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ABSTRACT Diabetes is a major chronic health problem affecting millions globally. Effective diabetes
management can reduce the risk of hospital readmission and the associated financial losses for both the
healthcare system and insurance companies. Hospital readmission is a high-priority healthcare quality
measure that reflects the inadequacies in the healthcare system that also increase healthcare costs and
negatively influence hospitals’ reputation. Predicting readmissions in the early stages prompts great attention
to patients with a high risk of readmission. There has been some attempt in applying machine learning
predictive models such as ensemble learning with Extreme Gradient Boosting (XGBoost), Support Vector
Machine (SVM) and Artificial Neural Networks (ANN) to correctly identify if the readmission can happen
within 30 days (<30 days) or it may never happen or happens after 30 days (≥30 days). We are proposing a
new method that is applied to ANN to guide it through its gradient descent optimizers by realizing consistent
vs inconsistent data in every batch. Our results show that there are up to 1.5% improvement in classification
accuracies in both 2-class and 3-class variations of the experimented benchmark dataset when using the
guided optimizer to train the ANN as opposed to the standard optimizer. Guided ANN is also able to achieve
better error convergence than standard ANN.

INDEX TERMS Artificial neural network (ANN), hospital readmission, machine learning, error conver-
gence, support vector machine, gradient descent, classification accuracy.

I. INTRODUCTION
The modern Health care industry is increasingly embodying
the involvement of Artificial intelligence (AI) in their daily
practices. AI has been assisting the health care domain in
making decisions on appropriate treatment journeys, analy-
sis of medical reports, making informed clinical decisions,
early detection of diseases and many other tasks [1]. Over
the years, hospital readmission rate has become a important
performance measurement metric for hospitals in order to
minimize the impact on healthcare costs and patient outcomes
[2]. To improve the performance of health care services,
predicting the readmission of a patient has become very
important and such that many solutions have been proposed
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that use AI and Machine Learning techniques to accomplish
this [3], [4], [5].

Hospital readmission simply means a patient who had
been discharged from a hospital is admitted again within a
specified time interval because of the same disease [6]. There
could be many causes of readmission, for instance, enough
medical care was not provided initially when the patient was
admitted to the hospital or subsequent care was not followed
properly at home after discharge [7]. Keeping readmission
rates low is important as it indicates the quality of health
services of a hospital which also makes hospital readmission
a major concern, especially in the era of a global pandemic of
COVID 19 [8], [9], [10].

Early detection of patients with a high risk of getting
readmitted will allow medical professionals to examine and
conduct corresponding prevention measures, however, it may
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lead to an increase in operation cost [11]. Therefore, the
correct prediction of readmission to optimize the cost is
necessary.

Machine learning techniques have been proven effective
for such medical bioinformatics applications and producing
quality predictions [3], [4], [6], [7], [8], [12]. Some promi-
nent state-of-the-art models for predicting readmission due
to diabetes or other diseases are artificial neural networks
(ANN), Support Vector Machine (SVM) and RandomForest
(RF) [6], [13], [14], [15]. These algorithms are known for
their robustness and good generalization ability, however,
SVM is generally not suitable for large datasets and is sensi-
tive to abnormal data distribution or noise whereas RF is more
capable in such situations [16], [17]. ANN is also sensitive
to abnormal data distribution but its gradient descent process
can be strategically maneuvered to compensate for the com-
plex data distribution (also called deterministic noise) [18],
[19]. This strategy has been applied in logistic regression
in [18] for small datasets but it has never been applied in ANN
and for large datasets. Our approach addresses the underlying
problem of gradient descent that blindly takes the training
data without considering the inconsistency present in the data.
The experimented dataset for diabetes readmission is not easy
to train due to its size and data distribution. Therefore, this
article aims to address these problems by providing a new
variant of ANN algorithm based on guided gradient descent
to have a better prediction of diabetes readmission. This
can improve the quality of hospital services followed by the
long-term effect that will be beneficial for hospitals and their
patients [20].

