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A B S T R A C T

This paper reviews the evolution of Internal Model Control (IMC) techniques developed so far for unstable
processes. The IMC strategy has shown significant results over the past two decades, including recent inclusions
of fractional-order approaches. After a comprehensive study of various methods, the critical tuning methods
and structural changes are clearly accumulated with their significance and limitation concerning controlling
unstable time-delay systems. The comparisons with main structural changes and filter designs are also included
in the numerical study and in discussion. Finally, the key research gaps and future motivations are indicated
in the IMC approaches, considering available methods in the literature.
. Introduction

In the process industry, Proportional-Integral-Derivative (PID) con-
rol is the most common scheme and has been universally accepted in
ndustrial control. The popularity of PID can be attributed partly to
heir robust performance in a wide range of operating conditions, feasi-
le and partly to their functional simplicity, which allows engineers to
mplement very quickly (Knospe, 2006). Tuning is the process of setting
he optimal gains for P, I and D values to get an ideal response from a
ontrol system. A PID controller continuously calculates an error value
s the difference between the desired set point and a measured process
ariable and applies a correction based on proportional, integral, and
erivative terms. The early methods of PID controller tuning include
he trial and error method, Ziegler–Nichols (Z-N) method (Ziegler &
ichols, 1993), relay tuning method (Åström & Hägglund, 1984) and
ohen–Coon method (Cohen, Coon, & Rochester, 1953). These methods
ield satisfactory tracking responses. However, they do not provide the
esired results (in the sense of disturbance rejection, optimally and
obustness) due to assumptions made and further tuning is required.

Internal model control (IMC) is an efficient control method and
chieved a superior effect to PID control (Saxena & Hote, 2012). Despite
everal advantages of PID, in industrial process control, many processes
re complex, unstable and with input time delays. In the case of PID,
t is difficult to adapt to a wide range of uncertain systems and to
btain satisfactory control effects. While the IMC has more immunity
nd robustness for large time-delay stable and unstable plants, it is
imple in structure, has an easy and intuitive design, and has fewer
djustable parameters.
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Firstly, the IMC scheme was presented to design using process
model parameters, and PID (Rivera, Morari, & Skogestad, 1986). It
was better than traditional PID concerning load disturbance rejection.
Then some notable works were presented on IMC-PID tuning and found
attraction by industrial researchers. Many PID tuning methods have
been developed by applying IMC techniques using the low order plus
time delay model (Shamsuzzoha & Lee, 2007). It is noted that the
IMC-PID was performing well for setpoint tracking but sluggish in
disturbance response (Chen & Seborg, 2002; Morari & Zafiriou, 1989).
In every IMC scheme, a tuning parameter is essential to set correctly
in design techniques. While considering tuning of controller, the issue
appears with mismatch at high frequency. Therefore, a low pass filter
should be added to make the controller versatile (Lee, Lee, & Park,
2000; Ranjan & Mehta, 2022; Saxena & Hote, 2017a; Shamsuzzoha &
Lee, 2008b). A filter design is also the central unit in IMC theory for
setpoint and disturbance rejection. In literature, various modifications
were presented to enhance performances in the presence of disturbance,
model mismatch and measurement noise; for example, see Saxena and
Hote (2013, 2016b).

The key contributions can be summarized as follows:

• A comprehensive study presented types of IMC filters and IMC
structures applied in unstable processes, considering works shown
from 2000 onwards.

• The paper also discusses the tuning techniques and control strate-
gies adopted in each work.
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Fig. 1. Open-loop strategy.

• A latest fractional-order theory applied in IMC together cascade
structures are also captured with technical advantages.

• The advantages and constraints of various IMC filters and IMC
schemes are tabulated for fare understanding of applications.

• A numerical example is shown to compare the main contributed
structures and IMC filters.

• The critical research gaps are identified with existing challenges,
and then some future motivations are accumulated for the IMC
theory.

The paper is organized as follows. In Section 2, covers the evolu-
tion of IMC structure and properties. Section 3 discusses about IMC
controller design procedure followed by literature review about the
development and different strategies based on IMC for the past two
decades in Section 4. Various IMC structures, including integer and
fractional controllers, Cascaded IMC and various IMC filter used are
given in Section 5. Then, Section 6 covers the numerical simulations.
Some challenges are discussed in Section 7. Finally, the last Section 8
provides the conclusion along with future prospects.

2. Evolution of IMC

The majority of the systems identified in the process industry are
either slow, overdamped, nonlinear or may need to be more ade-
quately simulated. They also needed to be aware of the lower and
upper bounds of the stability region. Researchers have concentrated
on innovative control techniques such as Model Algorithmic Control
(1978), Dynamic Matrix Control (1980), Inferential Control (1979), and
Internal Model Control (1982) for effectively tackling issues. Garcia and
Morari introduced IMC as model-based control widely adopted in the
process industry and provides a basic parametrization of all stabilizing
controllers for stable or unstable processes. The IMC design is funda-
mentally developed under the exact model of the process available and
so, the perfect control cannot achieve without the complete knowledge
about the process. However, this limitation is no longer available in
recent variations and this makes the approach more special case of
classical feedback structure. The research conducted by Rotstein and
Lewin (1991) can be regarded as the first study of an IMC-PID tuning
rule for an unstable process (Rotstein & Lewin, 1991). They developed
IMC based PI and PID techniques with and without time delay.

Let us start with the first objective of any control system is to
achieve accurate setpoint tracking and good regulatory behavior. It
should also be insensitive to modeling error. A simple open-loop ar-
rangement can be effective if a process model and controller are stable.
In that case a controller can be easy to design. As shown in Fig. 1,
𝐺𝑐 (𝑠) = 1∕𝐺𝑚(𝑠), where 𝐺𝑚(𝑠) represents the model exactly same as
the actual process 𝐺𝑝(𝑠). However, the disadvantageous of the open-
loop scheme include mismatch with process and model, and their
inability to handle unmeasured disturbances 𝐷(𝑠). These drawbacks
can be addressed with a feedback system, as shown in Fig. 2. Still,
in case of model uncertainty, there is a need to retune the controller
to ensure stability. A perfect control is mathematically achievable if
the control architecture was created using an accurate model of the
process (Daniel, Manfred, & Sigurd, 1986).

This idea can be demonstrated by adding and subtracting the plant
model 𝐺 (𝑠) from the feedback controller’s path as shown in Fig. 3
2

𝑚

Fig. 2. A classical structure.

Fig. 3. Alternate representation of IMC.

Fig. 4. A standard IMC structure.

without affecting the control and output signals. The plant model fed
back to the controller, gives a new controller 𝑄(𝑠) and it is given by

𝑄(𝑠) =
𝐺𝑐 (𝑠)

1 + 𝐺𝑚(𝑠)𝐺𝑐 (𝑠)
. (1)

Now, a process model along with new controller 𝑄(𝑠) is represented by
a dash box in Fig. 4. Then, 𝐺𝑐 (𝑠) can be written as

𝐺𝑐 (𝑠) =
𝑄(𝑠)

1 − 𝐺𝑚(𝑠)𝑄(𝑠)
. (2)

To note that the classical feedback structure follows in the IMC theory.
From Fig. 4, the control signal is given by

𝑈 (𝑠) =
𝑄(𝑠)(𝑅(𝑠) −𝐷(𝑠))

1 +𝑄(𝑠)(𝐺𝑃 (𝑠) − 𝐺𝑚(𝑠))
. (3)

Same way, the error signal is obtained as

𝐸(𝑠) =
𝑅(𝑠) −𝐷(𝑠)

1 +𝑄(𝑠)(𝐺𝑝(𝑠) − 𝐺𝑚(𝑠))
. (4)

The above relation can easily obtain the output,

𝑌 (𝑠) =
𝐺𝑝(𝑠)𝑄(𝑠)

1 +𝑄(𝑠)(𝐺𝑝(𝑠) − 𝐺𝑚(𝑠))
𝑅(𝑠) +

1 − 𝐺𝑚(𝑠)𝑄(𝑠)
1 +𝑄(𝑠)(𝐺𝑝(𝑠) − 𝐺𝑚(𝑠))

𝐷(𝑠). (5)

If 𝐺𝑝(𝑠) = 𝐺𝑚(𝑠), one can see 𝑌 (𝑠) ≅ 𝑅(𝑠), assuming 𝐷(𝑠) = 0, same as for
open-loop control. We can therefore understand that the IMC structure
provides benefits for both closed and open-loop systems. A controller
can be constructed with the simplicity of an open-loop strategy while
maintaining the advantages of a feedback system. From the elaborated
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structure’s signals, the following observations on the IMC can be noted
as below.

