2.6. Bringing it all together. The central result of statistical learning theory
elegantly ties together the pivotal notions of the previous sections.

Theorem 5 (Fundamental theorem of statistical learning theory9). The following
are equivalent:

• H has the uniform convergence property;
• H is learnable;
• H is learnable by ERMH;
• H is a VC class.

In particular, if, and only if, hypothesis class H has finite VC dimension, we have
a “wysiwyg” guarantee of a good indication of true risk (uniform convergence), and
a method, ERMH, that is a good method, in the sense of satisfying a guarantee
of minimizing estimation error (learnability). We therefore have, for VC class H, a
certain justification for the ERMH method.10

Actually, we can further fine-grain this picture within the finite VC dimension
regime. Namely, the VC dimension of class H gives a quantitative bound on the
sample size for uniform convergence and for learnability.

8There exist several generalizations of VC dimension, like the Natarajan dimension in mul-
ticlass categorization (see Shalev-Shwartz and Ben-David, 2014, ch. 29), and indeed altogether
different capacity notions in different learning paradigms, like the Littlestone dimension in realiz-

able online learning (see ibid., sect. 21.1), and the parametric complexity in MDL inference (see
Grünwald, 2007). The notion of the capacity of a function class and its relation to generalization

appears to have been introduced by Cover (1965).
9In their pioneering work, Vapnik and Chervonenkis (1971) established the link between uni-

form convergence, “consistency” of ERM, and their notion of VC dimension, proving a generaliza-

tion of the “fundamental theorem of mathematical statistics,” the Glivenko-Cantelli theorem of
the uniform convergence of the empirical distribution function (see Devroye et al., 1996, ch. 12).

The connection between VC theory and computational learning theory (in particular, Valiant’s

notion of PAC learnability) was first spelled out by Blumer et al. (1986, 1989).
10In my presentation, I also follow Shalev-Shwartz and Ben-David (2014) in focusing on the

epistemic end of learnability (minimizing estimation error). But another important epistemic
end that is supported by the uniform convergence “wysiwyg” guarantees is model assessment,

where we use the training error to assess whether the model (the learned hypothesis or indeed the

hypothesis class) is actually good. (For instance, in the discussion of VC theory by Hastie et al.
(2009, sect. 7.9), the emphasis is rather on this end.) I will continue to build the justificatory

story on the inductive goal of learnability, but briefly return to this further end in footnote 36.
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Theorem 6 (Fundamental theorem, quantitative version11,12). For any VC class
H, there are constants C1, C2 such that, for any ϵ, δ, we have

C1b ≤ muc
H (ϵ, δ),mH(ϵ, δ) ≤ C2b

where

b =
VCdim(H)− log δ

ϵ2
.

At bottom, the fundamental theorem expresses a certain relation between four
quantities (VC dimension, sample size, accuracy, and confidence), where, in particu-
lar, a lower VC dimension opens space for lower values of the other three quantities
(meaning, for stronger bounds). Thus, a lower VC dimension of H goes with a
better guarantee and therefore a stronger justification for the ERMH method.

I discuss this justification, and how to further turn this into a justificatory ar-
gument for simplicity, in more detail in section 4 below. But first I will zoom in on
the relevant notion of simplicity, given by the formal notion of VC dimension.

3. The notion of simplicity

While, I will argue in this section, the notion of VC dimension does not give us
a handle on the simplicity of individual hypotheses (sect. 3.1), it does constitute a
plausible and robust measure of the simplicity of hypothesis classes (sect. 3.2).

3.1. Individual hypotheses and hypothesis classes. Capacity notions like VC
dimension apply to hypothesis classes, not individual hypotheses. Yet in some
discussions of simplicity, that also rely on the relation between uniform convergence
and small size or capacity of the hypothesis class, the notion of simplicity invoked
actually concerns individual hypotheses. These discussions use a notion of the
complexity of an hypothesis as the complexity of its representation in some formal
language.

An influential example is the argument of Blumer et al. (1987) that “under
very general assumptions, Occam’s Razor produces hypotheses that with high
probability will be predictive of future observations” (ibid., p. 378).13 An ear-
lier example still is Pearl (1978), who discusses the connection between simplicity
and “credibility” of hypotheses via different notions of capacity and generalization
performance—including already VC dimension and uniform convergence (ibid., pp.
261ff).

Pearl sets the stage as follows. We take some language L with an interpretation
function I that maps sentences in the language to hypotheses (ibid., pp. 256f). Then

11See Shalev-Shwartz and Ben-David (2014, thrm. 6.8).
12This is a bound on the sample size in terms of given accuracy and confidence parameter (and

VC dimension); but we can also infer other bounds by making other choices in what quantities we
take as given and what quantity we then solve for. For instance, we can derive that there exists

constant C such that for any given m and δ we have an accuracy bound

ϵuc(m, δ) < C

√
VCdim(H)− log δ

m
.(7)

13The relevant result is derived within Valiant’s PAC learning framework, and the requirement

of computational efficiency in the definition and generalization guarantee of the relevant “Occam-

algorithm” make it a bit more involved than the reasoning I discuss in this paper. For further
expositions, see Anthony and Biggs (1992, pp. 59ff), Kearns and Vazirani (1994, ch. 2); and for a

rebuttal of the argument, see Herrmann (2020).
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we define some complexity measure on each sentence t, “which may represent either
the syntactic aspect of the sentence t, or the work required for the computation of
I(t)” (ibid., p. 257).14 Further, “the complexity of a [hypothesis h] with respect to
a language L is defined as the complexity of the simplest sentence which represents
that [hypothesis]” (ibid.). This allows us to take subsets of sufficiently simple
hypotheses: a “complexity bounded sublanguage of L is a sublanguage Lc = (Tc, Ic)
such that Tc ⊆ T , Ic ⊆ I and C(h) ≤ c for all h ∈ Ic” (ibid., p. 258, slight change
in notation).