Diabetes is a major health issue worldwide with an esti-
mated 1.5 million deaths directly caused by it [21]. Diabetes
is a metabolic disorder resulting in hyperglycemia and a
plethora of symptoms as a result. Depending on the etiol-
ogy, it can be classified as diabetes mellitus type I, diabetes
mellitus type II, gestational diabetes and other specific type
diabetes [22], [23], [24]. This paper will focus on diabetes
mellitus type II, henceforth referred as diabetes, as it is the
most common form of all [23]. There are multiple factors
that increase the risk of a person developing diabetes, some of
which include obesity, smoking, sedentary lifestyle, and fam-
ily history of diabetes. Complications secondary to diabetes
make it one of the leading and growing causes of hospital
admission and disability [25], [26]. It typically affects 20% of
the hospital inpatients [27]. In addition, people with diabetes
have hospital admission rates higher than people without dia-
betes [28]. People with diabetes also have excessive lengths
of hospital stay compared to people without diabetes [28].
The economic cost of diabetesmellitus is therefore enormous.
Hence, reducing the rate of admissions secondary to diabetes
can significantly reduce its global mortality, morbidity and
economic burden.

The rest of the paper is organized as follows. Section II
describes the machine learning techniques used in the liter-
ature to solve the hospital readmission problem. Section III
introduces our proposed ANN model in detail and describes

the benchmark dataset for hospital readmission for diabetic
patients along with the experimental setup used in this paper.
Section IV and V demonstrate the findings and describes the
experimental results. Section VI concludes the paper with
some suggestions for future work.

II. BACKGROUND AND RELATED WORK
A. THE STATE-OF-THE-ART MACHINE LEARNING
TECHNIQUES AND READMISSION PREDICTION
Some classic methods to determine risk prediction for hos-
pital readmission include rule-based methods, scores and
traditional statistical methods such as logistic regression [13].
Recently, machine learning has emerged as a powerful tool
for hospital readmission research. These approaches allow
researchers to analyze large datasets and identify complex
patterns and relationships between variables. By applying
machine learning algorithms to electronic health records,
researchers can identify risk factors for readmission or simply
predict readmission likelihood for individual patients, and
develop personalized intervention strategies to reduce read-
mission risk [13], [29].

Several studies have demonstrated the effectiveness of
machine learning in predicting hospital readmissions. Hosp-
tial readmission can be for variaous diseases such as dental,
heart, diabetes, pediatric or even COVID-19 [14], [15], [29],
[30], [31]. Mostly ANN, SVM and RF models are consid-
ered state-of-the-art techniques [13], [14], [15]. For instance,
a study in [6] shows three machine learning models: Random
Forest, Naive Bayes and Tree Ensemble were developed for
diabetes readmission prediction where the Random Forest
was the best performing model. Similarly, studies in [14] and
[32] show ANN and SVM perform best respectively.

B. ARTIFICIAL NEURAL NETWORK
Artificial Neural Network (ANN) is a type of model for
machine learning(ML) that has become popular and helpful
in classification, clustering, pattern recognition and predic-
tion in many disciplines [33]. ANN model is analogous to
animal brain cells that process and recognizes the vast amount
of data to solve problems. ANN has nodes analogous to
neurons in brain cells which are also known as perceptrons
that are arranged in a layer or in vectors. ANN has three types
of layers that are the input layer, one or more hidden layers
and the output layer as shown in FIGURE 1where the training
happens through backpropagation technique [34]. The goal
of backpropagation is to modify the weights (vectors) so as
to train the neural network to map arbitrary inputs to outputs
correctly. The goal is to learn the weights for all linkages in
a multi-layered network. The minimum of the error function
in weight space is calculated using the method of gradient
descent. The resultant weight which offers the minimum
error function is the solution of the learning problem. [35].
However, improper optimization techniques may cause the
network to reside in the local minima during training without
any improvement in reaching an optimal solution [36].
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FIGURE 1. Architecture of artificial neural network.

