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Feedback is a powerful and ubiquitous technique both in classical and quantum system control. Its standard
implementation relies on measuring the state of a system, processing the classical signal, and feeding it back
to the system. In quantum physics, however, measurements not only read out the state of the system but also
modify it irreversibly. Coherent feedback is a different kind of feedback that coherently processes and feeds
back quantum signals without actually measuring the system. Here, we report on the experimental realization
and the theoretical analysis of an optical coherent feedback platform to control the motional state of a
nanomechanical membrane in an optical cavity. The coherent feedback loop consists of a light field
interacting twice with the same mechanical mode through different cavity modes, without performing any
measurement. Tuning the optical phase and delay of the feedback loop allows us to control the motional state
of the mechanical oscillator, its resonance frequency, and also its damping rate, which we use to cool the
membrane close to the quantum ground state. Our theoretical analysis provides the optimal cooling
conditions, showing that this new technique enables ground-state cooling. Experimentally, we show that we
can cool the membrane to a state with n̄m ¼ 4.89� 0.14 phonons (480 μK) in a 20 K environment. This lies
below the theoretical limit of cavity dynamical backaction cooling in the unresolved sideband regime and is
achieved with only 1% of the optical power required for cavity cooling. Our feedback scheme is very
versatile, offering new opportunities for quantum control in a variety of optomechanical systems.
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I. INTRODUCTION

Quantum feedback is a powerful technique for cooling
and controlling quantum systems [1]. The conventional
strategy relies on quantum-limited measurements followed
by classical processing and feedback actuation onto the
system. However, quantum mechanics also allows for
coherent feedback of quantum signals [2,3], without
destroying coherence in the process. This kind of feedback
may exploit the information stored in noncommuting
observables while circumventing the decoherence and back-
action noise associated with a measurement [1,2,4].
Coherent feedback thus has the potential to improve
quantum control and provide new capabilities across a
broad range of physical systems [5,6]. Coherent feedback

strategies have so far been adopted to assist in a variety of
different tasks [1], e.g., for noise cancellation [7,8], pure-
state preparation [6], optical squeezing [9,10], stabilization
and enhancement of entanglement [11,12], sympathetic
cooling [13–15], swaps of arbitrary states [16], qubit state
control [17], and generating large optical nonlinearities at
the single-photon level [18,19].
Optomechanical systems are very well suited for coher-

ent feedback control, as they offer a clean and tailored
interface between highly coherent mechanical and electro-
magnetic field modes [20]. Indeed, various coherent feed-
back protocols have been theoretically proposed to enhance
the cooling of optomechanical systems [21–23], to reduce
the added noise in the low phonon-number regime of
optomechanical precision measurements [24], to enable or
enhance entanglement generation, verification, as well as
state transfer [22,25–27]. Coherent feedback can thus
facilitate and extend the capabilities of quantum transduc-
ers between optics and mechanics [28].
Despite this wide range of possibilities, there have been

surprisingly few experiments investigating coherent feed-
back in optomechanics [15,29]. An optical coherent feed-
back loop acting directly onto a mechanical oscillator has
not yet been realized. Moreover, while measurement-based
feedback has been studied in some depth from a theory
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point of view [30–34], essential questions regarding the
performance and limitations of coherent feedback in actual
optomechanics experiments remain open.
In this work, we present both a theoretical description

and experimental realization of a simple, all-optical coher-
ent feedback platform to control a single vibrational mode
of a mechanical oscillator. We use a double-pass scheme
where an optical signal interacts twice with the same
mechanical mode through two different cavity modes of
orthogonal polarization. The entire control of the phase and
delay of the feedback signal is implemented purely via the
optical field, without introducing measurements and sub-
sequent electronic processing. Our approach is thus able to
generate a variety of different interactions, ranging from
Hamiltonian couplings to dissipative and nonreciprocal
dynamics [35–37].
As a first application of the extended control offered by

the coherent feedback loop, we investigate the cooling of
the mechanical mode close to its quantum ground state,
which is a prerequisite for many applications in quantum
science and technology [20,28,38,39]. Theoretically, we
show that coherent feedback enables ground-state cooling
even in the unresolved sideband regime, where cavity
dynamical backaction cooling with a single or two inde-
pendent optomechanical interactions cannot reach the
ground state [20]. Experimentally, we demonstrate the
advantage of the coherent feedback loop by cooling below
the theoretical limit of cavity dynamical backaction cooling
in our system. This is particularly interesting for opto-
mechanical systems with cavities of large bandwidth,
which induce only a small delay and are frequently

encountered in optomechanical displacement sensing,
quantum interfaces, and hybrid setups [40].
The remainder of this paper is structured as follows.

We first provide an overview of the working principle of
our coherent feedback platform for controlling a mechani-
cal oscillator in an optical cavity. Next, we develop a
theoretical model of the feedback scheme, followed by our
experimental results on motional state control and its
application to cooling. Finally, we compare our theoretical
results with those of measurement-based feedback for the
specific task of cooling.

II. OVERVIEW OF THE COHERENT
FEEDBACK SCHEME

We start by illustrating the working principle of our
coherent feedback scheme, sketched in Fig. 1. The goal is to
control the motional state of a mechanical oscillator by
designing an optical feedback loop that preserves the
quantum coherent properties of the light field, which acts
as the controller. To this end, the mechanical oscillator is
radiation-pressure coupled to two cavity modes in a cascaded
double-pass interaction. The first interaction takes place
between the mechanical oscillator and the cavity mode ĉ1,
which is driven by a strong local oscillator, realizing the
standard cavity optomechanical interaction [20]. Because
of the optomechanical coupling, information about the
mechanical position X̂m is imprinted onto the phase quad-
rature of ĉ1. This mode is then cascaded into the second
cavity mode ĉ2 via an all-optical feedback loop. Specifically,
the output light of the first mode, with mean amplitude αout1 ,

(a) (b)

FIG. 1. Sketch of the experimental setup and optical coherent feedback loop. (a) An incoming light beam âin1 is injected into an
optomechanical cavity, where it drives the cavity field ĉ1 that interacts with a mechanical oscillator with quadratures X̂m; P̂m. The back-
reflected beam âout1 is combined with an auxiliary local oscillator mode âaux to control the phase of the feedback loop φ. The combined
field is delayed by τ with the help of an optical fiber, before being sent back as input âin2 for a second interaction with the mechanical
oscillator in an orthogonal polarization cavity mode ĉ2. The outgoing light after the second interaction leaves the loop. A small fraction
of âout1 is picked up for detection and phase locking of the loop. The color coding of the light beams is used for visual guidance. Dashed
lines are used for visual distinction between the incoming and back-reflected beams. (b) Phase-space visualization of the feedback loop.
The sketch represents the amplitude ðXLÞ and phase ðPLÞ quadratures of the light outside the cavity in an arbitrary frame. On resonance,
the coherent cavity output field after the first interaction αout1 is phase modulated (dashed line) with the membrane displacement signal
XmðtÞ. This is converted into an amplitude modulation of αin2 by mixing the coherent field with an auxiliary local oscillator αaux with the
appropriate relative phase ϕ, to achieve the desired value of φ between α1 and α2. After a delay Ωmτ ¼ π=2, the amplitude modulation
becomes proportional to the momentum of the membrane Pm at time t (dashed line in αin2 ) and exerts a force on the mechanical oscillator.
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is mixed with a second local oscillator and fed back as the
input of the second cavity mode, with amplitude αin2 , as
shown in Fig. 1. The resulting optical feedback loop is
characterized by two parameters, the relative phase φ and the
in-loop delay time τ. The phase φ is controlled by the second
local oscillator αaux, which implements a displacement in the
optical phase space of the modes traveling within the loop;
see Fig. 1(b).
Both feedback parameters are crucial for controlling

the mechanical oscillator. The phase φ is adjusted so that
the phase quadrature of the outgoing mode, which
contains information on the mechanical position, is
turned into the amplitude quadrature of the incoming
mode, such that it exerts a feedback force by radiation
pressure on the mechanical oscillator. As sketched
in Fig. 1(b), this occurs for φ ¼ π=2. Adjusting the
delay τ allows us to feed back either the instantaneous
position [when X̂mðt−τÞ≃ X̂mðtÞ], the momentum [when
X̂mðt − τÞ ≃ P̂mðtÞ, as represented in Fig. 1(b)], or a
superposition thereof. While feeding back the position
enables control of the mechanical oscillator frequency,
feeding back the momentum allows control of its damp-
ing, which can be exploited for ground-state cooling.
Previous theoretical proposals for coherent feedback

cooling of mechanical oscillators [21–23,27] rely on
coherently enhancing the interaction of the cavity light
with the mechanics, mostly by modifying the effective
cavity linewidth [22,27], and on loops that impart only a
delay (plus unavoidable coupling losses). In contrast, our
scheme applies the coherent feedback directly to the
mechanical oscillator, such that the feedback can be
generated with a single cavity driven in two independent
modes. Moreover, it allows tuning of the loop phase φ,
which strongly influences the effect of the feedback.
Our scheme requires no additional optical devices such

as cavities and only minor modifications of the optical
path, resulting in a modular scheme that is optimally
suited for incorporation into various types of optome-
chanical systems.
Furthermore, our double-pass scheme does not require

nonclassical input light states [39,41,42], additional
interactions with other physical systems [13,15,43],
nor the overall very high detector efficiency of measure-
ment-based feedback schemes [30–34], which is now
replaced by the requirement of small optical losses in the
loop. The relaxation of the requirements on measurement
efficiency renders our scheme valuable for systems
working in wavelength ranges where efficient photo-
detectors are not available, e.g., in integrated circuit
platforms [44].

