
Deriving Conceptual Schema from XML Databases

Oviliani Yenty Yuliana1, Suphamit Chittayasothorn2
1Department of Informatics Engineering, Petra Christian University, Surabaya, Indonesia

2Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Thailand
ovi@peter.petra.ac.id, suphamit@kmitl.ac.th

Abstract

In this paper, two concepts from different research
areas are addressed together, namely functional
dependency (FD) and multidimensional association
rule (MAR). FD is a class of integrity constraints that
have gained fundamental importance in relational
database design. MAR is a class of patterns which has
been studied rigorously in data mining. We employ
MAR to mine the interesting rules from XML
Databases. The mined interesting rules are considered
as candidate FDs whose all confidence itemsets are
100%. To prune the weak rules, we pay attention to
support and correlation itemsets. The final strong rules
are used to generate an Object-Role Model conceptual
schema diagram.

1. Introduction

In recent years, XML [1] has emerged as the
dominant standard for representing and exchanging
data over the Internet. However, there are many
existing XML Databases which have been
implemented without schemas and consistency
checking. As a result, XML Databases may be
inconsistent, incomplete or difficult to maintain. Such
systems are also normally poor documented. These
problems can be overcome by having XML Schemas
which can be created using conceptual modeling
techniques.

XML Schemas design using the Object-Role
Modeling (ORM) as its conceptual schema are
conducted by [2,3,4]. In addition, [4] captured all of
ORM constraints that are still not defined in [1] and
used XQueries to detect invalid constraints in XML
Databases. Furthermore, [5] proposed reengineering
the existing XML Databases using a conceptual
schema approach.

At present, more and more scholars conduct
research on association rules mining and many
methods are based on the Apriori Algorithm that was

proposed by [6]. Single Association Rule Mining from
XML Data was conducted by [7]. Moreover, [8]
studied extracting Association Rules from XML
Documents using XQuery [9]

In this paper, we employ Multidimensional
Association Rule (MAR) to improve the ORM reverse
engineering which was proposed by [5]. So far,
deriving conceptual schemas from XML Databases
using MAR has not been addressed. MAR is used for
mining the interesting rules, i.e. candidate FDs, which
all confidence itemsets are 100%. Usually FDs are
based on superkey [10,11]. XQueries are applied for
calculating confidence, support, and correlation
itemsets. To prune the weak rules support and
correlation itemsets are considered.

2. Basic concepts and notation

2.1. Functional dependencies

Let R be a relation schema. A subset K of R is a
superkey of R if, in any legal relation r(R), for all pairs
t1 and t2 of tuples in r such that t1≠t2, then t1[K]≠t2[K].
That is, no two tuples in any legal relation r(R) may
have the same value on attribute set K.

The notation of functional dependency generalizes
the notion of superkey [10]. Let α⊆R and β⊆R. The
functional dependency α β holds on R if, in any
relation r(R), for all pairs of tuples t1 and t2 in r such
that t1[α]=t2[α]. It is also the case that t1[β]=t2[β]. Using
the functional-dependency notation, K is a superkey of
R if K R. That is, K is a superkey if, whenever
t1[K]=t2[K], it is also the case that t1[R]=t2[R], that is
t1=t2. In this paper, we will mine FDs using the
elementary facts concept which was proposed by [12].

2.2. Object-role modeling

ORM is called “fact-oriented modeling” because it
expresses the information in terms of simple/
elementary facts. An elementary fact is defined by [12]

2009 First Asian Conference on Intelligent Information and Database Systems

978-0-7695-3580-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ACIIDS.2009.13

40

2009 First Asian Conference on Intelligent Information and Database Systems

978-0-7695-3580-7/09 $25.00 © 2009 IEEE

DOI 10.1109/ACIIDS.2009.13

40

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:09:40 UTC from IEEE Xplore. Restrictions apply.

as an assertion that an object has a property, or that one
or more objects participate in a relationship, where the
fact cannot be split into simpler facts with the same
object types without information loss.

In order to reverse engineering XML Databases into
ORM conceptual schema, our concern is the second
step of the conceptual schema design procedure, i.e.
draw the fact types and apply a population check. In
this paper, fact types are populated with fact instances
from XML Databases using XQuery. For population
checking, we propose an application that implements
the MAR concept.