C. ENHANCED ANN THROUGH A VARIETY OF GRADIENT
DESCENT TECHNIQUES
There have been many attempts to enhance the ANN through
a variety of gradient descent techniques such as standard
Stochastic Gradient Descent [37], Adam [38], Adagrad [39],
Adadelta/RMSprop [40], Momentum [41] etc. These meth-
ods have been used in parallel computations for large datasets
as well [18], [42], [43]. These methods exploit the search
space to have a better convergence rate to minimize an objec-
tive function J (θ ) parameterized by a model’s parameters
θ ∈ Rd in the opposed direction of the gradient of the
objective function ∇xJ (θ )w.r .t to the parameters. The learn-
ing rate η decides the size of the step to take to reach a
(local) minimum [44]. Quite often, the mini-batch gradient
descent is favored in training large Deep Neural Network
(DNN) models which commonly deal with large datasets,
as mini-batch gradient descent allows for fast training time
and effective utilization of available computing resources
[45]. Mini-batch gradient descent performs an update to the
model’s parameters θ for every mini-batch of n training
samples:

θ = θ − η · ∇θJ
(
θ; x(i:i+n); y(i:i+n)

)
while being quite efficient, mini-batch gradient
descent can also lead to more stable
convergence [44].

Earlier we proposed Guided Stochastic Gradient Descent
(GSGD) in [37] for logistic regression - a shallow machine
learning model as an improvement over other state-of-the-
art variations of gradient descent. GSGD realizes that incon-
sistent data is a major factor impacting the gradient descent
and convergence for SGD, and it tries to overcome this by
temporarily hiding them in hopes that they will become
consistent in later iterations while GSGD continues to carry
out weight updates using the consistent data. Inconsistent
data instances simply are the data instances within the neigh-
borhood of instance ρ; which individually performs better,
while the average error value Ē performs worse than the
average error value of the previous iteration Ēt−1, and vice-
versa. GSGD has proven to achieve better convergence and
classification accuracy than the canonical SGD and its other
variations [37].

III. MATERIALS AND METHODS
A. GUIDED ANN FOR BETTER CONVERGENCE
The original GSGD algorithm in [37] and [18] was designed
for shallow machine-learning models such as logistic regres-
sion. In [46], a variation of GSGD was proposed for Con-
volution Neural Networks (CNN), a deep learning Model.
Based on the tested benchmark datasets, the GSGD for
CNN achieves better convergence and improves classification
accuracy up to 3% in general when compared to its canonical
counterpart.

Our proposed method tries to overcome the deficiency
faced by ANN when working with inconsistent datasets by
incorporating the GSGD optimizer in a similar approach
taken in [46]. The original GSGD [37] cannot be used for
large datasets and complex models such as ANN because
of its expensive verification step that requires entire training
set to determine the data inconsistency in every iteration.
The proposed algorithm uses only a subset of training data
as verification data to have better convergence. Additionally,
we have successfully backpropagated the gradient generated
through a guided approach. So the guided approach now
works for multi-layer perceptron as opposed to single-layer
perception in its original form in [37]. Its flowchart is given in
FIGURE 2where the algorithm starts with a random selection
of a data instance whose gradient is computed to update the
weight vector. After ρ iterations, the weight vector is fur-
ther refined with consistent neighboring data instances. It is
important to note that the value of ρ must be chosen wisely,
as a very large value would result in the algorithm executing
in its original form with typical gradient computation and
weight update, and GSGD algorithm having very little to no
effect in improving its efficiency. For this paper, the value of
ρ was selected with Bayesian Hyperparameter Optimization.
See Algorithm 1 for the detailed pseudocode of the algorithm.

