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Abstract
The paper proposes a modified IMC-based Smith predictor (SP) control method for unstable time-delay processes. A novel
designmethod to tune the parameters of a fractional-order tilt integral derivative controller has been developed using fractional-
order IMC filter and process model parameters. The tuning parameters of the fractional-order filter are calculated from the new
robustness index and desired performance constraint. The expected performance constraint satisfies good setpoint tracking
and optimal control signal. The significant feature of the presented method is that the fractional IMC-SP structure provides a
better outcome without adding much computational complexity. For a given robustness index, the optimal controller, which
minimizes the performance constraint, the combination of control effort and integral time squared error, helps calculate the
two tuning parameters. The benefit does verify under parameters’ uncertainties, external load disturbances and noise. The
comparative study with various numerical examples from recently reported methods shows better overall servo and regulatory
performances.

Keywords Unstable process · Fractional-order control · Internal model control (IMC) · Smith predictor (SP) · Robustness ·
Load disturbance

1 Introduction

Controlling open-loop unstable processes such as heating
boilers or batch chemical reactors is challenging due to poles
in the right-half s-plane and large time constants. Moreover,
the slow process causes additional phase lag, making the
closed-loop systemunstable. Thedead timedelaysmayoccur
due to transportation, recycle loops, measurement lags, some
computation times or communication lags. Furthermore, the
strong load disturbances result in breaking the balance of
input–output. The tuning of controllers to stabilize these pro-
cesses and disturbance rejection will become a critical task
for process engineers.

The PID (Proportional Integral Derivative) controllers are
themost essential control algorithm, due to their simple struc-
ture, and lower order, and it helps in managing both transient
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and steady-state responses, and it is summarized by Rakesh
et al. (2021). A concise review of the complexity and cost
dilemma in PID controller tuning and discussed about the
proposal tominimize the dilemmaof complexity and cost that
has become associated with tuning the threemain parameters
in one of the recent work by Somefun et al. (2021). PID has
some limitations apart from being one of the best controllers
in a control action system. It does not perform well in the
case of optimal control. Also, it shows some structural limi-
tations for the process having considerable dead time. Thus,
the Smith predictor (SP) is a superior technique to deal with
significant time delays. Nevertheless, the typical SP structure
does not give desired closed-loop responses. To improve the
performance, recently Ranjan and Mehta (2023b) have pro-
posed a modified SP technique with multiple controllers in
the structure.

Amodified form of SPwith three controllers was reported
earlier by Rao and Manickam (2008) for a second-order
unstable process. Later, Uma and Rao (2014) proposed a
modified SP for non-minimum phase unstable second-order
time delay processes with and without a zero. Their meth-
ods used a direct synthesis approach for set-point tracking
and load disturbance rejection controllers. It was seen that
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the method requires a set-point weighting to reduce over-
shoots. Later, theworks presented byMehta andRojas (2017)
and Mehta and Kaya (2017) with hybrid combinations of
SP with a sliding mode control to deal with significant time
delay, overshoots and load disturbance issues. Also, a mod-
ified SP using three controllers was proposed by Ajmeri
and Ali (2017). Again, the method used a direct synthesis
and has a single tuning parameter. In general, it was found
that an extra low-pass filter was necessary to achieve good
robustness. A simplified IMC-based modified SP for unsta-
ble lag-dominated first-order processwas presented byKaran
and Dey (2020). But, there was a single tuning parameter for
stabilizing, setpoint tracking and load disturbance rejection.
The above literature concludes that the previous approaches
have complex structural tuning, less immune to load distur-
bances and parameter perturbations. Most recently, a review
article on Internal-Model-Control (IMC) methods presented
to discuss the open challenges and futuremotivations byRan-
jan et al. (2023). In addition, a generalized desired dynamic
equational (G-DDE) PID was developed by Gengjin et al.
(2022) to solve control problems of high-order open-loop
unstable systems. Recently, the issues of dynamic modeling
and control ofmanipulator with a flexible joint was presented
by Bilal et al. (2017). Later Bilal et al. (2023a) studied an
active disturbance rejection control law (ADRC) for the con-
trol of roboticmanipulators. Furthermore, Bilal et al. (2023b)
investigated the trajectory tracking and vibration control of
rotary flexible joint manipulator with parametric uncertain-
ties.

In recent years, fractional-order control has been attract-
ing significant attention. Even though it has more than 300
years of narrative and deep-rooted mathematical concepts,
the current research on this domain has come up with excit-
ing outcomes. The fractional-order resulted more accurate
and precise in reproducing the behavior of physical processes
and robust performances than classical approaches (Padula
& Visioli, 2015; Mehta et al., 2023). Although IMC-based
methods are simple and provide robustness, the improvement
can notice with a fractional-order filter. Recently, researchers
have worked on fractional-order IMC control (FOIMC) for
the height control of a conical tank nonlinear system (Vavilala
et al., 2020) and for higher-order systems (Saxena&Biradar,
2022). The fractional-order approach in the parallel cascade
scheme with the SP is also presented for stable, unstable and
integrating plus time delay processes (Pashaei & Bagheri,
2020). However, this scheme consists of a complex tuning of
three controllers.

