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a b s t r a c t

A fundamental result in Bayesian persuasion and information design states that a distribution of
posterior beliefs can be induced by an experiment if and only if the posterior beliefs average to the
prior belief. We present a general version of this result that applies to infinite state and signal spaces.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

An agent must choose an action without knowing a payoff-
elevant state of the world. The agent has access to an experi-
ent, which draws a signal conditionally on the state. Observing

he signal allows to update the prior to a posterior belief. Because
he signal is stochastic, an experiment induces a distribution
f posteriors. The distribution must average to the prior to be
onsistent with Bayesian updating. A fundamental result states
hat the converse is also true: for any distribution of posteriors
hat is Bayes plausible in this sense, there exists an experiment
hat induces it. This result often simplifies problems in Bayesian
ersuasion and information design in which the experiment is a
hoice variable.1 Because experiments and Bayes-plausible distri-
utions of posteriors are equivalent, one can directly work with
he latter rather than deducing posteriors from experiments.

In their seminal paper, Kamenica and Gentzkow (2011) prove
he result for a finite state space and experiments with finitely
any signals (see our literature review below for earlier versions
f the result obtained in other contexts). The proof follows from
ayes’ Theorem. Specifically, just as the posterior probability of
state can be computed from the prior and the conditional
istributions of signals, one can reverse this computation and
erive conditional distributions of signals that result in a given
ayes-plausible distribution of posteriors.

✩ We thank the editor and two referees for helpful comments and sug-
gestions. We also thank Adrien Vigier for an interesting discussion about the
topic.
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1 See Kamenica (2019) and Bergemann and Morris (2019) for literature

urveys on Bayesian persuasion and information design.
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The purpose of this paper is to demonstrate the equivalence
of experiments and Bayes-plausible distributions of posteriors for
general, possibly infinite state and signal spaces, for which there
seems to be no published proof in the literature.2 With general
spaces, posteriors resulting from a given experiment, as well as
an experiment that induces a given distribution of posteriors, are
obtained as regular conditional distributions. Although the logic is
similar to the one for finite spaces, there are a number of technical
issues that do not arise in the finite case. As a consequence, one
needs assumptions on the state space and the signal space as
highlighted below.

Versions of the fundamental result have also been obtained
in other contexts. In his comparison of experiments, Blackwell
(1951) demonstrates for a finite state space that every exper-
iment induces a Bayes-plausible distribution of posteriors and
every such distribution can be induced by an experiment. Specifi-
cally, the ‘‘standard experiments’’ in Blackwell (1951) correspond
to Bayes-plausible distributions of posteriors with respect to a
uniform prior, but uniformity is unimportant for his observation.
In the textbook by Togersen (1991) on comparison of experi-
ments, the result appears as Proposition 7.2.1 assuming a finite
state space. The result is also known as the ‘‘splitting lemma’’
in the context of repeated games with incomplete information,
where players signal information through their actions (Aumann
and Maschler, 1995).3 In the textbook by Mertens et al. (2015),
roposition V.1.2 shows for a finite state space that to every dis-
ribution of posteriors averaging to the prior, there exists a joint

2 See Section 3 of the Online Appendix of Kamenica and Gentzkow (2011) for
discussion of Bayesian persuasion beyond the finite case. See also our literature
eview below.
3 See Forges (2020) for an overview of conceptual relationships between

epeated games and Bayesian persuasion or information design.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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istribution of posteriors and states that induces the given dis-
ribution of posteriors. Said joint distribution can be interpreted
s an experiment. A different version of the splitting lemma for
particular infinite state space is included in Proposition V.3.40

n Mertens et al. (2015). As it is tailored to repeated games, some
ork would be required to adapt it to the setting of this paper.4
In the literature on Bayesian persuasion and information de-

ign, working with an infinite state space (e.g., an interval on
he real line) often proves convenient for other aspects of the
nalysis (see, e.g., Guo and Shmaya, 2019; Dworczak and Martini,
019; Lipnowski and Ravid, 2020; Ravid et al., 2022). For instance,
n Terstiege and Wasser (2020), we study experiments on an
nfinite state space for a buyer under the constraint that the seller
ust not add information. We identify optimal experiments that
raw a deterministic signal conditionally on the state, resulting
n a partition of the state space. With a finite state space, by con-
rast, such optimal experiments would draw a stochastic signal.
oreover, also models with a finite state space may require an

nfinite signal space and thus may call for the technical apparatus
onsidered here. For example, in Terstiege and Wasser (2022),
e study a game in which bidders disclose information to an
uctioneer with the aim of influencing the auction design. As
e show, an equilibrium may only exist for an infinite signal
pace even though the state space is finite. Boleslavsky and Cotton
2015) consider another game in Bayesian persuasion with a finite
tate space that only has equilibria with an infinite signal space.