Original GSGD uses verification data to compute the error
of the training data instance at every iteration, which is not
applicable to deep learning. The execution of the algorithm
begins with the gradient computation and weight update
with the learning rate η in the usual manner for the first
ρ iterations. Average batch error (Ēt ) is computed at every
iteration and compared with the average batch error of the
previous data batches (Ēt−1, Ēt−2,. . . Ēt−ρ). After the end of p
iterations, all data batches performing consistently onweights
Wt−ρ to Wt is kept in the consistent datastore ψ . Finally, the
entire weight vectors are updated with the consistent data
batches in ψ . This algorithm proposes to process all data
batches regularly up to ρ iterations before reprocessing with
only the identified consistent data batches.

B. EXPERIMENT DATA
The dataset used in this experiment was originally presented
in the paper [47] and was also added to UCI Library under the
name ‘‘Diabetes 130-US hospitals for years 1999-2008 Data
Set’’. The dataset has over 50 features representing patient
and hospital outcomes with 3 classes: patients who were
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FIGURE 2. GSGD flowchart.

readmitted within 30 days of discharge, patients who were
readmitted after 30 days of discharge and patients who had
no record of readmittance within the 10-year study period.
The dataset contained over 100,000 diabetic patient records.

Two datasets were prepared from the original, the first
dataset consisted of the original 3 classes of classifications
but for the second dataset, we were interested to identify if
a patient will be readmitted within 30 days or not readmit-
ted within 30 days period. Therefore, the ‘‘Readmitted after
30 days’’ class and ‘‘no readmission record’’ class were com-
bined into one, having a total of two classes of classifications
for the second dataset.

The datasets were also pre-processed and normalized
before conducting the experiment. For patients who had died
in between the data collection period, their data was removed.
The pre-processed data contained the following attributes
such as race, gender, age, admission type, time in hospital,
number of lab tests performed, HbA1c test result, diagnosis,
number of medications, etc.

After pre-processing, the final dataset had 86,555 records
which were split into ratios of 80:20 for the training set
and Validation set. The training set was further split into
80:20 to get the validation set. Since the class distribution
was imbalanced (89.14% not readmitted and 10.86% read-
mitted), a commonly used oversampling technique – Syn-
thetic Minority Oversampling Technique (SMOTE) [48] –
was applied to synthesize the minority classes in the train-
ing set. SMOTE is also considered a ‘‘de facto’’ standard
for pre-processing imbalanced data. SMOTE addresses this
problem by randomly generating synthetic samples for the
minority class through interpolation, which helps to balance

Algorithm 1 Pseudocode for Guided SGD for ANN

// Input: training data set examples
d, total iterations (T) and
neighborhood threshold (ρ).

// Algorithm can be tweaked to
return the best W so far.

1 gSGD (d,T , ρ)
2 for t = 1 : T do
3 compute gradient v(di)
4 Wt = Wt − ηv(di)
5 E t = approximateAvgError()
6 ψ = collectConsistentBatches(di, di−1, . . . di−ρ)
7 if ∥ψ∥ = ρ then
8 ψ = getConsistentBatches(ψ ,E t )
9 for i = 1 :∥ ψ ∥ do
10 Wt = Wt − nv(ψi)
11 end
12 end
13 end
14 returnWT

TABLE 1. Shows dataset details.

the class distribution and improve the overall performance of
machine learning models. SMOTE has been used in many
application domains such as finance, healthcare and engineer-
ing [49], [50], [51]. The detailed description and pseudocode
for SMOTE is available in [48], [51], and [52].

C. EXPERIMENTAL SETUP
The ANN architecture setup for this research is described in
TABLE 2. The architecture comprises of two hidden layers
before the final output layer. After every hidden layer there
is a batch normalization layer that deals with the issue of
internal covariate shift which is defined as the change in the
distribution of network activations due to the change in net-
work parameters during training [53], this issue complicates
the training of deep neural networks by requiring lower learn-
ing rates and careful parameter initialization. The mini-batch
normalization technique will make training artificial neural
networks faster and more stable through the normalization of
the layers’ inputs by re-scaling [53]. After the normalization
layer, we have the activation layer that is using sigmoid,
a non-linear function for activations in the succeeding layer.

