
Existence and stability of weak solutions of the

Vlasov–Poisson system in localized Yudovich spaces

Gianluca Crippa, Marco Inversi, Chiara Saffirio, Giorgio Stefani

Departement Mathematik und Informatik

Fachbereich Mathematik

Universität Basel

CH-4051 Basel

Preprint No. 2023-05

June 2023

dmi.unibas.ch

https://dmi.unibas.ch/


EXISTENCE AND STABILITY OF WEAK SOLUTIONS OF THE

VLASOV–POISSON SYSTEM IN LOCALIZED YUDOVICH SPACES

GIANLUCA CRIPPA, MARCO INVERSI, CHIARA SAFFIRIO, AND GIORGIO STEFANI

Abstract. We consider the Vlasov–Poisson system both in the repulsive (electrostatic poten-
tial) and in the attractive (gravitational potential) cases. In our first main theorem, we prove
the uniqueness and the quantitative stability of Lagrangian solutions f = f(t, x, v) whose asso-
ciated spatial density ρf = ρf (t, x) is potentially unbounded but belongs to suitable uniformly-
localized Yudovich spaces. This requirement imposes a condition of slow growth on the function
p 7→ ‖ρf (t, ·)‖Lp uniformly in time. Previous works by Loeper, Miot and Holding–Miot have
addressed the cases of bounded spatial density, i.e., ‖ρf (t, ·)‖Lp . 1, and spatial density such

that ‖ρf (t, ·)‖Lp ∼ p1/α for α ∈ [1, +∞). Our approach is Lagrangian and relies on an ex-
plicit estimate of the modulus of continuity of the electric field and on a second-order Osgood
lemma. It also allows for iterated-logarithmic perturbations of the linear growth condition. In
our second main theorem, we complement the aforementioned result by constructing solutions
whose spatial density sharply satisfies such iterated-logarithmic growth. Our approach relies
on real-variable techniques and extends the strategy developed for the Euler equations by the
first and fourth-named authors. It also allows for the treatment of more general equations that
share the same structure as the Vlasov–Poisson system. Notably, the uniqueness result and the
stability estimates hold for both the classical and the relativistic Vlasov–Poisson systems.

1. Introduction

1.1. Framework. For some fixed T ∈ (0,+∞), we consider the Vlasov–Poisson system






∂tf + v · ∇xf +Ef · ∇vf = 0 in (0, T ) × R
2d,

Ef (t, x) = κ

∫

Rd
K(x− y) ρf (t, y) dy in (0, T ) × R

d,

ρf (t, x) =

∫

Rd
f(t, x, v) dv in (0, T ) × R

d,

f(0, x, v) = f0(x, v) in R
2d,

(1.1)

where f0 ∈ L1(R2d) is the initial datum, f ∈ L∞([0, T ];L1(R2d)) is the unknown, ρf ∈
L∞([0, T ];L1(Rd)) is the spatial density associated with f , κ ∈ {−1,+1} and K : Rd → R

d
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is the Riesz kernel, given by

K(z) =
x

|x|d , x ∈ R
d \ {0}. (1.2)

In particular, the vector field Ef ∈ L∞([0, T ];L1
loc(Rd;Rd)) is well defined. For d = 3, the

Vlasov–Poisson system (1.1) describes the time evolution of the density f of plasma consisting
of charged particles with long-range interaction, e.g., a repulsive Coulomb potential for κ = 1
or an attracting gravitational potential for κ = −1.

The Vlasov–Poisson system (1.1) has been extensively investigated. Existence and uniqueness
of classical solutions of the system (1.1) under some regularity assumptions on the initial data
go back to Iordanski [16] for d = 1 and to Okabe–Ukai [30] for d = 2. In any dimension, global
existence of weak solutions with finite energy

sup
t∈[0,T ]