• Dual stability: If the model is perfectly matched and disturbance
is not present, the closed-loop system becomes stable, provided
𝐺𝑝(𝑠) and 𝐺𝑐 (𝑠) are stable.

• Perfect control: If 𝑄(𝑠) = 𝐺−1
𝑚 (𝑠), then the closed-loop system will

always become stable.
• Zero offset: If 𝑄(0) = 𝐺−1

𝑚 (0), then an offset free control will
be obtained and closed-loop system will become stable. For any
asymptotically constant setpoint and disturbances, there will be
no offset.

3. IMC controller design procedure

The schematic of IMC scheme is shown in Fig. 4, where let us take
𝐺𝑝(𝑠) as unstable process to be controlled. Though such process makes
the overall system unstable, the IMC can make the equivalent feedback
structure stable. In the nominal scenario, the controller design using
IMC method follows into four steps. In the first step, decompose the
model 𝐺𝑚(𝑠) into two parts as in (6).

𝐺𝑚(𝑠) = 𝐺𝑚+(𝑠)𝐺𝑚−(𝑠) (6)

where 𝐺𝑚+(𝑠) contains all time delays and unstable zeros
(non-invertible) and 𝐺𝑚−(𝑠) contains minimum phase elements (invert-
ible). The processes with time delay should be approximated with
Taylor series or Padé approximations. In the second step, one can
choose the IMC controller as the inverse of the invertible portion of
process model. Thus, it becomes

𝑄(𝑠) = 𝐺−1
𝑚−(𝑠). (7)

In the third step, the filter selection is necessary to meet the robustness
requirement. The filter makes the controller robust and also helps
to minimize the discrepancies between plant and its model at high
frequency, where mismatch generally occurs. In short, the effects of
process model mismatch should be minimized using the user-specified
low-pass filter. Finally, the IMC-based controller becomes

𝑄(𝑠) = 𝐺−1
𝑚−𝑓 (𝑠). (8)

The section of filter 𝑓 (𝑠) for unstable processes studied initially in
Morari (1983) and Rotstein and Lewin (1991). As per the procedure de-
veloped by Morari and Zafiriou (1989), the IMC approach to designing
a controller for an unstable process is possible for 𝐺𝑝(𝑠) = 𝐺𝑚(𝑠). The
following conditions, also known as standard interpolation conditions,
should be satisfied for the internal stability of the closed-loop system:

• 𝑄(𝑠) is stable.
• 𝐺𝑝(𝑠)𝑄(𝑠) is stable.
• (1 − 𝐺𝑝(𝑠)𝑄(𝑠))𝐺𝑝(𝑠) is stable.

The following two conditions should be satisfied to stabilize the closed-
loop response.

• If the process 𝐺𝑝(𝑠), has unstable poles, 𝑝1, 𝑝2,… , 𝑝𝑚, then 𝑄(𝑠)
should have zeros at 𝑝1, 𝑝2,… , 𝑝𝑚.

• (1 − 𝐺𝑝(𝑠)𝑄(𝑠)) should have zeros at 𝑝1, 𝑝2,… , 𝑝𝑚.

Through properly selecting the filter, the above condition could be
satisfied. Let us take the filter expression

𝑓 (𝑠) =
∑𝑚

𝑖=1 𝛼𝑖𝑠
𝑖 + 1

(𝜆𝑠 + 1)𝑛
(9)

where, 𝑛 is chosen to make 𝑄(𝑠) proper (usually semi-proper) and a
parameter 𝜆 is main tuning parameter in the design, which has to be
chosen by the user and 𝑚 is the number of the poles to be canceled.
However, one can see that the higher the tuning parameter value,
the higher the robustness of the controller, but the tracking speed
3

Fig. 5. IMC with SpF.

decreases. Also, the 𝛼 helps in improving disturbance rejection. A value
of 𝛼 is found to satisfy the following condition: it helps cancel the
unstable pole of 𝐺𝑝(𝑠). As per the IMC structure, one can write

[1 − 𝐺𝑝(𝑠)𝑄(𝑠)]𝑠=𝑝1 ,𝑝2 ,….,𝑝𝑚 = 0. (10)

Authors have considered the various order unstable process models.
The general expression of the 𝑛th−order process can be represented,
considering at least one unstable pole, as

𝐺𝑝(𝑠) =
𝐾𝑒−𝜃𝑠

(𝜏1𝑠 − 1)𝛱𝑛−1
𝑖=1 (𝜏𝑖𝑠 ± 1)

(11)

where 𝐾 is static gain, 𝜃 is time delay and 𝜏 is time constant.
The literature also found that the methods recommended include

the setpoint filter (SpF) or Setpoint weighting to reduce undesirable
overshoots. Because of numerator expression ∑𝑚

𝑖=1 𝛼𝑖𝑠
𝑖 + 1 in (9) in

filter structure causes undesirable overshoot in servo response. To
eliminate the overshoot, researchers have used a low-pass filter of the
form, 𝐹𝑠(𝑠) = 1∕

∑𝑚
𝑖=1 𝛼𝑖𝑠

𝑖 + 1, Begum, Rao, and Radhakrishnan (2018),
Shamsuzzoha and Lee (2008a) and Vanavil, Anusha, Perumalsamy, and
Rao (2014) as shown in Fig. 5. Then, the expression of the output after
adding SpF can be written as

𝑌 (𝑠) =
𝐺𝑐 (𝑠)𝐺𝑝(𝑠)

1 + 𝐺𝑐 (𝑠)𝐺𝑝(𝑠)
𝑅(𝑠)𝐹𝑠(𝑠). (12)

In some works authors added setpoint weighting technique (Kumar,
Prasad, & Singh, 2020; Wang, Lu, & Pan, 2016), in which PID controller
is implemented in the form of

𝑢(𝑡) = 𝐾𝑐

{

[𝑏𝑟(𝑡) − 𝑦(𝑡)] + 1
𝜏𝑖 ∫

𝑡

0
[𝑟(𝑡) − 𝑦(𝑡)]𝑑𝜏 + 𝜏𝑑

𝑑[𝑐𝑟(𝑡) − 𝑦(𝑡)]
𝑑𝑡

}

(13)

where 𝑏 is the weighting parameter of set-point and 𝑐 denotes the
weight for the derivative time constant. The range of values of these
parameters lie in between 0 to 1. It is seen that the overshoot decreases
upon decreasing 𝑏. After knowing the basics of the IMC principle, the
following section discusses the significant IMC designs in the literature
for the unstable processes with their structure and tuning approach.

4. Various IMC design methodologies

In this review article, the main emphasis is to elaborate on the
situation around the unstable processes. Some unstable processes in-
clude distillation, polymerization reactors, heat exchangers, exothermic
stirred reactors with back mixing, batch reactors, pump with liquid
storage tanks and combined feed/effluent heat exchanger with an
adiabatic exothermic reactor. Naturally, the unstable processes are
challenging to deal with, and time delays experience large overshoots
and settling time. In order to deal with such processes, the Smith
predictor (SP) structure is very effective (Smith, 1959). The SP is a
model-based controller that was effective for processes with long dead
time. It has an inner loop with the primary controller that can be
designed without dead time, and the outer loop corrects the effects of
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load disturbance and modeling error. As it is the most widely accepted
dead-time compensation technique, it provides a faster response with
almost no overshoot for most processes. Another approach is help-
ful with IMC modified with two-degree-of-freedom control (2DOF). A
2DOF PID controller can fast disturbance rejection without a significant
increase of overshoot in setpoint tracking as it has two controllers, one
for setpoint tracking and another for disturbance rejection. It is also
recommended for unstable processes with time-delay (Huang & Chen,
1997). The application of IMC could be seen in most cascade controller
designs, in which the IMC controller in the inner loop helps simplify the
design and discard the amount of disturbances entering the secondary
loop.