The Experiment was structured as follows: The
ANN-GSGD model was developed and trained in Python
using the PyTorch library so as all the training and testing
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TABLE 2. Architecture of the ANN model.

code. The code is available in https://github.com/ECOLS-
research-group/GSGD-ANN. Five popular optimizers:
RMSProp, Adagrad, SGD, Adam and Adadelta were used in
the experiment as the canonical optimizers. The guided vari-
ants of these optimizers were also developed by incorporating
the proposed guided ANN algorithm. The guided variants
will be referred to as G-RMSProp, G-Adagrad, G-SGD,
G-Adam, G-Adadelta in this paper. In the experimentation
phase, a total of 30 successive runs were carried out to
evaluate the Guided ANN model with the Canonical ANN
model. These 30 successive runs were carried out for both
the datasets and the different optimizers mentioned above.

Bayesian parameter tuning was also carried out to identify
the best hyperparameters for the ANN model with differ-
ent optimizers. TABLE 3 highlights all the hyperparameters
that were used in this experiment. All experiments for this
research were conducted in a windows-basedmachine having
an i7 − 11th Gen processor and 16 GB of RAM.
In order to compare the performance of our Guided

ANN model against other popular machine learning models,
we also used our experimental data to train SVM classifier
model and Random Forest classifier model, the performance
of these models was evaluated using the same validation
dataset used for ANN, the results have also been collected
and presented in this paper.

IV. RESULTS
A. STATISTICAL ANALYSIS OF CLASSIFICATION ACCURACY
In this section, we provide experimental results of the canon-
ical optimizers and guided optimizers on the Diabetes Read-
mission datasets of 2 classes and 3 classes. We also analyze
and evaluate the performance of each optimizer against their
corresponding guided variant.

TABLE 4 highlights the best and average classification
accuracy values obtained from running the test datasets on
guided ANN. It also shows the Area Under the Receiver
Operating Characteristics Curve (AUROC) and the standard
deviation of the accuracy values obtained from all the 30 runs
carried out in the experiment. We used average AUROC
for the 3-class problem. The results show that, on average,
the Guided variant performs better than the canonical ver-
sions. For the 2-Class dataset, G-Adadelta outperformed the
canonical Adadelta by 1.5% and also became one of the
best-performing optimizers for the 2-Class dataset. Other

guided optimizers also managed to marginally outperform
their canonical versions. When looking at the best classifi-
cation accuracy yielded by the optimizers, both guided and
canonical optimizers were able to obtain over 89% accuracy
while the guided variant always performed the best; Adam
was the only optimizer where the guided and canonical opti-
mizer both obtained the same classification accuracy.

When looking at the classification accuracy results of
the 3-class dataset in TABLE 4, it is evident that the
guided optimizers outperformed its canonical variants but
only marginally. G-RMSProp highlighted by † and RMSProp
was the best-performing optimizers overall in the 3-Class
dataset when looking at mean results. G-RMSProp managed
to outperform its canonical variant by 0.6%.

The Standard Deviation(σ ) values in TABLE 4 indicate
that the results obtained by Guided optimizers are far less dis-
persed from the mean when compared to the results obtained
by the canonical optimizers.

FIGURE 3 and 4 also highlight the different classifica-
tion accuracies obtained by the ANN Model throughout the
epochs using different optimizers. When analyzing the per-
formance of our prominent optimizer for 2-class highlighted
in FIGURE 3(a), it shows that the ANN model had started
fitting the data really well by the 10th epoch, and there were
steady improvements by both the G-Adalelta and Adadelta on
the classification accuracy while G-Adadelta had the upper
hand till the last epoch.

Furthermore, our prominent optimizer for the 3-class
dataset, G-RMSProp, was also able to have its ANN model
fit the data quite well. it also had consistent improvement
on the classification accuracy throughout the epochs when
compared to its canonical version as shown in FIGURE 4(d).
FIGURES 7 and 8 highlight the tradeoff between precision
and recall at different thresholds, it is evident from the graph
that both the classifier are performing best on the ‘‘Not Read-
mitted’’ class or the ‘‘No’’ class.

