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Abstract
This article proposes an enhanced control of integrating cascade processes. The importance of the scheme shows by
controlling a double integrating process with time delay under significant parametric uncertainties and load disturbances.
A novel design is proposed based on the Smith predictor principle and uses a fractional-order internal model controller
in the outer loop. The required fractional-order tuning parameter follows the desired gain and phase margins. At the
same time, another tuning parameter, such as the fractional filter’s time constant, is calculated from the desired perfor-
mance constraint. Numerical analysis and comparison are performed to showcase the feature of the hybrid structure.
The simulation results show that the fractional-order internal model controller–based scheme provides enhanced track-
ing and faster regulation capabilities and works well under nominal and parameter uncertainty conditions.
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Introduction

This article makes original contributions to two areas
of controller design. They are second-order integrating
plus time delay (IPTD) plants and fractional-order the-
ory into internal model control (IMC) design.
Therefore, the background concerning each of the two
domains is first reviewed. The series-cascade control
structure (SCCS) is a prime focus of this work.

The second-order or double integrating plant with
time delay is ramping and relatively slows due to its
considerable time constant. This plant primarily pos-
sesses two poles at origin, has a non-self-regulating
nature, and is disturbed easily with a minor load distur-
bance. It is due to poor performance rejecting load dis-
turbance by a conventional feedback system and
deviating the controlled variable from a setpoint.
Therefore, the controlling method requires a structural
change or additional controllers to handle such plants.
In this area, a cascade control structure has been
adopted widely in plant industries, such as level, tem-
perature, pressure, and flow control loops. Franks and
Worley1 had introduced an SCCS. The closed-loop

performance was improved using the inner loop by
rejecting disturbances quickly. Such cascade control
structure consists of two control loops. The inner-loop
controller is called the secondary or slave controller,
whereas the outer-loop controller is called the primary
or master controller. In a typical cascade structure,
faster dynamics of the inner loop help in speedier dis-
turbance attenuation, thus minimizing the effect of dis-
turbance before they affect the primary output.
Another objective of cascade control is to minimize the
sensitivity of the primary plant gain variations.
However, the control strategy in cascade is more com-
plex than a single-loop control. The structure also mea-
sures an additional output and controller to be tuned.
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In industries, two different cascade controllers can
be seen. The control and disturbance signals affect the
primary output response through the secondary or
inner loop in series-cascade control. In parallel-cascade
control, the control and disturbance signals simultane-
ously affect primary and secondary outputs.2

Researchers in the last decade discussed the design and
analysis of cascade control techniques for improved
tuning and performances3–8 and references within. It
was found in the literature also a plant with input time
delay or dead time could add more complexity to cas-
cade control. The input delay increases the phase lag,
leading to a decrease in gain margin and phase margin,
finally leading to instability. The work with this kind of
plant is a difficult task.

Our focus in this article is the cascade control method
for integrating time delay plants. Therefore, the research
on series-cascade control design with integrating plants
is reviewed in the following. In Kaya and Atherton,9 a
cascade integrating time delay plant was controlled
using a proportional–integral (PI)-proportional–deriva-
tive (PD) scheme with the Smith predictor (SP) in the
outer loop and IMC in the inner loop. An SP-based cas-
cade control structure was seen in Uma et al.,10 in which
a secondary loop was again designed using IMC.
Nevertheless, a primary loop was tuned using the direct
synthesis technique for better setpoint and load distur-
bance rejection. A modified cascade control system was
proposed in Padhan and Majhi11 using SP and IMC
rules and involved two controllers and a setpoint filter.
Another scheme presented in Nandong and Zang12 for
multi-scale cascade control consisting of four controllers
was applicable to self-regulating, double integrating,
and unstable plants. An online tuning method in cas-
cade control was developed by Jeng13 for higher-order
plants. An SP strategy was continued for cascade con-
trol to enhance the performance. In Cxakıroğlu et al.,14

higher-order models were decomposed into first-order
models, and depending on the order of the model, a sep-
arate loop was established. A modified cascade control-
ler is based on the method of moments and the Routh
stability criterion developed in Raja and Ali.15 Recently,
a frequency domain method with model matching was
discussed for cascade controllers16 in a nonlinear contin-
uous stirred tank reactor.

Nowadays, fractional-order controllers (FOCs) in
engineering applications are evolving into an attrac-
tive area.17–19 The methods with FOC provide an
extra degree of freedom in tuning parameters. The
fractional-order proportional–integral–derivative
(FOPID) presented by Podlubny20 has two additional
parameters: fractional differential and fractional inte-
gral orders. Since then, many tuning approaches
based on FOPID structures have been proposed in
the literature. It has also seen some variations with
fractional-order derivatives in the SP and IMC
schemes. The fractional-order PI plus D controller

was developed for integrating plants using the explicit
formulae of the complex root boundary.21 This
method and some references within have shown better
tracking performance than the classical approaches.
It has been found recently a type of controller like
FOI1�lDl using a fractional integrator and derivative
actions. Oustaloup recursive approximation (ORA)
method is used to implement this controller.22

Fractional calculus was also applied in the IMC the-
ory. Arya and Chakrabarty18 discussed fractional-
order internal model controller (FOIMC) scheme
using the gain and phase margins’ specifications.
Similarly, Ranjan and Mehta23 presented a superior-
ity using a fractional-order tilt double derivative
(FOTDD) in the IMC framework. Also, a new
double-loop control approach was proposed for a
time-delayed unstable system that uses a PD/P con-
troller in its inner loop and FOIMC in its outer
loop.24 To continue, Shweta et al.25 developed a novel
dual-loop hybrid control method for second-order
unbounded plants with dead time and zeros. In this
method, an external-loop controller was designed
using the FOIMC, whereas the internal-loop
controller used a simple proportional–integral–deri-
vative (PID). Kumar et al.26 suggested FOIMC for
achieving satisfactory servo performance and PD to
reject the disturbance rejection. It is observed the per-
formance was improved with dual-loop and
fractional-order than before.27 A compensator-based
series-cascade control with FOIMC was proposed for
unstable processes in Mukherjee et al.28 In Chandran
et al.7 and Pashaei and Bagheri,29 the secondary con-
troller was designed from FOIMC. In general, it is
noticed that the fractional-order filter in IMC can
provide a more flexibility to modify the output per-
formances. However, there are some limitations to
the available methods and those are presented below.