Let us consider the progression of IMC for unstable processes. A
simple PID was developed on the IMC concept for the unstable plant
based on gain uncertainty (Rotstein & Lewin, 1991). However, it does
not perform well significantly. Some modifications using the Maclaurin
series combined with a setpoint filter (SpF) helped reduce overshoot for
integrating and unstable processes (Lee et al., 2000). Then, Wang, Bi,
and Zhang (2001) developed a concept of partial IMC to remove the
unstable pole by selecting damping factor, 𝜁 and natural frequency,
𝜔0 as design parameters. Further, it was improved by Yang, Wang,
Hang, and Lin (2002) with a feedback controller. A SpF was also
added to eliminate the overshoot and made this technique automatic
for online tuning. By using a complex design method (Tan, Marquez, &
Chen, 2003), three compensators were added to the IMC structure. This
approach was beneficial for unstable delayed processes. A PID filter
structure from the IMC principle is applied in Shamsuzzoha and Lee
(2008a). But, only one tuning parameter is determined by the time
constant and delay. It could result in worse outcomes during mismatch
conditions. The SpF is also added to remove the overshoot in the
servo response. Further, the IMC-PID tuning rules were designed using
Laurent series expansion (Panda, 2009) and the 2DOF-IMC (Wen &
Caifen, 2010) in order to improve robust performance. These methods
have shown good responses for a class of unstable processes but are not
suitable for processes with two unstable poles or large time-delay.

Further modification enhanced the 2DOF-IMC structure for unstable
and integrating processes with slow dynamics (Liu & Gao, 2011). It
shows better load disturbance rejection as it allows different opti-
mization for load disturbance rejection. Nasution, Jeng, and Huang
(2011) developed an IMC-PID controller based on 𝐻2-optimal law and
sing Maclaurin series. It enhanced setpoint tracking with additional
eighting parameters for both proportional and derivative actions.
owever, the tuning steps employed two desired closed-loop transfer

unctions to follow; thus, it is not easy to handle. Shamsuzzoha and
ee (2012) presented a generalized IMC-PID tuning with optimal filter
or a wide range of lag-time constant to time-delay. However, when
he unstable model’s time delay to time constant ratio is greater than
.2, the PID cannot deliver a stabilized response. Anusha and Rao
2012) demonstrated further extension but used the Maclaurin series
gain. Then it is shown using a lead–lag filter, the IMC can perform
etter than classical IMC (Vanavil et al., 2014). In this approach, the
ystematic analysis was carried out to select the tuning parameter based
n maximum sensitivity and checked ISE values. Though the output
as improved, the method could not handle large time-delay processes.
he maximum sensitivity criteria were further utilized with a SpF

n Shamsuzzoha (2014). The setpoint tracking controller was developed
sing the direct synthesis approach, and the IMC-PID controller for
isturbance rejection was designed with 2DOF structure and modified
P by Yin, Gao, and Sun (2014). As per recent research on a fractional-
rder controller, 2DOF with the fractional filter was presently firstly
y Titouche, Mansouri, Bettayeb, and Al-Saggaf (2015). Interestingly,
he approach started taking the benefit of an extra degree of the
reedom tuning parameter. Based on robustness, there is a frequency
elation in which time constant related to phase margin (𝜙𝑚) and
4

ractional-order in a filter related to crossover frequency (𝑤𝑐). Again, l
the previous methods are modified around IMC structure with or
without SP delay compensation.

Another approach was used in the IMC technique with sliding mode
control (SMC). It is a robust variable structure method. A new strategy,
namely, SP-based sliding mode control (SP-SMC) for unstable processes
with time-delay was developed in Mehta and Rojas (2015). The method
has used optimization to satisfy the required control performance in-
dices. Such a hybrid control method has returned better robustness
to process dynamics changed but may experience a chattering issue.
A new IMC-PID tuning method was developed for stable and unstable
processes with time delay by implementing pole-zero conversion, and a
first-order lead–lag compensator (Wang et al., 2016). Again the setpoint
weighting (SpW) was used to reduce the undesirable overshoot. Begum,
Rao, and Radhakrishnan (2016) developed analytical tuning rules using
𝐻2 norms for IMC-PID. Further, the method was studied (Begum et al.,
2018; Begum, Rao, & Radhakrishnan, 2020) using optimal 𝐻2 mini-
mization for one right half plane pole and dead-time. These methods
however, required some assumptions on pre-filter parameters. Kumar
et al. (2020) studied the unstable second-order time-delay system. A
SpW parameter required to choose in order to handle undesirable over-
shoot. Recently, a simple tuning method for unstable lag-dominated
first-order process with dead-time was proposed in Karan and Dey
(2020). To be noted that the scheme was developed similar way with
IMC-PI and SP for setpoint tracking and additional PD controller for
disturbance rejection.

Several IMC-PID methods could be seen for single-input single-
output (SISO) processes. Generally, most industrial processes are multi-
input multi-output processes (MIMO), which is very difficult because of
more control loops and the coupling effects. If the system is unstable,
it will be more challenging in design. During the earlier periods,
Zafiriou and Morari designed an IMC design procedure for MIMO
processes (Zafiriou & Morari, 1991). In recent work, the unstable multi-
variable systems have been controlled using the decentralized and
centralized PI, and the IMC principles (Besta & Chidambaram, 2017).
Several IMC related works are also available in literature (Dasari,
Kuncham, & Rao, 2016; Pandeya, Deyb, & Banerjeeb, 2021). Recently,
a new double-loop control technique was presented by Pulakraj and
Lloyds (2022) for integrating and unstable with dead time processes.
Using the Routh stability and IMC procedure, the initial settings of the
inner and outer-loop controllers were calculated, respectively. It also
required following an optimization routine to minimize the integrated
squared error in finding the optimal values of the parameters. However,
the simulated result was observed with more control efforts than the
previous reported method.

A recent development in PID says that fractional-order derivative
and integral may provide significant results for future control do-
mains (Kothari, Mehta, & Prasad, 2019). Researchers are focusing on
fractional-order PID (FOPID) controllers to improve the closed-loop
response of time-delay systems. The first occurrence of fractional-
order controller was done by Oustaloup (1991) who introduced Com-
mande Robuste d’Ordre Non Entire (CRONE) controller, which is a
non-integer-order robust controller. Podlubny proposed the FOPID con-
troller (Podlubny, 1999). The two more tuning parameters 𝜌 (fractional
integrating order) and 𝜇 (fractional differential order) in FOPID com-
pared with traditional PID help add more flexibility to control design.
Then, the transfer function of FOPID is, 𝐺𝑐 (𝑠) = 𝐾𝑝 +

𝐾𝑖
𝑠𝜌 +𝐾𝑑𝑠𝜇 , where

𝜌 and 𝜇 are the real positive orders for integration and differentiation,
espectively. Most common interval of real (fractional) order is limited
n the range (0, 2) (Yüce, Tan, & Atherton, 2016). The combination
f IMC and FOPID has also proven significant (Saxena & Hote, 2022).
ne such work (Rayalla, Ambati, & Gara, 2019) shows an improved
nalytical design of the fractional filter IMC-PID for the noninteger
fractional) processes. In other work, designing FO-IMC based on the
requency domain approach is presented to satisfy desired gain, and
hase margins (Arya & Chakrabarty, 2020). However, the method is
imited to stable plants. Later, a new double-loop control approach is
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Fig. 6. Scheme proposed by Tan et al. (2003).

proposed for a time-delayed unstable system that uses a PD/P con-
troller in its inner loop, and a fractional-order internal model controller
(FOIMC) in its outer loop (Kumari, Aryan, & Raja, 2021). Later on,
authors developed a novel dual-loop hybrid control method for second-
order unbounded plants with dead-time and zeros (Shweta, Pulakraj,
Deepak, & G. Lloyds, 2022). The external-loop controller is designed
using the FOIMC technique, whereas the internal-loop controller is
still the PID. A dual loop controller is designed based on fractional-
order using a frequency-shifted version. It obtained an overall good
performance compared to previous methods (Kumar & Raja, 2022). To
note that Routh–Hurwitz criterion was used to construct the internal-
loop PD setting together required to check ITAE value. In another work,
dead-time, compensator-based series cascade control using FOIMC was
proposed for unstable processes (Mukherjee, Raja, & Kundu, 2020).
Recently, a series cascaded controller was designed with fractional
theory order for large dead time unstable processes (Chandran et al.,
2020). In this approach, the inner loop consists of FOIMC, and the outer
loop consists of FOPI-FOPD controllers. It shows superior performances
compared to recent studies, however it considered more number of
tuning parameters.

