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Abstract 
 

In this paper, two concepts from different research 
areas are addressed together, namely functional 
dependency (FD) and multidimensional association 
rule (MAR). FD is a class of integrity constraints that 
have gained fundamental importance in relational 
database design. MAR is a class of patterns which has 
been studied rigorously in data mining. We employ 
MAR to mine the interesting rules from XML 
Databases. The mined interesting rules are considered 
as candidate FDs whose all confidence itemsets are 
100%. To prune the weak rules, we pay attention to 
support and correlation itemsets. The final strong rules 
are used to generate an Object-Role Model conceptual 
schema diagram. 
 
1. Introduction 
 

In recent years, XML [1] has emerged as the 
dominant standard for representing and exchanging 
data over the Internet. However, there are many 
existing XML Databases which have been 
implemented without schemas and consistency 
checking. As a result, XML Databases may be 
inconsistent, incomplete or difficult to maintain. Such 
systems are also normally poor documented. These 
problems can be overcome by having XML Schemas 
which can be created using conceptual modeling 
techniques. 

XML Schemas design using the Object-Role 
Modeling (ORM) as its conceptual schema are 
conducted by [2,3,4]. In addition, [4] captured all of 
ORM constraints that are still not defined in [1] and 
used XQueries to detect invalid constraints in XML 
Databases. Furthermore, [5] proposed reengineering 
the existing XML Databases using a conceptual 
schema approach. 

At present, more and more scholars conduct 
research on association rules mining and many 
methods are based on the Apriori Algorithm that was 

proposed by [6]. Single Association Rule Mining from 
XML Data was conducted by [7]. Moreover, [8] 
studied extracting Association Rules from XML 
Documents using XQuery [9] 

In this paper, we employ Multidimensional 
Association Rule (MAR) to improve the ORM reverse 
engineering which was proposed by [5]. So far, 
deriving conceptual schemas from XML Databases 
using MAR has not been addressed. MAR is used for 
mining the interesting rules, i.e. candidate FDs, which 
all confidence itemsets are 100%. Usually FDs are 
based on superkey [10,11]. XQueries are applied for 
calculating confidence, support, and correlation 
itemsets. To prune the weak rules support and 
correlation itemsets are considered. 
 
2. Basic concepts and notation 
 
2.1. Functional dependencies 
 

Let R be a relation schema. A subset K of R is a 
superkey of R if, in any legal relation r(R), for all pairs 
t1 and t2 of tuples in r such that t1≠t2, then t1[K]≠t2[K]. 
That is, no two tuples in any legal relation r(R) may 
have the same value on attribute set K. 

The notation of functional dependency generalizes 
the notion of superkey [10]. Let α⊆R and β⊆R. The 
functional dependency α β holds on R if, in any 
relation r(R), for all pairs of tuples t1 and t2 in r such 
that t1[α]=t2[α]. It is also the case that t1[β]=t2[β]. Using 
the functional-dependency notation, K is a superkey of 
R if K R. That is, K is a superkey if, whenever 
t1[K]=t2[K], it is also the case that t1[R]=t2[R], that is 
t1=t2. In this paper, we will mine FDs using the 
elementary facts concept which was proposed by [12]. 
 
2.2. Object-role modeling 
 

ORM is called “fact-oriented modeling” because it 
expresses the information in terms of simple/ 
elementary facts. An elementary fact is defined by [12] 
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as an assertion that an object has a property, or that one 
or more objects participate in a relationship, where the 
fact cannot be split into simpler facts with the same 
object types without information loss. 

In order to reverse engineering XML Databases into 
ORM conceptual schema, our concern is the second 
step of the conceptual schema design procedure, i.e. 
draw the fact types and apply a population check. In 
this paper, fact types are populated with fact instances 
from XML Databases using XQuery. For population 
checking, we propose an application that implements 
the MAR concept. 
 
2.3. Multidimensional association rules 
 

Let J={i1, i2, …, im} be a set of items. Let D, the 
task-relevant data, be a set of database transactions 
where each transaction T is a set of items such that 
T⊆J. Let A be a set of items. A transaction T is said to 
contain A if and only if A⊆T. [13] defined an 
association rule as an implication of the form A⇒B, 
that is, A1∧…∧Am B1∧…∧Bn, where A⊆J, B⊆J, and 
A∩B=Ø. Association rules that involve two or more 
dimensions or predicates can be referred to as 
Multidimensional Association Rules, for instance: 
age(A,”20…29”)∧income(A,”20K…29K”)⇒buys(X,”
CD player”). 