The literature review suggested that the available
methods often consume much time in computing para-
meters when the cascade control is used. Also, a few
methods are available for integrating plants; specifi-
cally, double integrating plants are significantly less. If
the integrating plant is affected by load disturbance, it
will further deteriorate the relationship between input
and output. Moreover, many real-time plant models
contain time delays. Even considering a large time delay
in plants, the perturbation may lead to poor perfor-
mance. A considerable number of works have been pro-
posed on this subject. However, they may require more
tuning parameters or controllers in a loop or complex
design approach. Despite some modifications suggested
in the structure, the results showed poor disturbance
rejection and robustness. These investigations have
assisted in understanding the necessary and developing
a new control scheme for cascade controlling of inte-
grating plants. Briefly, the contributions of this article
comprise as follows:
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� The improved structure is suggested with only one
fractional-order parameter, and a hybrid scheme
contains the merits of both IMC and SP principles.

� This method can handle highly sensitive processes
under parametric uncertainties and load disturbances.

� The fractional-order parameter in the controller
could be selected based on gain margin (gm) and
phase margin (fm) specifications. The desirable range
is provided for ease of selection tasks. The fractional-
order IMC filter’s time constant is tuned by the
balanced, objective function under constraints.

� The robustness study is performed to demonstrate
the advantages of the proposed scheme, which
includes parameter perturbation, external and inter-
nal load disturbances, and noisy output signal.

� The quantitative analysis also shows superior per-
formances compared with recently developed works.

The article is organized as follows. Section
‘‘Preliminary’’ represents the general IMC scheme and
tilt–integral–derivative (TID) controller. In sections
‘‘Plant models, controller, and tuning procedures’’ and
‘‘The proposed controller design in real-time,’’ the pro-
posed controlling scheme is discussed in detail. Then,
the selection of tuning parameters is suggested in sec-
tion ‘‘Tuning of l and b for the proposed controller
structure.’’ Section ‘‘Robustness analysis and stability’’
presents the robustness and stability analysis of the
proposed controller. The numerical simulation is per-
formed in section ‘‘Simulation results,’’ compared with
other methods, and finally, the conclusion is given in
section ‘‘Conclusion.’’

Preliminary

This section presents the basic IMC structure and equa-
tions related to it and also some details about the series-
cascade control system.

The general IMC control system

The well-known IMC scheme is shown in Figure 1,
where Gp(s), Gm(s), Q(s), and Gc(s) representing the
plant, plant model, IMC controller, and feedback con-
troller, respectively. The design procedure using the
IMC principle can be seen briefly below.

Step 1: factorize the plant model, Gm into two parts.
G�m as invertible and minimum phase. G+

m as non-
invertible and non-minimum phase parts (delays and
right half-plane zeros)

Gm(s)=G+
m (s)G�m(s) ð1Þ

Step 2: take inversion for invertible part G�m.
Step 3: add a low-pass filter f(s) in order to make IMC
controller proper. Then, the IMC controller becomes

Q(s)=G�m(s)
�1f(s) ð2Þ

Step 4: the simplified form of the feedback controller is
obtained as

Gc(s)=
Q(s)

1� Gm(s)Q(s)
ð3Þ

The fractional-order tilt–integral–derivative controller

The well-known FOPID involves the tuning of five para-
meters: commonly gains Kp, Ki, Kd and fractional orders
a and m. It has been demonstrated in the literature that
it can offer additional flexibility to meet design control
goals. The TID controller also belongs to the same
fractional-order family. Despite having only four para-
meters, the structure is almost identical to the widely
used PID. Only the proportional gain is replaced by the
tilted gain (Kt) having a transfer function 1=s

1
n, where n

is a non-zero real number.30 The standard transfer func-
tion of TID controller can be represented as

TID=Kt
1

s
1
n

+Ki
1

s
+Kds ð4Þ

where Kt is the tilted gain, Ki is the integral gain, and
Kd is the derivative gain. The tuning parameter, n
should be between the numbers 2 and 3. A TID con-
troller exhibits more accurate tuning, quick distur-
bance rejection, and minimizes parameter uncertainty
when compared to conventional controllers. The
study of this topic has recently attracted a lot of inter-
est. A robust 3-degree-of-freedom (3DOF)-TID con-
troller31 as well as integral derivative-tilted (ID-T)
controller32 developed for load frequency control in
interconnected power systems was some of the works
developed recently. The transfer function of the con-
troller can be written below

FOTID=Kt
1

s
1
n

+Ki
1

sa
+Kds

m ð5Þ

where a and m are the positive real orders for integral
and derivative, respectively. Here, we want to apply the

Figure 1. Typical IMC structure.
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IMC principle designing the fractional-order tilt–inte-
gral–derivative (FOTID) of form in equation (5).
Aiming to make a simple tuning approach, even though
the controller seems to be complex with three fractional
orders. The proposed design is discussed in the follow-
ing sections for integrating plant models. We attempt
to obtain one common tuning parameter to calculate
other parameters and use the plant information.

Series-cascade control system

Figure 2 shows the typical structure of a series-cascade
control system, which consists of two control loops,
namely, the inner loop with plant Gp2 and the outer
loop with plant Gp1. Let us assume the load distur-
bances entering inner and outer loops with values D1,
D2, and D3 as seen in Figure 2. The primary plant-
controlled variable Y1(s) with setpoint R1(s) is used by
the primary controller Gc1 to build a setpoint for the
secondary controller Gc2. The general guideline behind
this configuration is that the inner loop should be faster
than the outer loop, that is, the disturbance affecting
the inner loop is compensated before it affects the pri-
mary plant. The outer loop can be designed for setpoint
tracking, but the problem arises when the outer plant
will have a large time delay. In such cases, the SP can
be used for compensating the delay.