∫

R2d
|v|2 f(t, x, v) dxdv +

κ

2

∫

Rd
|Ef (t, x)|2 dx < +∞

is due to Arsen’ev [2]. For d = 3, global existence and uniqueness have been addressed by Bardos–
Degond [3] for classical solutions with small initial data, and then by Pfaffelmoser [25] and Lions–
Perthame [19] using different methods. The main idea of [25] is to exploit Lagrangian techniques
to prove global existence and uniqueness of classical solutions with compactly supported initial
data. The approach of [19], instead, relies on an Eulerian point of view, yielding existence of
global weak solutions with finite velocity moments. More precisely, for d = 3, if f0 ∈ L1(Rd) ∩
L∞(Rd) is such that

∫

R2d
|v|mf0(x, v) dxdv < +∞ for some m > 3, (1.3)

then there exists a corresponding weak solution f ∈ L∞([0,+∞);L1(R2d)) such that

sup
t∈[0,T ]

∫

R2d
|v|mf(t, x, v) dxdv < +∞ for any T > 0.

For further developments concerning the propagation of moments and global existence of weak
solutions of the Vlasov–Poisson system (1.1), we refer the reader to [5, 7, 9, 23,24,27].

Sufficient conditions for uniqueness of weak solutions of the Vlasov–Poisson system (1.1) have
been first obtained in [19], provided that (1.3) holds with m > 6 and a technical assumption
on the support of the initial data is satisfied. A simpler criterion has been then proposed
by Robert [26] for compactly supported weak solutions, and later extended by Loeper [20] to
measure-valued solutions f with spatial density such that

ρf ∈ L∞([0, T ];L∞(Rd)). (1.4)

Recently, Miot [22] generalized the uniqueness criterion of [19] to measure-valued solutions f
with spatial density such that, for some T > 0,

sup
t∈[0,T ]

sup
p≥1

‖ρf (t, ·)‖Lp

p
< +∞. (1.5)

The uniqueness condition (1.5) is satisfied by some non-trivial weak solutions with initial data
having unbounded macroscopic density, see [22, Ths. 1.2 and 1.3]. Later, Holding–Miot [13] pro-
vided a uniqueness criterion interpolating between the conditions (1.4) and (1.5) by considering
measure-valued solutions f with spatial density such that, for some T > 0 and α ∈ [1,+∞),

sup
t∈[0,T ]

sup
p≥α

‖ρf (t, ·)‖Lp

p1/α
< +∞. (1.6)

The case α = 1 corresponds to (1.5), while the limiting case α = +∞ corresponds to (1.4).
Condition (1.6) implies that ρf belongs to an exponential Orlicz space, see [13, Sec. 1.1.1].



EXISTENCE AND STABILITY OF WEAK SOLUTIONS OF THE VLASOV–POISSON SYSTEM 3

Conditions (1.5) and (1.6) allow to consider initial data with compact support in velocity as well
as Maxwell–Boltzmann distributions with exponential decay as |v| → +∞, see the comments
below [22, Th. 1.2] and [13, Prop. 1.14].

1.2. Yudovich spaces and modulus of continuity. The main aim of the present paper is to
establish existence and stability properties of weak solutions of the Vlasov–Poisson system (1.1),
extending the results obtained in [13, 20, 22] to measure-valued solutions with spatial density
belonging to uniformly-localized Yudovich spaces.

We consider solutions f of the system (1.1) whose spatial density ρf satisfies

sup
t∈[0,T ]

sup
p≥1

‖ρf (t, ·)‖Lp

Θ(p)
< +∞ (1.7)

for some fixed increasing function Θ: [0,+∞) → (0,+∞), called growth function. Note that (1.4)

corresponds to Θ constant, (1.5) to Θ(p) = p and (1.6) to Θ(p) = p
1
α . Also notice that the

behavior of Θ(p) as p → +∞ only matters. We call such densities admissible for the system (1.1),
and we let

AΘ([0, T ]) =
{

f ∈ L∞([0, T ];L1(R2d)) : ρf ∈ L∞([0, T ];Y Θ
ul (Rd))

}

. (1.8)

Here and in the following, we let

Y Θ
ul (Rd) =






f ∈

⋂

p∈[1,+∞)

Lp
ul(R

d) : ‖f‖Y Θ
ul

= sup
p∈[1,+∞)