The rule A⇒B holds in the transaction set D with 
support s, where s is the percentage of transactions in 
D that contain A∪B, i.e. both A and B. This is taken to 
be the probability, P(A∪B). The rule A⇒B has 
confidence c in the transaction set D if c is the 
percentage of transactions in D containing A that also 
contain B. This is taken to be the conditional 
probability, P(B|A). 

Support (A⇒B)=P(A∪B)=
)(

)(
UP

BAP ∪
 ..................... (1) 

Confidence (A⇒B)=P(B|A)=
P(A)

B)P(A∪
 ................... (2) 

Association Rules mined using a support-
confidence framework are useful for many application. 
However, the support-confidence framework can be 
misleading in that it may identify a rule A⇒B as 
interesting when the occurrence of A does not imply 
the occurrence of B. The occurrence of itemset A is 
independent of the occurrence of itemset B if 
P(A∪B)=P(A)P(B); otherwise itemsets A and B are 
dependent and correlated as events. 

Correlation A,B=
P(A)P(B)

B)P(A∪
 ..................................... (3) 

If the resulting value of (3) is less than 1, then the 

occurrence of A is negatively correlated with the 
occurrence of B. If the resulting value is greater than 1, 
then A and B are positively correlated, meaning the 
occurrence of one implies the occurrence of the other. 
If the resulting value is equal to 1, then A and B are 
independent and there is no correlation between them. 

In this paper, a confidence value is used for mining 
the rule A⇒B as the interesting FDs. If and only if all 
confidences in itemsets are 100% (see FD definition on 
section 2.1) then the rules A⇒B is an interesting FDs. 
For FD purpose, we also mine the rule B⇒A. In 
addition, support and correlation are used to prune the 
interesting rules when more than one determinant 
determines the same dependant. 
 
3. Mining multidimensional association 
rules from XML databases 
 

A framework for deriving conceptual schema from 
XML Databases is shown in Figure 1. There are three 
main processes, i.e. modify XML List, mine interesting 
rules, and prune weak rules. The first process is to 
create XML List from XML Databases then generate 
itemsets to be mined by the second process. Create the 
rules (FDs) which are to be pruned in the third process 
and get inputs from the second and the third processes 
to update or delete the XML List elements. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. The deriving conceptual schema from 
XML databases framework 

 
The second process is to mine interesting rules by 

joining and calculating confidence itemsets using 
XQuery. Figure 2(a) and Figure 2(b) show XQueries 
for 2-itemsets and 3-itemsets respectively. The XQuery 
can be extended for further itemsets. The XQueries 
implement the confidence equation (2). The itemset is 
an FD, if and only if all confidences of the itemset are 
100% then save the itemset into an FD List. 

The last process, prune weak rules (FDs) when 
XML List elements are refered more than one with 
considering average support and correlation itemsets. 
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declare variable $Tbl:=  
  doc("SPJ.xml")/SPJ/SupplierPartProject; 
<ItemSet-2> 
 {for $C1 in distinct-values($Tbl/      ) 
  let $C1C:= count($Tbl [      =$C1]) 
  for $C2 in distinct-values($Tbl/      ) 
  let $p:=$Tbl [      =$C1 and       =$C2] 
  order by $C1,$C2  
  return 
  if (exists($p)) then 
    <Frequent> 
      <A>{$C1}</A> 
      <B>{$C2}</B> 
      <Sup.Count>{count($p)}</Sup.Count> 
      <Confidence>{count($p) div $C1C * 
        100}%</Confidence> 
    </Frequent> 
  else ()} 
</ItemSet-2> 

A 
A 

A 
B 

B 

declare variable $Tbl := 
  doc("SPJ.xml")/SPJ/SupplierPartProject; 
<ItemSet-3> 
 {for $C1 in distinct-values($Tbl/      ) 
  for $C2 in distinct-values($Tbl/      ) 
  let $C1C:= count($Tbl [      =$C1 and       =$C2]) 
  for $C3 in distinct-values($Tbl/      ) 
  let $p:=$Tbl [      =$C1 and       =$C2 and 
          =$C3] 
  order by $C1, $C2, $C3  
  return 
  if (exists($p)) then 
    <Frequent> 
      <A>{$C1}</A>  <B>{$C2}</B>  <C>{$C3}</C> 
      <Sup.Count>{count($p)} </Sup.Count> 
      <Confidence>{count($p)div$C1C*100}%</Confidence>
    </Frequent> 
  else ()} 
</ItemSet-3> 