In order to see the journey of IMC and its strategy for unstable
processes, Table 1 is summarized with various structures and tuning
support. It has been noticed that most approaches depend on the
maximum sensitivity index (𝑀𝑠) as a primary tuning principle. A very
few are using the phase- and gain margins. Recently, metaheuristic
algorithms are being used for obtaining the optimal tuned parameters
from the various performance measures. The major IMC structures with
respect to unstable processes are presented in the following section.

5. Various IMC structures

Several structures have been proposed for unstable and integrating
processes, especially the plant with time-delay, which brings more
challenge in controlling. In some cases, the 2DOF helps in avoiding
the deficiencies associated with setpoint tacking. Since the extra degree
of freedom can give an advantage to tune independently for tracking
and disturbance rejection. Especially for unstable process, the standard
2DOF structure cannot guarantee internal stability. So, the performance
should be improved by changing the structure, for example IMC with
SP techniques. Tan et al. (2003) presented the improvement in both
setpoint tracking and disturbance rejection by modified IMC. As seen
Fig. 6, the modified IMC structure had three controllers namely, 𝐺𝑐0(𝑠)
for stabilizing the original unstable plant, 𝐺𝑐1(𝑠) as IMC controller for
setpoint tracking and 𝐺𝑐2(𝑠) for load disturbance rejection. To note
that 𝐺𝑚(𝑠) is modified without delay. Later same authors improved
the design by introducing tuning based on structured singular value
(SSV) and robustness measure (Wen & Caifen, 2010). The method was
limited with a single unstable pole model. The response is improved
by good setpoint tracking and load disturbance rejection, but the main
drawback is the complexity of adding additional controllers with more
control signal variations
5

Fig. 7. Scheme proposed by Liu et al. (2005).

Fig. 8. Scheme proposed by Liu and Gao (2011).

Fig. 9. Scheme proposed by Nasution et al. (2011).

For further enhancing the performance, Liu, Zhang, and Gu (2005a)
proposed analytical design procedure for the structure as shown in
Fig. 7. Again this method used three controllers, 𝐺𝑐0(𝑠) for stabilizing,
𝐺𝑐1(𝑠) for setpoint and 𝐺𝑐2(𝑠) for disturbance thus adding more number
of controllers and adding more complexity in the design. After the
structure was modified with less number of controllers as shown in
Fig. 8 (Liu & Gao, 2011). In this scheme, 𝐺𝑐1(𝑠) was used as feedforward
controller and 𝐺𝑐2(𝑠) as feedback controller for load disturbance rejec-
tion. However, the additional transfer function 𝑇𝑟 was added for better
setpoint tracking. Even though that method shows good performances,
it is highly depended on a single tuning parameter.

Another design was presented using 2DOF IMC as seen from Fig. 9
(Nasution et al., 2011). In this method, two IMC controllers were
used, 𝑄1(𝑠) for setpoint tracking and 𝑄2(𝑠) for disturbance rejection.
If 𝑄1(𝑠) = 1, the method reduces to 1DOF structure. The tuning was de-
veloped using 𝐻2 optimal control law and Maclaurian series expansion.
To note that due to the performance limitations, the SpW parameters
included on the basis of 2DOF. It showed improved performance over
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Table 1
Various IMC approaches for unstable processes.

Ref. Year IMC structure Figure Primary tuning Total
and its variants Ref. principle controller+filter

Pulakraj and Lloyds (2022) 2022 IMC 14 ISE index, 2
Equilibrium optimizer
algorithm

Kumar and Raja (2022) 2022 FOIMC-PD 15 ITAE index 2
Shweta et al. (2022) 2022 FOIMC 16 Coefficient matching

technique
2

Kumari et al. (2021) 2021 FOIMC-PD/P 14 𝑀𝑠 2
Li, Xu, Zhang, Hongbo, and
Furong (2020)

2020 2DOF-IMC 11 Analytical approach 3

Ahmadi, Nikravesh, and
Moradi (2020)

2020 IMC+SP, SpF, SpW 12 𝑀𝑠 3

Pashaei and Bagheri (2020) 2020 Parallel cascade IMC+SP 20 Adams Bashforth
Moulton algorithm

3

Mukherjee et al. (2020) 2020 Series cascade IMC+SP, FOIMC 18 Artificial Bee Colony
algorithm

3

Begum et al. (2020) 2020 IMC, lead–lag filter 4 𝑀𝑠 2
Kumar et al. (2020) 2020 IMC, SpW 4 𝑀𝑠 2
Chandran et al. (2020) 2020 Series cascade, FOIMC -secondary, 17 𝑀𝑠 3

FOPI-FOPD-Primary
Karan and Dey (2020) 2020 IMC+SP 13 Random 3
Dasari, Chidambaram, and
Seshagiri (2018)

2018 IMC, SpW 4 𝑀𝑠 1

Begum et al. (2018) 2018 IMC, Set-point filter 5 𝑀𝑠 2
Ranganayakulu, Babu, and
Rao (2017)

2017 IMC 4 𝜆 (random), 𝛽 (ISE,
IAE)

2

Besta and Chidambaram
(2017)

2017 IMC 4 Analytical technique 1

Begum, Rao, and
Radhakrishnan (2016)

2016 IMC 4 𝑀𝑠 1

Wang et al. (2016) 2016 IMC, SpW 4 𝑀𝑠 1
Raja and Ali (2016) 2015 Parallel cascade IMC+SP, PI-PD primary 19 𝑀𝑠 3
Titouche et al. (2015) 2015 2DOF-IMC 10 𝜙𝑚, 𝑤𝑐 3
Vanavil et al. (2014) 2014 IMC, lead–lag filter 5 𝑀𝑠 2
Shamsuzzoha (2014) 2014 IMC, SpF 5 𝑀𝑠 2
Anusha and Rao (2012) 2012 IMC 5 𝑀𝑠 1
Shamsuzzoha and Lee (2012) 2012 IMC, SpW, SpF 5 𝑀𝑠 2
Nasution et al. (2011) 2011 1DOF-IMC, SpW 9 ISE index 1
Liu and Gao (2011) 2011 2DOF-IMC 8 Analytical approach 3
Wen and Caifen (2010) 2010 2DOF-IMC 6 𝜇𝛥(𝑀) 3
Panda (2009) 2009 IMC 4 As per model

parameters and 𝑀𝑠

1

Shamsuzzoha and Lee (2008a) 2008 IMC, lead–lag filter, SpF 5 𝑀𝑠 3
Liu, Zhang, and Gu (2005b) 2005 2DOF-IMC 7 ISE index 3
Tan et al. (2003) 2003 IMC, SP 6 Analytical approach 3
Yang et al. (2002) 2002 IMC 5 Recursive least squares

algorithm
1

Wang et al. (2001) 2001 IMC 5 𝜁 and 𝜔𝑜 2
Lee et al. (2000) 2000 IMC, SpF 5 Analytical approach 2
preceding methods, but again having more complex tuning. Titouche
et al. (2015) suggested 2DOF structure again, as seen in Fig. 10, where
an integer order controller is utilized to stabilize the inner-loop first and
a fractional-order controller to improve performance. However, there is
scope for investigating choosing the non-integer parameter.