. Review of the finite case

We first review the equivalence of experiments and Bayes-
lausible distributions of posteriors for finitely many states and
ignals (Kamenica and Gentzkow, 2011).
Let Ω be a finite set of possible states of the world. Let µ0 be

probability distribution on Ω that represents the prior belief.
hat is, under the prior, state ω ∈ Ω is assumed to obtain with
robability µ0(ω). Without loss of generality, let µ0(ω) > 0 for

all ω. An experiment consists of a finite set of signals S and, for
ach state ω ∈ Ω , a probability distribution σ (·|ω) on S. The
nterpretation is that signal s ∈ S is drawn with probability σ (s|ω)
f state ω obtains. Denote the unconditional probability of signal
by

¯ (s) =

∑
ω∈Ω

σ (s|ω)µ0(ω).

The posterior belief after any possible signal is determined
y Bayes’ Theorem: if signal s with σ̄ (s) > 0 was drawn, the
osterior belief is represented by the distribution ρ(·|s) on Ω that
ssigns to state ω the probability

(ω|s) =
σ (s|ω)µ0(ω)

σ̄ (s)
.

Because the signal is stochastic, the experiment induces a
istribution τ of posteriors (which has finite support Supp(τ ) as
he set of signals S is finite). Specifically, the experiment results
n posterior µ with probability

(µ) =

∑
s∈S:ρ(·|s)=µ

σ̄ (s).

Simple algebra shows that τ averages to the prior: for all ω ∈ Ω ,
it holds that∑
µ∈Supp(τ )

µ(ω)τ (µ) =

∑
s∈Supp(σ̄ )

ρ(ω|s)σ̄ (s) =

∑
s∈S

σ (s|ω)µ0(ω)

= µ0(ω),

4 Proposition V.3.40 in Mertens et al. (2015) shows that for certain maps
rom priors to distributions of posteriors that average to the prior, there is a
orresponding map from priors to experiments that induce the distributions of
osteriors. The proof refers to an exercise.
59
an immediate consequence of Bayesian updating. This property
of τ is called ‘‘Bayes plausibility’’.

We now reverse the reasoning. Let τ be any (finitely sup-
orted) distribution of posteriors that satisfies Bayes plausibility,
hat is,∑
∈Supp(τ )

µ(ω)τ (µ) = µ0(ω)

or all states ω ∈ Ω . Then we can define an experiment that
raws signal s = µ from the set of signals S = Supp(τ ) with
robability

(µ|ω) =
µ(ω)τ (µ)

µ0(ω)

if state ω obtains. Accordingly, signal µ is drawn with uncon-
ditional probability σ̄ (µ) = τ (µ) and, by Bayes’ Theorem, re-
ults in posterior ρ(·|µ) = µ. The experiment thus induces the
istribution of posteriors τ .

. The general case

We now show the equivalence of experiments and Bayes-
lausible distributions of posteriors for general, possibly infinite
tate and signal spaces. Posteriors resulting from a given experi-
ent, as well as the experiment that induces a given distribution
f posteriors, are then obtained as regular conditional distribu-
ions, and Bayes’ Theorem is replaced by theorems on existence
nd uniqueness of a regular conditional distribution. We first
ntroduce the mathematical concepts.

.1. Preliminaries

We endow any topological space H with the Borel σ -algebra,
enoted by B(H).5 We denote the set of all Borel probability mea-
ures on H by ∆H , and we endow ∆H with the weak* topology.
f H is compact and metrizable, then so is ∆H (Aliprantis and
order, 2006, Thm. 15.11).
Given two topological spaces E and F , a map κ : E × B(F ) →

0, 1] is called a Markov kernel from E to F if

(i) e ↦→ κ(e, B) is measurable for any B ∈ B(F );
(ii) B ↦→ κ(e, B) is an element of ∆F for any e ∈ E.

et (A,B(A),P) be a probability space. Let X and Y be random
ariables on (A,B(A),P) with values in E and F , respectively. Let
∈ ∆E be the distribution of X . A Markov kernel κ from E to F

s called a regular conditional distribution of Y given X if

[X−1(BE ) ∩ Y−1(BF )] =

∫
BE

κ(e, BF )dχ (e) ∀BE ∈ B(E), ∀BF ∈ B(F ).

regular conditional distribution exists, and κ(e, ·) is unique for
-almost all e, if F is a Polish space (see, e.g., Klenke, 2020, Thms.
.37 and 8.38), and so in particular if F is compact and metrizable.