III. THEORETICAL MODEL

In this section, we provide a theoretical model for the
coherent feedback scheme described above.

A. Langevin equations

The mechanical oscillator that is to be controlled is
described by the linearized Langevin equations,

∂tX̂mðtÞ ¼ ΩmP̂mðtÞ;
∂tP̂mðtÞ ¼ −ΩmX̂mðtÞ − γmP̂mðtÞ

− 2
X2
j¼1

gjx̂jðtÞ þ
ffiffiffi
2

p
ξ̂thðtÞ; ð1Þ

where X̂mðtÞ and P̂mðtÞ denote the dimensionless position
and momentum operators of the mechanical oscillator,
Ωm its frequency, and γm its energy damping rate. The
mechanical oscillator is driven by thermal noise ξ̂th, which
has zero average and is fully described by its spectral
density [45],

SthðωÞ ¼ γm
jωj
Ωm

½nBðjωjÞ þ ΘðωÞ�; ð2Þ

where nBðωÞ ¼ ½expðℏω=kBTÞ − 1�−1 denotes the Bose-
Einstein distribution and ΘðωÞ the Heaviside step function.
The oscillator furthermore couples to the amplitude

quadrature of two optical modes, x̂j ¼ ðĉ†j þ ĉjÞ=
ffiffiffi
2

p
with

strength gj, where j ¼ 1, 2. As we discuss in more detail
below, the coupling strengths depend on the average
displacements of the optical modes and the operators ĉj
describe fluctuations around these displacements [20].
The first cavity mode is described by the Langevin

equation (in a frame rotating at the laser frequency ωL),

∂tĉ1ðtÞ ¼
�
iΔ −

κ

2

�
ĉ1ðtÞ − i

ffiffiffi
2

p
g1X̂mðtÞ −

ffiffiffi
κ

p
âin1 ðtÞ; ð3Þ

where Δ ¼ ωL − ωc denotes the detuning from the cavity
mode frequencyωc and κ the cavity linewidth. This mode is
driven by a local oscillator with frequency ωL and average
displacement αin1 . Fluctuations around this displacement are
described by the operator âin1 . Because of the optomechan-
ical coupling, the outgoing field leaving this cavity mode,

âout1 ðtÞ ¼ âin1 ðtÞ þ
ffiffiffi
κ

p
ĉ1ðtÞ; ð4Þ

contains information on the position of the mechanical
oscillator. From Eq. (3), it follows that on resonance
(Δ ¼ 0), this information is only contained in the phase
quadrature p̂1 ¼ iðĉ†1 − ĉ1Þ=

ffiffiffi
2

p
.

To implement the coherent feedback, the output of the
first cavity mode is fed back into the input of the second
cavity mode. Before it is coupled into the cavity, it
undergoes a displacement by combining it with an auxiliary
local oscillator with the same frequency ωL and average
displacement αaux, and it is delayed by the time τ.
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The second cavity mode is then driven by the input
mode [46],

âin2 ðtÞ ¼
ffiffiffi
η

p
eiφâout1 ðt − τÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
âauxðtÞ; ð5Þ

where the phase φ ¼ argðα1=α2Þ denotes the phase differ-
ence between the average displacements of the cavity
modes. As we show in Appendix B 1, η takes into account
any losses in the loop. We note that we choose to define the
mode âaux such that no time shift appears in its argument.
The Langevin equation for the second cavity mode then
reads

∂tĉ2ðtÞ ¼
�
iΔ−

κ

2

�
ĉ2ðtÞ− i

ffiffiffi
2

p
g2X̂mðtÞ−

ffiffiffi
η

p
κeiφĉ1ðt− τÞ

−
ffiffiffiffiffi
ηκ

p
eiφâin1 ðt− τÞ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− ηÞκ

p
âauxðtÞ: ð6Þ

The average displacements αj of the cavity modes are
given in Eqs. (B15). In terms of these, the optomechanical
coupling strengths can bewritten as gj ¼ g0jαjj, where g0 is
the bare coupling strength. The amplitudes of the local
oscillators are related to their input powers as P1 ¼
ℏωLjαin1 j2 and Paux ¼ ℏωLjαauxj2, respectively.
To better understand the effect of the coherent feedback

loop, it is illustrative to eliminate the cavity modes from the
Langevin equations. For a high-quality oscillator γm ≪ Ωm
and delay times that obey τγm ≪ 1, we find

∂
2
t X̂mðtÞ ¼ −ðΩm þ δΩmÞ2X̂mðtÞ − ðγm þ ΓmÞ∂tX̂mðtÞ

þ Ωm

ffiffiffi
2

p
ξ̂thðtÞ þΩm

ffiffiffi
2

p
ξ̂fbðtÞ; ð7Þ

where Γm and δΩm denote the effective damping and the
frequency shift that are controlled by the coherent feedback
loop. To derive Eq. (7), we assume that these are small
compared to the frequency of the resonator, i.e.,
Γm; δΩm ≪ Ωm. In the unresolved sideband regime and
on cavity resonance, we find

Γm ¼ 16
ffiffiffi
η

p g1g2
κ

sinðφÞ sinðΩmτÞ;

δΩm ¼ −8
ffiffiffi
η

p g1g2
κ

sinðφÞ cosðΩmτÞ: ð8Þ

Expressions for the general scenario are given in
Appendix B.
From these expressions, we may understand the physical

significance of the parameters that determine the coherent
feedback loop. To maximize the effect that the optical
field exerts on the mechanics, we should choose φ ¼ π=2.
The reason for this is sketched in Fig. 1(b) and was already
discussed qualitatively in Sec. II: For Δ ¼ 0, the first
optical mode contains the information on X̂m in the phase
quadrature, p̂1 ¼ iðĉ†1 − ĉ1Þ=

ffiffiffi
2

p
, the quadrature that does

not exert a radiation pressure force on the mechanical
oscillator. Through the feedback loop, the ĉ1 mode will be
fed into the second, ĉ2 mode. In order for the feedback to be
effective, the phase quadrature of the ĉ1 mode has to be fed
into the amplitude quadrature of the ĉ2 mode, x̂2, the
quadrature that does couple to the mechanical oscillator.
For this to occur, the field has to be displaced by the
auxiliary local oscillator, such that φ ¼ π=2.
Furthermore, Eqs. (8) show that by tuning the delay, the

feedback can result in either a frequency shift or damping.
Since for τγm ≪ 1 we have approximately

X̂mðt − τÞ ≃ cosðΩmτÞX̂mðtÞ − sinðΩmτÞP̂mðtÞ; ð9Þ

we can see that the delay determines which quadrature, X̂m

or P̂m, is being fed back to the oscillator. In the limit of no
delay, we are feeding back a force proportional to the
position, resulting in a strong frequency shift. Maximal
damping can be achieved by feeding back a force propor-
tional to the momentum, which occurs at Ωmτ ¼ π=2. We
note that the induced damping can become negative as
γm þ Γm < 0, in which scenario the system becomes
unstable and our linearized description fails.
It is instructive to carry out a similar analysis in

frequency space. This is done in Appendix B 2.