‖f‖Lp
ul

Θ(p)
< +∞






(1.9)

be the uniformly-localized Yudovich space, where, for p ∈ [1,+∞),

Lp
ul(R

d) =

{

f ∈ Lp
loc(R

d) : ‖f‖Lp
ul

= sup
x∈Rd

‖f‖Lp(B1(x)) < +∞
}

,

is the uniformly-localized Lp space on R
d. We also define the Yudovich space Y Θ(Rd) as in (1.9)

by dropping the subscript ‘ul’ everywhere. These spaces were first introduced by Yudovich [32]
to provide uniqueness of unbounded weak solutions of incompressible inviscid 2-dimensional
Euler’s equations. We also refer to the recent works [4, 6, 28,29].

Following [13,20,22], our starting point is the relation between the Lp growth condition (1.7)
and the continuity of the vector field Ef , see Lemma 1.1 below. Our result encodes the log-
Lipschitz regularity obtained in [20, Lem. 3.1] following from (1.4), as well as its more general
version proved in [13, Lem. 2.1] concerning (1.5) and (1.6). As for Euler’s equations [6], the main
novelty here is that, once the spatial density ρf satisfies (1.7), then we can explicitly express the
(generalized) modulus of continuity of Ef depending on the chosen growth function Θ, namely,
ϕΘ : [0,+∞) → [0,+∞) defined as

ϕΘ(r) =







0 for r = 0,

r | log r| Θ(|log r|) for r ∈ (0, e−d−1),

e−d−1 (d+ 1) Θ(d+ 1) for r ∈ [e−d−1,+∞)

(1.10)

(the choice of the constant e−d−1 is irrelevant and is made for convenience only, see below).
With a slight abuse of notation, we set

C0,ϕΘ
b (Rd;Rd) =

{

E ∈ L∞(Rd;Rd) : sup
x 6=y

|E(x) − E(y)|
ϕΘ(|x− y|) < +∞

}

.

Lemma 1.1 (Modulus of continuity). If f ∈ AΘ([0, T ]), then

Ef ∈ L∞([0, T ];C0,ϕΘ
b (Rd;Rd)).
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The proof of Lemma 1.1 revisits a classical strategy for proving Morrey’s estimates for Riesz-
type potential operators, see [21, Chap. 8] and [22, Lem. 2.2] (for strictly related results see [8,
Ths. A and B]). Here we adopt the elementary approach proposed in [6, Sec. 2], generalizing the
computations done in the 2-dimensional case to any dimension.

1.3. Weak solutions and transport equation. A simple but quite crucial byproduct of
Lemma 1.1 is that fEf ∈ L∞([0, T ];L1(R2d;Rd)) whenever f ∈ AΘ([0, T ]). This allows us to
define weak solution of the system (1.1) among admissible densities, as follows.

Definition 1.2 (Admissible weak solution). We say that f ∈ AΘ([0, T ]) is an admissible weak

solution of the system (1.1) starting from the initial datum f0 ∈ L1(R2d) if
∫ T

0

∫

R2d

(

∂tψ + v · ∇xψ + Ef · ∇vψ
)

f dxdv dt = −
∫

R2d
ψ(0, ·) f0 dxdv

for any ψ ∈ C∞
c ([0, T ) × R

2d).

Due to the structure of the system (1.1), one is tempted to look for weak solutions f ∈
AΘ([0, T ]) transported along the flow of the vector field bf : [0, T ] × R

2d → R
2d,

bf (t, x, v) = (v,Ef (t, x)) for t ∈ [0, T ], x, v ∈ R
d. (1.11)

The Cauchy problem corresponding to the vector field bf in (1.11) is in fact a second-order ODE
that can be rewritten in the form







Ẋ = V, for t ∈ (0, T ),

V̇ = Ef (t,X), for t ∈ (0, T ),

X(0) = x, V (0) = v,

(1.12)

where t 7→ (X(t), V (t)) is any flow line starting from the initial datum (x, v) ∈ R
2d. Since the

modulus of continuity of bf in (1.11) uniquely depends on ϕΘ in (1.10), which, in turn, only
depends on the choice of Θ, here and in the rest of the paper we make the following

Assumption 1.3. The growth function Θ is such that ϕΘ is continuous on [0,+∞).