A modified type of 2DOF-IMC control structure has been proposed
by Li et al. (2020) as shown in Fig. 11. The system consists of two
loops. One loop for ensuring stability of unstable process and the other
loop possess 2DOF. It consists of a feedforward controller 𝐺𝑐1 which
is designed based on IMC principle and only single tuning parameter.
While 𝐺𝑐2(𝑠) is used for disturbance rejection which is designed based
n direct synthesis (Li et al., 2020). Recently, the filtered SP approach
as proposed by Ahmadi et al. (2020) and seen in Fig. 12. This method
sed the IMC based PI/PID tuning technique, considering also only a
ingle tuning parameter. In addition, it was implemented with SpW
ethod and extra 𝐹𝑟(𝑠) predictor filter was suggested to enhance the

uality of prediction. To note that the filter 𝐹𝑠(𝑠) was also required for
better setpoint tracking.

Sometimes the single loop control will not give the desired perfor-
mance, for instance, the system having large time-delays and strong
disturbances. In such case, the SP is an effective tool for a time
6

delay process. However, the original SP itself is not applicable for
unstable processes. When applied to very unstable systems with high
time delays, many of these control design strategies do not, however,
produce satisfying outcomes. For the controller design, a number of
published methods utilized two or more control loops, such as the
modified SP. The limited research has been carried out with IMC
design together SP structure for unstable processes. In one of the
recent works by Karan and Dey (2020), the IMC based modified SP
structure was presented as shown in Fig. 13. To note that there were
three controllers used for stabilizing, setpoint and disturbance rejection.
The main 𝐺𝑐1(𝑠) was designed from a single tuning parameter. To
get the final desirable steady-state value, this method may need more
efforts. It has been established that double-loop control is superior for
managing unstable processes. It gives design engineers more flexibility
by enabling the controller parameters to be aggressively built against
certain disturbances and obtained appropriate tracking behavior. In the
latest work by Kumari et al. (2021) and Pulakraj and Lloyds (2022), the
inner-loop stabilized the plant while the outer-loop helped to achieve
the desired setpoint. The same type of structure, where the inner-
loop is created using the Routh–Hurwitz criterion and the outer-loop
controller is designed using the IMC principle, as shown in Fig. 14.
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Fig. 10. Scheme proposed by Titouche et al. (2015).
Fig. 11. Scheme proposed by Li et al. (2020).

Fig. 12. Scheme proposed by Ahmadi et al. (2020).

Fig. 13. Scheme proposed by Karan and Dey (2020).

To achieve a sufficient servo response, authors Kumar and Raja (2022)
have created an external-loop controller utilizing a modified indirect
FOIMC technique as shown in Fig. 15. Again, the internal-loop PD
was developed from the Routh–Hurwitz and ITAE. For second-order
unbounded time-delayed plant models with positive/negative zero, a
novel dual-loop hybrid control technique was provided in Shweta et al.
7

(2022) as per structure in Fig. 16. Here, a PID is suggested for the
internal loop, while a FOIMC for an external loop. These two structures
resulted in improved output, but the control signal variation was higher
than the previously reported methods. In general, it is observed that the
internal-loop controller can be used to stabilize the unstable plant, and
the outer-loop is finally looked into the stabilized plant.

5.1. IMC scheme in cascade processes

In some application areas, the cascade structure is more applicable
such as controlling temperature, flow and pressure. The IMC scheme
was also incubated in the cascade structure. In general, this structure
consists of primary (master) and secondary (slave) loops. The distur-
bances introduced in the inner loop are reduced to great extent in
secondary loop itself, before entering the outer loop. This helps in faster
disturbance attenuation. The normal feedback control during unstable
process control may not give the desired result with large time delay.
It was found in the literature that the dead time compensation like SP
and IMC in the inner loop may handle the disturbance input effectively.
Such approaches in cascade control strategies have been discussed by
several authors, for example, Begum, Radhakrishnan, Chidambaram,
and Rao (2016), Bhaskaran and Rao (2020), Dasari, Alladi, Rao, and
Yoo (2016), García, Santos, and Normey-Rico (2010), Kaya and Ather-
ton (2008), Lee and Oh (2002), Liu et al. (2005b), Padhan and Majhi
(2012), Uma, Chidambaram, and Rao (2009), Yin, Wang, Sun, and Zhao
(2019) and recently Begum (2016). There were two different cascade
types studied namely series cascade and parallel cascade. In parallel
control, the control signal and disturbance simultaneously affect the
primary and secondary outputs. Whereas in series connection, first
they affect a secondary loop and then a primary loop. A recent work
by Chandran et al. (2020) suggested a fractional IMC for the inner loop
and then, an outer loop was designed with FOPI-FOPD controllers. The
presented scheme is given in Fig. 17. To be noted that such idea may
require more tuning parameters and complex design steps. Mukherjee
et al. (2020) also developed three controllers method as seen in Fig. 18.
This scheme has the SP with IMC, having three different controllers
for stabilizing, setpoint and disturbance compensation. The primary
and secondary controllers were designed using a fractional-order IMC
approach. The IMC technique in the parallel cascade structure can be
seen in Fig. 19 (Raja & Ali, 2016). Another type of structure seen in
Fig. 20, where the authors implemented the advantage of SP with IMC
along with a fractional theory for designing disturbance and setpoint
tracking controllers (Pashaei & Bagheri, 2020).

So far we have seen different types of modified IMC structures,
including cascade IMC and SP-IMC. The limitations of these structures
include: (a) complexity in design due to multiple controllers and pa-
rameters, (b) disturbance rejection is poor for large time delay, and
(c) multi-loop often creates stability issues and is difficult to employ in
practice. The new research scope can be seen by developing the method
to be simple, less tuning parameters and easy to adopt in industries.
Having the scheme with more than two controllers would be complex
in real cases. There is a need to check the load rejection performance
with optimal input usage.
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Fig. 14. Scheme proposed by Kumari et al. (2021).
Fig. 15. Scheme proposed by Deepak et al. (2022).
Fig. 16. Scheme proposed by Shweta et al. (2022).

Fig. 17. IMC cascade scheme by Chandran et al. (2020).

5.2. Applications of IMC structures in real time

The performance of the IMC theory, specifically on unstable time
delay processes, is being noticed in the literature. However, most previ-
ously reported works had been seen with numerical simulations. Some
have verified the laboratory applications with their new principles
and control methods. The unstable inverted pendulum system was
investigated using FOIMC with PID in real-time (Ranganayakulu et al.,
8

Fig. 18. IMC cascade scheme by Mukherjee et al. (2020).

2017). It is also used to verify the real-time use of the tuned approach
proposed in Begum et al. (2018). The application was proven to offer
better responses. When controlling the temperature of a continuous
stirred tank reactor during a first-order irreversible exothermic process,
the control strategies in Kumar and Raja (2022) maintained the desired
temperature and rejected changes in the presence of measurement
noise. It is to note that researchers from theoretical assessments shall
investigate some more field applications.

5.3. Various IMC filters proposed in the literature

Literature presented with modification in IMC structure with the
filter transfer function. The most common filter structures are Type 1
and Type 2 as below.

Type 1 ∶ 𝑓 (𝑠) = 1
(𝜆𝑠 + 1)𝑛

(14)

and

Type 2 ∶ 𝑓 (𝑠) = 𝑛𝜆 + 1 . (15)

(𝜆𝑠 + 1)𝑛
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Fig. 19. IMC cascade scheme by Raja and Ali (2016).

Fig. 20. IMC cascade scheme by Pashaei and Bagheri (2020).

The more generalized form (Lee et al., 2000) was presented as below.