.2. Experiments versus distributions of posteriors

Let Ω be the state space, which we require to be compact
nd metrizable. The prior belief is denoted by µ0 ∈ ∆Ω . That
s, under the prior belief, the state is assumed to lie in BΩ ∈

(Ω) with probability µ0(BΩ ). An experiment, denoted by (S, σ ),
onsists of a compact, metrizable signal space S and a Markov
ernel σ from Ω to S. Thus, an experiment draws a signal from
he probability measure σ (ω, ·) ∈ ∆S if the state is ω ∈ Ω .

5 In Section 3.2, we will focus on compact metrizable spaces.
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enote the corresponding unconditional probability measure by
¯ ∈ ∆S, where

¯ (BS) =

∫
Ω

σ (ω, BS)dµ0(ω) ∀BS ∈ B(S).

The posterior belief after any signal is determined by a regular
conditional distribution. Given any experiment (S, σ ), consider
the probability space (Ω × S,B(Ω × S),P) with P such that

P[BΩ × BS] =

∫
BΩ

σ (ω, BS)dµ0(ω) ∀BΩ ∈ B(Ω), ∀BS ∈ B(S).

Since Ω and S are compact and metrizable, P is uniquely defined
by its values on B(Ω) × B(S) (see Aliprantis and Border, 2006,
Thms. 4.44 and 10.10). Let Y be the projection map from Ω × S
to Ω , and let X be the projection map from Ω × S to S. Note
that the marginal of P on Ω (i.e., the distribution of Y ) is µ0 and
he marginal of P on S (i.e., the distribution of X) is σ̄ . Because

is compact and metrizable, there exists a regular conditional
istribution ρ of Y given X , which is unique almost everywhere.
ence,∫
BS

ρ(s, BΩ )dσ̄ (s) =

∫
BΩ

σ (ω, BS)dµ0(ω) ∀BΩ ∈ B(Ω),

∀BS ∈ B(S). (1)

The probability measure ρ(s, ·) ∈ ∆Ω represents the posterior
belief after signal s.

We call any probability measure τ ∈ ∆∆Ω a distribution
of posteriors. Because the signal is stochastic, the experiment
induces a distribution of posteriors, which we state next. We have

{s ∈ S : ρ(s, ·) ∈ B∆Ω} ∈ B(S) ∀B∆Ω ∈ B(∆Ω)

because Ω and S are compact and metrizable (see Aliprantis and
Border, 2006, Thm. 19.7). Hence, the experiment (S, σ ) induces
the distribution of posteriors τ given by

τ (B∆Ω ) = σ̄ ({s ∈ S : ρ(s, ·) ∈ B∆Ω}) ∀B∆Ω ∈ B(∆Ω).

A distribution of posteriors τ ∈ ∆∆Ω is Bayes plausible if it
averages to the prior:∫

∆Ω

µ(BΩ )dτ (µ) = µ0(BΩ ) ∀BΩ ∈ B(Ω). (2)

Theorem 1. Let τ ∈ ∆∆Ω be any distribution of posteriors. There
exists an experiment that induces τ if and only if τ is Bayes plausible.

Proof. Let (S, σ ) be any experiment, and suppose it induces the
distribution of posteriors τ ∈ ∆∆Ω . Then, τ is Bayes plausible by
(1):∫

∆Ω

µ(BΩ )dτ (µ) =

∫
S
ρ(s, BΩ )dσ̄ (s) = P[BΩ × S]

= µ0(BΩ ) ∀BΩ ∈ B(Ω).
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Conversely, let τ ∈ ∆∆Ω be any Bayes-plausible distribution
of posteriors. Because Ω is metrizable, the function ρ(·, BΩ ) :

∆Ω → [0, 1] given by ρ(µ, BΩ ) = µ(BΩ ) is measurable for any
BΩ ∈ B(Ω) (see Aliprantis and Border, 2006, Lem. 15.16). Hence,
ρ is a Markov kernel from ∆Ω to Ω . For S = ∆Ω and σ̄ = τ ,
consider the probability space (Ω × S,B(Ω × S),P) with P such
that

P[BΩ × BS] =

∫
BS

ρ(s, BΩ )dσ̄ (s) ∀BΩ ∈ B(Ω), ∀BS ∈ B(S).

Let X and Y be as above. Because ∆Ω is compact and metrizable,
there exists a regular conditional distribution σ of X given Y ,
which is unique almost everywhere. Since τ is Bayes plausible,
the marginal of P on Ω is µ0, so σ satisfies (1). Then, the
experiment (S, σ ) induces τ . □

Data availability

No data was used for the research described in the article.
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