B. Sideband picture

Just as for cavity dynamical backaction cooling [20], we
may develop a sideband picture and write the damping
induced by the coherent feedback as

Γm ¼ A− − Aþ; ð10Þ

where A� ¼ Sfbð∓ ΩmÞ denote the rates for the Stokes
ðAþÞ and anti-Stokes ðA−Þ processes which are determined
by the spectral density of the feedback noise,

SfbðωÞ ¼
8

κ

�
g21 þ g22

2
−

ffiffiffi
η

p
g1g2 cosðφþ ωτÞ

�
; ð11Þ

where the last equality holds for the unresolved sideband
regime on cavity resonance [see Eq. (B29) for the full
expression]. Equation (B29) is plotted in Fig. 2(b).
The phonon number of the mechanical oscillator may

then be written as

n̄m ¼ γmnth þ Aþ

γm þ Γm
; ð12Þ

where nth ¼ nBðΩmÞ denotes the thermal occupation. From
the last equation we find that in order to reach a phonon
number close to zero, two conditions need to be met. First,
the quantum regime, where thermal excitations can be
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neglected, needs to be reached. This requires a large
quantum cooperativity:

Cqu ¼
4g1g2
κγmnth

≫ 1: ð13Þ

Note that the quantum cooperativity usually only includes a
single optomechanical coupling. Here, the product of the
two couplings g1 and g2 is relevant.
The second condition to reach the ground state is a

suppression of the Stokes processes (i.e., Aþ ≪ A−), such
that phonons are predominantly absorbed by anti-Stokes
scattering into the pump beam. For cavity dynamical
backaction cooling in the sideband resolved regime, this
is achieved by detuning the drive by an amount Δ ¼ −Ωm;
see Fig. 2(a). In contrast, in our coherent feedback scheme,
which operates in the unresolved sideband regime, this
suppression results from the interference between scatter-
ing processes in the first and second optical passes, which
results in a frequency-dependent modulation of the noise
spectral density SfbðωÞ as illustrated in Fig. 2(b) and thus a
suppression of quantum backaction heating.
In the unresolved sideband limit and on resonance, we

find the minimum phonon number,

n̄m ¼ Aþ

Γm
¼ Aþ

A− − Aþ ≥
1 − ffiffiffi

η
p

2
ffiffiffi
η

p ; ð14Þ

where the lower limit is reached for a large quantum
cooperativity, Ωmτ ¼ φ, and g1 ¼ g2. Interestingly, this
lower bound has the same form as the limit of measure-
ment-based feedback cooling [31,47], with the efficiency of
the feedback loop η replacing themeasurement efficiency. As
we discuss in more detail in Sec. VI, we can draw an analogy
between coherent feedback cooling and measurement-based
cooling: the coherent feedback cooling can, in the ideal limit,
be understood as a measurement-free implementation where
the readout signal is coherently transformed into a feedback
actuation. In Appendix D we compare the performance of

coherent feedback cooling with standard cavity backaction
cooling for different cavity regimes.

IV. COHERENT FEEDBACK CONTROL
OF A NANOMECHANICAL MEMBRANE

Our experimental setup consists of a mechanical oscillator
inside a cavity in a cryogenic environment provided by a
low-noise liquid-helium flow cryostat. The mechanical
oscillator is the (2, 2) square drum mode of a silicon
nitride membrane [48] with a vibrational frequency
Ωm ¼ 2π × 1.9 MHz. The membrane is surrounded by a
silicon phononic band gap structure which shields this mode,
leading to intrinsic quality factors that range from Q ¼
Ωm=γm ¼ 1.9 × 106 at room temperature to Q ¼ 3.2 × 106

at 20 K. The membrane is placed inside a single-sided
optical cavity of free spectral range 150 GHz, finesse
F ¼ 1200, and linewidth κ ¼ 2π × 55 MHz, such that
the optomechanical system operates in the unresolved
sideband regime κ ≫ Ωm. The bare optomechanical cou-
pling strength is g0 ¼ 2π × 160 Hz, calibrated via a phase
modulation tone [49].
The overall efficiency of the feedback loop is determined

by a combination of different losses that accumulate along
the optical path. Following the optical path illustrated in
Fig. 1(a), for the first beam we have to consider the finite
cavity in-coupling efficiency η1 ¼ 0.91. For the second
pass, it includes the unavoidable loss at the beam splitter
that combines the auxiliary local oscillator âaux and the
back reflection of the first beam âout1 , which has a splitting
ratio ηaux ¼ 0.87 in our experiment. Note that this loss can
be made arbitrarily small in principle by using a strongly
unbalanced beam splitter and higher incoming optical
power for âaux. Additionally, there is a cumulative loss
due to the propagation in the optical fiber and other optical
elements, leading to a transmission efficiency ηT ≃ 0.3
together with the cavity in-coupling efficiency of the
second beam in orthogonal polarization η2 ¼ 0.9. As we
discuss in Appendix B 1, these losses can be fully taken
into account by the overall efficiency of the feedback loop
η ¼ 0.22 and by an appropriate rescaling of the average
displacements. Since the powers are measured in front of
the cavity, P1 is measured directly but the measured
auxiliary power is given by P̃aux ¼ ð1 − ηauxÞηTPaux. In
the following experiments, we use the delay and the phase
of the coherent feedback loop as the tuning knobs that
allow us to control the mechanical state of the membrane,
as described by Eqs. (8). This shows up in the recorded
mechanical power spectral densities (PSDs) as a change of
both the mechanical linewidth and the oscillation fre-
quency, which we extract from Lorentzian fits to our data.

A. Control via the loop delay

In a first set of experiments, we study the effect of delay
alone without an auxiliary local oscillator in the feedback

(a) (b)

FIG. 2. Sideband picture of optomechanical cooling. (a) SfbðωÞ
in the standard optomechanical cavity cooling for κ=Ωm ≪ 1 and
Δ ¼ −Ωm. The Stokes processes are suppressed because they lie
outside the cavity resonance. (b) SfbðωÞ in the coherent feedback
scenario, for κ=Ωm ≫ 1 and Δ ¼ 0; see Eq. (B29). The Stokes
processes in the two optical passes interfere destructively, such
that the pump beam predominantly extracts phonons and cools
the mechanical oscillator. The dotted line corresponds to the ideal
case in the absence of losses with η ¼ 1.
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loop. We generate different delays between the two
interactions with the mechanical oscillator by sending
the light after the first pass through optical fibers of
different lengths. Interesting situations arise once the delay
is significant, i.e., of order Ωmτ ∼ π. We investigate the
effect generated by different delays starting from a fiber
length of 2 m going up to 80 m, which corresponds to
Ωmτ ¼ 0.07π up to Ωmτ ¼ 1.55π.
At zero detuning, the motion of the membrane is

imprinted purely as a phase modulation onto the output
light such that in the absence of the auxiliary local oscillator
this results in φ ¼ π (due to the back reflection from the
cavity) and we expect no effect from the coherent feedback
loop [cf. Eqs. (8)]. With a finite detuning, however, a phase
shift φ ≠ π is introduced even without any auxiliary local
oscillator [cf. Eqs. (B15)]. Therefore, in that case, the
motion is imprinted onto both the amplitude and phase
quadratures and the effect of different delays due to
feedback becomes apparent. Additionally, the standard
cavity dynamical backaction effects that are not captured
by Eqs. (8) modify the frequency shift and damping rate;
see Appendix B for details.
Figure 3 shows experimental data where we study the

effect of different feedback delays while scanning the
detuning for an input power P1 ¼ 60 μW. The coherent
feedback onto the mechanical oscillator results both in a
shift of the mechanical frequency [Fig. 3(a)] and in a

broadening or narrowing of the mechanical linewidth
[Fig. 3(b)], leading to damping or driving, respectively.
This is consistent with a picture in which the membrane
motion couples via the light to a delayed version of itself,
leading to feedback forces Ffb ∝ �PmðtÞ for certain delays,
as shown in Eq. (7) and in Fig. 3(c).
Indeed, we observe that for a delay close to Ωmτ ∼ π=2

(i.e., a quarter of the oscillation period) the coupling is
mostly proportional to þPm and we observe driving
(narrowing of the linewidth) even with a red-detuned beam.
Half a period later, for Ωmτ ∼ 3π=2, the feedback force is
mostly proportional to −Pm and the motional damping is
amplified by more than a factor 3 as compared to a single
interaction, leading to additional cooling of the mechanical
oscillator. Finally, we see that for the smaller delays
Ωmτ ∼ 0, the effect of the second interaction on the
broadening is small Γm ≃ 0, since the feedback force, in
this case, is mostly ∝ Xm.
The agreement with the theoretical predictions in

Eqs. (B27) and (B28) (solid lines in Fig. 3) is excellent.
The theory lines for the feedback interaction contain no free
parameters. The detuning axis is calibrated from the
recorded linewidths in the single-pass interaction under
the effect of the standard cavity dynamical backaction [20]
and can be extracted with an uncertainty of �5%.

B. Control via the loop phase

Control over the feedback phase is a handy knob in a
feedback platform, allowing us to modify the effect of the
feedback on the system under control. Here, we investigate
how the loop phase modifies the membrane motion at a
fixed delay and cavity detuning. As previously discussed,
this phase allows us to control the amount of motional
information that is transferred onto the amplitude quad-
rature of the second interaction beam, thereby maximizing
or minimizing the feedback force on the membrane, as well
as the overall sign of the interaction. Experimentally, we
vary the loop phase φ by adjusting the phase of the
auxiliary local oscillator ϕ ¼ argðαaux=αout1 Þ, which is
selected and stabilized by locking at a specific angle of
the interferometric signal between a small leak of αout1 and
αaux [see Fig. 1].
The measured frequency shifts and linewidths are

shown in Fig. 4. In this measurement, the delay is held
constant at Ωmτ ∼ 0.07π and the detuning at Δ=κ ¼ −0.2,
the input powers are set to P1 ¼ 20 μWand P̃aux ¼ 3 μW.
This detuning is experimentally chosen such that the
amount of standard cavity dynamical backaction cooling
is strong. This allows us to show the coherent feedback
effect by scanning the full range 2π of the loop phase
without running into instabilities when approaching
negative effective linewidths. In practice, when we reach
this unstable regime [blue dashed lines in Fig. 4(b)], the
system is driven and the measured linewidth is close
to zero.