2.3. Multidimensional association rules

Let J={i1, i2, …, im} be a set of items. Let D, the
task-relevant data, be a set of database transactions
where each transaction T is a set of items such that
T⊆J. Let A be a set of items. A transaction T is said to
contain A if and only if A⊆T. [13] defined an
association rule as an implication of the form A⇒B,
that is, A1∧…∧Am B1∧…∧Bn, where A⊆J, B⊆J, and
A∩B=Ø. Association rules that involve two or more
dimensions or predicates can be referred to as
Multidimensional Association Rules, for instance:
age(A,”20…29”)∧income(A,”20K…29K”)⇒buys(X,”
CD player”).

The rule A⇒B holds in the transaction set D with
support s, where s is the percentage of transactions in
D that contain A∪B, i.e. both A and B. This is taken to
be the probability, P(A∪B). The rule A⇒B has
confidence c in the transaction set D if c is the
percentage of transactions in D containing A that also
contain B. This is taken to be the conditional
probability, P(B|A).

Support (A⇒B)=P(A∪B)=
)(

)(
UP

BAP ∪
 (1)

Confidence (A⇒B)=P(B|A)=
P(A)

B)P(A∪
 (2)

Association Rules mined using a support-
confidence framework are useful for many application.
However, the support-confidence framework can be
misleading in that it may identify a rule A⇒B as
interesting when the occurrence of A does not imply
the occurrence of B. The occurrence of itemset A is
independent of the occurrence of itemset B if
P(A∪B)=P(A)P(B); otherwise itemsets A and B are
dependent and correlated as events.

Correlation A,B=
P(A)P(B)

B)P(A∪
 (3)

If the resulting value of (3) is less than 1, then the

occurrence of A is negatively correlated with the
occurrence of B. If the resulting value is greater than 1,
then A and B are positively correlated, meaning the
occurrence of one implies the occurrence of the other.
If the resulting value is equal to 1, then A and B are
independent and there is no correlation between them.

In this paper, a confidence value is used for mining
the rule A⇒B as the interesting FDs. If and only if all
confidences in itemsets are 100% (see FD definition on
section 2.1) then the rules A⇒B is an interesting FDs.
For FD purpose, we also mine the rule B⇒A. In
addition, support and correlation are used to prune the
interesting rules when more than one determinant
determines the same dependant.

3. Mining multidimensional association
rules from XML databases

A framework for deriving conceptual schema from
XML Databases is shown in Figure 1. There are three
main processes, i.e. modify XML List, mine interesting
rules, and prune weak rules. The first process is to
create XML List from XML Databases then generate
itemsets to be mined by the second process. Create the
rules (FDs) which are to be pruned in the third process
and get inputs from the second and the third processes
to update or delete the XML List elements.

Figure1. The deriving conceptual schema from
XML databases framework

The second process is to mine interesting rules by

joining and calculating confidence itemsets using
XQuery. Figure 2(a) and Figure 2(b) show XQueries
for 2-itemsets and 3-itemsets respectively. The XQuery
can be extended for further itemsets. The XQueries
implement the confidence equation (2). The itemset is
an FD, if and only if all confidences of the itemset are
100% then save the itemset into an FD List.

The last process, prune weak rules (FDs) when
XML List elements are refered more than one with
considering average support and correlation itemsets.

XML
Databases

Add, Update,
Delete XML
List Element

XML Element

Mining Interesting
Rules based on

Confidence
itemsets (Add,
Delete FD List

Element)

XML Data

Itemsets to
be mining

Prune Weak
Rules based on

Support and
Correlation

XML Data

XML List Element
with Code > 1

FDs List
Element to be

pruning
FDs List Element
to be deleting

XML List Element to be
updating or deleting

ORM
Conceptual

Schema
Diagram

XML List Element to be
updating or deleting

4141

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:09:40 UTC from IEEE Xplore. Restrictions apply.