There are notable methods in the literature to suggest
improved performance for controlling unstable processes.
Among them, the recent fractional PI-PD structure provided
better results using stability boundary and weighted geo-
metrical center methods developed by Ozyetkin (2018). In
the same way, Onat (2019) proposed a PI-PD controller for

unstable processes. From the stability boundary locus, the
controller parameters can be obtained using the centroid of
the convex stability region. The studies with IMC-PID struc-
ture by Vanavil et al. (2014), Begum et al. (2018), Begum et
al. (2020) andBegum (2022) showedmerits overmany active
methods developed at that time. For a set of unstable, integrat-
ing and inverse response type plants, a new design strategy
was suggested by Raja and Ali (2021) using classical PI-
PD controllers. Bingi et al. (2018) compared various forms
of PID and fractional-order PID (FOPID) structures. It was
proven the FOPID resulted in less overshoot and faster set-
tling time compared to all forms of PID structures. Then, the
fractional IMC-based hybrid dual loop strategy was devel-
oped by Kumar and Raja (2022) and Kumari et al. (2021)
for unstable plants. A new fractional IMC filter was further
developed recently by Ranjan and Mehta (2023a) for series
cascade unstable plants.

The literature suggested that it was essential to look at the
load disturbance performance while improving the setpoint
tracking in unstable time-delay processes. The methods have
eithermore than two controllers in structure, difficulty in tun-
ing parameters, or complex designing steps until recently
presented schemes. Say, for example, a graphical tuning
approach with FOPID has five different design requirements
(Dwivedi & Pandey, 2021). Moreover, it can be seen from
the relevant literature that themajority of designs fail to elim-
inate the overshoot (Begum et al., 2020) or to reduce settling
time (Vanavil et al., 2014; Bingi et al., 2018). The load dis-
turbance rejection also seems to be poor in some methods
(Bingi et al., 2018; Ajmeri & Ali, 2017; Uma & Rao, 2014).
Further, the design of the setpoint controller focuses solely
on the intended closed-loop performance, whereas load dis-
turbance in other stated approaches appears to be slower.

Looking into the above constraints, the novelties of the
paper are listed below:

• This research presents a modified IMC-based SP con-
figuration for an unstable process. Even if the controller
contains a fractional-order integrator and derivative, the
new structure is less complex in a tuning.

• For the first time, an IMC-based fractional TID controller
for setpoint tracking and external load disturbance rejec-
tion is developed.

• Two tuning parameters, namely fractional-order and frac-
tional filter time constant, are obtained using a novel
robustness index and required performance constraint.

• Numerical studies examined the impact of load distur-
bances, measurement noises and perturbations on the
dynamic responses of the system, with linear and non-
linear benchmark plant models.

In summary, the presented scheme works for unstable first-
and second-order plants with one or two unstable poles.
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Fig. 1 Typical structure of IMC

Quantitative analysis shows that the results exceed the previ-
ous works. A case study on a nonlinear continuously stirred
reactor is verifying the present strategy in a real-time sce-
nario.

The paper is organized as follows. The background of
IMC and fractional-order tilt integral derivative (FOTID) are
introduced in Sect. 2; the proposed structure and its controller
design are explained in Sect. 3. A detailed explanation of how
the tuning parameters are calculated is discussed in Sect. 4,
and their robustness and stability are described in Sect. 5. The
verification of this method is described in Sect. 6, followed
by conclusions in Sect. 7.

2 Background Study

2.1 The General IMC Control System

Fig. 1 depicts the IMC and its corresponding single-loop con-
trol mechanism. Assume Gp is the process, Gm is a process
model, and Q is the IMC main controller. In addition, R,
Y , and D represent the setpoint, process output, and load
disturbance inputs, respectively. The fundamental principle
behind IMCdesign is to use PID or a higher-order form as the
feedback controller. Before introducing the proposedmethod
with a fractional-filter IMC-SP, the most typical procedure
has been outlined for the reference. According to IMC theory
(Ranjan et al., 2023), the process modelGm may be split into
two parts as,

Gm(s) = G+
m(s)G−

m(s) (1)

where, G+
m(s) represents all time delays and unstable zeros

(non-invertible) and G−
m(s) represents the minimum phase

elements (invertible). The aim is to keep the controller at
Q(s) = G−

m(s)−1. The user-specified filter is then cho-
sen to satisfy the robustness criterion. The low-pass filter is
used to reduce the consequences of process model mismatch.

According to the extensive study by Nath et al. (2021), the
common IMC filter was chosen as,

f (s) = 1

(λs + 1)n
(2)

for better setpoint tracking. Here, λ is a tuning parameter
known as the closed-loop time constant, which affects the
speed of response. The integer ordern is selected such that the
controller Q(s) is always proper. Thus, Q(s) can be written
as

Q(s) = f (s)G−
m(s)−1. (3)

This filter was further improved to ensure enhanced distur-
bance rejection (Shamsuzzoha & Lee, 2008; Begum et al.,
2017, 2020). Such filter’s modification can employ with an
extra tuning and complexity. Now, solving the inner loop
as seen from Fig. 1, the relationship between the feedback
controller Gc(s) and Q(s) can be described using,

Gc(s) = Q(s)

1 − G−
m(s)Q(s)

. (4)

Finally, the output relationship from the closed-loop control
with the IMC structure is,

Y (s) = GpGc

1 + Gc(Gp − Gm)
R+ 1 − GmGc

1 + Gc(Gp − Gm)
D. (5)

In an ideal case, when the process is modeled accurately
(Gp = Gm), (5) becomes Y (s) = GpGcR(s) + (1 −
GmGc)D(s). As per IMC theory, Q(s) = G−1

m (s), one can
acquire complete control. It is simple when there is no pro-
cess dead time or when a process is precisely recognized.
This, however, is extremely vulnerable to modeling errors.