(a)

(c)

(b)

FIG. 3. Mechanical frequency shift (a) and damping rate (b) as
a function of the cavity detuning for different feedback delays,
with âaux ¼ 0. The data points correspond to the results of
Lorentzian fits to the mechanical power spectral density. The
solid lines correspond to the theoretical predictions in Eqs. (B27)
and (B28) evaluated at ω ¼ Ωm with no free parameters. The
detuning axis is calibrated from the measured linewidth in the
single-pass interaction (dashed red line). (c) The mechanical
linewidth at a detuning of Δ=κ ¼ −0.57 for the different fibers
and respective delays.
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Scanning the phase, we observe that both the resonance
frequency and the linewidth can be modified to either
higher or lower values compared to the optical spring and
broadening that occur even without the coherent feedback.
We exploit this aspect in the next section to optimally
feedback cool the mechanical oscillator. Here again,
we find an excellent agreement between the experimental
data points and the theoretical prediction in Eqs. (B27)
and (B28) with no free parameters.

V. COHERENT FEEDBACK COOLING BELOW
THE DYNAMICAL BACKACTION LIMIT

For cavity optomechanical systems within the so-called
resolved sideband regime, it has been established theoreti-
cally and demonstrated in multiple platforms that a red-
detuned drive allows cooling the mechanical oscillator
close to its motional ground state [20]. Outside this regime,
cavity dynamical backaction cooling to the ground state is
no longer attainable and the most widely used cooling
technique is measurement-based feedback [30,50], where
the optical signal is measured and converted into a classical
electronic signal that drives the feedback actuator.
Here, we exploit the control provided by the coherent

feedback loop demonstrated in the previous section to cool
the membrane close to the ground state in the unresolved
sideband regime. The available tuning knobs are the loop
phase φ and delay τ as well as the detuning Δ and the
powers of the first and auxiliary local oscillators P1 and
Paux. In standard cavity cooling, the minimal number of
phonons achievable in the unresolved sideband regime is
bounded by κ=ð4ΩmÞ (cf. Appendix B 4), which in our case
corresponds to about 7 phonons. In order to reach this
dynamical backaction limit with our mechanical quality
factor, we would need a laser power on the order of
100 mW [see Fig. 5(c)]. The coherent feedback loop
dramatically relaxes this power constraint and we are able
to cool the motion of the membrane below the dynamical
backaction limit, approaching the ground state.
In Fig. 5(a) we show experiments where we reach our

lowest membrane phonon occupation by scanning the

(a) (b)

FIG. 4. Mechanical frequency shift (a) and damping rate (b) as
a function of the phase of the auxiliary local oscillator. The red
dotted lines correspond to the broadening expected in the absence
of feedback, but with an equivalent power in a single beam.
The solid lines correspond to Eqs. (B27) and (B28) evaluated at
ω ¼ Ωm with no free parameters. The solid line in (b) is set to
zero for negative values (dashed line), where the mechanical
oscillator is driven by the feedback.

(a) (b) (c)

FIG. 5. Coherent feedback cooling below the dynamical backaction limit. (a) Phonon occupation plotted as a function of the phase of
the auxiliary local oscillator at different cryostat temperatures for input powers P1 ¼ 0.4 mW and P̃aux ¼ 1.2 mW and detuning
Δ=κ ¼ −0.35. The red shaded area indicates the limit of cavity dynamical backaction cooling. The shaded areas around the theory lines
correspond to a�5% uncertainty in the inferred detuning. The error bars take into account both the numerical uncertainty from the fit of
the raw data and the propagation of uncertainties from the calibrated quantities and are small compared to the point size. (b) Shot-noise
normalized mechanical power spectral densities corresponding to the data points at T ¼ 20 K in (a), the frequency origin is centered so
that the δΩ ¼ 0 corresponds to the single-pass mechanical resonance frequency. (c) Coherent feedback cooling compared to standard
cavity dynamical backaction cooling. Blue line and data points: phonon occupation at a constant phase ϕ ¼ 130°, scanning the total
input power resulting from the double-pass interaction P ¼ P1ð1þ ηTηauxÞ þ P̃aux þ 2ðηauxη2P1P̃auxÞ1=2 cosðϕÞ while keeping the ratio
P̃aux=P1 ¼ 3 fixed, at a detuning Δ=κ ¼ −0.35. Red line: cooling by standard cavity dynamical backaction given the same total input
power P at the optimal detuning Δ=κ ¼ −0.5 for dynamical backaction.
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experimental feedback loop phase. We present measure-
ments at different cryostat temperatures, where the delay
is set to Ωmτ ∼ π=4 and the detuning is kept fixed at
Δ=κ ¼ −0.35. The powers for the first and auxiliary local
oscillators are set to 400 μW and 1.2 mW, respectively.
With these experimental parameters, the feedback loop
drives the mechanical oscillator toward a state with phonon
occupation of n̄m ¼ 4.89� 0.14 phonons for a cryostat
temperature of 20 K, reaching a phonon number below the
theoretical limit of cavity dynamical backaction cooling
for our membrane-cavity assembly. The coherent feedback
cooling rate is Γm > 10Γdyn, where Γdyn is the cooling rate
of dynamical backaction cooling at the same power.
In these experiments, the membrane phonon occupation

is determined from the area of the mechanical power
spectral density, recorded via phase-sensitive homodyne
detection. By determining the reduction in area with respect
to a single interaction [see Fig. 5(b) and Appendix A],
we extract n̄m.
We note that higher powers, smaller detunings, and

slightly smaller phases should further reduce the final
number of phonons, but these parameter regimes are not
accessible to us due to technical instabilities related to the
cavity lock. Similarly, the optimal delay Ωmτ ∼ π=2 could
not be implemented, most likely due to the increased phase
noise in longer fibers. We also note that, due to the cavity
detuning we use, incident phase noise will be rotated into
the light amplitude quadrature, which can in turn heat the
mechanical oscillator mode. Furthermore, the membrane
sustains a multitude of higher-order mechanical modes
which experience coherent feedback with different
phase shifts depending on their resonance frequencies.
For those modes with sufficiently strong optomechanical
coupling [51], the feedback effect might turn into ampli-
fication instead of cooling and drive the cavity to an
unstable regime. Although this could be a potential issue,
we do not observe any effect in our measurements.

VI. COMPARISONWITHMEASUREMENT-BASED
FEEDBACK COOLING

It is illustrative to compare our coherent feedback
scheme to well-known measurement-based feedback
(mf) schemes for the specific task of cooling mechanical
motion [30–33,50]. In measurement-based feedback, the
all-optical loop is replaced by an optoelectronic loop. An
estimate of the mechanical displacement is obtained from a
measurement of the phase quadrature of the output light
from cavity mode ĉ1, and then a mechanical force propor-
tional to the derivative of the estimated displacement is
applied. In the case where the feedback force is optome-
chanically actuated, the electronic signal modulates the
amplitude of a laser driving the second cavity mode ĉ2,
which results in a time-dependent coupling g2. Irrespective
of the particular implementation of the feedback force,

the effect of the feedback can be effectively modeled by
replacing the coupling to the second cavity in the equation
of motion for P̂m with a feedback force, entering Eqs. (1) as
a convolution term FmfðtÞ ¼ ðhmf � pest

1 ÞðtÞ, where hmf
denotes the feedback transfer function and pest

1 ¼
pout;ηdet
1 =

ffiffiffiffiffiffiffiffiffi
ηdetκ

p
. Note that the measurement is limited by

the finite quantum efficiency of the detector ηdet, i.e.,
pout;ηdet
1 ¼ ffiffiffiffiffiffiffi

ηdet
p

pout
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηdet

p
p0, where p0 is an uncor-

related vacuum field. For concreteness, here we focus
on the case of the so-called cold damping scheme [50],
while a more general treatment is provided in Appendix C.
Cold damping is characterized by the following spectral
filter function,

hmfðωÞ ¼ −i
gmfω

1 − iω=ωmf
; ð15Þ

which is expressed in terms of the bandwidth ωmf and
by the dimensionless quantity gmf, which quantifies the
feedback gain. The bandwidth ωmf describes the finite time
response of the feedback, while any explicit delay in the
feedback loop is neglected [52]. From Eq. (15) we can
already understand the regime of interest for feedback
by observing that argðhmfÞ ¼ − arctanðωmf=ωÞ. For ωmf ≫
ω ≈Ωm, the argument tends to −π=2, so that the feedback
force becomes proportional to momentum, thus providing
damping of the mechanical motion. Therefore, the relevant
regime for feedback cooling is that of large feedback
bandwidth.
Similar to coherent feedback cooling, the effect of

measurement-based feedback cooling is fully taken into
account by introducing a modified mechanical frequency
and a modified damping rate, which are given by