Now the lower the complexity c, the smaller the size (and in particular, the
capacity) of the sublanguage (hypothesis class) Lc.

15 This, via reasoning as in sec-
tion 2.6, leads to a better generalization guarantee or “credibility” of the estimated
hypothesis from this class. In this way, Pearl writes in his concluding discussion,
“accepted norms of credibility are correlated with [hypotheses’] simplicity” (ibid.,
p. 263). However, he immediately adds:

From a philosophical viewpoint it is essential to note that in all
cases examined the role of simplicity was only incidental to the
analysis. We would have gotten identical results if instead of Lc

being a complexity bounded sublanguage we were to substitute an
arbitrary sublanguage with equal number of [hypotheses]. It is not
the nature of the [hypotheses] in Ic but their number |Ic| (more pre-
cisely, the number of sample dichotomies induced by the members
of Ic) which affects the various plausibility measures considered.

In particular, whereas classes of hypotheses of low representational complexity
must be small, the converse does not hold. One can select small subclasses of
(representationally) complex hypotheses, and the same capacity-based reasoning
for good generalization would still apply (cf. Mitchell, 1997, p. 65; Domingos, 1999,
p. 410).16

A deeper problem still is that this notion of representational complexity depends
on the presupposed formal language and definition of sentence complexity. For any
hypothesis that is simple relative to one language, we can design a different language
that renders it complex.17 In that sense representation length does not give us a
robust or objective notion of simplicity of individual hypotheses.18

14The standard example is the two-symbol language of bits, where the complexity of a sentence

(a bit string) is defined as its length.
15For instance, for the language of bits, there can only be 2n+1 sentences (bit strings) of

complexity (length) up to n, hence at most 2n+1 hypotheses of complexity up to n.
16This is the main critique of Herrmann (2020) of the argument of Blumer et al. Herrmann

derives a parallel result for an “Anti-Occam algorithm” that selects small-cardinality classes of
representationally complex hypotheses.

17This language-relativity in describing or encoding individual hypotheses is also an obvious

problem in some presentations of the minimum description length (MDL) approach (e.g., Mitchell,

1997, sect. 6.6; Shalev-Shwartz and Ben-David, 2014, pp. 65f). However, these presentations paint
a rather naive picture of the approach: in “refined MDL,” the focus is on the design of “universal
codes,” yielding again a robust notion of complexity of hypothesis classes (Grünwald, 2007) that

plays a role very similar to capacity notions in statistical learning theory (ibid., sect. 17.10).
18It is sometimes held that “idealized MDL” or Kolmogorov complexity can offer an objec-

tive notion of the representational complexity of individual objects (Li and Vitányi, 2008). See
Sterkenburg (2016) for a critique of a suggested justification for Occam’s razor via this approach,

and Sterkenburg (2018, sect. 5.2) for a critique of its promise of an objective notion of complexity.
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Given the bleak prospects for some general mathematical definition to settle what
counts as simple for individual hypotheses, one might at this point be inclined to
change tack and suggest that in practice, there is often no real problem. For many
specific learning problems, we do appear to have clear intuitions about natural
representations or parametrizations of hypotheses. In the standard curve-fitting
problem (see Sober, 2015, pp. 88ff), for instance, where we seek to estimate a
polynomial function, there exists a natural parametrization by degree. The linear
functions of degree 1 are simpler than the quadratic functions of degree 2. Moreover,
the class of all linear hypotheses is smaller (has lower capacity) than the strict
superclass of quadratic hypotheses. Some conception of simplicity of hypotheses
is here already taken for granted, which points to a natural ranking of hypothesis
classes, and this ranking neatly aligns with their capacity.19

If this is a common situation in practice, then, together with the formal con-
nection between low capacity and generalization performance, we may have the
basis for an explanation of why preferring simple hypotheses generally seems to be
a good idea. But even if we accept as given, for many specific learning problems,
a standard representation or parametrization of hypotheses, the formal connection
between low capacity and generalization performance still falls short of constituting
a justification for preferring simple hypotheses (for these specific learning problems).
The issue remains that the theory does not enforce a connection between simple
individual hypotheses (however specified) and classes of low capacity.

3.2. VC dimension as a measure of simplicity. In contrast to definitions of
the complexity of an individual hypothesis, definitions of the capacity of a hy-
pothesis class (like VC dimension) do not depend on a specific representation or
parametrization, and do therefore possess a certain objectivity or robustness.20 But
does VC dimension also give an objective or robust measure of the simplicity of a
hypothesis class?