Type 3 ∶ 𝑓 (𝑠) = 1
(𝜆𝑠 + 1)𝑛

∑𝑚
𝑖=1 𝛼𝑖𝑠

𝑖 + 1
(𝜆𝑠 + 1)𝑚

. (16)

Here 𝑛 is chosen to make controller realizable and 𝑚 represents the
number of unstable poles to be canceled. It is required to tune 𝜆 as
per the desired performance. The simple Type 1 filter, is used in the
latest work and tuning parameter obtained using equilibrium optimizer
algorithm (Pulakraj & Lloyds, 2022). The Type 3 filter structure was
modified with adding higher terms, but a good response seen than
other works developed that time. Another modification was presented
in Yang et al. (2002) for a IMC filter. As seen before in (9), the Type 4
structure is,

Type 4 ∶ 𝑓 (𝑠) = 𝛼𝑠 + 1
(𝜆𝑠 + 1)𝑛+1

, (17)

where 𝑛 is again a positive integer to guarantee controller realizable.
To note that such filter still has only one tuning parameter 𝜆. It is
9

responsible for satisfying the desired performance. It is also necessary
to define a range of 𝜆 for robust stability.

In a particular case, Authors Shamsuzzoha and Lee (2008a) sug-
gested the same form of filter structure (16), with less complexity. The
tuning parameter 𝜆 was selected from knowledge of 𝜃∕𝜏1 (the ratio of
time delay over time-constant). Therefore, such filter form has more
flexibility and ability to obtain the robustness in the system. Then
after, the filter structure in (18) was suggested for first-order dead time
unstable process (FODUP) and second-order dead time unstable process
(SODUP) (Panda, 2009).

Type 5 ∶ 𝑓 (𝑠) =
∑𝑚

𝑖=1 𝛼𝑖𝑠
𝑖 + 1

(𝜆𝑠 + 1)𝑛
(18)

For ease in selection of 𝜆, firstly it was suggested following rules
in Luyben (1998). The Type 2 filter in Nasution et al. (2011) was tuned
for the IMC-PID through robustness measures. It has been found that
the traditional approach for IMC filter design was simply to find the
optimal PID controller. However, it was highly depended on dead time
approximation and model approximation error.

Authors in Shamsuzzoha and Lee (2012) also suggested Type 6 filter
with different orders. The parameters were obtained from the desired
maximum sensitivity. However, their method also considered the SpW
and SpF to make the overall response comparable.

Type 6 ∶ 𝑓 (𝑠) =
(𝛼𝑠 + 1)𝑚

(𝜆𝑠 + 1)𝑛
. (19)

Similarly, in Anusha and Rao (2012) and Shamsuzzoha (2014), Type
3 filter’s constant was obtained from the maximum sensitivity value,
𝑀𝑠. Some cases the authors considered additional measures to decide
the optimal value of parameters such as IAE and TV. Like the Type 5
filter in Dasari et al. (2018) was developed from the IAE and TV indices.

Furthermore, the modified IMC using SP and 2DOF structures have
shown a remarkable result for unstable processes. Same way the lead–
lag filter was introduced in order to further improved the result.
In Vanavil et al. (2014), the IMC structure was presented with PID in
series with lead–lag filter. Any filter even with one tuning parameter
and systematic guidelines may help for better performances. The Type 2
filter in Begum, Rao, and Radhakrishnan (2016) simplified as PID from
the derived relation with 𝑀𝑠 value. Same filter was used in Wang et al.
(2016) for a class of stable and unstable plants and tuning formulas
were suggested with relation to time delay and time constant. A filter
Type 5 in (18) with different orders (𝑚 = 2, 𝑛 = 4) was used in Kumar
et al. (2020). Again the method developed with 𝑀𝑠 performance index.
Furthermore, the under-damped IMC filter (Begum et al., 2018, 2020)
was presented to improve the reset action and to reach desired setpoint
smoothly. Such filter transfer function is shown as below.

Type 7 ∶ 𝑓 (𝑠) =
(𝛼𝑠 + 1)𝑚

(𝜆2𝑠2 + 2𝜁𝜆𝑠 + 1)(𝜆𝑠 + 1)𝑛
. (20)

To be noted that the filter parameter 𝜆 in (20) has to be selected
between 0.6 and 0.8. Together it is required to select 𝑀𝑠 as constraint
with the lower bounds of gain and phase margins, suggesting for proper
selection of 𝜆 parameter. In this filter, 𝜁 was set to 0.7 to make
better reset action. In Begum et al. (2020), they considered robustness
measures such as IAE and TV.

All previous filters were classical integer-order, easy to implement
but had some limitations. Say for example, it is very sensitive to varia-
tion in time constant and even small variation can result in instability.
Also, it may affect the reaction time of the output with the input
change. The fractional filter has isodamping robustness property and
more degrees of freedom in order to meet the specifications. Some
authors have recently adopted a fractional theory into filter transfer
function. With addition of fractional-order in filter structure, one can
get one more degree of freedom to tune the responses. Obviously, it is
not easy to implement or realize the fractional-order transfer function.
In Titouche et al. (2015) the fractional-order filter design was proposed
firstly using IMC method for unstable process and performance checked
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using IAE. The technique was employed the 2DOF structure with the
fractional filter of the form,

Type 8 ∶ 𝑓 (𝑠) = 1
(𝜆𝑠𝛽+1 + 1)𝑛

. (21)

n this filter, 𝜆 is positive real number and 𝛽 is noninteger positive
umber. The stability of IMC controller was shown through stability
f fractional filter. The Walton–Marshall’s method, is used to establish
he internal stability condition of the closed-loop system, specifically
he fractional part of the controller. Then, the IMC-PID with frac-
ional filter (Titouche et al., 2015) was presented for unstable time
elay process. Similarly, a fractional IMC filter consisted of two tuning
arameters, 𝜆 and 𝛽 (Ranganayakulu et al., 2017) was given as

ype 9 ∶ 𝑓 (𝑠) = 1
(𝜆𝑠𝛽 + 1)𝑛

. (22)

Both variables are chosen separately, 𝜆 should be taken as the smallest
of the process time constant and 𝛽 should satisfy least square perfor-

ance indices (ISE and IAE). Considering 𝑛 = 1, Type 9 filter was used
ecently in Kumar and Raja (2022) and Kumari et al. (2021). Note that a
ractional parameter was considered to be fixed and from performances
ith rising time, settling time and robust behavior, the 𝜆 was selected.
he systematic assessment with fractional-order 𝛽 is yet to be explored

n the research.
In summary, the benefits of IMC and variants in a filter form have

een studied for claiming various controlling benefits. Also, it has
tarted to apply in cascade control schemes recently. Overall, the IMC
roved a robustness and superior almost all control purposes. The most
ommon filter in all was Type 1 with only one tuning parameter. As
er recent trends, researchers have focused on fractional theory, as
een from Type 8 and −9 filters. In Chandran et al. (2020), Pashaei
nd Bagheri (2020), the secondary controller was designed from the
ractional-order IMC and those methods provided obviously more flex-
bility in the design. The various filter forms for unstable processes
re now summarized in Table 2 for easy understanding to subject
esearchers.

.4. IMC filter parameter selection

The IMC filter in unstable plant is critical to decide the stable
utput. For the case of stable plant, a lower value of 𝜆 can offer a fast
esponse with better disturbance rejection. Though some works have
erified with large value of 𝜆 and obtained robust controller. The most
ethods suggested to choose the value from plant model’s parameters

uch as delay and time constant. However, it is not always true in the
nstable scenario. In Anusha and Rao (2012), the 𝑀𝑠 versus 𝜆 plot was
resented especially for integer-order filter. It is noted that there are
wo values resulted for same 𝑀𝑠. The result may be poor or less robust
f it is chosen before the maximum as per the relation. The literature
uch as Begum et al. (2018, 2020), Kumar et al. (2020) and Vanavil
t al. (2014) have adopted same method with 𝑀𝑠.