Plant models, controller, and tuning
procedures

The series plant is mainly combined with the stable
inner plant, whereas the primary plant may be stable,
unstable, or integrating by nature. In our work, we
have considered the following plant models to study.
Let the IPTD model as

Gp1(s)=
K1e

�u1s

s
ð6Þ

The double integrating plus time delay (DIPTD)
model is

Gp1(s)=
K1e

�u1s

s2
ð7Þ

The integrating second-order plus time delay
(ISOPTD) model is

Gp1(s)=
K1e

�u1s

s(ts+1)
ð8Þ

The proposed SCCS scheme is given in the block
diagram (Figure 3). As seen in the figure, it has two
main controllers and a filter compensator. First, the
inner-loop controller is designed using the IMC princi-
ple. Following the inner loop, the outer primary con-
troller is developed as an FOC. Aiming to design a new
fractional controller for integrating plants to make the
overall system more stable and robust with load distur-
bance inputs. Let us express the primary and secondary
controllers as

Gc1(s)=Kc1
1

Ti1sa
+Td1s

m

� �
ð9Þ

Gc2(s)=Kc2 1+
1

Ti2s

� �
ð10Þ

The Gc1 in equation (9) is called a fractional-order
integrator and derivative (FOID) controller and a,m
are the fractional orders of the integral and differential.
Also, one can use the gains Kc1=Ti1=Ki1 and
Kc1Td1 =Kd1 for simplifying design steps. The Gc2 in
equation (10) is the classical PI controller.

The inner-loop controller design

The model of a secondary process Gm2(s) having a small
time delay can be controlled effectively using the well-
known simple internal model control (SIMC) tuning.33

Let us consider the stable first-order plus time delay
(FOPTD) model as

Gp2(s)=
K2e

�u2s

t2s+1
ð11Þ

Then, following the IMC technique from section
‘‘The general IMC control system,’’ one can obtain the
IMC controller for the inner loop as

Figure 2. Series-cascade control structure.
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Q2(s)=
t2s+1

K2(l2s+1)
ð12Þ

where l2 is a single tuning parameter and defined also
as a secondary closed-loop time constant. From equa-
tion (3), the secondary controller can be obtained as
below after approximating e�u2s to (1� u2s) using the
Taylor series expansion

Gc2(s)=
t2s+1

K2(l2s+ u2s)
ð13Þ

The objective of the inner controller is to reject the
load disturbance before affecting the outer plant
response. According to the SIMC tuning rule, a fast
response with good robustness is obtained when
l2 = u2. It gives further

Gc2(s)=
t2s+1

2K2u2s
ð14Þ

Comparing with the classical PI in equation (10), we
obtain the parameter values as below

Kc2 =
0:5t2

K2u2
; Ti2 = t2 ð15Þ

Now, the inner-loop transfer function is given by

Y2(s)

U1(s)
=

Gc2(s)Gp2(s)

1+Gc2(s)Gp2(s)
ð16Þ

Substitution Gp2 and Gc2 in equation (16) gives

Y2(s)

U1(s)
=

0:5e�u2s

u2s+0:5e�u2s
ð17Þ

After replacing the small value time delay
e�u2s =1� u2s, the approximated inner-loop becomes

Y2(s)

U1(s)
’

e�u2s

u2s+1
ð18Þ

Since it is straightforward to simplify the inner-loop,
the primary controller can be designed from the follow-
ing section.

The proposed outer-loop controller design

To design the main loop controller, the overall plant
transfer function can be considered after the modified
inner loop as below

Ĝp1 =Gp1e
�u1s

Y2(s)

U1(s)
=

Gp1e
�u1se�u2s

u2s+1
’Gp1e

�(u1 +2u2)s

=Gp1e
�ums

ð19Þ

where um represents the overall time delay, and Ĝp1 rep-
resents the total plant transfer function.

The overall primary closed-loop transfer function
for servo response can be written as

Y1(s)

R1(s)
=

Gc1(s)Ĝp1(s)

1+Gc1(s)Gm(s)+Gc1(s)Ff(s)Gm(s)e�ums�Gc1(s)Ff(s)Ĝp1(s)

ð20Þ

By considering the model exactly represents the pro-
cess (Ĝp1(s)=Gme

�ums), equation (20) can be repre-
sented as

Y1(s)

R1(s)
=

Gc1(s)Gm(s)e
�ums

1+Gc1(s)Gm(s)
ð21Þ

Figure 3. Proposed series-cascade control structure for integrating plants.
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Case 1: IPTD plant. Let us take Gp1 as equation (6),
where K1 is the static gain and u1 is a dead time. Using
equation (19), the overall transfer function for the outer
loop becomes

Ĝp1(s)=
K1e

�ums

s
ð22Þ

where um =2u2 + u1. Aiming to design a fractional-
order IMC filter, we have chosen the form of IMC fil-
ter with fractional-order differentiator as below

f(s)=
1

lsb +1
ð23Þ

where l represents a fractional filter time constant
(l . 0) and b is a positive real number, that is, the frac-
tional order b, lies in the range 0ł b ł 2. The value of
b varies with different plants, and the choice of b as per
plant type is further discussed in section ‘‘Choice of b.’’
Now, according to the IMC rule, one can obtain the
outer-loop controller Gc1 using equation (3). Following
the basic rule of the IMC, the FOC becomes

Gc1(s)=
s

K1lsb
ð24Þ

The above equation can be seen as a fractional-order
D controller as below

Gc1(s)=
1

K1l
s1�b ð25Þ

Gc1(s)=Kd1s
1�b ð26Þ

where Kd1 =1=K1l. The overall closed-loop transfer
function after substituting in equation (21) can be
obtained as

Y1(s)

R1(s)
=

e�ums

lsb +1
ð27Þ

Case 2: DIPTD plant. The DIPTD plant in equation
(7) can obtain the outer controller as below after the
inner-loop transformation

Gc1(s)=
s2

K1lsb
ð28Þ

Finally, the outer controller is obtained as below

Gc1(s)=Kd1s
2�b ð29Þ

Case 3: ISOPTD. The ISOPTD plant in equation (8) is
formed as the outer controller as below

Gc1(s)=
s(ts+1)

K1lsb
ð30Þ

The above equation can be rearranged as below

Gc1(s)=
1

K1l

1

sb�1 +
t

K1l
s2�b ð31Þ

This can be denoted as an FOID controller

Gc1(s)=Ki1
1

sb�1 +Kd1s
2�b ð32Þ

and its parameters become

Ki1 =
1

K1l

Kd1 =
t

K1l

� �
a=b� 1
m=2� b

� �
ð33Þ

As per the transfer function models of the outer pro-
cess, the controller settings are tabulated in Table 1.