Γmf ¼
2Ωmg1gmfωmf ½ðκ=2Þωmf − Ω2

m�
½ðκ=2Þ2 þΩ2

m�ðΩ2
m þ ω2

mfÞ
; ð16Þ

δΩmf ¼
Ω2

mg1gmfωmfðκ=2þ ωmfÞ
½ðκ=2Þ2 þ Ω2

m�ðΩ2
m þ ω2

mfÞ
: ð17Þ

In the relevant limit ωmf ; κ ≫ Ωm, the residual phonon
occupation, as obtained from the corresponding noise
power spectral density, is given by

n̄m;mf ¼
g1

gmfΩm
þ gmfΩm

16g1ηdet
−
1

2
≥
1 − ffiffiffiffiffiffiffi

ηdet
p

2
ffiffiffiffiffiffiffi
ηdet

p ; ð18Þ

where the inequality is saturated for a value of the feedback
gain gmf ¼ 4

ffiffiffiffiffiffiffi
ηdet

p
g1=Ωm. Remarkably, the above expres-

sion has the same form as the residual occupation of
coherent feedback cooling, given by Eq. (14).
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To better appreciate this correspondence, we can evalu-
ate Eqs. (8) and (14) for Ωmτ ¼ φ ¼ π=2, i.e., the param-
eters that result in optimal cooling. We find

Γm ¼ 16
ffiffiffi
η

p g1g2
κ

; δΩm ¼ 0;

n̄m ¼ g1
4

ffiffiffi
η

p
g2

þ g2
4

ffiffiffi
η

p
g1

−
1

2
: ð19Þ

In the limit ωmf ; κ ≫ Ωm, we can recover these expressions
from Eqs. (16)–(18) upon setting gmf ¼ 4

ffiffiffi
η

p
g2Ωm and

ηdet ¼ η. We, therefore, conclude that in this limit the two
schemes are equivalent. In Appendix C we show that this
equivalence can be extended to arbitrary delays τ and
linewidths κ.
We note that beyond cooling, in applications where

both light quadratures might play a role, coherent and
measurement-based feedback control are not equivalent
anymore [1].

VII. CONCLUSIONS AND OUTLOOK

We implement an all-optical coherent feedback platform
to control the motion of a mechanical oscillator and
demonstrate full control via the parameters of the feedback
loop, namely, the phase and the delay. We show theoreti-
cally that this scheme can be used for ground-state cooling
in the unresolved sideband regime without the need for
measurements. We demonstrate experimentally that even
with a moderate mechanical Q factor, we can beat the
theoretical lowest phonon-number limit of cavity dynami-
cal backaction cooling in the unresolved sideband regime,
with only 1% of the optical power required for the latter. In
contrast to previous proposals, where feedback is per-
formed on the optical cavity mode [22,27], we perform
feedback directly on a mechanical oscillator mode, using
orthogonal polarizations for first and second passes. But
our scheme does not rely on the availability of same-
frequency orthogonal cavity modes: When experimentally
possible, one could use another longitudinal mode of the
cavity. Alternatively, the scheme could also be imple-
mented via a loop that is opened or closed by an optical
switch, with a switching rate 1=ð2τÞ, in such a way that first
and second passes are never at the same time in the cavity.
As such, the double-pass scheme can be adapted to a
variety of different physical systems and is not restricted to
optomechanics. In the present configuration, ground-state
cooling would be achievable by improving the thermal
conductivity of the membrane support to ensure thermal-
ization at 4.2 K. However, the most straightforward
improvement would consist in using a mechanical reso-
nator with a higher quality factor [53].
The beauty of coherent feedback lies in its potential for

processing noncommuting observables [24]. In the unre-
solved sideband regime, coherent feedback opens up the
possibility to generate self-interactions and mechanical

squeezing [35], photon-phonon entanglement [22], or
to enhance optical nonlinearities at the single-photon
level [19]. Our scheme could also be exploited in the
sideband resolved regime, where optomechanical cou-
plings of the form ĉjB̂þ B̂†ĉ†j can be designed, with B̂
being a raising or lowering operator of the mechanical
oscillator. Such couplings are sensitive to both quadratures
and potentially allow for creating nonclassical mechanical
states using coherent feedback [3].
In contrast to measurement-based control, coherent

feedback avoids the incoherent addition of feedback and
measurement noise, making it a key technique in the low
phonon-number regime [24]. In particular, the interference
of optical input noise can be tuned to realize backaction
cancellation [8,35]. This makes coherent feedback a prom-
ising candidate for sensing applications, where such back-
action cancellation is highly desirable.
Coherent feedback thus opens up new approaches for

engineering the dynamics of quantum systems with poten-
tial applications for quantum technology, measurement,
and control, as well as quantum thermodynamics.
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APPENDIX A: PHONON-NUMBER
CALIBRATIONS

1. Phonon number via homodyne detection

In this appendix, we detail the calibration of the phonon
number, which is determined by performing a homodyne
measurement on a leak of the first beam interacting with the
membrane [see Fig. 1(a)]. This is done at room temper-
ature, where we know the membrane is thermalized to the
environment.
In the frequency domain, we can write the field ĉ1 inside

the cavity as [47]

ĉ1ðωÞ ¼ −χcðωÞ½
ffiffiffiffiffiffiffi
κη1

p
âin1 ðωÞ þ i

ffiffiffi
2

p
g1X̂mðωÞ�; ðA1Þ

where η1 is the cavity in-coupling efficiency and χcðωÞ−1 ¼
κ=2 − iðΔþ ωÞ the cavity susceptibility.
The output phase quadrature of the light P̂L is related to

the one inside the cavity p̂1 via the input-output rela-
tion P̂L ¼ P̂in

1 þ ffiffiffiffiffiffiffi
κη1

p
p̂1.
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In the thermal-noise-dominated regime, we can neglect
the term P̂in

1 . Setting g1 ¼ g0χcð0Þ ffiffiffiffiffiffiffi
κη1

p
αin1 , we can express

P̂L in terms of experimentally measurable quantities:

P̂LðωÞ ¼ −η1g0αin1 RðωÞX̂mðωÞ; ðA2Þ

with the cavity transduction factor,

RðωÞ ¼ κ½χcð0ÞχcðωÞ þ χ�cð0Þχ�cð−ωÞ� ¼Δ¼0 8

κ
: ðA3Þ

The thermal occupation number n̄m is then calibrated by
measuring this light quadrature. For this, we beat the output
beam with a strong local oscillator with power PLO ¼
ℏωLjαLOj2 ≫ P1 and use a Mach-Zehnder interferometer
to perform homodyne detection. By means of a piezoelectric
mirror in the local oscillator arm, we can scan the homodyne
angle θ, and the recorded output voltage is given by

D̂ðωÞ ¼
ffiffiffi
2

p
αLO½cosðθÞX̂LðωÞ þ sinðθÞP̂LðωÞ�: ðA4Þ

The dc signal of the interference is given by Dðω ¼ 0Þ ¼
2αLOα

in
1 cos θ, whose amplitude D0 ¼ 2αLOα

in
1 can now be

used to calibrate the membrane signal. Locking the inter-
ferometer at θ ¼ π=2 we are sensitive to the phase quad-
rature P̂L encoding the membrane signal X̂m:

D̂θ¼π=2ðωÞ ¼
ffiffiffi
2

p
αLOα

in
1 η1g0RðωÞX̂mðωÞ: ðA5Þ

From this signal D̂θ¼π=2ðωÞ, we can compute the
detected power spectral density SDDðωÞ,

SDDðωÞ ¼
1

2
D2

0½η1g0jRðωÞj�2SXXðωÞ; ðA6Þ

with the membrane displacement power spectral density
SXXðωÞ. On the other hand, the average number of phonons
is related to the variance of the membrane displacement as

n̄m þ 1

2
¼ hX̂2

mðtÞi ¼ 2

Z
∞

0

S̄XXðωÞ
dω
2π

; ðA7Þ

with the symmetrized PSD S̄XXðωÞ. Therefore, combining
Eqs. (A6) and (A7) the number of phonons can be directly
obtained from the recorded power spectral density as

n̄m ¼ 4

D2
0½ηg0jRðωÞj�2

Z
∞

0

S̄DDðωÞ
dω
2π

−
1

2
: ðA8Þ

2. Phonon number via area ratios

An alternative way to determine the thermal occupation
number of the mechanical oscillator consists in comparing
the measured power spectral density area in the presence of

feedback with the area obtained if only a single interaction
takes place.
In a single-pass interaction, the phonon occupation

can be estimated from the procedure outlined in the
previous section or from the measured linewidth Γm
and knowledge of the environment temperature by
n̄calib ¼ nthðTÞγm=ðγm þ ΓmÞ. We can now associate the
area of the measured spectrum Acalib to an occupation n̄calib.
For this, we first obtain the membrane occupation in the

presence of moderate cooling due to the optical field
following standard optomechanical cooling theory mea-
sured as a change in linewidth to its voltage transduction in
our PSD measurement S̄calibDD ðωÞ. We can then use the ratio
between the corresponding calibration area Acalib and the
computed occupation number n̄calib to determine the
occupation number n̄m due to our coherent feedback loop.
In the presence of additional cooling due to the

feedback loop, the phonon number is then given by the
ratio of areas

n̄m ¼ n̄calib
Acalib

ADD; ðA9Þ

with ADD the area of the measured PSD. For this to be
accurate, it is essential to know the temperature T at which
the membrane is thermalized. To determine the actual
thermalization temperature at different cryostat temper-
atures, we use standard optomechanical cooling experi-
ments as shown in Fig. 6. For each cryostat temperature, we
increase the power of a red-detuned beam and measure the
displacement PSD with a resonant probe beam in a
homodyne detection scheme. The ratio of the areas at
different temperatures can be used to infer the temperature
of the environment. If we compare the reduction in areas
due to the optomechanical cooling to the theoretical
expectation at those temperatures we find an excellent
agreement. Furthermore, this agreement allows us to
exclude excess backaction through classical laser noise