declare variable $Tbl:=
 doc("SPJ.xml")/SPJ/SupplierPartProject;
<ItemSet-2>
 {for $C1 in distinct-values($Tbl/)
 let $C1C:= count($Tbl [=$C1])
 for $C2 in distinct-values($Tbl/)
 let $p:=$Tbl [=$C1 and =$C2]
 order by $C1,$C2
 return
 if (exists($p)) then
 <Frequent>
 <A>{$C1}
 {$C2}
 <Sup.Count>{count($p)}</Sup.Count>
 <Confidence>{count($p) div $C1C *
 100}%</Confidence>
 </Frequent>
 else ()}
</ItemSet-2>

A
A

A
B

B

declare variable $Tbl :=
 doc("SPJ.xml")/SPJ/SupplierPartProject;
<ItemSet-3>
 {for $C1 in distinct-values($Tbl/)
 for $C2 in distinct-values($Tbl/)
 let $C1C:= count($Tbl [=$C1 and =$C2])
 for $C3 in distinct-values($Tbl/)
 let $p:=$Tbl [=$C1 and =$C2 and
 =$C3]
 order by $C1, $C2, $C3
 return
 if (exists($p)) then
 <Frequent>
 <A>{$C1} {$C2} <C>{$C3}</C>
 <Sup.Count>{count($p)} </Sup.Count>
 <Confidence>{count($p)div$C1C*100}%</Confidence>
 </Frequent>
 else ()}
</ItemSet-3>

A

A

A

B

B

B
C

C

declare variable $Tbl :=
doc("SPJ.xml")/SPJ/SupplierPartProject;
<SupCor>
 {let $CC:=count($Tbl)
 for $C1 in distinct-values($Tbl/)
 let $C1C:=count($Tbl [=$C1])
 for $C2 in distinct-values($Tbl/)
 let $C2C:=count($Tbl [=$C2])
 let $p:=$Tbl [=$C1 and =$C2]
 order by $C1, $C2
 return
 if (exists($p)) then
 <Frequent>
 <A>{$C1}
 {$C2}
 <Support>{count($p) div $CC*100}%</Support>
 <Correlation>{count($p) div ($C1C*$C2C)} </Correlation>
 </Frequent>
 else ()}
</SupCor>

A
A

A

B
B

B

Struct EXML{
 string Name;
 int Code;
 EXML* next;
}

Struct EDT{
 EDT* top;
 String Name;
 EDT* nextT;
 EDT* nextB;
 EDT* bottom;
}

Struct EDP{
 string Name;
 EDP* next;
}

Support equation (1) and correlation equation (3) are
implemented on XQuery in Figure 2(c). Prune the
lowest support FDs with the correlation FDs greater

than or lower than one. The final FD List is used to
generate an ORM conceptual schema diagram.

 (a) Confidence A⇒B (b) Confidence A^B⇒C (c) Support & Correlation rule A⇒B

Figure 2. XQueries for the calculation of confidence, support, and correlation itemsets

Three struct data types in Figure 3, i.e. EXML,
EDT, and EDP are proposed to support the framework.
EXML is used in XML List for storing the third level
XML elements in XML Databases. There are three
possibilities value in XML Code, i.e. -1 (the element
is referred to as determinant), 0 (the element is not
referred), >=1 (the element is referred at least one).
EDT and EDP are used for constructing a FD List, i.e.
DT List and DP List. DP List is used for storing
dependent items. DP next is used for linking between
dependents. Set the last DP next to Nil. DT List is
used for storing determinant items that can be single or
composite item. In case composite determinant,
DT nextT is used for linking between determinants.
DT nextB is used for linking DT elements with DP
elements. In addition DT top and DT bottom is
used for linking between DT elements. In case, no
element in the top or bottom DT element than set
DT top or DT bottom to Nil.