The proposed controller design in real-
time

Let us take first Ĝp1(s) from equation (22), where K1 is
the static gain and um is a dead time. This IPTD model
can be approximated into the FOPTD model as below

Ĝp1(s)=
K1e

�ums

s
=

K1e
�ums

s+ 1
g

=
gK1e

�ums

gs+1
ð34Þ

where g is considered as a constant with a high value,
say g =100. As per the new filter equation (23), the
resulting IMC controller becomes

Table 1. The proposed controller settings as per process model.

Plant Primary controller Ki1 Kd1 a m Range of b

IPTD Gc1(s) = Kd1s1�b – 1
K1l

– 1� b 0:8 \ b \ 1:0

DIPTD Gc1(s) = Kd1s2�b – 1
K1l

– 2� b 0:8 \ b \ 1:5

ISOPTD Gc1(s) = Ki1
1

sb�1 + Kd1s2�b 1
K1l

t
K1l

b� 1 2� b 1:0 \ b \ 1:5

IPTD: integrating plus time delay; DIPTD: double integrating plus time delay; ISOPTD: integrating second-order plus time delay.
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Q(s)=
gs+1

gK1

1

lsb +1
ð35Þ

It can be realized as the feedback controller from
equation (3) below

Gc1(s)=
gs+1

gK1lsb
ð36Þ

The above equation can be rearranged with respect
to TD controller in equation (5). In this case, one can
see the expression as

Gc1(s)=
1

gK1l

1

sb
+

1

K1l
s1�b ð37Þ

Comparing equations (37) and (5), the TD controller
values are obtained as below

Kt =
1

glK1
;Kd =

1

lK1
; b=

1

n
; m=1� b ð38Þ

The DIPTD plant in equation (7) in the same way
can be approximated as

Ĝp1(s)=
K1e

�ums

s2
=

K1e
�ums

s2 + 1
g

=
gK1e

�ums

gs2 +1
ð39Þ

In the same way, one can obtain the feedback con-
troller as shown below

Gc1(s)=
gs2 +1

gK1lsb
ð40Þ

The above equation can be arranged with respect to
TD controller as

Gc1(s)=
1

glK1

1

sb
+

1

K1l
s2�b ð41Þ

Comparing equations (41) and (5), the TD controller
values are obtained as below

Kt =
1

glK1
;Kd =

1

lK1
; b=

1

n
; m=2� b ð42Þ

It can be seen for IPTD and DIPTD process models
that the integral part is not required. Thus, the para-
meter Ki =0.

The ISOPTD plant in equation (8) can be repre-
sented as

Ĝp1(s)=
gK1e

�us

(gs+1)(ts+1)
ð43Þ

The feedback controller can be obtained as

Gc1(s)=
1+ (g + t)s+ gts2

gK1lsb
ð44Þ

The above equation can be arranged with respect to
TID controller as

Gc1(s)=
1

gK1l

1

sb
+

g + t

gK1l

1

sb�1 +
t

K1l
s2�b ð45Þ

Comparing equations (45) and (5), the FOTID para-
meters become

Kt =
1

glK1
;Ki =

g + t

glK1
;Kd =

t

lK1
; b=

1

n
;

a=(b� 1); m=(2� b)

ð46Þ

The proposed controller settings as per practical
cases can be noted as shown in Table 2.

The disturbance filter for an inner loop

The literature suggested some restrictions with IMC and
SIMC methods. They perform poorly with disturbance
inputs and have less flexibility to improve performance
for robustness.3,15 It is essential to improve load rejec-
tions, especially the plants are in cascade. In our work, a
disturbance filter is required in the inner loop. The tuning
of a filter should be simple and based on model para-
meters. For that purpose, we have included a disturbance
filter from the inverse model and converted it into a
proper second-order filter. A general form 1=(cs+1)2

can be included as below into the filter, Fd(s) as

Table 2. Primary controller settings.

Plant Primary controller Kt1 Ki1 Kd1 a m

IPTD Gc1(s) = 1
gK1l

1
sb + 1

K1l
s1�b 1

glK1
– 1

lK1
– 1� b

DIPTD Gc1(s) = 1
glK1

1
sb + 1

K1l
s2�b 1

glK1
– 1

lK1
– 2� b

ISOPTD Gc1(s) = 1
gK1l

1
sb + g + t

gK1l
1

sb�1 + t
K1l

s2�b 1
glK1

g + t
glK1

t
lK1

b� 1 2� b

IPTD: integrating plus time delay; DIPTD: double integrating plus time delay; ISOPTD: integrating second-order plus time delay.
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Fd(s)=
1

Gp2(s)

1

cs+1ð Þ2
ð47Þ

Since the inner plant model is a first-order stable, the
above equation becomes

Fd(s)=
t2s+1

K2e�u2s

1

cs+1ð Þ2
ð48Þ

The time delay can be approximated with a first-
order Taylor series expansion, and then Fd is expressed
by

Fd(s)=
(t2s+1)

K2

(u2s+1)

(cs+1)2
ð49Þ

A smaller value of c results in a faster recovery,
which is recommended for the cascade plants.
Considering the ease of design step, c is chosen as u2=2
in this work.

The robustness filter for an outer loop

The model uncertainties are critical for any controller
scheme. As seen in Figure 3, the filter, namely, Ff, is
included to act on errors between the actual and pre-
dicted outputs. It is also proven that a filter helps to
deal with a time delay issue.34 Let us take
Ff(s)=1=tfs+1. It is noted that a small value of tf
constant yields a fast regulatory response and small set-
tling time. Whereas a high value can result in more set-
tling time and sluggish response. For our plant type, it
is aimed to focus on robustness. After a numerical
study on all integrating plant types, tf is directly related
to plant time delay, and it can be taken simply as 2um.