FIG. 6. Standard dynamical backaction cooling. For different
cryostat temperatures, the plot shows the phonon occupation as a
function of cooling beam power. The shaded area marks the
cavity dynamical backaction limit.
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for the powers that we are employing. We find a satisfac-
tory agreement between the two calibration procedures
described in this and the previous section.

APPENDIX B: THEORETICAL DESCRIPTION

1. Langevin equations including losses

In this appendix, we derive the Langevin equations
provided in Eqs. (1), (3), and (6) from the nonlinear
optomechanical equations of motion including additional
losses. We start by considering the Langevin equations for
the mechanical oscillator:

∂tX̂
0
mðtÞ ¼ ΩmP̂mðtÞ;

∂tP̂mðtÞ ¼ −ΩmX̂
0
mðtÞ − γmP̂mðtÞ

−
ffiffiffi
2

p
g0

X2
j¼1

Ĉ†
jðtÞĈjðtÞ þ

ffiffiffi
2

p
ξ̂thðtÞ: ðB1Þ

Here Ĉj denotes the annihilation operator in the cavity
mode j and the radiation pressure force originates from
the nonlinear optomechanical Hamiltonian Ĥom;j ¼ffiffiffi
2

p
ℏg0Ĉ

†
j ĈjX̂

0
m [20]. We now write

Ĉj ¼ eiϕjðjαjj þ ĉjÞ; ðB2Þ

where αj ¼ hĈji. In the optomechanical coupling, we drop
the nonlinear term that is independent of αj, as it is
negligible for large average displacements. This results
in the equation for the momentum:

∂tP̂mðtÞ ¼ −Ωm½X̂0
mðtÞ þ δX� − γmP̂mðtÞ

− 2
X2
j¼1

gjx̂jðtÞ þ
ffiffiffi
2

p
ξ̂thðtÞ;

δX ¼
ffiffiffi
2

p g0
Ωm

ðjα1j2 þ jα2j2Þ; ðB3Þ

where x̂j ¼ ðĉ†j þ ĉjÞ=
ffiffiffi
2

p
as in the main text. To recover

Eqs. (1) in the main text, we identify X̂m ¼ X̂0
m þ δX,

which also obeys ∂tX̂m ¼ ΩmP̂m. We note that δX is of
order one for the parameters in the experiment, implying
that the mechanical oscillator exhibits an average displace-
ment of the order of the zero-point fluctuations.
The Langevin equation for the cavity modes reads

∂tĈjðtÞ ¼
�
iΔ −

κ

2

�
ĈjðtÞ − i

ffiffiffi
2

p
g0ĈjX̂

0
mðtÞ −

ffiffiffi
κ

p
Âin
j ðtÞ;

ðB4Þ

where Âin
j ¼ αinj þ eiϕj âinj denotes the input field for the

respective mode, with hÂin
j i ¼ αinj . Using Eq. (B2) and

dropping the nonlinear term in the optomechanical cou-
pling, we find equations of motion for both the average
displacements αj and the operators describing fluctuations
around those averages ĉj. For the averages, we find

∂tαjðtÞ ¼
�
iΔþ i

ffiffiffi
2

p
g0δX −

κ

2

�
αjðtÞ −

ffiffiffi
κ

p
αinj : ðB5Þ

We note that these equations are nonlinear because
δX depends on αj. This nonlinear term acts like a
displacement-dependent detuning. However, since δX is
of order one and g0 ≪ κ, this can safely be ignored and we
find the steady-state values:

αj ¼ −
ffiffiffi
κ

p
αinj

κ=2 − iΔ
: ðB6Þ

For the fluctuations, we find the Langevin equations:

∂tĉjðtÞ ¼
�
iΔþ i

ffiffiffi
2

p
g0δX −

κ

2

�
ĉjðtÞ − i

ffiffiffi
2

p
gjX̂mðtÞ

−
ffiffiffi
κ

p
âinj ðtÞ: ðB7Þ

The contribution to the detuning due to the displacement
of the mechanical oscillator can again safely be ignored.
For the first cavity mode, we directly recover Eq. (3). For
the second cavity mode, we first need to determine the
input field operator.
In the case of finite coupling efficiency to the cavity

mode, the input operator for the first cavity mode reads

âin1 ðtÞ ¼
ffiffiffiffiffi
η1

p
â0in1 ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η1

p
ν̂1ðtÞ; ðB8Þ

where â0in1 denotes the input mode driven by the local
oscillator and ν̂1 denotes an additional source of vacuum
noise. Note that αin1 ¼ ffiffiffiffiffi

η1
p

α0in1 ; i.e., the cavity mode is
driven by a fraction η1 of the physical input power. The
output mode of the first cavity mode that is used for
feedback is given by

â0out1 ðtÞ ¼ â0in1 ðtÞ þ ffiffiffiffiffiffiffi
η1κ

p
ĉ1ðtÞ: ðB9Þ

This mode is then combined with an auxiliary local
oscillator â0aux at a beam splitter with splitting ratio ηaux,
before being delayed by the time τ. Including further losses
arising from the delay fiber, additional optics, as well as
coupling to the second cavity mode, the input mode for the
second cavity mode reads
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âin2 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2ηT

p
ν̂2ðtÞ þ

ffiffiffiffiffiffiffiffiffi
η2ηT

p ½ ffiffiffiffiffiffiffiffi
ηaux

p
eiφâ10outðt − τÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηaux

p
â0auxðt − τÞ�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2ηT

p
ν̂2ðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1η2ηTηauxκ

p
eiφĉ1ðt − τÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

η2ηTηaux
p

eiφâ10inðt − τÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ηTð1 − ηauxÞ

p
â0auxðt − τÞ: ðB10Þ

Here the phase φ ¼ ϕ1 − ϕ2 arises because of the different phases that enter the definitions of ĉ1 and ĉ2; see Eq. (B2). We
may now introduce the mode

âauxðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ηTð1−ηauxÞ

1−η

s
â0auxðt−τÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−η2ηT
1−η

s
ν̂2ðtÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−η1Þη2ηTηaux

1−η

s
eiφ½

ffiffiffiffiffiffiffiffiffiffiffi
1−η1

p
â10inðt−τÞ− ffiffiffiffiffi

η1
p

ν̂1ðt−τÞ�; ðB11Þ

where we introduce the total efficiency:

η ¼ η1η2ηTηaux: ðB12Þ
We note that in the ideal limit where η1 ¼ η2 ¼ ηT ¼ 1, we
have âauxðtÞ ¼ â0auxðt − τÞ; i.e., we shift the time argument.
With the help of Eq. (B11), we find

âin2 ðtÞ ¼
ffiffiffi
η

p
eiφ½ ffiffiffi

κ
p

ĉ1ðt− τÞ þ âin1 ðt− τÞ� þ
ffiffiffiffiffiffiffiffiffiffi
1− η

p
âauxðtÞ;
ðB13Þ

recovering Eq. (6). Importantly, the mode âaux is orthogo-
nal to the mode âin1 for all values of τ, such that we preserve
the commutation relations from the ideal scenario.
However, the average of the auxiliary mode reads

αaux ¼ ð1 − η1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ηTηaux
1 − η

r
α01

in þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2ηTð1 − ηauxÞ

1 − η

s
α0aux:

ðB14Þ
For η1 ¼ η2 ¼ ηT ¼ 1, we obtain α0aux ¼ αaux as expected.
However, for η1 ≠ 1, αaux is nonzero even in the absence of
an auxiliary local oscillator.
With these inputmodes, we find the average displacements

of the cavity modes in terms of αin1 ¼ ffiffiffiffiffi
η1

p
α01

in and αaux:

α1 ¼ −
ffiffiffi
κ

p
αin1

κ=2 − iΔ
;

α2 ¼
1

κ=2 − iΔ

� ffiffiffiffiffi
ηκ

p κ=2þ iΔ
κ=2 − iΔ

αin1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞκ

p
αaux

�
:

ðB15Þ

The Langevin equations in the main text thus fully capture
additional loss channels. However, the amplitudes of the
physical inputs α01

in and α0aux have to be rescaled in order to
take into account all the loss channels that are present.