The graphical analysis for numerous process models was presented
or range of 𝜃∕𝜏1 values in Shamsuzzoha and Lee (2008a). This was
ffective to choose a tuning parameter. Authors suggested different
obustness levels with 𝑀𝑠 over wide range of 𝜃∕𝜏1. In recent work
itouche et al. (2015), the fractional-order degree was used to establish
tability condition using the Walton-Marshall approach. The explicit
elation is obtained as given in first row of Table 3. The similar
pproach proposed by Yang et al. (2002) for integer filter. It is seen
n most cases, 𝜃 and 𝜏1 are used to calculate the filter time constant.
o achieve the appropriate level of robustness, the explicit formulae
sed to calculate the adjusting parameter, 𝜆 (Wang et al., 2016). The
irect selection rule was given as 𝜆 = 2min(𝜃, 𝜏1). In Dasari et al. (2018),
was selected from a given 𝑀𝑠 and values of IAE and TV measured.

he tuning parameter expressions are listed concisely in Table 3. In
eneral, it is necessary developing a new method for selecting the
10

uning parameter of IMC filter together fractional type.
. Performance assessments

In this section, we have selected various IMC strategies from the
iterature for numerical assessments. In order to verify the effect of filter
ype and IMC schemes, we have simulated one most studied example
nd compared the performances. The parameters like overshoot (𝑂𝑣),
ettling time (𝑡𝑠, s), ITSE and TV are calculated to comment on structure
nd filter function.

.1. Considering modified IMC structures

Here we have considered three IMC structures from Karan and Dey
2020), Shamsuzzoha and Lee (2008b), Tan et al. (2003) and Wang
t al. (2016) for the example below:

𝑝(𝑠) =
𝑒−0.4𝑠

𝑠 − 1
(23)

The outputs are plotted in Fig. 21. A negative disturbance signal of
magnitude 0.5 was inserted at 10 s. For the reference, the controller
settings and assessment measures are tabulated in Table 4. As per nu-
merical analysis and output plots, the three controller’s method (Karan
& Dey, 2020; Tan et al., 2003) proved the better output in setpoint
tracking, but obviously it is complex in tuning. The method by Wang
et al. (2016) has shown the balance results with less number of tuning
parameters. It can be understood that the proper tuning method in IMC
approach can result in better outcomes, even with less controllers.

6.2. Considering different IMC filter structure

Begum et al. (2020), Kumari et al. (2021) and Panda (2009) have
adopted the same IMC structure, but a different IMC filter. Let us
consider an unstable first-order plant with time delay as,

𝐺𝑝(𝑠) =
4𝑒−2𝑠
4𝑠 − 1

(24)

In both works Begum et al. (2020) and Panda (2009) the parameter
was tuned from 𝑀𝑠. Here authors used same controller structure for
tuning, but with different filter structure namely Type 9, Type 7 and
Type 5. If we observe the results from Fig. 22, one can easily distinguish
the difference. A disturbance signal of magnitude 0.1 was inserted at
60 s after the output regained the steady state. From numerical values
measured as Table 5, the poor performance is concluded from Begum
et al. (2020), having higher order filter transfer function, but the set-
point tracking shows significant improvement in Kumari et al. (2021)
with less TV. The performance is comparatively better with fractional
IMC controller.

7. Some challenges and future motivations

The control of the unstable process is challenging, and tremendous
efforts may need to stabilize them. The survey conducted in this paper
states that IMC-based approaches either require a tedious mathematical
burden or the control structure (undoubtedly the fractional-order ver-
sion) is complex. Though the multi-loop solution outperforms, it often
creates stability issues and sometimes requires more effort to employ
in practical applications. In practice, simple control schemes are more
feasible. It was noted in every IMC scheme, the issue may come with
mismatch at high frequency. Therefore, even with FOIMC design a low-
pass filter should be added to make the controller versatile. It is vital to
note from the review that almost all fractional-order control strategies
have followed a hit and trial approach to select the fractional-order
parameters. A simple and user-friendly control approach is still missing,
particularly for industrial personnel. As far as the IMC-based approach
is concerned, if it is applied, then there is no ready-made formula
for 𝜆 tuning, and in return, the controller parameters are difficult to
set. In most cases, the 𝜆 tuning relies on the approximation approach,
and these approaches create complexity when the system is marginally
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Table 2
Various filters in IMC strategies.
Reference Year Filter model Order Remark

Lee et al. (2000) 2000 Type 5 |𝑚=1,𝑛=1, Type 5 |𝑚=2,𝑛=2 2, 4 2/2 Pade
Maclaurian series

Yang et al. (2002) 2002 Type 4 –
Tan et al. (2003) 2003 Type 1 |𝑛=1, Type 1 |𝑛=2 1, 2 First-order Pade
Liu et al. (2005b) 2005 Type 1 |𝑛=1, Type 1 |𝑛=2 1, 2 All pass Pade

Maclaurian series
Shamsuzzoha and Lee (2008a) 2008 Type 5 |𝑚=1,𝑛=3 3 1/2 order Pade
Panda (2009) 2009 Type 5 |𝑚=2,𝑛=2, Type 5 |𝑚=1,𝑛=2 2 Laurent series
Nasution et al. (2011) 2011 Type 5 2,3 Maclaurian series
Liu and Gao (2011) 2011 Type 1|𝑛=2, Type 5 2 Maclaurian series
Shamsuzzoha and Lee (2012) 2012 Type 6 |𝑚=2,𝑛=3, Type 6 |𝑚=2,𝑛=4 3, 4 Maclaurin series
Anusha and Rao (2012) 2012 Type 5 |𝑚=2,𝑛=4 2,4 Maclaurin series
Shamsuzzoha (2014) 2014 Type 5 |𝑚=1,𝑛=2 2 Taylor series
Vanavil et al. (2014) 2014 Type 5 |𝑚=1,𝑛=3 3 1/2 order Pade
Titouche et al. (2015) 2015 Type 8|𝑛=1 Fractional-order First order Pade

Taylor series
Raja and Ali (2016) 2016 Type 1 |𝑛=1 1 First-order Pade
Wang et al. (2016) 2016 Type 5 |𝑚=1,𝑛=2 2 –
Begum, Rao, and Radhakrishnan (2016) 2016 Type 5 |𝑚=1,𝑛=3 3 Maclaurian series
Besta and Chidambaram (2017) 2017 Type 5 |𝑚=1,𝑛=2 2 Maclaurian series
Ranganayakulu et al. (2017) 2017 Type 9|𝑛=1 1 –
Begum et al. (2018) 2018 Type 7 |𝑚=2,𝑛=2 4 Maclaurian series
Dasari et al. (2018) 2018 Type 5 |𝑚=1,𝑛=3 3 Maclaurian series

First order Pade
Karan and Dey (2020) 2020 Type 5 |𝑚=1,𝑛=2 2 First-order Pade
Chandran et al. (2020) 2020 Type 8 Fractional-order –
Kumar et al. (2020) 2020 Type 5 |𝑚=2,𝑛=4 4 Taylor series
Begum et al. (2020) 2020 Type 7 |𝑚=1,𝑛=1 3 Maclaurian series

Half order Pade
Mukherjee et al. (2020) 2020 Type 9 |𝑛=2 Fractional-order First-order Pade
Pashaei and Bagheri (2020) 2020 Type 8|𝑛=2 and Type 8|𝑛=1 Fractional-order First-order Pade
Ahmadi et al. (2020) 2020 Type 1 |𝑛=1, Type 5 |𝑚=1,𝑛=2 1, 2 –
Li et al. (2020) 2020 Type 1 |𝑛=1 1 First-order Pade
Kumari et al. (2021) 2021 Type 9 |𝑛=1 and Type 9 |𝑛=2 Fractional-order First-order Pade
Kumar and Raja (2022) 2022 Type 9 |𝑛=1 and Type 9 |𝑛=3 Fractional-order Second-order Pade
Shweta et al. (2022) 2022 Type 9 |𝑛=1 Fractional-order Taylor series
Pulakraj and Lloyds (2022) 2022 Type 1 |𝑛=1, Type 1 |𝑛=2 1, 2, 3 First order Pade

Type 5 |𝑚=1,𝑛=3
Table 3
Various formulae for filter’s parameter.
Reference Tuning formula Remark

Titouche et al. (2015) 𝜆 >
2 sin

(

𝛽𝜋
2

)

𝜃𝛽+1

[(2−𝛽)𝜋]𝛽+1
With fractional-order

Wang et al. (2016) 𝜆 = 2min(𝜃, 𝜏1) Direct selection
Karan and Dey (2020) 𝜆 = 𝜃∕4 Direct selection
Kumar and Raja (2022) 𝜆 = 𝜃∕2.5 For second-order plant

𝜆 = 𝜃∕0.8 For first-order plant
Kaya and Atherton (2008) 𝜆 = 𝜃∕2 For cascaded inner loop
Dasari, Alladi, Rao, and Yoo (2016) 𝜆 = 0.4𝜃 − 2𝜃 For cascaded inner loop
Yin et al. (2019) 𝜆 = 0.5𝜃 For cascaded inner loop

𝜆 = 0.5𝜃 − 0.8𝜃 For cascaded outer loop (setpoint)
𝜆 = 0.5𝜃 − 1.5𝜃 For cascaded outer loop (disturbance)
Table 4
Performance comparison with IMC structures.