Figure 3. The proposed struct data type

An algorithm for mining and pruning the interesting
FDs is as follows:
Step 1: Create an XML List. For every element on
the third level element in XML Databases, create an
element in XML List. The XML List is a guide for
generating itemsets, start from 2-itemsets, 3-itemsets,

etc. until all XML Code≠0. For generating n-
itemsets, n array of pointers are needed, namely
XML[i] for i=0, …, n-1. Set pointer XML[0] to the
first element XML List and set pointer XML[1] to
XML[0] next. Go to step 3.
Step 2: Move pointer XML[0]. Set pointer PXML to
XML[0] next. If PXML next≠Nil and still have
XML Code=0 then move pointer XML[0] to PXML.
Set pointer XML[1] to XML[0] next. Otherwise go
to step 8 for pruning the weak rules.
Step 3: Mine interesting rules 2-itemsets. Set false to
Result1 and Result2. Pass XML[0] Name and
XML[1] Name into the XQuery in Figure 2(a) for
calculating confidence. If all confidences are 100%
then set true to Result1. In addition, calculate
confidence by passing XML[1] Name and
XML[0] Name into the XQuery. If all confidences
are 100% then set true to Result2.
Step 4: If both Result1 and Result2 are true, it
means XML[0] element is a determinant of XML[1]
element or the XML[1] element is also a determinant
of XML[0]. Ask the user to choose the right one. If the
user chooses XML[1] element is a determinant of
XML[0] element then go to step 7. Otherwise, check if
XML[0] Code=0 then create a DT element and fill
DT Name with XML[0] Name. Create a DP
element and fill DP Name with XML[1] Name.
Moreover, set XML[0] Code with -1. If
XML[1] next≠nil then set PXML to XML[1] and
move XML[1] to PXML next. Furthermore, delete
the element PXML and go to step 3.
Step 5: If both Result1 and Result2 are false, If
XML[1] next≠nil then set pointer PXML to XML[1],
move pointer XML[1] to PXML Next, and go to step

4242

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:09:40 UTC from IEEE Xplore. Restrictions apply.

<?xml version="1.0" encoding="utf-8" ?>
<SPJ> the first level element
 <SupplierPartProject> the second level element
 <SNo>S1</SNo> the third level element
 <JName>Sorter</JName>
 <PName>Nut</PName>
 <JCity>Paris</JCity>
 <PNo>P1</PNo>
 <Color>Red</Color>
 <Qty>200</Qty>
 <Weight>12</Weight>
 <JNo>J1</JNo>
 <PCity>London</PCity>
 <SName>Smith</SName>
 <Status>20</Status>
 <SCity>London</SCity>
 </SupplierPartProject>
. . . etc
</SPJ>

SNo JName PName JCity PNo Color Qty Weight JNo PCity SName Status SCity
S1 Sorter Nut Paris P1 Red 200 12 J1 London Smith 20 London
S1 Console Nut Athens P1 Red 700 12 J4 London Smith 20 London
S2 Sorter Screw Paris P3 Blue 400 17 J1 Rome Jones 10 Paris
S2 Display Screw Rome P3 Blue 200 17 J2 Rome Jones 10 Paris
S2 OCR Screw Athens P3 Blue 200 17 J3 Rome Jones 10 Paris
S2 Console Screw Athens P3 Blue 500 17 J4 Rome Jones 10 Paris
S2 RAID Screw London P3 Blue 600 17 J5 Rome Jones 10 Paris
S2 EDS Screw Oslo P3 Blue 400 17 J6 Rome Jones 10 Paris
S2 Tape Screw London P3 Blue 800 17 J7 Rome Jones 10 Paris
S2 Display Cam Rome P5 Blue 100 12 J2 Paris Jones 10 Paris
S3 Sorter Screw Paris P3 Blue 200 17 J1 Rome Blake 30 Paris
S3 Display Screw Rome P4 Red 500 14 J2 London Blake 30 Paris
S4 OCR Cog Athens P6 Red 300 19 J3 London Clark 20 London
S4 Tape Cog London P6 Red 300 19 J7 London Clark 20 London
S5 Display Bolt Rome P2 Green 200 17 J2 Paris Adams 30 Athens
S5 Console Bolt Athens P2 Green 100 17 J4 Paris Adams 30 Athens
S5 RAID Cam London P5 Blue 500 12 J5 Paris Adams 30 Athens
S5 Tape Cam London P5 Blue 100 12 J7 Paris Adams 30 Athens
S5 Display Cog Rome P6 Red 200 19 J2 London Adams 30 Athens
S5 Console Nut Athens P1 Red 100 12 J4 London Adams 30 Athens
S5 Console Screw Athens P3 Blue 200 17 J4 Rome Adams 30 Athens
S5 Console Screw Athens P4 Red 800 14 J4 London Adams 30 Athens
S5 Console Cam Athens P5 Blue 400 12 J4 Paris Adams 30 Athens
S5 Console Cog Athens P6 Red 500 19 J4 London Adams 30 Athens