2. Frequency space

The Langevin equations in Eqs. (1), (3), and (6) can
conveniently be written as a matrix equation in frequency
space,

−iωr̂ðωÞ ¼ AðωÞr̂ðωÞ þ BðωÞr̂inðωÞ; ðB16Þ

where we introduce the vectors

r̂ðωÞ ¼

0
BBBBBBBB@

X̂mðωÞ
P̂mðωÞ
x̂1ðωÞ
p̂1ðωÞ
x̂2ðωÞ
p̂2ðωÞ

1
CCCCCCCCA

r̂inðωÞ ¼

0
BBBBBB@

ξ̂thðωÞ
x̂in1 ðωÞ
p̂in
1 ðωÞ

x̂auxðωÞ
p̂auxðωÞ

1
CCCCCCA
; ðB17Þ

Here, operators in frequency space are given by

ÔðωÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z

ÔðtÞeiωtdt: ðB18Þ

The matrices in Eq. (B16) read

AðωÞ ¼

0
BBBBBBBBB@

0 Ωm 0 0 0 0

−Ωm −γm −2g1 0 −2g2 0

0 0 −κ=2 −Δ 0 0

−2g1 0 Δ −κ=2 0 0

0 0 − ffiffiffi
η

p
κ cosðφÞeiωτ ffiffiffi

η
p

κ sinðφÞeiωτ −κ=2 −Δ

−2g2 0 − ffiffiffi
η

p
κ sinðφÞeiωτ − ffiffiffi

η
p

κ cosðφÞeiωτ Δ −κ=2

1
CCCCCCCCCA

ðB19Þ
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and

BðωÞ ¼

0
BBBBBBBBBB@

0 0 0 0 0ffiffiffi
2

p
0 0 0 0

0 −
ffiffiffi
κ

p
0 0 0

0 0 −
ffiffiffi
κ

p
0 0

0 − ffiffiffiffiffi
ηκ

p
cosðφÞeiωτ ffiffiffiffiffi

ηκ
p

sinðφÞeiωτ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞκp

0

0 − ffiffiffiffiffi
ηκ

p
sinðφÞeiωτ − ffiffiffiffiffi

ηκ
p

cosðφÞeiωτ 0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − ηÞκp

1
CCCCCCCCCCA
: ðB20Þ

From Eq. (B16), we find that any power spectral density
can be written using

hr̂ðωÞr̂Tðω0Þi ¼ CðωÞhr̂inðωÞr̂Tinðω0ÞiCTðω0Þ; ðB21Þ

where CðωÞ ¼ ½AðωÞ þ iω�−1BðωÞ and the input spectral
density matrix reads

hr̂inðωÞr̂Tinðω0Þi

¼ δðωþ ω0Þ

0
BBBBBB@

SthðωÞ 0 0 0 0

0 1=2 i=2 0 0

0 −i=2 1=2 0 0

0 0 0 1=2 i=2

0 0 0 −i=2 1=2

1
CCCCCCA
;

ðB22Þ

with SthðωÞ given in Eq. (2).

Before solving these equations, it is instructive to consider
the simplified scenario whereΔ ¼ 0 and φ ¼ π=2. From the
equation for the first cavity mode, we find�

κ

2
− iω

�
p̂1ðωÞ ¼ −2g1X̂mðωÞ −

ffiffiffi
κ

p
p̂in
1 ðωÞ; ðB23Þ

illustrating how the momentum quadrature contains infor-
mation on the position of the mechanical resonator; p̂in

1

denotes the input (vacuum) noise. The momentum quad-
rature of the first cavity mode is then fed to the second cavity
mode and we find�

κ

2
− iω

�
x̂2ðωÞ ¼

ffiffiffiffiffi
ηκ

p
eiωτ½ ffiffiffi

κ
p

p̂1ðωÞ þ p̂in
1 �

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ηÞκ

p
x̂aux: ðB24Þ

Finally, the position quadrature of the second cavity
mode couples to the mechanical oscillator, completing the
feedback loop. We find for the momentum quadrature of
the mechanical oscillator:

−iωP̂mðωÞ ¼ −ΩmX̂mðωÞ − γmP̂mðωÞ − 4eiωτ
g1g2

ffiffiffi
η

p
κ

ðκ=2 − iωÞ2 X̂mðωÞ þ
ffiffiffi
2

p
ξ̂thðωÞ þ

ffiffiffi
2

p
ξ̂fbðωÞ: ðB25Þ

Using the relation −iωX̂mðωÞ ¼ ΩmP̂mðωÞ, we find that the real and imaginary parts of the prefactor of X̂mðωÞ in Eq. (B25)
correspond to frequency shift and damping, respectively. Since the delay τ determines the phase of the prefactor, it can be
used to tune between a frequency shift and damping, in complete agreement with our analysis in the main text. Finally, to
recover Eqs. (8) in the main text, we neglect the frequency dependence of the frequency shift and damping and take the
unresolved sideband limit κ ≫ Ωm.

3. Eliminating the cavity

Since we are dealing with a linear set of equations, the cavity modes may be eliminated from Eq. (B16). A tedious but
straightforward calculation results in

−iωP̂mðωÞ ¼ −½Ωm þ 2δΩmðωÞ�X̂mðωÞ − ½ΓmðωÞ þ γm�P̂mðωÞ þ
ffiffiffi
2

p
ξ̂thðωÞ þ

ffiffiffi
2

p
ξ̂fbðωÞ; ðB26Þ

where we introduce the frequency-dependent frequency shift,

δΩmðωÞ ¼ Re

�
2Δðg21 þ g22Þ

Δ2 þ ðκ=2 − iωÞ2 − 2eiωτg1g2
ffiffiffi
η

p
κ
2Δðκ=2 − iωÞ cosðφÞ − ½Δ2 − ðκ=2 − iωÞ2� sinðφÞ

½Δ2 þ ðκ=2 − iωÞ2�2
�
; ðB27Þ
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and the optomechanical damping rate

ΓmðωÞ ¼
Ωm

ω
Im

�
−

4Δðg21 þ g22Þ
Δ2 þ ðκ=2 − iωÞ2 þ 4eiωτg1g2

ffiffiffi
η

p
κ
2Δðκ=2 − iωÞ cosðφÞ − ½Δ2 − ðκ=2 − iωÞ2� sinðφÞ

½Δ2 þ ðκ=2 − iωÞ2�2
�
: ðB28Þ

The feedback noise is described by the spectral density hξ̂fbðωÞξ̂fbðω0Þi ¼ δðωþ ω0ÞSfbðωÞ, with

SfbðωÞ ¼
κðg21 þ g22Þ

ðκ=2Þ2 þ ðΔþ ωÞ2 þ 2κg1g2
ffiffiffi
η

p ½ðΔþ ωÞ2 − ðκ=2Þ2� cosðφþ ωτÞ þ κðΔþ ωÞ sinðφþ ωτÞ
½ðκ=2Þ2 þ ðΔþ ωÞ2�2 : ðB29Þ

We stress that Eqs. (B26)–(B29) involve no further approximations after the linearization of the optomechanical coupling.

For a high-quality oscillator, we may replace δΩmðωÞ
with δΩm ≡ δΩmðΩmÞ and ΓmðωÞ with Γm in Eq. (B26).
This results in a second-order differential equation describ-
ing a damped harmonic oscillator:

∂
2
t X̂mðtÞ ¼ −ðΩm þ δΩmÞ2X̂mðtÞ − ðΓm þ γmÞ∂tX̂mðtÞ

þ Ωm

ffiffiffi
2

p
ξ̂thðtÞ þΩm

ffiffiffi
2

p
ξ̂fbðtÞ: ðB30Þ

From this equation, we may derive the spectral density,

SXXðωÞ¼
1

2

SthðΩmÞþSfbðΩmÞ
ðΩmþδΩm−ωÞ2þ½ðγmþΓmÞ=2�2

þ1

2

Sthð−ΩmÞþSfbð−ΩmÞ
ðΩmþδΩmþωÞ2þ½ðγmþΓmÞ=2�2

; ðB31Þ

where we again invoke the high quality factor of the
oscillator.
The number of phonons can be obtained from

2n̄m þ 1 ¼
Z

∞

−∞
½SXXðωÞ þ SPPðωÞ�

dω
2π

¼
Z

∞

−∞
SXXðωÞ½1þ ðω=ΩmÞ2�

dω
2π

≃ 2

Z
∞

−∞
SXXðωÞ

dω
2π

; ðB32Þ

which yields Eq. (12) upon using Γm¼SfbðΩmÞ−Sfbð−ΩmÞ.