Tuning of l and b for the proposed
controller structure

A plant industry is well practiced with a classical con-
troller design from the maximum sensitivity and mar-
gins specifications.35 These specifications can handle
various dynamics including small and large time delay
plants. The basic concept is to convert an open-loop
transfer function by choosing controller’s zeros equal
to poles of the model. In the proposed work, we have
considered a fractional-order pole with order b and the
loop equation becomes

Ĝp1(s)Gc1(s)=Ke�ums=sb ð50Þ

where K represents loop transfer function gain and can
be determined based on gain and phase margin specifica-
tions. Now, as per plant models and their controller struc-
tures in section ‘‘The proposed outer-loop controller
design,’’ the open-loop transfer function can be written as

Ĝp1(s)Gc1(s)=
e�ums

lsb
ð51Þ

Comparing equations (50) and (51), one can easily
calculate, l=1=K. It is to remind that a parameter l

appears from the fractional-order filter equation (23).
Now, the basic definitions for the gain and phase mar-
gins can be written as below

arg Ĝp1( jvpc)Gc1( jvpc)
� �

= � p ð52Þ

gmjĜp1( jvpc)Gc1( jvpc)j=1 ð53Þ

jĜp1( jvgc)Gc1( jvgc)j=1 ð54Þ

fm =p + arg Ĝp1( jvgc)Gc1( jvgc)
� �

ð55Þ

where the gain margin and phase margin as gm and fm

and their crossover frequencies as vgc and vpc,
respectively.

Substituting equation (51) into equations (52)–(55),
following set of expressions is obtained

vpcum =p � bp

2
ð56Þ

gm =
v

b

pc

K
ð57Þ

K=v
b

gc ð58Þ

fm =p � bp

2
� vgcum ð59Þ

Using equations (57) and (58), one can write

gmv
b

gc =v
b

pc ð60Þ

After multiplying um both sides of equation (60) and
then further modification with equations (56) and (59),
the new phase and gain margin relation can be obtained
as below

fm =p � bp

2
1� 1ffiffiffiffiffiffi

gmb
p

� �
ð61Þ

Differently from a classical relation, the above
expression provides an extra parameter to tune for
desired gm and fm. This is well related to the new
fractional-order ID controller. Same way, equations
(56) and (57) can be modified for l as below

l=
gm

p�bp

2

um

� �b
ð62Þ
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Now the possible values of b are observed using rela-
tion in equation (61). As recommended values for gm
are between 2 and 5 and for fm are between 308 and
608. The interesting result can be seen in Figure 4.

Choice of b

According to numerical values, the typical choice of b

shall be between 0:8 and 1:5. So, the fractional-order
IMC filter’s parameters are bounded by recommended
ranges for the gain and phase margins. As per this
requirement and model type, we have found for IPTD
plant selection from 0:8\ b \ 1:0, for DIPTD plant
0:8\ b \ 1:5 and for ISOPTD plant 1:0\ b \ 1:5.
This enables the estimation task to be faster and over-
comes the problem of selection gain and phase margins.

Final tuning based on a performance index

The performance criterion is defined by the following
cost function equation (63) to fulfill dual requirements
for given b

Jmin
(l)

= n
XM�1
j=1

jU1( j+1)�U1( j)j

+(1� n)
XM
j=1

j Y1( j)� R1( j)ð Þ½ �2
ð63Þ

where the first term calculates the control signal varia-
tions and the second term is the integral of the time-
squared error. Also, Uj and Y1( j) are the outer plant
input and output at time t= tj, with M data points.

It can be seen from equation (63) that the index can
tradeoffs between control signal variations and transi-
ent setpoint errors by choosing any suitable value of
n 2 (0, 1). In order to guarantee robustness in the cas-
cade control system, the parameters are calculated from
the minimum of the cost function.

Summary of tuning procedure

The two non-linear expressions from equations (61)
and (62) are important relation in this study. The
robustness and stability of any closed-loop control sys-
tem are related with gm and fm values. The proposed
method’s required parameters are initially chosen from
the first choice of gm and fm. The major steps for the
complete control scheme are summarized in Table 3.

Robustness analysis and stability

It is necessary to analyze the robustness and stability
analysis of any closed-loop system in the presence of
model uncertainties. The model uncertainties are wide-
spread in the plant industries. The robust stability of
the closed-loop system can be analyzed with the small
gain theorem. We have considered uncertainties in
plant gain and dead time.

Now, the condition to satisfy for the closed-loop sys-
tem to be stable is36

jjDm( jw)T( jw)jj\ 18v 2 (� ‘,‘) ð64Þ

where T( jw) is the complementary sensitivity function,
and Dm( jw) is the bound on the plant multiplicative
uncertainty. The uncertainty in the plant can be
expressed as

Dm( jw)=
Gp1( jw)� Gm( jw)

Gm( jw)

				
				 ð65Þ

where Gm( jw) is the nominal model that is used for con-
troller design, and Gp1( jw) is the actual plant. If uncer-
tainty is present in both the plant gain and dead time,
then the tuning parameters have to be selected such that

jjT( jw)jj‘ \
1

DK
K +1

 �

e�Dus � 1
		 		 ð66Þ

For any integrating model discussed here, the com-
plementary sensitivity function for the proposed scheme
is given by

T( jw)=
e�jwum

l( jw)b +1
ð67Þ

Figure 4. Region of b as per gm and fm specifications.

Table 3. Tuning algorithm.

Step 1: calculate Gc2 parameters using equation (15).
Step 2: choose fm and gm and compute b to satisfy equations
(61) and (62).
Step 3: calculate Jmin from equation (63) for suggested range of l.
Step 4: choose l for the lowest cost function value.
Step 5: calculate Gc1 parameters as per the plant type.
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Also, to ensure robust closed-loop performance, the
constraints to be followed by the sensitivity and com-
plementary sensitivity functions are

jjDm( jw)T( jw)+wm( jw)(1� T( jw))jj\ 1 ð68Þ

where wm( jw) is the uncertainty bound on the sensitiv-
ity function, which is given as S( jw)=1� T( jw).
Therefore, tuning parameters must be selected so that
the resulting controller satisfies the robust performance
and stability limitations.