2.2 FOTID Controller

The well-known fractional-order PID controller requires the
design of five parameters, most notably gains Kp, Ki , Kd

and fractional-orders α and μ. It has been demonstrated in
the literature that it can give more flexibility in achieving
design control objectives. The TID controller is also from the
fractional-order family and was introduced by Lurie (1994).
This controller also provides more flexibility for desired per-
formance. However, the structure is nearly identical to a
well-accepted PID and has only four parameters. Only the
proportional gain is replaced by the tilted gain (Kt ) having

a transfer function 1/s
1
n , where n is a nonzero real number.

The TID controller’s standard transfer function is expressed
as,

TID = Kt
1

s
1
n

+ Ki
1

s
+ Kds (6)
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where, Kt is the tilted gain, Ki is the integral gain and Kd

is the derivative gain. The value of n is a tuning parameter
that should be between 2 and 3. When compared to other
controllers, a TID controller provides more accurate tuning,
faster disturbance rejection, and lowers parameter uncer-
tainty. In recent years, there has been a surge in interest in
this field of study. A robust 3DOF-TID by Guha et al. (2019)
and ID-T reported by Ahmed et al. (2022) controllers, devel-
oped for load frequency problems in interconnected power
systemswere some of theworks developed recently. The new
fractional-order tilt derivative (TDD) controller presented by
Ranjan and Mehta (2022) for all types of integrating pro-
cesses. Together, FOTID scheme was proposed recently by
Ranjan andMehta (2023b) for cascade integrating processes.
These have produced promising results when compared to
previous schemes. Therefore, we have evaluated FOTID con-
troller in the current investigations with simplifying tuning
steps. The FOTID can be represented as,

FOTID = Kt
1

s
1
n

+ Ki
1

sα
+ Kds

μ (7)

where,α andμ are positive real orders for integral and deriva-
tive, respectively. In thiswork,we utilize the IMCprinciple to
create the FOTID aswritten in (7). Even though the controller
appears to be sophisticated with three fractional orders, the
goal is to create a simple tuning strategy.

3 Proposed FOIMCwith Smith Predictor
Structure

Figure2 depicts the suggested control scheme. It is made
up of the process Gp(s). It is seen that Gm(s) is the model
transfer function of Gp(s) without a delay. The following
transfer function model, which has some generality, shall be
considered as,

Gp(s) = Ke−θs

(τ1s ± 1)(τ2s − 1)
(8)

where, K represents the process gain, τ1 and τ2 time con-
stants and θ represents the time delay. The controller Gc is
utilized for the stabilized plant Gs(s). The stabilizing con-
trollerGc0 is used to stabilize theGp(s).We have considered
the design method for three common forms of unstable pro-
cess transfer function models. First, an unstable first-order
process with dead time (UFOPDT) model is used; another
unstable second-order process with dead time (USOPTD)
model with one unstable pole, and the third with two unsta-
ble poles.

3.1 Designing Internal Stabilizing Controller Gc0

The stabilizing controller considered here is of the form

Gc0 = Kps

(
1 + Tdss

ηTdss + 1

)
(9)

where Kps is a proportional gain, Tds is a derivative time
constant, and η is a derivative filter constant. The value of
η is a small constant and so, the derivative filter terms can
be neglected in calculations hereafter. Note it is applied in
all simulation studies. In the first case (τ1 �= 0, τ2 = 0),
the UFOPDT process Gp gives the model without delay as,
G−

m(s) = K
τ1s−1 . In order tomake the overall transfer function

stable with G−
m , the controller Gc0 is enough for a propor-

tional gain with greater than 1/K value as suggested by Tan
et al. (2003). As seen from Fig. 2, the proportional controller
Gc0 is typically chosen such that KKps > 1 and Tds = 0.
Then, the P-controller from (9) can be designed as

Gc0 = Kps ≥ 1

K
(10)

By choosing Kps = 2
K , a stable model can be obtained using

Gm

1 + GmGc0
, (11)

and it is represented as Gs(s) in Fig. 2. It is to note that
the SP usually is more robust when considering a stable
process model. Now, for the second-order unstable mod-
els, Gc0 can be used as a simple PD controller. When a
second-order unstable model (τ1 �= 0, τ2 �= 0) of the
form G−

m = K
(τ1s+1)(τ2s−1) is considered, then by selecting

KKps = 2 and Tds = τ1, one unstable pole transfer function
becomes stable in the loop. Same way, two unstable poles
in the USOPDT model can be modified by taking Kps → 0
and KKpsTds > 0. By selecting suitable values of Kps and
Tds , one can make the unstable process model stable for con-
trolling purposes.

3.2 DesigningMain ControllerGc from IMCApproach

Firstly, consider Gp as a first-order unstable process. After
stabilizing the model and removing the time-delay, one can
obtain the model as,

Gs(s) = K

τ s + 1
. (12)

Let us take the form of an IMC filter with fractional- order,

f (s) = 1

λsβ + 1
(13)
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Fig. 2 Modified IMC-based
Smith predictor for unstable
time delay processes
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where, λ represents a fractional filter time constant (λ > 0)
and β is a positive real number, i.e., the fractional-order
(1 < β < 2). We have only considered two tuning param-
eters in our method. After substituting (12) and (13), the
resulting IMC controller Q(s) can be obtained from (3) and
is represented as,

Q(s) = τ s + 1

K

1

λsβ + 1
. (14)

As per the IMC method, one can obtain the feedback con-
troller, Gc(s) from the stabilized model (12) and IMC
controller (14). Substituting in (4), we get