One might deny this on exactly the grounds that VC dimension does not nec-
essarily align with natural parametrizations of individual hypotheses (Domingos,
1999, p. 413). In the case of the usual parametrization of polynomials, the higher
the number of free parameters, the higher the capacity of the corresponding hy-
pothesis class; but in other cases the two can come apart. The standard example is
the class of sine curves {hα}α∈R with hα(x) = sinαx (ibid.; Harman and Kulkarni,
2007, pp. 72f). The elements in this class are given by only one parameter (and in
that sense the function class is very simple), yet the class has infinite VC dimension
(Vapnik, 2000, p. 78).21

19One might seek to base this conception on some formal definition of simplicity in terms of
number of adjustable parameters, a line going back at least to Jeffreys (1939). But this still does

not suddenly give us a robust and objective notion of simplicity of individual hypotheses: the
“grue-like” problems of representation invariance remain (Priest, 1976). For a recent critique of

defining simplicity by number of parameters, see Bonk (2023).
20More precisely, the capacity of a hypothesis class does not depend on how the individual

hypotheses are described: all that matters is their data coverage. Language-relativity only turns

up when we start redescribing the instance space (cf. Steel, 2009, p. 482).
21Vapnik (1998, p. 698) himself writes that since Occam’s razor says that the explanation with

“the smallest number of features (free parameters)” is best, and since this is not supported by
theoretical results, “Occam’s razor principle is misleading and perhaps should be discarded in the

statistical theory of inference” (ibid., p. 699). Also see Cherkassky and Mulier (2007, pp. 146ff).
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Of course, this objection relies on some claim that usual parameterizations
do (and exclusively do) track simplicity. But even aside from the ultimate non-
robustness of representational notions of complexity, there simply exist different
and sometimes conflicting intuitions. From one way of looking at it, the class of
sine functions is maximally complex: exactly because every possibly data config-
uration is covered by it (cf. Romeijn, 2017). This is the intuition of richness or
complexity (or also falsifiability22) made precise in a capacity measure. VC dimen-
sion is not the measure, but it is a plausible and robust measure of the complexity
of a hypothesis class. This is enough for my purpose: if a justification is to be
had for preferring low or finite capacity, then I think it is reasonable to call this
a justification for preferring simplicity—even if there are other reasonable concep-
tions of simplicity, and even if (to stress again) this notion of simplicity pertains to
hypotheses classes and not to individual hypotheses.

4. The justification for simplicity

The fundamental theorem of statistical learning theory ties the simplicity—the
VC dimension—of a hypothesis class to its learnability, and indeed already to its
learnability by the ERM method. This result offers, first of all, a certain justifi-
cation for the ERM procedure; although this is a justification with several quali-
fications, chief among them its model-relativity (section 4.1). Nevertheless, I will
argue that the model-relative justification that learning theory can offer fits right in
with a plausible epistemological perspective on machine learning methods (section
4.2). Finally, I will argue that this justification for the method of ERM leads to a
qualified justification for a simplicity preference (section 4.3).

4.1. The justification for empirical risk minimization. The fundamental the-
orem shows that ERMH, for VC class H, is a good method. It is good, and good
epistemically, because it satisfies a guarantee of attaining a certain epistemic goal.
This guarantee therefore constitutes an epistemic justification for the method.

One immediate qualification is that this picture of justification or not—learnability
or not—is overly black-white. The quantitative version of the fundamental theorem
tells us that a smaller VC dimension leads to a stronger guarantee, making ERM
an epistemically better method. So we have a graded guarantee that constitutes a
graded notion of epistemic justification.

But this step from theoretical guarantees to talk about justification comes with
several further qualifications still.

4.1.1. Qualifications. A first elementary point is that the fundamental theorem is
a mathematical result. Any epistemic justification derived from it, in the context
of a (real-world) learning problem, needs a story how exactly it maps to this learn-
ing problem. Most obviously, for any particular real-world problem, a meaningful
application of the fundamental theorem (and justificatory claims derived from it)

22Vapnik (2000, pp. 42ff) links the capacity of hypothesis classes to Popper’s falsifiability of
theories. Popper famously equated simplicity with falsifiability, and introduced a quantitative
notion of falsifiability of theories that he claimed aligned with the number of free parameters.

Corfield et al. (2009) and Harman and Kulkarni (2007, p. 50ff) argue that VC dimension is a better
measure of falsifiability, though these authors appear to resist then also linking VC dimension to
simplicity.
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depends on how well the problem can be modelled in the statistical learning the-
ory framework. This includes the match of our prior assumptions with the formal
assumption of i.i.d. sampling of data from some unknown distribution, but also the
match of our goals with the formal choice of the 0/1 loss function. The represen-
tation of a learning problem in the formal framework of statistical learning theory
already forces us to commit to and encode various assumptions (von Luxburg and
Schölkopf, 2011, pp. 683f), and anything that follows from the mathematics should
ideally be appraised with an eye to whether these made sense for the original real-
world learning problem.

But even when there are no such modeling concerns, one need not accept that
the formal guarantees from the fundamental theorem are sufficiently strong or in-
teresting to warrant talk about justification. There are legitimate reservations one
can have about the usefulness of these guarantees.

One possible reservation is that these guarantees are quintessential frequentist
guarantees. They say something about what we can expect with high probability
before the sampling and the learning. It is in that sense that we can call methods
satisfying these guarantees reliable (Harman and Kulkarni, 2007). But these guar-
antees (unlike Bayesian ones) do not strictly say anything about what we can infer
after the learning—what we can infer about the hypothesis that has actually been
selected, other than that it has been selected by a reliable method (von Luxburg
and Schölkopf, 2011, pp. 699f). For instance, the “what-you-see-is-what-you-get”
guarantee of uniform convergence does not strictly say anything about what we
have gotten when we see the result. It is easy to misinterpret such guarantees.