Structure Controller 𝑂𝑣 𝑡𝑠 ITSE TV Remark

Karan and Dey (2020), Fig. 13 𝐺𝑐1(𝑠) = 11 + 52.38
𝑠

, 𝐺𝑐2 = 5.72 0.011 0.669 0.036 24.862 Fast settling time with improved ITSE
𝐺𝑐3(𝑠) = 1.57 + 0.157𝑠 Improved load disturbance rejection, but high TV

Wang et al. (2016), Fig. 4 𝐺𝑐 (𝑠) = 2.500(0.2𝑅(𝑠) − 𝑌 (𝑠)) + 2.670
𝑠

+ 0.170𝑠 13.091 1.570 4.738 1.831 Optimal ITSE and low TV, but poor
disturbance rejection and setpoint tracking.

Shamsuzzoha and Lee (2008b), Fig. 5 𝐺𝑐 (𝑠) = 0.461 + 0.266
𝑠

+ 0.10𝑠 1.680 1.616 1.029 6.835 Better setpoint tracking and load disturbance
lead–lag filter= 1+1.5779𝑠

1+0.1053𝑠
rejection, but more tuning

SpF(s)= 1
1+1.5779𝑠

parameters.
Tan et al. (2003), Fig. 6 𝐺𝑐0(𝑠) = 2.0 0.0 1.598 1.130 7.842 Best setpoint tracking and load

𝐺𝑐1(𝑠) =
𝑠+1

0.4𝑠+1
disturbance rejection, better ITSE but high TV.

𝐺𝑐2(𝑠) = 2.079(0.156𝑠 + 1)
stable or has integrating type dynamics. For all classes of unstable
systems, both those with and without RHP zeros, a generalized method
for selecting the tuning value shall be established.
11
In addition, fractional-order controllers have seen the improved
closed-loop performance for many applications compared to their
integer-order counterparts. But, they involve extra parameters (for
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Fig. 21. Results with modified structures.
Fig. 22. Results with different IMC filters.
Table 5
Performance comparison with filter type.

Methods Filter type Controller 𝑂𝑣 𝑡𝑠 ITSE TV Remarks

Kumari et al. (2021) Type 9 |𝑛=1 𝐺𝑐 (𝑠) =
4𝑠2+1.72𝑠+0.28

(4+4𝑠)(1+0.28𝑠1.1 )
15.563 6.439 2.9175e+03 5.336 Better setpoint tracking.

𝐾𝑝 = 0.32 Poor load disturbance rejection.
Begum et al. (2020) Type 7 |𝑚=1,𝑛=1 𝐺𝑐 (𝑠) = 0.058 + .044

𝑠
+ 0.029𝑠

𝑠+1
173.316 17.365 111.792 5.363 High overshoot.

lead–lag filter= 11.395𝑠+1
0.541𝑠+1

Poor load disturbance rejection.
Panda (2009) Type 5 |𝑚=1,𝑛=2 𝐺𝑐 (𝑠) = 0.653 + .063

𝑠
+ 0.592𝑠 160.513 14.155 66.753 6.392 Improved load disturbance rejection.

High overshoot.
example: FOPID or FOIMC scheme has two extra parameters to intro-
duce a fractional-order integrator and differentiation when compared
to a classical IMC-PID). The analysis would be more interesting if it
could be extended to different plant models, such as fractional-order
unstable plant models with time delay. Even for the existing methods
for unstable processes, stability constraints are not properly presented.
Hence, it is worth developing a new method that gives some discussion
on the stability. Achieving stability is troublesome when the unstable
system has indefinite time delays, which are time-varying. We practice
handling such uncertainties by considering the upper bounds on the
delays (for instance, say 𝜃(𝑡) < 𝜃𝑀 for all 𝑡 in (11) where 𝜃𝑀 is the
maximum limit of the time-delay). However, there is no guarantee that
the control or manipulated signal is unbounded for certain values of
delay. In addition, finding the stabilizing upper bound is a tricky task.

The majority of existing control methods developed for unstable
processes, as previously stated in the literature, were designed in the
continuous-time or frequency domain and so must be discretized for
use in digital control systems. Developing methods for discrete domain
implementation will make it more interesting. The design of controllers
12
for fractional-order systems with time delays is more demanding as per
recent trends and can be considered a future scope of the study.

In case of large-scale systems, the model-order reduction concept is
generally used to capture the dominant features of the system. Order
reduction brings fruitful results for the design of PID controllers in
the stable system (Saxena & Hote, 2016a, 2017b); however, unstable
systems with large dimensions are still a problem. It is also challenging
to stabilize the system when the unstable modes are significant in
number due to the large-scale system.

Last but not least, achieving the robustness and the (sub-) optimality
simultaneously in the controller design is a big deal in the IMC-based
approach for unstable systems. A unified approach to bringing both
performances is still an open challenge.

8. Conclusions

In this paper, an exhaustive survey of IMC-based control for un-
stable systems familiarized the reader with advances of the last two

decades. From the literature analysis, it can be seen that the IMC
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structure is capable of only setpoint tracking. One of the modifications
was seen with two degrees of freedom to improve robustness with
load disturbances. A very few practical verifications were presented
in papers. Most works selected a tuning parameter from a trade-off
between robustness and setpoint tracking. In some methods, the tuning
parameter is selected based on a trial and error approach and could
not find any proper tuning technique developed for unstable models.
From the practical point of view, a suitable controller shall contain
fewer tuning parameters and fewer variations in control input, yet it
can improve better tracking and robustness. Thus, the summary table
is prepared to compare the structures with controller numbers and
filter types. A concluding discussion of the challenges of stabilizing
the unstable system with the existing IMC-based approaches is also
provided in this paper.

Research works are in progress for developing proper tuning mech-
anisms for unstable systems. Since new works focus on fractional-order,
techniques can be developed on two parameters’ tuning to improve
the optimal performance in IMC. We could see fewer methods with
the fractional-order controller by going through the literature. Future
works may include designing the IMC with fractional-order actions for
significant time delay processes, MIMO type, and proper guidelines
for IMC filter selection. Thus, the new method must be attractive and
straightforward for industrial applications.
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Appendix. Common performance measures and definitions

The various performance indices are used in the literature to tune
the IMC controller’s parameters. These are defined as below.

• Integral Square Error (ISE), ISE = ∫ ∞
0 𝑒2(𝑡)𝑑𝑡

• Integral Absolute Error (IAE), IAE = ∫ ∞
0 |𝑒(𝑡)|𝑑𝑡

• Integral Time Squared Error (ITSE), ITSE = ∫ ∞
0 𝑡𝑒2(𝑡)𝑑𝑡

• Integral Time Absolute Error (ITAE), ITAE = ∫ ∞
0 𝑡|𝑒(𝑡)|𝑑𝑡

In general, the value of each index indicates the quality and speed of
responses. Another criterion was defined to evaluate the total input
usage. It is called the total variations (TV) in the control signal. It is
defined as, TV = ∑𝑁

𝑗=1 |𝑢𝑗+1 − 𝑢𝑗 |, where 𝑁 is number of sampled of
control signal 𝑢(𝑡). Another well-known index is called the maximum
sensitivity, to measure the robustness of the controlled system. It is
written as, 𝑀𝑠 = max |(1 + 𝐺𝑝(𝑗𝜔)𝐺𝑐 (𝑗𝜔))−1|. The suitable value of 𝑀𝑠
recommended between 1.4 to 2.0.
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