Gc(s) = τ s + 1

λKsβ
. (15)

(15) can be arranged with respect to the fractional-order TI
structure as,

Gc(s) = 1

λKsβ
+ τ

λKsβ−1 . (16)

Comparing with (7), the parameters become

Kt = 1

λK
; Ki = τ

λK
;β = 1/n;α = (β − 1). (17)

In a similar way, for the USOPDTmodel, the IMC controller
is obtained as,

Q(s) = (τ1s + 1)(τ2s + 1)

K

1

λsβ + 1
. (18)

And the feedback controller is,

Gc(s) = (τ1s + 1)(τ2s + 1)

Kλsβ
. (19)

After rearranging as per (7), Gc(s) becomes

Gc(s) = 1

λK

1

sβ
+ τ1 + τ2

λK

1

sβ−1 + τ1τ2

λK
s2−β (20)

Now, the FOTID gains in terms of process model parameters
are,

Kt = 1

λK
; Ki = τ1 + τ2

λK
; Kd = τ1τ2

λK
;β = 1/n;

α = (β − 1);μ = (2 − β). (21)

In summary, the controller design becomes simplified using
model based. The main tuning parameters λ and β are
required to calculate optimally as suggested in the follow-
ing section.

4 Proposed Controller Design for Unstable
Processes

This section specifies the critical tuning settings for the
IMC-SP control structure given. The calculation of the per-
formance index and tuning to alter the optimization priority
between the two objectives are provided.

4.1 Performance Constraint with IMC-SP Structure

The closed-loop controlled system must process dynamics-
insensitive while selecting controller parameters. From this,
the approach is created to relate tuning parameters to maxi-
mum sensitivity. Aiming this point (Kumar & Hote, 2020),
the new robustness index is defined by ξ for the new
fractional-order filter in the IMC-SP structure. It also deter-
mines whether the controller is designed to be a tight control
or smooth control. The required range of tightness or smooth-

123



Journal of Control, Automation and Electrical Systems

ness may vary in the different process types selected. The
other commonly used sensitivity measures are gain margin
(Am) and phase margin (φm). It is given by

Am =
∣∣∣∣ 1

L( jωpc)

∣∣∣∣ (22)

φm = π + [
arg L( jωgc)

]
(23)

where, ωpc, phase crossover frequency, is the frequency at
which the phase angle of the loop transfer function first
reaches −180◦ and ωgc, gain crossover frequency, the fre-
quency at which Nyquist curve has a magnitude of 1 (0dB).
In our case, the open-loop transfer function of the system in
the inner loop is taken as

L(s) = Gc(s)Gs(s) (24)

where, Gs represents the stabilized model. The value of ωgc

is considered as the bandwidth of the system. The typical
values of φm is between 30◦ to 60◦ and Am varies from 2 to
5. The range of ξ is chosen so that φm lies in its typical.
For chosen ξ , the condition of open-loop transfer function
passing through point ‘C’ on the Nyquist plot in Fig. 3 can
be expressed as,

L( jω)s= jω = −1 + 1

ψ
e− jψ. (25)

Also, the tangency condition at ‘C’ is,

arg
dL( jω)

dω
= π

2
− ψ (26)

where, ψ is the angle of the line from the critical point
(−1, j0) to the tangent point and the negative real axis. Now,
L(s) for the inner loop becomes

L(s) = Q(s)Gs(s)

1 − Q(s)Gs(s)
, (27)

using (24) and (4). As it is understood from Fig. 2, instead of
G−

m we can take the stabilized model, Gs(s). After substitut-
ing (12) and (14) in (27), one can write,

L(s) = 1

λsβ
, (28)

and using s = jω, it becomes

L( jω) = 1

λ( jω)β
= 1

λ[ωβ cos βπ
2 + jωβ sin βπ

2 ]
= 1

λωβ

[
cos

βπ

2
− j sin

βπ

2

]
. (29)

Finally, using (29) into (25) and (26), the explicit relations,

Re : 1

λωβ
cos

βπ

2
= 1

ξ
cosψ − 1 (30)

Im : 1

λωβ
sin

βπ

2
= 1

ξ
sinψ (31)

arg
dL( jω)

dω
= π

2
− ψ (32)

are obtained for finding tuning parameter values. It is to note
that ξ ∈ (0, 1). It is now possible to calculate two unknown
parameters, λ and β using (30), (31) and (32).

Remark 1 The function fsolve from the MATLAB© Opti-
mization Toolbox is utilized to obtain the optimal values.
The equation solving function is setup with the trust-region-
dogleg algorithm to calculate λ and β.

4.2 The Performance Constraint and Tuning
Algorithm

The controller that focuses on setpoint tracking, actuator
preservation, and maintaining robustness against model mis-
match does not exist in real situations. So in this proposed
tuning, the method is suggested considering the balance
trade-off between those three objectives. The tuning aims
to obtain optimal performance in setpoint tracking with rea-
sonable control signal variations. The performance criterion
is therefore defined by,

Jmin
(λ,β,ξ)

= ν

∞∫
0

|u(t)|dt + (1 − ν)

∫ ∞

0
te(t)2dt (33)

as the cost function. Here, u(t) represents the control signal,
e(t) represents the error signal and ν is theweight coefficient.
The index (33) is a combination of two criteria, namely total
variations in input signal u and integral of time-weighted
square error (ITSE) value. Note that ν ∈ [0, 1] can be used to
adjust the optimization priority between two objectives. This
can be a more attractive relation for the required trajectory
tracking and energy consumption simultaneously. When the
value of ν is closer to 0, the index behaves as more critical to
setpoint tracking error and lesser control efforts. The index
will be changed when ν becomes closer to 1. The major steps
for the complete controller design are summarized in Table
1.
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Fig. 3 Geometric interpretation
of the constraint ξ

-1

Im

Re

Table 1 The controller tuning steps

Step 1: Calculate bandwidth of Gs .