A second possible reservation is that the guarantees are rather weak. In par-
ticular, since the guarantees are agnostic about the true distribution, they are
worst-case bounds that for many real-world situations—where we feel we can ex-
clude certain classes of (“pathological”) distributions—would be overly loose or
pessimistic (von Luxburg and Schölkopf, 2011, p. 680, pp. 683f).23 This motivates,
for instance, the study of “fast rates” under further assumptions on the distribu-
tions24 and of guarantees that hold for all distributions but are still distribution-
dependent.25 These studies yield a more complicated picture of the conditions for
and the nature of the justification for ERM.

However, similar to the case of VC dimension as a notion of simplicity, I think
that the fundamental theorem gives at least a plausible theoretical justification for
the method of ERM. This does not exclude that one might (also) wish for different
kinds of justification, in any specific problem or in general. In any case, my aim here
is to flag the above qualifications, to make clear that accepting the justification for
ERM, and indeed the justification for simplicity to follow, presupposes accepting
those qualifications. One can reject my below argument simply by rejecting the
presuppositions of the statistical learning theory framework. For instance, the

23That sample sizes can in practice be much smaller was already shown by early experimental

results (Cohn and Tesauro, 1992).
24Or more precisely, on the relation between the distribution, hypothesis class, and loss function

(see Van Erven et al., 2015).
25This is the idea of the “theory of universal learning” of Bousquet et al. (2021). Their

motivation is that the usual “distribution-independent definition of learnability is too pessimistic

to explain practical machine learning,” showing the need for alternatives that “better capture the
practice of machine learning, but still give rise to a canonical mathematical theory of learning

rates” (ibid., p. 533).
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reasons Kelly (2008, 2011) offers for rejecting arguments for Occam’s razor from
statistical learning theory are essentially a rejection of the framework.26 But, I
will argue, conditional on those qualifications—including the presuppositions of the
statistical learning theory framework—we can formulate a justificatory argument.

There is, however, a final aspect to this justification for ERM that requires
more discussion. Namely, this justification can be seen to cover only one part of an
inevitable trade-off.

4.1.2. The bias-complexity trade-off. Recall that the notion of learnability of section
2.3 concerns learning a hypothesis with relatively low risk among those hypotheses

in given H. Formally, it concerns finding ĥ that minimizes the estimation error

LD(ĥ)−minh∈H LD(h).
Intuitively, this concerns the avoidance of overfitting. If a hypothesis class H

has overly high capacity, then for any given data sample, the empirically best hy-
pothesis in H is likely to overfit to random noise in the sample, in which case it
is actually significantly worse than the best—lowest-risk—hypothesis in H. Learn-
ability basically concerns the avoidance of such overfitting, and the fundamental
theorem then says that overfitting is avoided if H is a VC class.

But this leaves out the other direction of error, namely the underfitting. Formally,
this concerns the approximation error, or the (absolute) risk minh∈H LD(h) of the
best hypothesis in H. The absolute risk of the selected hypothesis can be trivially
decomposed as the sum of the two types of errors,

LD(ĥ) = min
h∈H

LD(h)︸ ︷︷ ︸
approx. error

+LD(ĥ)−min
h∈H

LD(h)︸ ︷︷ ︸
est. error

.(8)

The opposing pull of these two error terms is also referred to as the bias-
complexity trade-off. A lower complexity—lower capacity—class excludes more pos-
sibilities, and as such constitutes or represents, in terminology common in machine
learning, a stronger inductive bias.27 The fundamental theorem yields a guarantee
about finding the best in a given class, but this is inevitably a class with a strong
inductive bias. The resulting justification must therefore be relative to this class or
inductive bias.28

26Kelly (2008, p. 329) writes that Occam’s razor “should help one to select the true theory
from among the alternatives,” whereas arguments based on risk minimization do not concern

“theoretical truth” but “passive prediction” (ibid., 335). “But beliefs are for guiding action and
actions can alter the world so that the sampling distribution we drew our conclusions from is altered

as well” (ibid.); moreover, “it is clear that the over-fitting story depends, essentially, upon noise

in the data [. . . ] One would prefer that the connection between simplicity and theoretical truth
not depend essentially upon randomness” (ibid.). These points are all well-taken (in particular
the problem of distribution-shift has recently received more attention, Wiles et al., 2022), but are

all already concerns about the scope of statistical learning theory itself.
27This is a bit more general than the bias-variance trade-off (see Hastie et al., 2009, sect.

2.9). Complexity and (inductive) bias are here in the first instance used as informal terms (even
if complexity can be made precise as VC dimension, and some authors refer to the approximation
error itself as the bias), while the bias and variance in the latter are well-defined statistical terms.

28Of course, the hypothesis class is not the only—or even the most important (von Luxburg

and Schölkopf, 2011, p. 684)—way in which assumptions or biases enter: as discussed in sect.