A

A

A 

B

B

B
C

C 

declare variable $Tbl :=  
doc("SPJ.xml")/SPJ/SupplierPartProject; 
<SupCor> 
 {let $CC:=count($Tbl ) 
  for $C1 in distinct-values($Tbl/      ) 
  let $C1C:=count($Tbl [      =$C1]) 
  for $C2 in distinct-values($Tbl/      ) 
  let $C2C:=count($Tbl [      =$C2]) 
  let $p:=$Tbl [      =$C1 and       =$C2] 
  order by $C1, $C2  
  return 
  if (exists($p)) then 
    <Frequent> 
      <A>{$C1}</A> 
      <B>{$C2}</B> 
      <Support>{count($p) div $CC*100}%</Support> 
      <Correlation>{count($p) div ($C1C*$C2C)}  </Correlation> 
    </Frequent> 
  else ()} 
</SupCor> 

A 
A 

A

B 
B 

B 

Struct EXML{ 
 string Name; 
 int Code; 
 EXML* next; 
} 

Struct EDT{ 
 EDT* top; 
 String Name; 
 EDT* nextT; 
 EDT* nextB; 
 EDT* bottom; 
} 

Struct EDP{ 
 string Name;
 EDP* next; 
} 

Support equation (1) and correlation equation (3) are 
implemented on XQuery in Figure 2(c). Prune the 
lowest support FDs with the correlation FDs greater 

than or lower than one. The final FD List is used to 
generate an ORM conceptual schema diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (a) Confidence A⇒B (b) Confidence A^B⇒C (c) Support & Correlation rule A⇒B 

Figure 2. XQueries for the calculation of confidence, support, and correlation itemsets 
 

Three struct data types in Figure 3, i.e. EXML, 
EDT, and EDP are proposed to support the framework. 
EXML is used in XML List for storing the third level 
XML elements in XML Databases. There are three 
possibilities value in XML Code, i.e. -1 (the element 
is referred to as determinant), 0 (the element is not 
referred), >=1 (the element is referred at least one). 
EDT and EDP are used for constructing a FD List, i.e. 
DT List and DP List. DP List is used for storing 
dependent items. DP next is used for linking between 
dependents. Set the last DP next to Nil. DT List is 
used for storing determinant items that can be single or 
composite item. In case composite determinant, 
DT nextT is used for linking between determinants. 
DT nextB is used for linking DT elements with DP 
elements. In addition DT top and DT bottom is 
used for linking between DT elements. In case, no 
element in the top or bottom DT element than set 
DT top or DT  bottom to Nil. 
 
 

 

 

 

Figure 3. The proposed struct data type 
 

An algorithm for mining and pruning the interesting 
FDs is as follows: 
Step 1: Create an XML List. For every element on 
the third level element in XML Databases, create an 
element in XML List. The XML List is a guide for 
generating itemsets, start from 2-itemsets, 3-itemsets, 