Step 2: For ξ between (0, 1), tabulate the calculated values of λ and β from (30), (31) and (32).

Step 3: Check the index value (33) and calculate φm from (23).

Step 4: Choose λ and β for minimum (33) and satisfied φm ≤ 60◦.
Step 5: Obtain controller parameters using (17) or (21).

5 Robustness and Stability of the
Closed-Loop System

Model uncertainties are common in the process industries.
We took into account uncertainties in a process gain K and
dead time θ .
As a well-known condition by Zhong-Ping and Tengfei
(2018), a closed-loop system is stable only if,

‖�m( jw)T ( jw)‖ < 1∀ω ∈ (−∞,∞) (34)

where, T ( jw) is the complementary sensitivity function and
�m( jw) is the bound on the process multiplicative uncer-
tainty. The process’s uncertainty might be stated as

�m( jw) = |Gp( jw) − Gm( jw)

Gm( jw)
| (35)

where, Gm( jw) is the model of the unstable process.

Assuming an uncertainty in K and θ , then the tuning param-
eters must be chosen so that,

||T ( jw)||∞ <
1

|(�K
K + 1)e−�θs − 1| . (36)

Now, the proposed structure gives

T ( jw) = GcGse− jwθ

1 + GcGs
. (37)

For any unstable model discussed here, the complementary
sensitivity function for the proposed scheme is given by,

T ( jw) = e− jwθ

λ( jw)β + 1
. (38)

In order to provide strong closed-loop performance, the sen-
sitivity and complementary sensitivity functionsmust adhere
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the constraints,

‖�m( jw)T ( jw) + wm( jw)(1 − T ( jw))‖ < 1 (39)

where, wm( jw) is the uncertainty bound on the sensitivity
function, which is given as S( jw) = 1−T ( jw). As a result,
tuning parameters must be chosen in such a way that the
resultant controller meets the robust performance and stabil-
ity constraints.

Remark 2 If Q and Gs are stable, then the feedback con-
troller, given by Gc, will also be stable. Stability analysis
methodologies created for integer-order plants cannot be
used to fractional order models. Further investigation on the
stability is provided by Ranjan and Mehta (2022) and shown
that the closed-loop fractional controller becomes stable.

6 Illustration

The numerical illustration is carried out with several process
models, and analysis has been done in a more detailed man-
ner. Recent works presented by Begum et al. (2020, 2018),
Vanavil et al. (2014), Onat (2019), Ozyetkin (2018), Bingi et
al. (2018), Kumar et al. (2020), Ajmeri and Ali (2017) and
Uma and Rao (2014) are considered for comparative analy-
sis. To demonstrate performances, the values from the plant’s
output, such as settling time (ts , sec), peak voltage (Ap), are
calculated for each example studied. In addition to that the
below mentioned performance metrics were also calculated
in order to evaluate the performances.

• Integral Square Error (ISE) =
∞∫
0
e2(t)dt

• Integral Absolute Error (IAE) =
∞∫
0

|e(t)|dt

• Integral Time Squared Error (ITSE) =
∞∫
0
te2(t)dt

• Integral Time Absolute Error (ITAE) =
∞∫
0

|te(t)|dt

where, e(t) represents the input to the controller. In general,
the value of each index indicates the quality and speed of
responses. All these indicators were separately calculated
for both setpoint tracking and load disturbance rejection.

The percentage overshoot is a measure of how much the
response exceeds the ultimate value following a step change
in the set point. The settling time is the time required for
the output to reach and steady within a given tolerance band.
We considered the 5% band throughout all examples. Also,
the white noise having a variance of 0.001 is added as a
measurement noise to verify the control scheme’s robustness
against the noisy output.

Fig. 4 Effects of ξ on setpoint responses

6.1 Example: 1

An unstable first-order plus time delay transfer system,

Gp1(s) = 4

4s − 1
e−2s (40)

is commonly studied in the literature. We have compared the
presented method with PI-PD design by Onat (2019), a frac-
tional order PI-PD (FOPI-PD) design byOzyetkin (2018) and
2DOF PID as well as a fractional 2DOF FOPID by Bingi et
al. (2018). The controller settings of Onat were obtained as
Kp = 0.107, Ki = 0.039, K f = 0.439 and Kd = 0.341
while for the same process, Ozyyetkin suggested a fractional
controller as Kp = 0.047, Ki = 0.022, K f = 0.4092 and
Kd = 0.211 forλ = μ = 1.011.Bingi et al. (2018) presented
a comparative analysis of different types of PID structures.
By taking the best responses, 2DOF PID as Kp = 0.424,
Ti = 30.959, Td = 0.473 and α = 0.025 (where α is the
derivativefilter coefficient) and2DOFFOPIDwith samecon-
troller’s gains except the fractional-orders λ = 0.980 and
μ = 0.650 was used for performance verification.