Consequently, given a weak solution f ∈ AΘ([0, T ]), in virtue of Lemma 1.1 and Peano’s
Theorem, the Cauchy problem (1.12) is well posed and admits a (classical) globally-defined,
possibly non-unique, flow Γf : [0, T ] × R

2d → R
2d.

Definition 1.4 (Admissible Lagrangian weak solution). We say that f ∈ AΘ([0, T ]) is an
admissible Lagrangian weak solution of the system (1.1) starting from the initial datum f0 ∈
L1(R2d) if f is as in Definition 1.2 and, moreover,

f(t, ·) = (Γf (t, ·))#f0 for all t ≥ 0, (1.13)

where Γf is any flow solving the Cauchy problem (1.12).

A natural way to ensure the well-posedness of the ODE in (1.12) is to impose the Osgood

condition on the modulus of (spatial) continuity of bf in (1.11). However, due to the special
second-order structure of (1.12), such condition can be considerably relaxed.

Theorem 1.5 (ODE well-posedness). Under Assumption 1.3, problem (1.12) admits a globally-

defined classical solution. Moreover, if ΦΘ : [0,+∞) → [0,+∞), given by

ΦΘ(r) =

∫ r

0
ϕΘ(s) ds for all r ≥ 0, (1.14)

satisfies
∫

0+

dr
√

ΦΘ(r)
= +∞, (1.15)
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then the solution of problem (2.8) is unique and the induced flow is a measure-preserving home-

omorphism on R
2d at each time.

Assumption (1.15) imposes the Osgood condition on
√

ΦΘ and can be seen as a second-order-
type Osgood condition on ϕΘ. Indeed, taking d = 1, X(0) = V (0) = 0 and Ef (t, x) = ϕΘ(x)
in (1.12) for simplicity, we observe that

d

dt

Ẋ2

2
= ϕΘ(X) Ẋ for t ∈ (0, T ),

so that, by integrating and changing variables, we get

Ẋ2(t) = 2

∫ t

0
ϕΘ(X(s)) Ẋ(s) ds = 2ΦΘ(X(t)) for all t ∈ (0, T ). (1.16)

Hence uniqueness of solutions of the ODE (1.12) should follow as soon as
∫

0+

Ẋ(t) dt
√

ΦΘ(X(t))
=

∫

0+

dr
√

ΦΘ(r)
= +∞,

leading to (1.15). Note that (1.16) involves the (square of the) velocity V = Ẋ of the trajectory,
besides its position X, since in fact X solves a second-order ODE, namely, Ẍ = Ef (t,X).
This explains why (1.15) should be seen as a second-order Osgood condition on the modulus of
continuity of the vector field Ef .

1.4. Lagrangian stability. Our first main result exploits the ODE well-posedness in The-
orem 1.5 to provide stability of admissible Lagrangian weak solutions of the Vlasov–Poisson
system (1.1), see Theorem 1.6 below, generalizing [22, Th. 1.1] and [13, Th. 1.9].

Due to the physical meaning of the problem (1.1) when d = 3, we restrict our attention to
non-negative densities f ≥ 0 and, up to (non-linearly) rescaling all estimates, we shall work with
probability densities. More precisely, we operate within the space of probability measures with

finite 1-moment on R
2d,

P1(R2d) =

{

µ ∈ P(R2d) :

∫

R2d
|p| dµ(p) < +∞

}

.

Such space can be naturally endowed with the 1-Wasserstein distance, given by

W1(µ1, µ2) = inf

{∫

R2d×R2d
|p− q| dπ(p, q) : π ∈ Plan(µ1, µ2)

}

(1.17)

for µ1, µ2 ∈ P1(R2d). Here

Plan(µ1, µ2) =
{

π ∈ P
(

R
2d × R

2d) : (pi)#π = µi, i = 1, 2
}

denotes the set of plans (or couplings) between µ1 and µ2, where pi : R2d × R
2d → R

2d is the
projection on the i-th component. As well-known [1], there exist optimal plans π ∈ Plan(µ1, µ2),
i.e., plans attaining the infimum in (1.17), and the resulting 1-Wasserstein space (P1(R2d),W1)
is a complete and separable metric space.