4.1 above, important modeling assumptions must already be made in the formalization of the
learning problem (including choice of feature space and loss function). But discussions of inductive

bias (in particular around the no-free-lunch theorems introduced shortly) normally assume that
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4.1.3. Model-relative v. absolute justification. In the terminology of Sterkenburg
and Grünwald (2021), this is a model-relative justification. It is indeed a justifica-
tion for a learning method, ERM, that is explicitly model-dependent. The method
of ERM is a very general procedure—a “generic learning rule” (Shalev-Shwartz
and Ben-David, 2014, p. 68)—that is susceptible to general mathematical analysis
and results like the fundamental theorem. But at the same time it must, by def-
inition, on each application be supplied with further assumptions. One can view
ERM as instantiating a two-place function, that apart from a data sample, also
takes a specific hypothesis class. On each specific application, it must be supplied
with an inductive model that represents further context-dependent assumptions,
the inductive bias. Correspondingly, the learnability guarantee is model-relative,
because the notion of learnability is relative to a given inductive model or VC hy-
pothesis class. It is a guarantee of finding the near-best hypothesis in the inductive
model. At the same time, it is a general guarantee because it covers any specific
inductive model—VC class—that the generic ERM algorithm is supplied with.

The analysis of Sterkenburg and Grünwald aims to explain how positive learning-
theoretic guarantees of generic algorithms are consistent with the skeptical import of
the so-called no-free-lunch theorems of supervised learning (going back to Wolpert,
1992, 1996; Schaffer, 1994). Modern versions of these results (Shalev-Shwartz and
Ben-David, 2014, pp. 36ff; Sterkenburg and Grünwald, 2021, pp. 9990f) say that
there can exist no universal learning algorithm: every particular algorithm fails
to learn successfully—in an absolute sense—in some learning situations, situations
where another algorithm is successful. Since there can be no a priori justification
for privileging particular learning situations, it seems there can be no theoretical
justification for any particular algorithm. However, Sterkenburg and Grünwald
observe that such results presuppose a conception of learning algorithms as purely
data-driven or data-only : as instantiating a one-place function that only takes
data samples. What the results say is that any data-only algorithm must fail to
learn successfully in some situations—with the further interpretation that it must
therefore lack justification.

Thus, rather than the generic yet model-dependent ERM algorithm, the no-free-
lunch statement applies to any particular instantiation of ERM with an inductive
model H, any particular one-place function ERMH. The no-free-lunch result of
Shalev-Shwartz and Ben-David (2014, thrm. 5.1) essentially states that for any
specific inductive model H, the data-only algorithm ERMH will fail (i.e., with
high probability suffer high absolute error) for some situations (i.e., for some true
distributions; informally, those that do not matchH’s inductive bias) where another
data-only algorithm, like ERMH′ for another inductive model H′ (that does match
the situation), succeeds.29

In other words, while we can have a model-relative justification for model-
dependent algorithms (of the rough form, “for any instantiated inductive model

these elements of the learning problem are already in place, and center on the further inductive
assumptions required.

29Another way of casting this result is that the class of all classifiers is not learnable: since, for
any possible distribution, this class has minimum approximation error, its learnability (guarantee
of low estimation error) would guarantee low absolute error for any possible distribution. In

fact, the proof of Shalev-Shwartz and Ben-David (2014, thrm. 5.1) already shows the failure
of learnability of classes with infinite VC dimension, and the no-free-lunch theorem is in their
presentation part of the proof of the fundamental theorem (ibid., pp. 45ff).
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of the right form, works well relative to the model”), there is no absolute justifi-
cation (“works well whenever”) for any data-only algorithm. The impossibility of
such absolute justification is also an important part of the argument of Domingos
(1998, 1999) against a possible justification of Occam’s razor.

4.1.4. The failure of an absolute justification for simplicity. Domingos takes issue
with what he calls the “second razor”: the idea that “given two [hypotheses] with
the same [empirical] error, the simpler one should be preferred because it is likely
to have lower generalization error” (1999, p. 410). (To be dinstinguished from the
“first razor,” that “the simpler [hypothesis] should be preferred because simplicity
is desirable in itself,” ibid.)30 He writes that theoretical “zero-sum arguments”—
the no-free-lunch theorems and variants—“imply that the second razor cannot be
true” (1999, p. 413). Namely, “they imply that, for every domain where a simpler
[hypothesis] is more accurate than a more complex one, there exists a domain
where the reverse is true, and thus no argument which is preferable in general can
be made” (ibid.).

This is true, and an expression of the impossibility of absolute justification,
applied to the choice of a simple single hypothesis.31 However, we already observed
that the notion of simplicity in the argument from uniform convergence attaches
to hypothesis classes, not single hypotheses. Domingos’s critique of the theoretical
“PAC-learning argument” for the second razor, that is in essence also a no-free-
lunch observation, is more relevant for our purposes:

“[uniform convergence results] only say that if we select a suffi-
ciently small set of [hypotheses] prior to looking at the data, and
by good fortune one of those [hypotheses] closely agrees with the
data, we can be confident that it will also do well on future data.
The theoretical results give no guidance as to how to select that
[hypothesis class].” (1999, p. 410)

This is again true, and an expression of the impossibility of absolute justification,
applied to the choice of (ERM instantiated with) a simple hypothesis class. For a
sufficiently small (simple) set of hypotheses, the fundamental theorem gives a guar-
antee of probably finding the near-best hypothesis in the class. But this hypothesis
is only good in an absolute sense (has low risk and so “will also do well on future
data”) if the class of hypotheses was good to begin with (contains a hypothesis that
has low risk and so “closely agrees with the data”). By the no-free-lunch results,
we know that for any hypothesis class there are learning situations such that the
class is not good. And the theory does not guide us towards a good hypothesis
class prior to looking at the data.

In sum, an absolute justification of (ERM with specific) choice of simple hy-
pothesis class is impossible. Nevertheless, this leaves a model-relative justification
of ERM. Such a justification, I will now argue, is still of epistemological interest,
and indeed points towards a qualified justification of simplicity.