etc. until all XML Code≠0. For generating n-
itemsets, n array of pointers are needed, namely 
XML[i] for i=0, …, n-1. Set pointer XML[0] to the 
first element XML List and set pointer XML[1] to 
XML[0] next. Go to step 3. 
Step 2: Move pointer XML[0]. Set pointer PXML to 
XML[0] next. If PXML next≠Nil and still have 
XML Code=0 then move pointer XML[0] to PXML. 
Set pointer XML[1] to XML[0] next. Otherwise go 
to step 8 for pruning the weak rules. 
Step 3: Mine interesting rules 2-itemsets. Set false to 
Result1 and Result2. Pass XML[0] Name and 
XML[1] Name into the XQuery in Figure 2(a) for 
calculating confidence. If all confidences are 100% 
then set true to Result1. In addition, calculate 
confidence by passing XML[1] Name and 
XML[0] Name into the XQuery. If all confidences 
are 100% then set true to Result2. 
Step 4: If both Result1 and Result2 are true, it 
means XML[0] element is a determinant of XML[1] 
element or the XML[1] element is also a determinant 
of XML[0]. Ask the user to choose the right one. If the 
user chooses XML[1] element is a determinant of 
XML[0] element then go to step 7. Otherwise, check if 
XML[0] Code=0 then create a DT element and fill 
DT Name with XML[0] Name. Create a DP 
element and fill DP Name with XML[1] Name. 
Moreover, set XML[0] Code with -1. If 
XML[1] next≠nil then set PXML to XML[1] and 
move XML[1] to PXML next. Furthermore, delete 
the element PXML and go to step 3. 
Step 5: If both Result1 and Result2 are false, If 
XML[1] next≠nil then set pointer PXML to XML[1], 
move pointer XML[1] to PXML Next, and go to step 
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<?xml version="1.0" encoding="utf-8" ?> 
<SPJ>  the first level element 
   <SupplierPartProject>  the second level element
      <SNo>S1</SNo>  the third level element 
      <JName>Sorter</JName> 
      <PName>Nut</PName> 
      <JCity>Paris</JCity> 
      <PNo>P1</PNo> 
      <Color>Red</Color> 
      <Qty>200</Qty> 
      <Weight>12</Weight> 
      <JNo>J1</JNo> 
      <PCity>London</PCity> 
      <SName>Smith</SName> 
      <Status>20</Status> 
      <SCity>London</SCity> 
   </SupplierPartProject> 
. . . etc 
</SPJ> 

SNo JName PName JCity PNo Color Qty Weight JNo PCity SName Status SCity
S1 Sorter Nut Paris P1 Red 200 12 J1 London Smith 20 London
S1 Console Nut Athens P1 Red 700 12 J4 London Smith 20 London
S2 Sorter Screw Paris P3 Blue 400 17 J1 Rome Jones 10 Paris
S2 Display Screw Rome P3 Blue 200 17 J2 Rome Jones 10 Paris
S2 OCR Screw Athens P3 Blue 200 17 J3 Rome Jones 10 Paris
S2 Console Screw Athens P3 Blue 500 17 J4 Rome Jones 10 Paris
S2 RAID Screw London P3 Blue 600 17 J5 Rome Jones 10 Paris
S2 EDS Screw Oslo P3 Blue 400 17 J6 Rome Jones 10 Paris
S2 Tape Screw London P3 Blue 800 17 J7 Rome Jones 10 Paris
S2 Display Cam Rome P5 Blue 100 12 J2 Paris Jones 10 Paris
S3 Sorter Screw Paris P3 Blue 200 17 J1 Rome Blake 30 Paris
S3 Display Screw Rome P4 Red 500 14 J2 London Blake 30 Paris
S4 OCR Cog Athens P6 Red 300 19 J3 London Clark 20 London
S4 Tape Cog London P6 Red 300 19 J7 London Clark 20 London
S5 Display Bolt Rome P2 Green 200 17 J2 Paris Adams 30 Athens
S5 Console Bolt Athens P2 Green 100 17 J4 Paris Adams 30 Athens
S5 RAID Cam London P5 Blue 500 12 J5 Paris Adams 30 Athens
S5 Tape Cam London P5 Blue 100 12 J7 Paris Adams 30 Athens
S5 Display Cog Rome P6 Red 200 19 J2 London Adams 30 Athens
S5 Console Nut Athens P1 Red 100 12 J4 London Adams 30 Athens
S5 Console Screw Athens P3 Blue 200 17 J4 Rome Adams 30 Athens
S5 Console Screw Athens P4 Red 800 14 J4 London Adams 30 Athens
S5 Console Cam Athens P5 Blue 400 12 J4 Paris Adams 30 Athens
S5 Console Cog Athens P6 Red 500 19 J4 London Adams 30 Athens