Simulation results

Recent works presented by Siddiqui et al.,16,37 Raja and
Ali,15Cxakıroğlu et al.,14 Jeng,13 Padhan and Majhi,11

and Uma et al.10 were considered for comparative anal-
ysis. The response parameters such as rise time (tr), set-
tling time (ts, s), and integral of time-weighted squared
error (ITSE) are calculated to demonstrate perfor-
mances. A tr is defined as the time the output takes
from 10% to 90% of its steady-state value. The settling
time is measured from the output to reach and steady
within a given tolerance band. We have considered the
5% band throughout all examples. For evaluating the
manipulated input usage, we compute the total varia-
tion (TV) in the control signal, which is the sum of all
its moves up and down. It is a good measure of the sig-
nal’s smoothness and should be as small as possible. If
required, a setpoint filter should be added to remove
the undesirable overshoot. A low-pass filter of the form
1=(hs+1) is simple, and parameter h is selected appro-
priately by the designer.38 The responses and numerical
analysis with and without a setpoint filter are shown in
all examples. Also, the white noise having a variance of
0.001 is added as a measurement noise to verify the con-
trol scheme’s robustness against the noisy output. An
extended investigation of the proposed scheme in real-
time can be seen from the third example following
details from section ‘‘The proposed controller design in
real-time.’’

Example 1. First example is extensively studied in the
literature. The outer loop Gp1(s)=2e�2s=s and inner
loop, Gp2(s)=4e�s=s+1 are considered as a series
plant. Recent method by Siddiqui et al.16 presented two
types of controllers for the same plant. In a method 1,
the primary Gc1(s)=0:06+0:0027=s+0:02s and second-
ary Gc2(s)=0:255+0:212=s were suggested. Then, in
a method 2, the controllers were taken as
Gc1(s)=0:06+0:002s and Gc2(s)=0:29+0:17=s.
Uma et al.10 also have studied the same process models
with control settings: the primary, Gc1(s)= (1:8+0:5=s
+1:93s)½0:5s+1=0:6561s2 +2:960s+1�, secondary,
Gc2(s)= s+1=2s+4, and disturbance rejection con-
troller, Gcd(s)= (0:0436+ :1206s)½0:75s2 +1:5s+1=1:8314s2

+0:7686s+1�.
The cost function values with b are shown in

Figure 5. The corresponding responses are plotted in
Figure 6. The results show that one set of parameters is
chosen among possible values of b to provide the most
optimal responses with balanced control performance.
Considering this observation, b has selected as 0:95. The
corresponding gm and fm are 2:3 and 55:178, respec-
tively. The final controller settings are Kc2 =0:125,
Ki2 =0:125, and Kd1 =0:806. The disturbance rejection
filter obtained as Fd = s2 +2s+1=s2 +4s+4 and that
of robustness filter is Ff(s)=1=8s+1. The setpoint fil-
ter of the form fs =1=(3s+1) is also added to improve
the setpoint smoothness. A positive load disturbance of
0:05 is added at 100, 300, and 500 s, respectively. The
closed-loop nominal responses and control responses
along with other approaches were shown in Figures 7
and 8, respectively. It can be seen the proposed method
results a lower overshoot and improved disturbance
rejection performances. Table 4 provided the same
agreement with the responses by minimum ITSE and
TV values. Furthermore, 10% uncertainty is applied in
plant parameters gain and delay, in both primary and
secondary models. Figure 9 again depicted the robust-
ness from parameter uncertainties. Figure 10 shows the
magnitude of the complementary sensitivity function for
different perturbations. It is evident that the robust

Figure 5. Calculated cost function values with selected b. Figure 6. Responses for selected b.
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stability margin lowers as perturbation increases, and
the controller cannot meet the robust stability require-
ment stated in equation (66), even with a 20% uncer-
tainty in both gain and time delay. When we tested the
methods under the measurement noise with variance=
0.001, Siddiqui et al.16 and Uma et al.’s10 method
obtained large variations in a control signal. The noise
test also proved the proposed scheme’s robustness as
seen in Figures 11 and 12.

Example 2. Controlling a double integrating cascad-
ing plant is more challenging. A series plant,
Gp1(s)= e�0:7s=s2 and Gp2(s)= e�0:3s=(s+1) was stud-
ied by Cxakıroğlu et al.14 and Siddiqui et al.16 In
Cxakıroğlu et al.,14 the output decomposition method
is presented with two outer-loop controllers, Gc1a(s)
=0:833 and Gc1b(s)=0:333, and inner controller as
Gc2(s)=3:33s+1=s. Whereas in Siddiqui et al.,16Gc2

=3:74+7:95=s and Gc1 =0:16+0:02=s+0:56s
were suggested. After adopting the proposed control-
ler, l=1:28 and b=1:02 are obtained from the cho-
sen gm =2:5 and fm =52:288. As seen in Figure 13,
this choice provided a minimum cost value. Then,
the controller parameters are Kc2 =1:67, Ki2 =1:67,
and Kd1 =0:781. The setpoint filter fs =1=(1:2s+1)
is added to improve the smoothness of the response.
The disturbance rejection filter Fd =0:3s2 +1:3s+
1=0:0225s2 +0:3s+1 is used in the secondary loop
for enhancing disturbance rejection and that of
robustness filter is Ff(s)=1=2:6s+1. The step dis-
turbances of magnitude 20.5 are applied at 100 and
200 s, while 20.1 is applied at 300 s. From Figure 14,
it is observed that the proposed method shows a sim-
ilar setpoint response with Cxakıroğlu et al. However,
the disturbance rejection capability and its control
efforts are superior to both methods, seen in
Figure 15. Table 5 shows the quantitative analysis

Figure 7. Servo and regulatory responses in Example 1:
(a) proposed, (b) proposed with fs, (c) Siddiqui et al.-1,16

(d) Siddiqui et al.–2,16 and (e) Uma et al.10

Figure 8. Control signals in Example 1: (a) proposed,
(b) proposed with fs, (c) Siddiqui et al.-1,16 (d) Siddiqui et al.-2,16

and (e) Uma et al.10

Table 4. Performance comparisons from Example 1.

Method tr ts ITSE TV ITSE (perturbed) TV (perturbed)

Proposed 10:185 14:543 0:647 0:243 0:692 0:259
Proposed (without fs) 3:584 7:029 0:5191 1.398 0:576 1:414
Siddiqui-1 11:989 15:882 262:812 5:497E07 295:284 5:4976E07
Siddiqui-2 7:612 52:138 260:053 5:497E08 285:341 5:4976E08
Uma et al. 3:691 7:316 6:281 1:027 9:660 2:034

ITSE: integral of time-weighted squared error; TV: total variation.