4.2. An epistemology of machine learning methods.

30We are here, of course, likewise concerned with an epistemic justification for Occam’s razor,

not with claims that simplicity is better because it points to hypotheses or theories that are easier

to work with or more aesthetically pleasing (cf. Sober, 2015, pp. 58f).
31This point has also been brought out experimentally (e.g., Schaffer, 1993; Webb, 1996).
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4.2.1. “Forwards-looking” epistemology. Absolute justification is central to a gen-
eral epistemological project where we are concerned with the foundations of our
knowledge. This is a project of turning back, of retracing the justificatory basis for
a statement or belief of interest. In the context of machine learning algorithms, we
ask: what is the basis, the justification, for trusting what our learning algorithm
returns? By the no-free-lunch theorems, we know that our learning algorithm’s
outputs are grounded in a particular inductive bias. So we are led to ask: what is
the basis, the justification, for this inductive bias? Accepting the Humean argu-
ment that neither deductive nor nondeductive justification is forthcoming, we are
ultimately led to skepticism (Sterkenburg and Grünwald, 2021, pp. 9992ff).

Several philosophers of science have proclaimed this general epistemological
project a dead end. Reichenbach, in the words of van Fraassen (2000, p. 254),
thought that empiricist epistemology must reject “Rationalism’s stringent criterion
of adequacy: that an epistemology must show how absolutely reliable knowledge
is possible.” Van Fraassen (1989; 2000; 2004) himself offers an outlook of a new
empiricism in explicit rejection of “defensive epistemology” which “concentrates on
justification, warrant for, and defence of one’s belief” (1989, p. 170). Peirce, in
the words of Levi (1998, p. 177), “explicitly dismissed doxastic skepticism when he
observed that merely writing down a question challenging some current assump-
tion is not sufficient to create the sort of doubt that should occassion an inquiry.”
Levi (1980; 2004) himself further develops Peirce’s doubt-belief model of inquiry in
explicit rejection of “pedigree epistemology,” under which “one is obliged to jus-
tify current beliefs” (2004, p. 11). The general alternative project that arises is a
pragmatist one where we take seriously that one will always already start with a
body of beliefs that one at that time does not actively or genuinely doubt. The
interesting question is not whether one actually has an ultimate justification for
these beliefs. The interesting question is how to proceed from these beliefs: how
to improve these beliefs. This leads to a forwards-looking epistemological project
that investigates how to improve (refine, revise, update) beliefs in the light of new
data. And in this project there is still an interesting question of justification: we
can theorize about better and worse ways of doing so.32

This forwards-looking perspective aligns well with machine learning. Already
thirty years ago, Russell (1991, p. 45), after discussing the infeasibility of “tabula
rasa” learning, writes that “the picture that is currently fashionable in machine
learning is that of an agent that already knows something and is trying to learn
some more.” In similar vein, Domingos (2012, p. 81) himself, after attributing
to Hume and Wolpert the insight that “data alone is not enough,” writes that
“induction (what learners do) is a knowledge lever: it turns a small amount of
input knowledge into a large amount of output knowledge.” Importantly, these

32Sober (2015, pp. 86f) also sets apart, with reference to Neurath’s boat, a “foundationalist”

picture from a “more defensible” alternative picture where we “now have numerous beliefs about

the world. Our task is to take new observations into account so as to improve our system of beliefs.
We don’t start from zero; we start from where we are” (ibid., p. 87). Notably, though, he presents

these two pictures as two different versions of Bayesianism; there is no reference to these different
epistemological views in his discussion of frequentist ideas. Other authors, including Levi and

van Fraassen, also assume a Bayesian framework. I do not do that here: I am not after a formal

account of the wider epistemic context of agents using machine learning methods to inform their
beliefs. I am here interested in the epistemological lessons we may draw from a formal account of

the machine learning methods themselves, namely, machine learning theory.
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authors, like also Shalev-Shwartz and Ben-David (2014, p. 94), do not just point
out the impossibility of inductive inference without assumptions. They presuppose
that there is always a starting point of initial knowledge, and put to one side
the question of the actual basis for this supposed knowledge. They instead take
machine learning to be about the forwards-looking question of how to best proceed
from initial knowledge: how to learn more, or turn input knowledge into more
output knowledge.

The model-relative guarantees derived within the theory of machine learning
serve exactly this perspective. Model-relative theoretical guarantees concern al-
gorithms that presuppose the instantiation, in each application, of an inductive
model, that codifies specific prior knowledge. And these guarantees show that such
algorithms are good relative to the instantiated inductive model, relative to the
prior knowledge. This fits a picture where any real-world learning problem arises
in a context where we already take many things for granted, and are willing to ac-
cept as prior knowledge. Given our starting point (our particular learning problem
and goal, and the way we codify prior knowledge in a formal inductive model), the
relevant theoretical model-relative guarantee advises us on how to proceed (what
model-dependent algorithm is good to use). Learning-theoretic results thus pro-
vide a normative component to the forwards-looking epistemological perspective
on machine learning methods.33

The idea that such results provide the basis for a normative epistemology is also
central to the philosophical tradition best known as formal learning theory (Kelly,
1996, 2016; Schulte, 2017). I will briefly make a connection to this tradition, in order
to identify another crucial ingredient for the qualified justification for a simplicity
preference that I will propose after.