3. Otherwise go to step 2. 
Step 6: If Result1 is true, it means XML[0] element is 
a determinant of XML[1] element. If 
XML[0] Code=0, it means that XML[0] is not in the 
DT List then create a DT element and fill DT Name 
with XML[0] Name. Create a DP element and fill the 
DP name with XML[1] Name. Furthermore, set 
XML[0] Code with -1 and increment 
XML[1] Code. If XML[1] next≠nil then set pointer 
PXML to XML[1], move pointer XML[1] to 
PXML Next, and go to step 3. Otherwise go to step 
2. 
Step 7: If only Result2 is true, it means the XML[1] 
element is a determinant of XML[0] element. If 
XML[1] Code=0 then create a DT element and fill 
DT Name with XML[1] Name. Create a DP 
element and fill DP Name with XML[0] Name. Set 
XML[1] Code with -1. If XML[0] Code≠-1 then 
increment XML[0] Code else set 1 to 
XML[0] Code. Go to step 2. 
Step 8: Prune the weak rules. This step is used for 
deleting XML List elements witch codes are equal or 
greater to 1. If XML Code is greater than 1 then find 
all elements in DP List witch DP Name are the same 
with XML Name. Calculate support and correlation 
for the itemsets using XQuery in Figure 2(c). Find the 
highest support and correlation approximately to one 
for keeping the itemsets in FD List and delete the 
others. In case there are several itemsets with the same 

support and correlation, than ask the user to choose 
only one itemsets. If no XML Code=0 then go to step 
10. 
Step 9: Mine interesting rules for itemsets more 
than 2 items. This step is used for mining interesting 
rules with composite determinant, start from 3-
itemsets. It means n-1 combination XML List elements 
with code -1 as a determinant and one element with 
code 0 as dependent. For calculating confidence all 3-
itemsets use the XQuery in Figure 2(b) go to step 8. 
Step 10: Generate ORM conceptual schema from 
FD List using the algorithm that proposed by [5]. 
 
4. A case study 

We use a Suppliers-Parts-Projects case study that is 
used by [10] for demonstrating the normalization 
technique. In our work, an input XML document is 
SPJ.XML that is shown in the left side of Figure 4. The 
document is too long to fit in the paper (includes 24 
SupplierPartProject elements and every element 
include 13 other elements), so we visualize the 
document as a table in the right side of Figure 4. 

To reverse XML Databases into ORM conceptual 
schema, we demonstrate the proposed algorithm. It is 
guaranteed that relational schemas based on the created 
ORM will become in the fifth normal form. The 
created XML List from SPJ.XML by step 1 is shown 
in Figure 5(a). Every EXML Code=0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Part of SPJ XML database and visualize SPJ XML database as a table 
 

Mine 2-itemsets (A⇒B) by passing 2 items {SNo, 
JName}, {SNo, PName}, {SNo, JCity}, {SNo, PNo}, 
{SNo, Color}, {SNo, Weigh}, {SNo, JNo}, {SNo, 
PCity}, {SNo, SName}, {SNo, Status}, {SNo, SCity}, 
{JName, PName}, {JName, JCity}, …, {JName, 
SCity}, …, {Status, SCity} to the XQuery in Figure 
2(a) in sequence for calculating confidence. For every 
sequence, also calculate confidence by exchanging the 
item in the itemsets, for instance {SNo, SCity} and 

{SCity, SNo}. The confidence itemsets {SNo, SCity} 
and {SCity, SNo} are shown in Figure 6. All 
confidences for itemsets {SNo, SCity} are 100% so 
assign true to Result1. It means rule SNo⇒SCity is an 
interesting FD rule. However, all confidences for 
itemsets {SCity, SNo} are not 100% so assign false 
Result2. If only Result1 is true, than store item SNo 
into DT List and store item SCity into DP List. An 
example for only Result2 is true, when mining a rule 
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SNo SCity Sup.count Confidence
S1 London 2 100%
S2 Paris 8 100%
S3 Paris 2 100%
S4 London 2 100%
S5 Athens 10 100%

SCity SNo Sup.count Confidence
Athens S5 10 100%
London S1 2 50%
London S4 2 50%
Paris S2 8 80%
Paris S3 2 20%

< ItemSet-2> 
   <Frequent> 
      <A>S1</A> 
      <B>London</B> 
      <Sup.Count>2</Sup.Count> 
      <Confidence>100%</Confidence> 
   </Frequent> 
. . . etc 
</ItemSet-2> 

JName JCity Support Correlation
Console Athens 33.33% 0.10               
Display Rome 20.83% 0.20               
EDS Oslo 4.17% 1.00               
OCR Athens 8.33% 0.10               
RAID London 8.33% 0.20               
Sorter Paris 12.50% 0.33               
Tape London 12.50% 0.20               