Figure 9. Perturbed system responses for Example 1:
(a) proposed, (b) proposed with fs, (c) Siddiqui et al.-1,16

(d) Siddiqui et al.-2,16 and (e) Uma et al.10
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for nominal and perturbed models. The lowest values
of indices indicate the quality of the proposed
method.

Furthermore, the perturbations test with 10%
changes in gain and time delay for both primary and
secondary plants is shown in Figure 16. One can see

Figure 10. Magnitude plot of the complementary sensitivity function for Example 1.

Figure 11. Servo and regulatory responses with measurement
noise for Example 1: (a) proposed, (b) proposed with fs,
(c) Siddiqui et al.-1,16 (d) Siddiqui et al.-2,16 and (e) Uma et al.10

Figure 12. Control responses with measurement noise for
Example 1: (a) proposed, (b) proposed with fs, (c) Siddiqui et al.-
1,16 (d) Siddiqui et al.-2,16 and (e) Uma et al.10

Figure 13. Variation of l and Jmin to obtain b for Example 2.

Figure 14. Servo and regulatory responses in Example 2:
(a) proposed, (b) proposed with fs, (c) Cxakıroğlu et al.,14 and
(d) Siddiqui et al.-2.16
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that Siddiqui et al. method failed the perturbation test.
From Figure 17, it can be inferred that the maximum
permitted perturbation is 70% because any additional
rise in perturbation causes output from the system to
become excessively oscillatory. When we tested the
methods under the measurement noise with variance=
0.001, Siddiqui et al.’s16 method obtained large varia-
tions in a control signal. The noise test also proved the
proposed scheme’s robustness as per Figures 18 and 19.

Example 3. A large time delay cascade integrating
plant, with Gp1(s)= e�6:5672s=s(3:4945s+1) and

Gp2(s)=2e�2s=s+1 studied by Raja and Ali.15 They
have applied a series-cascade control with inner and
outer loops as classical PIs. The parameter settings
were Kc1 =0:039, Ti1 =845:34, Kc2 =0:2717, and
Ti2 =1:656. Also, a stabilizing proportional controller,
Kp =0:0012 was added in the structure. For the same
plant, Padhan and Majhi11 designed two controllers
and a setpoint filter. They have given, a setpoint filter
6:989s3 +5:4945s2 + s+1=628:806s3 +220:1907s2 +
25:7016s+1, inner-loop controller, Gc2 = s
+1=4s+2, and outer-loop disturbance rejection con-
troller with lead-lag compensator, Gc3 =

Table 5. Performance comparison for Example 2.

Method tr ts ITSE TV ITSE (perturbed) TV (perturbed)

Proposed 5:456 7:216 1:982 1:347 1:715 3:157
Proposed (without fs) 3:916 5:224 1:732 3:144 1:937 1:363
Cxakıroğlu et al. 4:290 6:127 67:392 1:642 63:751 1:625
Siddiqui et al. 3:067 17:442 39:948 3:078E10 2:5751E39 1:0822E20

ITSE: integral of time-weighted squared error; TV: total variation.

Figure 15. Control signal for Example 2: (a) proposed, (b)
proposed with fs, (c) Cxakıroğlu et al.,14 and (d) Siddiqui et al.-2.16

Figure 16. Perturbed system responses for Example 2:
(a) proposed, (b) proposed with fs, (c) Cxakıroğlu et al.,14 and
(d) Siddiqui et al.-2.16

Figure 17. Magnitude plot of the complementary sensitivity function for Example 2.

Ranjan and Mehta 13



0:0456(1+1=61:9704s+1:9355s)(42:7476s3 +32:1915s2 +

9:2060s+1=45:3194s3 +29:0943s2 +7:8726s+1). As
it could be seen that their method suggested a higher-
order function.

For the same plant, our method suggested a frac-
tional controller with fm =53:168 and gm =5.
Following the design steps, we have obtained para-
meters l=3:38 and b=1:2. Figure 20 presents the
index value with chosen l and b values. Then, the
inner-loop and outer-loop parameters become
Kc2 =0:125, Ki2 =0:125, Ki1 =0:145, and
Kd1 =0:506. From Table 2, the TID controller values
can be obtained based on minimum cost index value
l=1, as Kt1 =0:01, Ki1 =1:03, and Kd1 =3:494. The
disturbance rejection filter Fd =2s2 +3s+1=2s2 +
4s+2 and that of robustness filter is Ff(s)=
1=21:1344s+1. The disturbance inputs are consid-
ered with a magnitude of 0:2 at t=200 s, at t=400 s
and 0:1 at t=600 s. The servo and regulatory
responses and control efforts are shown in Figures 21
and 22, respectively. The setpoint filter of the form
fs =1=(10s+1) is added to improve smoothness of
response. To illustrate the robustness test, perturba-
tion of 10% in the time delay and plant gain of both

Figure 19. Control responses with measurement noise for
Example 2: (a) proposed, (b) proposed with fs, (c) Cxakıroğlu
et al.,14 and (d) Siddiqui et al.-2.16

Figure 21. Servo as well as regulatory responses for Example
3: (a) proposed, (b) proposed with fs, (c) proposed (real-time),
(d) Raja and Ali,15 and (e) Padhan and Majhi.11

Figure 18. Servo and regulatory responses with measurement
noise for Example 2: (a) proposed, (b) proposed with fs,
(c) Cxakıroğlu et al.,14 and (d) Siddiqui et al.-2.16

Figure 20. Variation of l and Jmin to obtain b for Example 3.

Figure 22. Control signal for Example 3: (a) proposed, (b)
proposed with fs, (c) proposed (real-time), (d) Raja and Ali,15

and (e) Padhan and Majhi.11
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primary and secondary plants have been considered
at once and shown in Figure 23. From the numerical
analysis shown in Table 6, it is observed that the out-
put obtains the desired setpoint value quickly with
minimum TV and optimal ITSE values. In general,
the closed-loop responses from the proposed method
are superior to the improved load disturbance rejec-
tions. The outputs and control variations with

measurement noise in Figures 24 and 25 show that
Padhan and Majhi’s method shows more control var-
iations compared to others. In addition to perfor-
mance analysis, robustness stability analysis for the
proposed scheme has also been done and is shown in
Figure 26.