3. Otherwise go to step 2.
Step 6: If Result1 is true, it means XML[0] element is
a determinant of XML[1] element. If
XML[0] Code=0, it means that XML[0] is not in the
DT List then create a DT element and fill DT Name
with XML[0] Name. Create a DP element and fill the
DP name with XML[1] Name. Furthermore, set
XML[0] Code with -1 and increment
XML[1] Code. If XML[1] next≠nil then set pointer
PXML to XML[1], move pointer XML[1] to
PXML Next, and go to step 3. Otherwise go to step
2.
Step 7: If only Result2 is true, it means the XML[1]
element is a determinant of XML[0] element. If
XML[1] Code=0 then create a DT element and fill
DT Name with XML[1] Name. Create a DP
element and fill DP Name with XML[0] Name. Set
XML[1] Code with -1. If XML[0] Code≠-1 then
increment XML[0] Code else set 1 to
XML[0] Code. Go to step 2.
Step 8: Prune the weak rules. This step is used for
deleting XML List elements witch codes are equal or
greater to 1. If XML Code is greater than 1 then find
all elements in DP List witch DP Name are the same
with XML Name. Calculate support and correlation
for the itemsets using XQuery in Figure 2(c). Find the
highest support and correlation approximately to one
for keeping the itemsets in FD List and delete the
others. In case there are several itemsets with the same

support and correlation, than ask the user to choose
only one itemsets. If no XML Code=0 then go to step
10.
Step 9: Mine interesting rules for itemsets more
than 2 items. This step is used for mining interesting
rules with composite determinant, start from 3-
itemsets. It means n-1 combination XML List elements
with code -1 as a determinant and one element with
code 0 as dependent. For calculating confidence all 3-
itemsets use the XQuery in Figure 2(b) go to step 8.
Step 10: Generate ORM conceptual schema from
FD List using the algorithm that proposed by [5].

4. A case study

We use a Suppliers-Parts-Projects case study that is
used by [10] for demonstrating the normalization
technique. In our work, an input XML document is
SPJ.XML that is shown in the left side of Figure 4. The
document is too long to fit in the paper (includes 24
SupplierPartProject elements and every element
include 13 other elements), so we visualize the
document as a table in the right side of Figure 4.

To reverse XML Databases into ORM conceptual
schema, we demonstrate the proposed algorithm. It is
guaranteed that relational schemas based on the created
ORM will become in the fifth normal form. The
created XML List from SPJ.XML by step 1 is shown
in Figure 5(a). Every EXML Code=0.

Figure 4. Part of SPJ XML database and visualize SPJ XML database as a table

Mine 2-itemsets (A⇒B) by passing 2 items {SNo,
JName}, {SNo, PName}, {SNo, JCity}, {SNo, PNo},
{SNo, Color}, {SNo, Weigh}, {SNo, JNo}, {SNo,
PCity}, {SNo, SName}, {SNo, Status}, {SNo, SCity},
{JName, PName}, {JName, JCity}, …, {JName,
SCity}, …, {Status, SCity} to the XQuery in Figure
2(a) in sequence for calculating confidence. For every
sequence, also calculate confidence by exchanging the
item in the itemsets, for instance {SNo, SCity} and

{SCity, SNo}. The confidence itemsets {SNo, SCity}
and {SCity, SNo} are shown in Figure 6. All
confidences for itemsets {SNo, SCity} are 100% so
assign true to Result1. It means rule SNo⇒SCity is an
interesting FD rule. However, all confidences for
itemsets {SCity, SNo} are not 100% so assign false
Result2. If only Result1 is true, than store item SNo
into DT List and store item SCity into DP List. An
example for only Result2 is true, when mining a rule

4343

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:09:40 UTC from IEEE Xplore. Restrictions apply.