14.29% 0.30               Average

JNo JCity Support Correlation
J1 Paris 12.50% 0.33
J2 Rome 20.83% 0.20
J3 Athens 8.33% 0.10
J4 Athens 33.33% 0.10
J5 London 8.33% 0.20
J6 Oslo 4.17% 1.00
J7 London 12.50% 0.20

14.29% 0.30               Average

<SupCor> 
   <Frequent> 
      <A>Console</A> 
      <B>Athens</B> 
      <Support>33.33%</Support> 
      <Correlation>0.1</Correlation> 
   </Frequent> 
. . .etc 
</SupCor> 

PName⇒PNo and a rule PNo⇒PName. Only all 
confidences for itemsets {PNo, PName} are 100%. 
Thereforfe, store PNo into DT List and PName into DP 
List. An example for both Result1 and Result2 are true, 

when mining rules JName⇒JNo and JNo⇒JName. In 
this case, ask the user to choose only one rule. The 
XML List after processed 2-itemsets is shown in 
Figure 5(b) and The FD List is shown in Figure 8(a). 

 
 
 
 

(a) XML list initial 
 
 
 
 

(b) XML list after processed 2-itemsets 
 
 
 
 

(c) XML list after pruned and ready for processing next itemsets 
Figure 5. The XML list 

 
 
 
 
 
 
 

Figure 6. The confidence itemsets {SNo, SCity} and {SCity, SNo} 
 

To prune the weak FD rules use XML List as a 
guide line, i.e. XML Code>=1. If XML Code>1 
then FD should be pruned according to the support and 
the correlation those are calculated by XQuery in 
Figure 2(c). For example, in Figure 5(b) element Name 
JCity, the Code is 2, i.e. itemsets {JName, JCity} and 
{JNo, JCity}. The calculation support and correlation 
itemsets is show in Figure 7. The average support and 
the average correlation for rule JName⇒JCity and 

JNo⇒JCity are same, i.e. 14% and 0.30 respectively. 
Therefore ask the user to choose the rule to be pruned. 
In this study case, we choose to prune the rule 
JName⇒JCity. Furthermore, delete all XML elements 
in XML List with Code are greater or equal one for 
preparing to next process mining. As a result the XML 
List is shown in Figure 5(c). There is still one XML 
List element with Code is 0. 

 
 
 
 
 
 
 

Figure 7. The support and correlation itemsets {JName, JCity} and {JNo, JCity} 
 
Mine 3-itemsets (A^B⇒C) by combination two items 
A-B with Code -1 and one item C with Code at least 
0, i.e. {SNo, PNo, Qty}, {SNo, JNo, Qty}, {PNo, 
JNo, Qty}. Pass 3-itemsets into the XQuery in Figure 
2(B). However, no all confidence for every 3-

itemsets is 100%. Therefore, mine 4-itemset (A^B^C 
⇒D), i.e. {SNo, PNo, JNo, Qty}. All confidences in 
the itemsets are 100%. As a result store the rule in 
FD List and increment the Qty Code by one. If all 
XML Code is not 0 then stop the mining process. 

SNo
-1

PNo
-1

Qty
0

JNo
-1

XML
XML[0] XML[1]

Nil

XML[2]

JName
0

SNo
0

PName
0
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0

PNo
0
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0

Qty
0

Weight
0

JNo
0

SName
0
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0
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0
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0

Nil

XML
XML[0] XML[1]

PXML

JName
1
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-1
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1
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2
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-1
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1

Qty
0

Weight
1

JNo
-1

PCity
1

Status
1

SCity
1 Nil

XML XML[0] XML[1]PXML
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As a result FD List is shown Figure 8(b). The last 
step is used for generating an ORM conceptual 

schema in Figure 8(c), for detail algorithm refer to 
[5]. 

 
 
 
 
 
 
 
 
 
 
 
 (a) FD list initial (b) FD list final (c) ORM diagram 

Figure 8. The FD list and the generated ORM diagram 
 
5. Conclusion 
 

This paper presents a conceptual schema reverse 
engineering technique and shows that MAR can be 
used for mining FDs in XML Databases. If XML 
Databases are not big enough, it is possible to produce 
interesting rules which depend on difference 
determinants. The support and the correlation itemsets 
can be employed to prune the weak FD rules. It is 
concluded that MAR techniques can improve our 
proposed conceptual schema reverse engineering 
technique [5] and can be used generally to reverse 
engineer FDs from XML Databases. 
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