Example 4. A higher-order integrating plant with
Gp1(s)= e�3s=s(10s+1)(2s+1) and Gp2(s)= e�0:5s=s+1
studied by Siddiqui et al.37 and Jeng.13 Jeng suggested
a master controller with parameters as Kc1 =0:0862,
Ti1 =56:34, and Td1 =8:50 and slave controller as
Kc2 =1:336 and Ti2 =0:833. Siddiqui et al. suggested
secondary controller settings as Gc2(s)=2:68+
2:81=s+0:45s and primary controller settings as
Gc2(s)=0:1+0:001=s+0:65s.37

Now, the proposed method designs the fractional
IMC filter using fm =59:078 and gm =3. Following
the procedure, we have obtained l=3:1 and b=1:01
as per values from Figure 27. The controller settings are
Kp2 =1:0, Ki2 =1:0, Ki1 =0:323, and Kd1 =3:226.
The setpoint filter fs =1=(8s+1), the robustness filter
Ff(s)=1=12s+1, and the disturbance filter
Fd =0:5s2 +1:5s+1=0:0625s2 +0:5s+1 are included
as per the structure. The closed-loop responses under
the presence of disturbances 20.5 at 300 and 500 s and
20.05 at 700 s are shown in Figure 28. The

Figure 23. Perturbed system responses for Example 3:
(a) proposed, (b) proposed with fs, (c) proposed (real-time),
(d) Raja and Ali,15 and (e) Padhan and Majhi.11

Figure 24. Servo and regulatory responses with measurement
noise for Example 3: (a) proposed, (b) proposed with fs,
(c) proposed (real-time), (d) Raja and Ali,15 and (e) Padhan and
Majhi.11

Figure 25. Control responses with measurement noise for
Example 3: (a) proposed, (b) proposed with fs, (c) proposed
(real-time), (d) Raja and Ali,15 and (e) Padhan and Majhi.11

Table 6. Performance comparison for Example 3.

Method tr ts ITSE TV ITSE (perturbed) TV (perturbed)

Proposed 24:583 37:964 17:259 0:211 19:190 0:226
Proposed (real-time) 27:962 39:404 0:571 0:669 0:706 0:732
Proposed (without fs) 9:650 36:965 19:103 9:164 21:240 9:177
Raja and Ali 30:209 67:812 9:5131E03 0:235 1:0811E04 0:268
Padhan and Majhi 46:932 62:504 0:366 2:2884E09 0:366 2:2884E09

ITSE: time-weighted squared error; TV: total variation.
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corresponding control signals are plotted in Figure 29.
For encapsulating the system robustness, a perturbation
of 10% is introduced in gain and dead time of Gp2 and

Gp1. The test results are given in Figure 30 with other
methods’ performance. The numerical values are mea-
sured and listed in Table 7. From these results, it can be

Figure 26. Magnitude plot of the complementary sensitivity function for Example 3.

Figure 27. Variation of l and Jmin to obtain b for Example 4.

Figure 28. Servo as well as regulatory responses for Example
4: (a) proposed, (b) proposed with fs, (c) Siddiqui et al.,37 and
(d) Jeng et al.13

Figure 29. Control signal for Example 4: (a) proposed,
(b) proposed with fs, (c) Siddiqui et al.,37 and (d) Jeng et al.13

Figure 30. Perturbed system responses for Example 4:
(a) proposed, (b) proposed with fs, (c) Siddiqui et al.,37 and (d)
Jeng et al.13
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proven that the new fractional IMC with SP structure
provides better tracking and robustness in comparison
to the recent literature method. When we test the meth-
ods with measurement noise as shown in Figures 31 and
32, the Siddiqui et al.’s37 method again shows worst per-
formance and large variations in the control signal. It
can be noticed from Figure 33 that maximum allowable
perturbation is allowable up to 50%.

Conclusion

This article developed a hybrid structure with IMC and
SP concepts for integrating plants with time delay. The

suggested method includes the fractional-order IMC
filter, having an additional degree for improving per-
formance. This design is simple, with two tuning para-
meters, which follow good robustness under significant
disturbance inputs and parameter perturbation.
Moreover, a selection task becomes manageable using
the balanced cost function and margins (gm, fm) rela-
tionship. The system’s performance can be implemen-
ted in all classes of integrating plants, including third-
order plants in the outer loop. Quantitative analysis is
carried out using ITSE and TV, and the proposed
method shows promising results compared to previous
works with the same or more tuning parameters. As

Table 7. Performance comparison for Example 4.

Method tr ts ITSE TV ITSE (perturbed) TV (perturbed)

Proposed 25:726 32:933 3:940 0:742 3:786 0:753
Proposed (without filter) 11:393 16:326 3:203 6:453 3:314 6:454
Siddiqui et al. 17:672 138:879 7:8762E19 9:0084E09 6:9567E19 9:0268E09
Jeng 18:663 121:610 9:7241E03 0:380 8:1413E03 0:392

ITSE: time-weighted squared error; TV: total variation.

Figure 31. Servo and regulatory responses with measurement
noise for Example 4: (a) proposed, (b) proposed with fs,
(c) Siddiqui et al.,37 and (d) Jeng et al.13

Figure 32. Control responses with measurement noise for
Example 4: (a) proposed, (b) proposed with fs, (c) Siddiqui
et al.,37 and (d) Jeng et al.13

Figure 33. Magnitude plot of the complementary sensitivity function for Example 4.
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one can see, there is no or minimal overshoot even
without a setpoint filter, which is the key advantage
compared to other approaches. The designer can
choose the setpoint value so that desired response con-
cerning settling time and rise time can be accomplished.
Using the proposed controllers, simulation results show
robust stability, better control performance, and distur-
bance rejection.

Now, research is underway to extend the proposed
method to fractional-order integrating plant models
and other types of plants with unstable and positive/
negative zeroes. Research can be done to develop a
fractional controller for plants with delay, even though
the SP makes the system complex. Future research can
also be conducted for series-cascade unstable models
and the related extension of the proposed methodol-
ogy. The authors believe that the method will provide a
considerable effort toward fractional-order control in
industrial use.
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