4.2.2. “Means-ends” epistemology. The core principle of formal learning theory,
which also has its roots in machine learning theory,34 is that inductive problems call
for a context-dependent means-ends analysis of what epistemic notions of success
(ends) are attainable with what assumptions and methods (means). Schulte (1999)
therefore also speaks of “means-ends” epistemology.

This means-ends analysis is context-dependent in the sense that given a par-
ticular learning problem, which usually comes with restrictive “background as-
sumptions,” the analysis does not question these assumptions (Kelly, 1996, p. 11;
Schulte, 2017, sects. 1.3, 2.2). For a particular learning problem and notion of
success, the analysis is concerned with showing that certain methods can or cannot
“solve” the problem (can or cannot attain the notion of success), given the back-
ground assumptions. This again fits a forwards-looking epistemological perspective
(cf. Kelly, 2016, pp. 713f), where the analysis provides a model-relative justification
(with the inductive model constituted by the background assumptions) for methods
that solve the problem.

However, this “problem solvability analysis” of whether and which methods can
solve a given learning problem is not the only possible direction of theoretical
analysis (Kelly, 1996, p. 37f). Indeed, each of the different parameters at play

33Following up on footnote 28, prior knowledge is not only instantiated in the inductive model
qua hypothesis class, but also already in the other formal components of the learning problem.
But clearly learning-theoretic guarantees must also always be relative to these choices.

34Specifically, the approach of algorithmic learning theory going back to Gold (1967); see Jain
et al. (1999).
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(the learning problem, the background assumptions, the notion of success, the
methods) we can either vary or keep fixed (Kelly, 2016, p. 696). In particular,
we can fix a learning problem and notion of success, and ask what background
assumptions are needed for a method to possibly solve the problem. Here we are
after characterization results that give necessary and sufficient conditions for the
attainability of (i.e., the existence of a method that attains) the relevant notion of
success (Kelly, 1996, p. 74). In the words of Kelly (ibid.),

a characterization theorem isolates exactly the kind of background
knowledge necessary and sufficient for scientific reliability, given
[. . . ] the sense of success demanded. To revive Kant’s expression,
such results may be thought of as transcendental deductions for
reliable inductive inference, since they show what sort of knowledge
is necessary if reliable inductive inference is to be possible.

In the logical framework studied in formal learning theory, there arises a neat
hierarchy where different notions of success are characterized by the topological
structure of the problem and background assumptions (Kelly, 1996). In the statis-
tical learning theory framework, the fundamental theorem characterizes the main
notion of success in terms of the combinatorial structure of the background as-
sumptions: for a method to attain the success guarantee of uniform convergence,
the hypothesis class needs to have finite VC dimension. Thus, adopting Kelly’s
words, the fundamental theorem shows what sort of knowledge (form of hypothesis
class) is necessary for reliable inductive inference (a learnability guarantee) to be
possible. This provides a means-ends reason for modeling, if we can, our background
assumptions in the form of a class of hypotheses with finite VC dimension, a simple
class of hypotheses. From the combination of a forwards-looking perspective and a
means-ends analysis thus arises a justification for preferring simplicity—albeit with
important qualifications.

4.3. A qualified justification for simplicity.

4.3.1. The argument. We face a certain problem of classification, that we are pre-
pared to model as a problem in statistical learning. We enter this problem with
further prior knowledge still; and we are interested in a method that is good relative
to this prior knowledge. As a formalization of what it means for a method to be
good relative to prior knowledge, we adopt the model-relative notion of learnabil-
ity. Now the fundamental theorem tells us that for there to exist a method with
this guarantee of learnability, we need to formulate a hypothesis class, as formal-
ization of our prior knowledge, that is a VC class—that is simple. Only when the
hypothesis class is simple, does there exist a method with the guarantee of learn-
ability relative to this hypothesis class. This “transcendental deduction” gives us a
means-ends justification for modeling, if we can, our prior knowledge in the shape
of a simple class of hypotheses.

The previous reasoning was based on the black-and-white picture of learnabil-
ity or no. The quantitative version of the fundamental theorem offers a more
fine-grained version; but the essence of the argument is the same. Accepting the
guarantee of learnability, we now recognize that stronger bounds give a stronger
guarantee, and we take a method with a stronger guarantee to be better. Now the
quantitative version of the fundamental theorem tells us that a VC class of lower
VC dimension—a simpler hypothesis class—gives a stronger guarantee. This gives
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us a means-ends justification for modeling, if we can, our prior knowledge in the
shape of class that is not just simple (a VC class) but as simple as possible (of as
low VC dimension as possible).

4.3.2. Qualifications. The above argument comes with a series of presuppositions
and restrictions in scope, most of which we have discussed earlier. The argument
only applies to learning problems that fit the statistical learning theory framework,
and it presumes that a learning method is (more) justified if it satisifies (stronger
bounds for) the formal criterion of learnability (section 4.1). In particular, it pre-
sumes the epistemological value of model-relative justification (as I have argued for
in section 4.2). And it presumes that the VC dimension of a hypothesis class is a
plausible criterion of simplicity (as I have argued for in section 3.2).

But perhaps most importantly, the final step of the argument still comes with a
crucial qualifier. We have a means-ends justification for modeling our prior knowl-
edge in the form of a simple class, if we can. This leaves the cases where we plausibly
cannot. These will be cases where our prior knowledge is too weak: where we can-
not plausibly restrict the classifiers that we think could be accurate to a class of
finite VC dimension.