4. Unresolved sideband limit

Here we provide simplified expressions for the unre-
solved sideband limit, Ωm ≪ κ. In contrast to the

expressions given in the main text, we consider a finite
detuning Δ. We first consider dynamical backaction cool-
ing without coherent feedback by setting η ¼ 0. In this
case, the frequency shift and the optomechanical damping
rate reduce to

δΩdyn ¼
2Δðg21 þ g22Þ
Δ2 þ ðκ=2Þ2 ðB33Þ

and

Γdyn ¼ −4
ΔκΩmðg21 þ g22Þ
½Δ2 þ ðκ=2Þ2�2 : ðB34Þ

For Γm ≫ γm, the phonon occupation number in Eq. (12)
reduces to

n̄dyn ¼
Δ2 þ ðκ=2Þ2
4jΔjΩm

−
1

2
; ðB35Þ

which is minimized at Δ ¼ −κ=2, where it reads

n̄dyn ¼
κ

4Ωm
≫ 1: ðB36Þ

Here, we drop the term 1=2 as it becomes negligible. The
last equation is the well-known cooling limit for cavity
dynamical backaction cooling in the unresolved sideband
regime [20].
In the presence of coherent feedback (η ≠ 0), we find the

following expressions to lowest order in Ωm=κ:

δΩm ¼ 2Δðg21 þ g22Þ
Δ2 þ ðκ=2Þ2 − 2 cosðΩmτÞg1g2

ffiffiffi
η

p
κ
Δκ cosðφÞ − ½Δ2 − ðκ=2Þ2� sinðφÞ

½Δ2 þ ðκ=2Þ2�2 ðB37Þ

and

Γm ¼ 4 sinðΩmτÞg1g2
ffiffiffi
η

p
κ
Δκ cosðφÞ − ½Δ2 − ðκ=2Þ2� sinðφÞ

½Δ2 þ ðκ=2Þ2�2 : ðB38Þ
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We note that the coherent feedback allows for a Γm that is
independent ofΩm=κ to lowest order in this parameter. This
stands in contrast to cavity dynamical backaction cooling,
where Γdyn ∝ Ωm=κ to lowest order [cf. Eq. (B34)]. In the
limit Γm ≫ γm, the number of phonons is then given by

n̄m ¼ κ

Γm

ðg21 þ g22Þ
ðκ=2Þ2 þ Δ2

þ 1

2

cosðΩmτÞ
sinðΩmτÞ

κΔ sinðφÞ þ ½Δ2 − ðκ=2Þ2� cosðφÞ
κΔ cosðφÞ − ½Δ2 − ðκ=2Þ2� sinðφÞ −

1

2
:

ðB39Þ

For Δ ¼ 0, Eqs. (B37)–(B39) reduce to Eqs. (8) and (14).

APPENDIX C: EQUIVALENCE WITH
MEASUREMENT-BASED FEEDBACK COOLING

In this appendix, we extend the comparison between
coherent feedback and measurement-based feedback of
Sec. VI by considering a generic spectral filter function
ΞmfðωÞ, which implements an arbitrary feedback response
taking place after the measurement. As for the treatment of
coherent feedback, we can obtain a reduced description for
the mechanical variables by eliminating the cavity mode,

− iωP̂mðωÞ
¼ −½Ωm þ 2δΩmfðωÞ�X̂mðωÞ
− ½ΓmfðωÞ þ γm�P̂mðωÞ þ

ffiffiffi
2

p
ξ̂thðωÞ þ

ffiffiffi
2

p
ξ̂mfðωÞ;

ðC1Þ

where we introduce the frequency shift and optomechanical
damping rate, respectively given by

δΩmfðωÞ ¼
1

2
Re

�
2g1ΞmfðωÞ
κ=2 − iω

�
; ðC2Þ

ΓmfðωÞ ¼ −
Ωm

ω
Im

�
2g1ΞmfðωÞ
κ=2 − iω

�
; ðC3Þ

with Γmf ¼ ΓmfðΩmÞ, and collect the noise terms in the
expression

ξ̂mfðωÞ ¼
g1

ffiffiffiffiffi
2κ

p

κ=2 − iω
x̂inðωÞ −

ΞmfðωÞffiffiffiffiffi
2κ

p
�
κ=2þ iω
κ=2 − iω

�
p̂inðωÞ

−
ΞmfðωÞffiffiffiffiffi

2κ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηdet
ηdet

s
p̂0ðωÞ: ðC4Þ

The first term in Eq. (C4) describes shot noise due to
radiation pressure interaction with the first cavity, while the
second and third terms describe the noise associated with
the feedback process. The spectral density characterizing
the noise ξ̂mf reads

SmfðωÞ ¼
κg21

ω2 þ ðκ=2Þ2 þ
jΞmfðωÞj2
4κηdet

− g1Im

�
ΞmfðωÞ
κ=2 − iω

�

¼ κg21
ω2 þ ðκ=2Þ2 þ

jΞmfðωÞj2
4κηdet

þ 1

2

ω

Ωm
ΓmfðωÞ: ðC5Þ

We can now compare the quantities δΩmfðωÞ, ΓmfðωÞ,
and SmfðωÞ with the corresponding expressions derived
for the case of coherent feedback, respectively given by
Eqs. (B27)–(B29). We further focus on the case Δ ¼ 0 and
φ ¼ π=2, which is relevant for cooling.
By requiring the measurement-based feedback to induce

the same effective damping and broadening as coherent
feedback at all frequencies, i.e., by enforcing δΩmfðωÞ ¼
δΩmðωÞ and ΓmfðωÞ ¼ ΓmðωÞ, we get the following filter
function:

Ξ̃mfðωÞ ¼ −4g2
ffiffiffi
η

p eiωτ

1 − 2iω=κ
: ðC6Þ

In the above expression, the exponential term describes
the effect of delay; i.e., in order to reproduce the effect of
coherent feedback a delay has to be incorporated in the
measurement-based feedback loop. If we compare this
expression to the case of cold damping in Eq. (15), we
notice that κ=2 plays the role of the feedback bandwidth,
4g2

ffiffiffi
η

p
the strength of the feedback, and that there is no

frequency dependence in the numerator for τ ¼ 0.
We then plug this filter in Eq. (C5) and compare the

corresponding noise spectral density with that of coherent
feedback Eq. (B29). It is straightforward to show that
whenever η ¼ ηdet, the ensuing noise spectral densities
SfbðωÞ and SmfðωÞ match for all frequency values and for
arbitrary values of delay. This shows the equivalence of
measurement-based feedback cooling and coherent feed-
back cooling in more general terms than the particular case
of cold damping.

APPENDIX D: COHERENT FEEDBACK
COOLING PERFORMANCE IN DIFFERENT

CAVITY REGIMES

Here, we investigate the comparative performance of
coherent feedback cooling versus standard cavity dynami-
cal backaction cooling in both the resolved and unresolved
sideband regimes. To quantify performance, we examine
the lowest achievable phonon number under different
scenarios: For cavity cooling, we consider the well-known
cases of Δ ¼ −Ωm for κ ≪ Ωm andΔ ¼ −κ=2 for κ ≫ Ωm,
where the minimum phonon number asymptotically
approaches κ=ð4ΩmÞ. In Fig. 7 we compare these cooling
strategies to coherent feedback cooling, for Δ ¼ −Ωm and
Δ ¼ 0, which are the optimal detunings in the two different
cavity regimes. Our results demonstrate that, in the resolved
sideband regime, coherent feedback cooling provides no
significant advantage over cavity cooling when operating
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at Δ ¼ −Ωm and using the optimal parameters φ ¼
Ωmτ ¼ π=2 mentioned in Sec. III. However, in the unre-
solved sideband regime, we find that coherent feedback
cooling (which performs best for Δ ¼ 0) outperforms
standard optomechanical cooling (which leads to minimal
occupation at Δ ¼ −κ=2). Intriguingly, we observe that
coherent feedback cooling performs better deep in the
unresolved sideband regime, where the cavity can actually
be ignored and the first interaction is performing an almost
instantaneous readout of the membrane’s motion. The plot
is shown for η ≃ 0.98. For more realistic scenarios, the
minimal phonon number becomes independent of κ early in
the unresolved sideband regime, saturating to the value
expressed in Sec. III in Eq. (14).
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FIG. 7. Cooling performance for different cavity regimes for
coherent feedback and cavity dynamical backaction cooling.
Blue lines show the performance for coherent feedback for
Δ ¼ −Ωm (solid) and Δ ¼ 0 (dashed), in both cases
φ ¼ Ωmτ ¼ π=2, as described in Sec. III. Red lines show the
performance of cavity cooling for Δ ¼ −Ωm (solid) and Δ ¼
−κ=2 (dashed). The black dotted line shows the cavity cooling
limit in the unresolved sideband regime. The coherent feedback
curves are shown for η ≃ 0.98.
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