B. CONVERGENCE ANALYSIS
FIGURES 5 and 6 highlight the error convergence of the
ANN model using different optimizers. Even though the
error convergence rate of both guided and standard ANN is
O(1/T ) [18], the guided approach shows better convergence
in a limited time budget. FIGURE 5(a) highlights the error
convergence of our prominent 2-class optimizer throughout
the epochs. Both G-Adadelta and Adadelta started attaining
stable convergence right after epoch eight but G-Adadelta
managed to have a faster convergence than Adadelta.

Error convergence on the 3-class dataset also showed
similar patterns as convergence on the 2-Class dataset.
G-RMSProp and RMS-Prop were our prominent optimizers
for this dataset but G-RMSProp had a much faster conver-
gence than RMSProp.

C. CLASSIFICATION REPORT ANALYSIS
TABLE 5 and TABLE 6 visualizes the classification perfor-
mance of our prominent optimizers on the 2-class and 3-class
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FIGURE 3. Validation Accuracy on Diabetes Readmission (2-class) on a scale of 0-1.

FIGURE 4. Validation Accuracy on Diabetes Readmission (3-class) on a scale of 0-1.
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FIGURE 5. Error Convergence on Diabetes Readmission (2-class) Validation dataset.

FIGURE 6. Error Convergence on Diabetes Readmission (3-class) Validation dataset.
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TABLE 3. Bayesian parameter values for the ANN model where η is the learning rate, λ is the lambda parameter for regularization and ρ is the
neighbourhood threshold.

FIGURE 7. Precision-recall curve for Adadelta and G-Adadelta validated on Diabetes Readmission (2-Class) Dataset.

FIGURE 8. Precision-recall curve for RMSProp and G-RMSProp validated on Diabetes Readmission (3-Class) Dataset.

diabetes readmission datasets. TABLES 5 and 6 present the
confusion matrix for the validation dataset, the prediction
class ‘NOT’ indicates that the patient will not be readmitted
within 30 days and class ‘Readmitted’ indicates that the
patient will be readmitted within 30 days. Both the classifiers
performed really well on the ‘NOT’ class but not so well on
the ‘Readmitted’ class which is also the minority class. When
looking at the visualizations for classification performance on
the 3-class dataset, it also shows similar results as the 2-class
classifiers. The 3-class classifiers also performed really well

on the ‘NO’ class, but both the classifiers did not perform
well on ‘<30’ class while performing adequately on the ‘>30’
class. G-RMSProp performed better than RMSProp on the
class ‘>30’.

It is also important to look into the F1 score, which is
the harmonic mean of precision and recall, as the dataset
is highly imbalanced. The F1-scores are highlighted in bold
in TABLE 7 on a scale of 0 to 1 for all the classes and
averages. The best F1 score results have been highlighted
in bold.
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TABLE 4. Best and average test accuracy for each dataset and optimizer.

TABLE 5. Table showing confusion matrix for models trained with 2-class
diabetes dataset.

TABLE 6. Table showing confusion matrix for models trained with 3-class
diabetes dataset.

If we consider all classes to be equally important for the
experiment, then the macro average becomes the ideal aver-
age metric and in the case of 2-class results, the canonical
variant managed to outperform the guided variant by 1%, but
in the case of 3-class results, the guided variant has managed
to outperform the canonical variant by approximately 1%.

Alternatively, the weighted average is preferred where the
support values of classes need to be consideredwhen calculat-
ing the average F1 score, in the case of our 2-class and 3-class
results, the guided variant managed to obtain better weighted
average F1 scores than the canonical variants by performing
approximately 1% better on both the datasets.

The datasets were also evaluated on SVM and Random
Forest classifiers; the results are highlighted in TABLE 8.