Following our design, one can see the impact of ξ selection
on output responses in Fig. 4. Then, the value of the perfor-
mance constraint can be obtained as ξ = 0.5 for the optimal
cost function using Figs. 5a and b. The obtained values of
λ and β are 0.397 and 1.590, respectively. The stabilizing
controller’s gain was taken as Kps = 2.0. Finally, the param-
eters in a fractional-order TI controller are Kt = 0.630,
Ki = 2.521, β = 1.590 and α = 0.590. A negative step
disturbance of 0.1 is given at the output-side load. The results
are plotted in Figs. 6a and b. The load disturbance rejection
shows much improvement than others. The numerical values
in Table 2 also depicted the method’s performance than other
recent works.

The robust performance is also observed by assuming a
perturbation of 20% in process gain and process delay simul-
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Fig. 5 Obtain the tuning parameters for Example-1

Fig. 6 Responses in Example-1, (a) Proposed, (b) Onat (2019), (c) Ozyetkin (2018), (d) 2DOF-PID by Bingi et al. (2018) and (e) 2DOF-FOPID
by Bingi et al. (2018)

Table 2 Performance
comparison for Example-1

Tuning methods ts Ap ITSE IAE ITAE ISE

Setpoint tracking

Proposed 8.017 1.032 0.312 1.038 6.086 0.118

Onat 6.970 1.021 7.920 4.864 14.985 3.813

Ozyetkin 11.930 0.984 15.080 6.799 27.995 5.143

Bingi et al. (PID) 12.444 1.050 17.774 4.908 58.223 1.329

Bingi et al. (FOPID) 17.172 0.982 11.091 6.326 29.788 4.247

Disturbance rejection

Proposed 3.830 0.100 0.003 0.136 0.917 0.004

Onat 18.692 0.169 0.778 1.192 7.720 0.132

Ozyetkin 16.364 0.179 1.441 1.591 12.500 0.196

Bingi et al. (PID) 31.945 0.179 2.644 2.417 28.855 0.271

Bingi et al. (FOPID) 41.907 0.178 2.336 2.541 36.068 0.236
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Fig. 7 Perturbation test 20% (process gain and delay) in Example-1,
(a) Proposed, (b) Onat (2019), (c) Ozyetkin (2018), (d) 2DOF-PID by
Bingi et al. (2018) and (e) 2DOF-FOPID by Bingi et al. (2018)

taneously. As seen from Fig. 7, the presentedmethod is more
robust than others and can resist significant parameter varia-
tions.

6.2 Example: 2

The familiar USOPTD plant studied by Kumar et al. (2020)
and Begum et al. (2018) is presented here as

Gp2(s) = 2

(s − 1)(3s − 1)
e−0.25s . (41)

An IMC-PID controller was proposed byKumar et al. (2020)
in which the controller settings were calculated to be Kc =
3.150, Ti = 1.553, Td = 1.451 and used set-point weight-
ing parameter value of 0.2 in order to remove the excessive
overshoot. For the above process model, the IMC-PID set-
tings reported by Begum et al. (2018) were Kc = 4.491,
Ti = 1.625, Td = 1.272 and a set-point filter of the form

0.7768s+1
1.9476s2+1.5536s+1

also added to deal with overshoot. Again,
the presented method is used to verify the performance. For
a process (41), the performance constraint is considered upto
a certain range that satisfies the conditions of φm (Table 1).
The graphical plots are shown in Fig. 8a, b for suitable tuning
parameters. The obtained tuning parameters are λ = 0.299,
β = 1.343, and then, FOTID setting is Kt = 1.673,
Ki = 6.695, Kd = 5.022, α = 0.343 and μ = 0.657. A
setpoint filter of the form Fs = 1/(s + 1) is added in order
to improve the smoothness of the response. The stabilizing
controller’s gains are chosen as Kps = 0.01, Tds = 400
and η = 10−4 as per procedure from Sect. 3.1. A positive
step disturbance of 0.1 is considered at the 20s in order to
study load disturbances. The closed-loop responses as well
as control signals are shown in Fig. 9a and b. For checking

the system robustness, the steady state gain, as well as pro-
cess delay, is changed to 20% in the worst direction. From
the perturbed responses shown in Fig. 10a and b, it shows
no oscillations, even though the plant model is perturbed.
In addition to that magnitude of complementary sensitivity
function, T ( jw) with bound on multiplicative uncertainty,
�m for different perturbations is shown in Fig. 11. The robust
stability margin decreases with an increase in perturbation.
As it crosses 80%, the controller failed to satisfy the robust
stability and robust performance condition as mentioned in
(34).Hence, 70% is the recommended allowable perturbation
for the given second-order plant.

The numerical valuesmeasured from the setpoint and after
load disturbances are tabulated in Table 3. It shows that the
new method can perform better compared with other meth-
ods.

6.3 Example: 3

A second-order process with one unstable pole is considered
as,

Gp3(s) = 1

(s − 1)(0.5s + 1)
e−1.2s . (42)

Ajmeri andAli (2017) used amodified Smith predictor struc-
ture with three controllers. Their method had a lead-lag
compensator with parameter values, αc = 0.628 and βc =
0.429, setpoint tracking PI with settings, Kc1 = 0.452 and
Ti1 = 4.371 and load disturbance rejection PID with lead-
lag filter with Kc2 = 1.091, Ti2 = 69.553 and Td2 = 0.529,
filter parameters αs = 0.6 and βs = 0.019. In addition, a
low-pass filter of the form G f (s) = 1/(θs + 1) to improve
system robustness and a setpoint filter Ff (s) = 1/(Ti1s + 1)
to remove overshoot were included in the structure. Thus,
their method requires several controllers for unstable process
control. Uma and Rao (2014) method presented a modi-
fied Smith predictor with two controllers, namely, setpoint
tracking PID with filter as Kcs = 1.496, Kis = 0.103,
Kds = 0.821 and βs = 0.429 and load disturbance PID with
lead-lag filter as Kcd = 1.192, Kid = 0.039, Kdd = 0.594
and αd = 0.6 and βd = 0.011. It shows their structure also
depends on more tuning parameters.