SNo SCity Sup.count Confidence
S1 London 2 100%
S2 Paris 8 100%
S3 Paris 2 100%
S4 London 2 100%
S5 Athens 10 100%

SCity SNo Sup.count Confidence
Athens S5 10 100%
London S1 2 50%
London S4 2 50%
Paris S2 8 80%
Paris S3 2 20%

< ItemSet-2>
 <Frequent>
 <A>S1
 London
 <Sup.Count>2</Sup.Count>
 <Confidence>100%</Confidence>
 </Frequent>
. . . etc
</ItemSet-2>

JName JCity Support Correlation
Console Athens 33.33% 0.10
Display Rome 20.83% 0.20
EDS Oslo 4.17% 1.00
OCR Athens 8.33% 0.10
RAID London 8.33% 0.20
Sorter Paris 12.50% 0.33
Tape London 12.50% 0.20

14.29% 0.30 Average

JNo JCity Support Correlation
J1 Paris 12.50% 0.33
J2 Rome 20.83% 0.20
J3 Athens 8.33% 0.10
J4 Athens 33.33% 0.10
J5 London 8.33% 0.20
J6 Oslo 4.17% 1.00
J7 London 12.50% 0.20

14.29% 0.30 Average

<SupCor>
 <Frequent>
 <A>Console
 Athens
 <Support>33.33%</Support>
 <Correlation>0.1</Correlation>
 </Frequent>
. . .etc
</SupCor>

PName⇒PNo and a rule PNo⇒PName. Only all
confidences for itemsets {PNo, PName} are 100%.
Thereforfe, store PNo into DT List and PName into DP
List. An example for both Result1 and Result2 are true,

when mining rules JName⇒JNo and JNo⇒JName. In
this case, ask the user to choose only one rule. The
XML List after processed 2-itemsets is shown in
Figure 5(b) and The FD List is shown in Figure 8(a).

(a) XML list initial

(b) XML list after processed 2-itemsets

(c) XML list after pruned and ready for processing next itemsets
Figure 5. The XML list

Figure 6. The confidence itemsets {SNo, SCity} and {SCity, SNo}

To prune the weak FD rules use XML List as a
guide line, i.e. XML Code>=1. If XML Code>1
then FD should be pruned according to the support and
the correlation those are calculated by XQuery in
Figure 2(c). For example, in Figure 5(b) element Name
JCity, the Code is 2, i.e. itemsets {JName, JCity} and
{JNo, JCity}. The calculation support and correlation
itemsets is show in Figure 7. The average support and
the average correlation for rule JName⇒JCity and

JNo⇒JCity are same, i.e. 14% and 0.30 respectively.
Therefore ask the user to choose the rule to be pruned.
In this study case, we choose to prune the rule
JName⇒JCity. Furthermore, delete all XML elements
in XML List with Code are greater or equal one for
preparing to next process mining. As a result the XML
List is shown in Figure 5(c). There is still one XML
List element with Code is 0.

Figure 7. The support and correlation itemsets {JName, JCity} and {JNo, JCity}

Mine 3-itemsets (A^B⇒C) by combination two items
A-B with Code -1 and one item C with Code at least
0, i.e. {SNo, PNo, Qty}, {SNo, JNo, Qty}, {PNo,
JNo, Qty}. Pass 3-itemsets into the XQuery in Figure
2(B). However, no all confidence for every 3-

itemsets is 100%. Therefore, mine 4-itemset (A^B^C
⇒D), i.e. {SNo, PNo, JNo, Qty}. All confidences in
the itemsets are 100%. As a result store the rule in
FD List and increment the Qty Code by one. If all
XML Code is not 0 then stop the mining process.

SNo
-1

PNo
-1

Qty
0

JNo
-1

XML
XML[0] XML[1]

Nil

XML[2]

JName
0

SNo
0

PName
0

JCity
0

PNo
0

Color
0

Qty
0

Weight
0

JNo
0

SName
0

PCity
0

Status
0

SCity
0

Nil

XML
XML[0] XML[1]

PXML

JName
1

SNo
-1

PName
1

JCity
2

PNo
-1

Color
1

Qty
0

Weight
1

JNo
-1

PCity
1

Status
1

SCity
1 Nil

XML XML[0] XML[1]PXML

4444

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:09:40 UTC from IEEE Xplore. Restrictions apply.