The hyper-parameter setup for these models were as follows:
linear kernel was used for SVM, and gamma was set to scale
while the regularizing parameter c was set to 1. In the case
of the Random forest model, the estimators (trees) were set
to 100 and ‘Gini impurity’ criterion was used for ensuring
optimum splits. Random Forest and SVM both have shown
similar results in comparison to ANN. The Random Forest
is one of the best-performing classifiers for the Diabetes
Readmission dataset, which has also been discussed in [6].
Guided-ANN managed to outperform Random Forest Clas-
sifiers on all four of the performance metrics: Accuracy,
AUROC, Macro Average f1-score and Weighted Average
f1-score for the 2-class dataset while only falling short on
the Macro Average f1-score performance metric for the 3-
class dataset. Compared to the SVM classifier, Guided-ANN
outperformed it in all the performance metrics, and on the
case of the 3-class dataset, Guided-ANN outperformed SVM
on Weighted Average f1-score by more than 2%.

V. DISCUSSION
A significant improvement in the quality of classification
has been observed with the introduction of guided stochastic
gradient descent on trainingArtificial Neural Networks. It has
clearly outperformed its canonical counterpart by obtaining
approximately 1.0 to 1.5% better classification accuracy on
both the 2-class and 3-class datasets. Adadelta and its guided
variant and RMSProp and its guided variant proved to be the
most prominent optimizers in the experiment. The confusion
matrix for the results also shows that the performance of the
guided optimizer and its canonical version is quite similar.
The low dispersion of classification accuracy results shown
by the standard deviation obtained by guided optimizers indi-
cates that they can provide consistent accuracy for classifica-
tion.

Since the dataset is highly imbalanced, we also considered
the F1 scores from the classification report of the experi-
ment. Guided optimizer generally performed better than its
canonical counterpart on both the weighted average F1 scores
and the macro average F1 scores with the exception of the
macro average F1 score of Adadelta on the 2-class dataset
which was off by approximately 1%. The overall experiment
shows that the ANN model trained with a guided optimizer
performs better than the ANN model that has been trained
with canonical optimizers. As expected, the guided approach
shows improvement due to its handling of training data.
It takes the ‘consistent’ samples to make the gradient move
closer to the true gradient in every iteration as shown in [37]
too. The precision-recall curve for the 2-class and 3-class
datasets in FIGURE 7 and FIGURE 8 together with AUROC
values in TABLE 4 shows that the data distribution of classes
is quite indistinguishable. Even in such conditions, the guided
approach provides better classification results. We also com-
pared the performance of Guided-ANN against the Random
forest classifier and SVM classifier and it also managed to
outperform them.
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TABLE 7. Classification report for two of the best-performing optimizers (Adadelta and RMSProp) on the diabetes dataset.

TABLE 8. Table showing performance of other machine learning
classifiers against Guided-ANN.

VI. CONCLUSION
We presented a Guided Artificial Neural Network model that
uses the guided stochastic gradient descent algorithm to train
the classifier. Our results show that the GuidedArtificial Neu-
ral Network performs better than its canonical counterpart
by obtaining at least 1% to 1.5% better classification accu-
racy on the 2-class and 3-class Diabetes readmission dataset,
while also achieving faster convergence. Guided ANN is
also able to achieve relatively good F1 scores in comparison
to the canonical variant for the same dataset. Guided ANN
has shown that it can significantly improve the classifica-
tion accuracy and overall performance of the model in the
prediction of early readmissions of patients due to diabetes,
there are various benefits of being able to predict hospital
readmissions such as reducing the strain on the health care
resources, improving patient care [20].

There are several possible future directions from this work
such as the application of GSGD in classification tasks in
other medical domains or the application of GSGD to Recur-
rent Neural Networks (RNN). Since the Diabetes Readmis-
sion was a highly imbalanced dataset, it will also be inter-
esting to investigate if other oversampling techniques such as
SMOTified-GAN [52] can counter the effects of data imbal-
ance and further improve the Guided ANN classifier model
as opposed to the standard SMOTE technique [48] that was
carried out in this research.

CODE AND DATA
The authors provide Python code and data for extending this
work further.1

1https://github.com/ECOLS-research-group/GSGD-ANN
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