Unlike the proposed approach, a designer could easily
choose one parameter value ξ . For the given process, the
performance constraint from the optimal cost function is
calculated as ξ = 0.72 as shown in Fig. 12a and b. Then,
tuning parameters are obtained as λ = 0.597 and β = 1.343
to satisfy the minimum cost function. The controller val-
ues obtained as Kt = 1.676, Ki = 2.513, Kd = 0.838,
α = 0.343 and μ = 0.657. The stabilizing PD controller is
Gc0 = 2(0.5s + 1). The setpoint filter Fs = 1/(1.5s + 1) is
considered to reduce the undesirable overshoots. A positive
load disturbance of 0.05 is given at the output load. The servo
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Fig. 8 Obtain the tuning parameters for Example-2

Fig. 9 Responses in Example-2, (a) Proposed, (b) Kumar et al. (2020) and (c) Begum et al. (2018)

Fig. 10 Perturbation test in Example-2, (a) Proposed, (b) Kumar et al. (2020) and (c) Begum et al. (2018)
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Fig. 11 Magnitude plot of the complementary sensitivity function and
that of 1/((�K/K + 1)e−�θs − 1 for Example-2

Table 3 Performance comparison for Example-2

Tuning methods ts Ap ITSE IAE ITAE ISE

Setpoint tracking

Proposed 2.689 1.005 0.029 0.299 0.393 0.041

Kumar et al. 3.479 1.016 0.714 1.516 1.456 1.124

Begum et al. 3.387 1.073 0.152 0.493 1.185 0.070

Disturbance rejection

Proposed 2.483 0.100 0.001 0.055 0.046 0.003

Kumar et al. 4.533 0.001 0.006 0.146 0.177 0.009

Begum et al. 4.718 0.100 0.004 0.123 0.158 0.007

and regulatory responses as well as control responses from
the proposed design and other methods are shown in Fig. 13a

Fig. 12 Obtain the tuning parameters for Example-3

Fig. 13 Responses in Example-3, (a) Proposed, (b) Ajmeri and Ali (2017) and (c) Uma and Rao (2014)
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Table 4 Performance
comparison for Example-3

Tuning methods ts Ap ITSE IAE ITAE ISE

Setpoint tracking

Proposed 4.760 1.009 0.099 0.587 1.751 0.079

Ajmeri and Ali 10.021 0.997 0.625 1.285 7.296 0.161

Uma and Rao 11.925 1.463 4.662 3.747 14.545 1.928

Disturbance rejection

Proposed 4.956 0.050 0.001 0.050 0.113 0.001

Ajmeri and Ali 21.441 0.354 0.677 1.144 10.712 0.092

Uma and Rao 22.915 0.646 9.080 3.359 38.020 1.013

Fig. 14 Perturbation test in Example-3, (a) Proposed and (b) Ajmeri and Ali (2017)

Fig. 15 Response under noise (a) With SNR=10dB and (b) With SNR=20dB

and b. The result claimed the efficacy of the new structure
from Table 4.

To analyze the robustness, perturbations of +15% in
process gain and +10% perturbations in time delay are con-
sidered. The results are shown in Fig. 14a and b, respectively.

The method proposed by Uma and Rao (2014) failed to sat-
isfy the required perturbation and thus, their result was not
shown. Again it is easy to claim the robustness from the pre-
sented method.
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The measurement noise arises from measuring devices
like sensors, other electric sources, control valves or the pro-
cess itself. The signal-to-noise ratio (SNR) is ameasure of the
strength of the desired signal relative to background noise.

The SNR is defined as SNR = 10 log σy
2

σn2
, where σy

2 is the

variance of output signal and σn
2 is the variance of noise.

The results with noisy outputs having SNR of 10 dB and
20 dB using the proposed scheme are presented in Fig. 15a
and b. Same time the external disturbance of 0.1 value was
also added in the closed-loop control. It is proved from the
analysis that the presented structure performs well with dis-
turbance and measurement noise issues.

6.4 Example: 4

Let us take the recently studied process control example by
Begum et al. (2020) as,

Gp4(s) = 3.433

103.1s − 1
e−20s . (43)

The presented scheme was compared with Begum et al.
(2020) and Vanavil et al. (2014). In Begum et al. (2020),
PID controller with settings Kc = 1.249, Ti = 89.6 and
Td = 5.64 was taken and for Vanavil et al. (2014), PID
with lead-lag filter was shown with settings Kc = 0.178,
Ti = 13.333, Td = 5.0, α = 94.65 and β = 5.98.