As a result FD List is shown Figure 8(b). The last
step is used for generating an ORM conceptual

schema in Figure 8(c), for detail algorithm refer to
[5].

 (a) FD list initial (b) FD list final (c) ORM diagram

Figure 8. The FD list and the generated ORM diagram

5. Conclusion

This paper presents a conceptual schema reverse
engineering technique and shows that MAR can be
used for mining FDs in XML Databases. If XML
Databases are not big enough, it is possible to produce
interesting rules which depend on difference
determinants. The support and the correlation itemsets
can be employed to prune the weak FD rules. It is
concluded that MAR techniques can improve our
proposed conceptual schema reverse engineering
technique [5] and can be used generally to reverse
engineer FDs from XML Databases.

6. References

[1] World Wide Web Consortium. XML 1.0 (Second
Edition) W3C Recommendation. http://www.w3.org/XML.

[2] Linda, Bird, Andrew Goodchild, and Terry Halpin.
“Object Role Modeling and XML-Schema”, Proc. of ER
2000, USA, October 2000, pp. 1-14.

[3] Narudol C. and Suphamit C., “An Object and XML
Database Schemas Design Tool”, Proc. of ITCC 2004, USA,
April 2004, pp. 421-424.

[4] Yuliana, Oviliani Y. and Chittayasothorn S., “A
Conceptual Schema Based XML Schema with Integrity
Constraints”, Proc. of ICHIT 2008, Korea, August 28-29
2008, pp. 19-24.

[5] Yuliana, Oviliani Y. and Chittayasothorn S., “XML
Schema Re-Engineering Using a Conceptual Schema

Approach”, Proc. of ITCC 2005, USA, April 4-6 2005, pp.
255-260.

[6] R. Agrawal and Srikant R, “Fast Algorithm for Mining
Association Rules”, Proc. of the 20th International
Conference on Very Large Databases, Chile, 1994, pp. 487-
499.

[7] Myint Myint Khaing and Nilar Thein, “An Efficient
Association Rule Mining for XML Data”, Proc. of SICE-
ISACE 2006, Korea, October 18-21 2006, pp. 5782-5786.

[8] Jacky W.W. Wan and Gillian Dobbie, “Extracting
Association Rules from XML documents Using XQuery”,
Proc of WIDM, USA, November 7-8 2003, pp. 94-97.

[9] D. Chamberlin, “XQuery: An XML query language”,
IBM Systems Journal Vol. 41 No. 4, 2002, pp. 597-615.

[10] Date, C. J., An Introduction to Database Systems the 7th
edition, Addison Wesley Longman, Inc., USA, 2000.

[11] Pedro Sousa, Lurdes Pedro-de-Jesus et. al, “Clustering
Relations into Abstract ER Schemas for Database Reverse
Engineering”, Prof. of the 3th European conference on
Software Maintenance and Reengineering, Netherlands,
March 03-05 1999, pp.169-176.

[12] Halpin, Trerry, Conceptual Schema & Relational
Database Design the 2nd edition, WytLytPub, USA, 1999.

[13] Han, Jiawei and Micheline Kamber, Data Mining:
Concepts and Techniques, Morgan Kaufmann Publishers,
USA, 2001.

ha
s1

0

Qty

SNo

PNo

JNo

has1

SName

has2

Status

has3

SCity

PName

has4

JName

has5

JCity

has6

has7.

has8

has9

Color

Weight

PCity

SNo

JName

JNo

PNo

SName Status SCity

JCity

JName JCity

PName Color Weight

Nil

Nil

Nil

Nil

Nil

Nil

Nil

Nil

Nil

PCity
Nil

SNo

JNo

PNo

SName Status SCity

JName JCity

PName Color Weight

Nil

Nil

Nil

Nil

Nil

Nil

Nil

SNo PNo JNo

Nil Nil

Nil
Qty

Nil

PCity
Nil

4545

Authorized licensed use limited to: National Central University. Downloaded on January 14,2023 at 07:09:40 UTC from IEEE Xplore. Restrictions apply.