Note that the prior knowledge we have in each instance is an absolutely crucial
constraint in the argument. In the forwards-looking picture, we always enter a
learning problem with informal prior knowledge (beliefs we have, assumptions we
are willing to make), and it is this informal prior knowledge that we need to encode
in some formal hypothesis class. There will always be some leeway here, simply
because it will be a significant translation step from our informal knowledge to the
formal object of a hypothesis class, but it is still a constraint. It will never be
reasonable, for instance, to adopt a singleton hypothesis class (a maximally simple
class of VC dimension 0), because that would mean there would not be a learning
problem to begin with. Without this constraint by informal prior knowledge, the
argument would lose the connection to the epistemic context of an actual learn-
ing problem, and collapse into the useless advice to always choose a class of VC
dimension 0.

The downside is that there will be learning problems where the constraint is
too strong for the argument to still be applicable: again, problems where our prior
knowledge is too weak to plausibly formalize into a VC class. At a more fine-grained
level, there will be situations where it could still be possible to plausibly formulate
prior knowledge into a VC class, but where we have constraints on how much data
we can collect, and we cannot plausibly capture our prior knowledge into a class of
VC dimension sufficiently small to still yield useful bounds. If any such situations
are the rule rather than the exception, then this is a serious restriction in the scope
of the argument.35

The good news is that there is hope of generalizing the argument, to work with
a much weaker kind of prior knowledge. Namely, it is possible to automate a
choice between hypotheses frommultiple VC classes, that appears to strike a certain
balance between empirical error and VC dimension. This procedure is Vapnik’s
second “inductive principle,” or the method of structural risk minimization.

35A further practical complication is that it is often difficult to calculate the exact VC dimen-
sion of classes, so that only crude upper bounds are available (Hastie et al., 2009, p. 239).
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4.3.3. The argument via structural risk minimization. Indeed, rather than on uni-
form convergence and ERM, discussions of Occam’s razor in statistical learning
theory (Harman and Kulkarni, 2007, ch. 3; Kelly, 2008, p. 335; Shalev-Shwartz and
Ben-David, 2014, sect. 7.3; Bargagli Stoffi et al., 2022) tend to focus on this method.
Very briefly, the formal route to the method of structural risk minimization (SRM)
is the following.

We start with a generalized version of the uniform convergence property (def-
inition 3). This generalized version applies to a weighted countable sequence of
VC classes, and gives a uniform accuracy bound for each hypothesis that depends
on the class that the hypothesis is in (Shalev-Shwartz and Ben-David, 2014, thrm.
7.4). Next, similar to how the ERM method is defined as minimizing a uniform
convergence bound (section 2.4 above), the SRM method is defined by minimizing
a generalized uniform convergence bound (ibid., p. 62). Finally, we can prove a cer-
tain weaker guarantee of nonuniform learnability for SRM (ibid., def. 7.1, thrm.
7.5).

I think that these formal ingredients again form the basis for a means-ends
model-relative justification for simplicity, a justification that extends the previous
argument based on ERM. However, the details of this extended argument, and how
they relate to existing discussions of SRM and simplicity in the literature, must
wait for a follow-up paper.36

5. Conclusion

In this paper, I developed a means-ends model-relative justification for Occam’s
razor, based on the method of empirical risk minimization (ERM) in statistical
learning theory. I think this account accomodates both the main intuitions and
arguments in the machine learning literature in favor of the possibility of such a
justification (by actually providing one) and those against (in its various qualifica-
tions). It is an honest epistemic justification, that connects a simplicity preference
to guarantees of predictive accuracy; and it does not rely on any extra-theoretical
assumptions about the true or best hypotheses being simple. But it does presuppose
acceptance of the justificatory force of the statistical learning theory framework,
including the model-relative nature of the theoretical guarantees; and this model-
relativity, I have argued, aligns with the extra-theoretical adoption of a general
“forwards-looking” epistemological perspective. Furthermore, the arguably seri-
ously limited scope of the ERM method does translate in an equally limited scope
of the argument.

However, as I also noted in the text, there exists a method extending ERM,
namely structural risk minimization (SRM). This method may indeed seem the
more natural basis for a simplicity justification, since it is actually this method
that discussions of Occam’s razor in statistical learning usually evoke (Harman

36As mentioned in footnote 10, my argument and in particular the notion of justification is

built on the epistemic end of learnability, apparently neglecting the epistemic end (likewise theo-
retically supported by uniform convergence guarantees) of model assessment. Typically, though,
the training or model fitting is the earlier step in a machine learning application, followed im-
plicitly (by noting training error) or explicitly (by estimating performance with a test set) by
model assessment, and possibly still an intermediate model selection (Hastie et al., 2009, ch. 7;

Shalev-Shwartz and Ben-David, 2014, ch. 14). The argument in this paper can thus be seen to be
restricted to the earlier step; but an extended argument based on SRM must inevitably also go
beyond this step.
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and Kulkarni, 2007; Kelly, 2008; Shalev-Shwartz and Ben-David, 2014; Bargagli
Stoffi et al., 2022), and since this method is closely related to statistical methods
for model selection that take center stage in the modern philosophical debate on
Occam’s razor (Forster and Sober, 1994; Sober, 2015). Indeed, to really make the
case that the current account accomodates earlier arguments and intuitions pro
and con, it would have to be spelled out how exactly it can be extended to an
argument based on SRM. This I plan to do in a further paper; but I think the
main ingredients are already here.
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