Following the presented tuning steps from Table 1, the
parameters λ and β are estimated with values 4.653 and

Fig. 16 Obtain the tuning parameters for Example-4

Fig. 17 Step responses in Example-4, (a) Proposed, (b) Begum et al. (2020) and (c) Vanavil et al. (2014)
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Fig. 18 Ramp responses in Example-4, (a) Proposed, (b) Begum et al. (2020) and (c) Vanavil et al. (2014)

Table 5 Performance
comparison for Example-4

Tuning methods ts Ap ITSE IAE ITAE ISE

Setpoint tracking

Proposed 52.076 1.001 1.212 2.079 38.397 0.218

Begum et al 151.777 1.851 2.9e+03 83.177 4.92e+03 59.969

Vanavil et al 142.511 0.971 294.297 21.307 1.84e+03 3.347

Disturbance rejection

Proposed 33.310 0.100 0.035 0.431 11.191 0.019

Begum et al 151.777 0.100 29.692 8.471 524.759 0.600

Vanavil et al 160.520 0.100 19.895 7.465 432.272 0.480

1.477, respectively. The stabilizer controller is set with gain
value Kps = 2. As seen from Fig. 16a and b, the perfor-

mance constraint becomes ξ = 0.34 for the optimal cost
function. Using the process model parameters and obtained

Fig. 19 Perturbation test in Example-4, (a) Proposed, (b) Begum et al. (2020) and (c) Vanavil et al. (2014)

123



Journal of Control, Automation and Electrical Systems

Fig. 20 Block diagram of
CSTR using proposed scheme
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Fig. 21 Process output and control efforts for the nonlinear CSTR, (a) Proposed and (b) Begum et al. (2020)

λ and β, the fractional TI controller’s gains are Kt = 0.063,
Ki = 6.454, β = 1.477 and α = 0.476. The set-point fil-
ter of the form fs = 1/(10 s + 1) is also added to improve
the setpoint smoothness. A negative step disturbance of 0.1
is given at the output side. The setpoint tracking and con-
trol input signals are shown in Fig. 17a and b, respectively,
with results provided from other methods. Furthermore, an
investigation was carried out with ramp reference signal of
slope 0.2 at 0 s and negative step disturbance of 5 at 300s.
The corresponding results can be seen in Fig. 18a and b. It
can be depicted that the presented method performed better
than other controllers.
The same observation can be seen from the numerical values
presented inTable 5. The robust performance is also observed
by assuming a perturbation of 20% in process gain and 5%
in process delay. Figure19a and b are plotted for verification.

Under this mismatch condition, the present tuning approach
shows the robustness in terms of perturbed conditions.

6.4.1 Case Study on Nonlinear System

The proposedmethodwas investigated on nonlinear Jacketed
continuously stirred tank reactor (CSTR) system, and corre-
sponding block diagram is shown in Fig. 20. The isothermal
chemical CSTR exhibits multiple steady states. The reactor’s
mathematical model is given as

dC

dt
=

(
Q

V

) (
C f − C

) −
[

K1C

(K2C + 1)2

]
(44)

where Q is the inlet flow rate, c f is the inlet concentration,
c is the reactor’s exit concentration. The model parameters
are given by Q = 0.0333 L/s, reactor volume V = 1L,
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Table 6 Performance comparisons

Method Structure No. of Controllers /
Filters

Summary of performance

Proposed IMC-SP 4 Optimal Control signal

Low performance indices

Robust

Begum et al. (2020) IMC 4 Large Control signal

High performance indices

Poor Disturbance test

Vanavil et al. (2014) IMC 5 More controllers

Optimal Control signal

High performance indices

Better tracking and load disturbance

Onat (2019) PI-PD 4 Good performance indices

Failed in perturbation test

Ozyetkin (2018) FOPI-FOPD 4 Poor perturbation test

Good performance indices

Difficult tuning

Bingi et al. (2018) PID 4 High ITSE and overshoot

Oscillatory in perturbation test

Bingi et al. (2018) FOPID 4 Sluggish response

Overshoot in load disturbance

Oscillatory in perturbation test

Kumar et al. (2020) IMC 3 Good control signal

Oscillatory in perturbation test

Begum et al. (2018) IMC 5 High control signal

Oscillatory in perturbation test

Ajmeri and Ali (2017) SP 8 Many controllers

Low control signal

Oscillatory in perturbation test

Uma and Rao (2014) SP 9 Many controllers

Large control signal and overshoot

Failed in perturbation test

High performance indices

K1 = 10L/s and K2 = 10 L/mol. The desirable unstable
steady state is obtained at C = 1.316 corresponding to the
nominal value of C f = 3.288 mol/L. The process has a
dead time of 20s and linearized (44) around the manipulated
variableC . The signalsC andC f are plotted for aCref = 3.9
mol/L (steady-state). The impact of band limited white noise
of amplitude 0.1 used to verify the robustness. The obtained
process outputs and control signals are shown in Fig. 21a
and b, respectively. It is worth noting that the IMC-SP can
maintain the desired steady state even with noise.

6.5 The Comparison Table

From the comprehensive numerical studies and literature
review, Table 6 is presented for the reference with key fea-

tures and limitations of various approaches related to the
unstable processes.

7 Conclusions

A modified IMC-SP setup for an unstable process was
reported in this research. Despite the fact that the controller
has a fractional-order integrator, derivative, and SP, a sim-
ple method is established. The tuning method resulted in
a significant improvement in setpoint tracking after chang-
ing controller settings from the predicted cost function.
This design works in the presence of parameter fluctua-
tions, external load disturbance, andmeasurement noise. The
numerical analysis revealed that the strategy is fairly simple

123



Journal of Control, Automation and Electrical Systems

while outperforming previous approaches. In a closed-loop
performance comparison, the proposed tuning is proven to
be superior to other documented techniques developed for
isothermal chemical continuous stirred tank reactors. Fur-
ther research on higher-order, non-minimum phase, and
fractional-order type unstable models can be conducted as
an appropriate extension of the proposed methodology.
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