Theorem 1.6 (Lagrangian stability). Assume that ϕΘ is concave on [0,+∞) and ΦΘ satis-

fies (1.15). There is ΩΘ,T : [0,+∞) → [0,+∞) continuous, with ΩΘ,T (0) = 0, satisfying the fol-

lowing property. Let i = 1, 2 and let fi ∈ AΘ([0, T ]) be a Lagrangian weak solution of the Vlasov–

Poisson system (1.1) starting from the initial datum f i
0 ∈ L1(R2d). If µi

0 = f i
0 L 2d ∈ P1(R2d),

then also µi(t, ·) = fi(t, ·) L 2d ∈ P1(R2d) for all t ∈ [0, T ] and

sup
t∈[0,T ]

W1(µ1(t, ·), µ2(t, ·)) ≤ ΩΘ,T

(

W1(µ1
0, µ

2
0)
)

.

In particular, if f1
0 = f2

0 , then also f1(t, ·) = f2(t, ·) for all t ∈ [0, T ].
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The function ΩΘ,T appearing in Theorem 1.6 can be actually made more explicit and, basically,
it depends on the inverse of the function ΨΘ,δ,c : [0,+∞) → [0,+∞),

ΨΘ,δ,c(t) =

∫ t

0

ds

δ +
√

2cΦΘ(s)
for all t ≥ 0,

for suitably chosen parameters δ, c > 0.
The proof of Theorem 1.6 follows the elementary strategy introduced in [6] for the well-

posedness of 2-dimensional Euler’s equations (we also refer to recent applications of this method
to transport–Stokes equations [14] and to systems of non-local continuity equations [15]). Ba-
sically, to control the distance between two Lagrangian weak solutions of the system (1.1) in
AΘ([0, T ]), in view of (1.13), we just need to control the time evolution of the distance between
the initial data along the flows of the corresponding Cauchy problem (1.12) via a Grönwall-type
argument, exploiting both the stability of trajectories solving the associated ODE (1.12) given
by Theorem 1.5 and the modulus of continuity of the vector field provided by Lemma 1.1.

Actually, our approach is more general and in fact provides stability of admissible Lagrangian
weak solutions for a large family of system like (1.1). More precisely, we can deal with generalized

Vlasov–Poisson equations of the form






∂tf + F · ∇xf + Ef · ∇vf = 0 in (0, T ) × R
2d,

Ef (t, x) =

∫

Rd
K(x, y) ρf (t, y) dy for t ∈ [0, T ], x ∈ R

d,

ρf (t, x) =

∫

Rd
f(t, x, v) dv for t ∈ [0, T ], x ∈ R

d,

f(0, ·) = f0 on R
2d,

(1.18)

where F ∈ L∞([0, T ];C(R2d;Rd)) satisfies

ess sup
t∈[0,T ]

|F (t, x, v) − F (t, y, w)| ≤ L [|x− y| + |v − w|] for all x, y, v, w ∈ R
d

for some L ≥ 0, and K : R2d → R
d is any sufficiently well-behaved antisymmetric kernel.

The choice F (t, x, v) = v√
1+|v|2

for t ∈ [0, T ] and x, v ∈ R
d in (1.18) corresponds to the

relativistic Vlasov–Poisson equations. The well-posedness theory in the relativistic framework is
less understood. For d = 3 and only in the attractive case, global existence of solutions has been
established in [10–12,17,31] for radially symmetric initial data. For both the attractive and the
repulsive case, well-posedness—global for d = 2 and only local for d = 3—and propagation of
regularity for general initial data have been recently obtained in [18] via propagation of velocity
moments.

1.5. Existence of Lagrangian solutions. Our second main result provides existence of ad-
missible Lagrangian weak solutions of the Vlasov–Poisson system (1.1), generalizing the con-
structions in [22, Ths. 1.2 and 1.3] and [13, Prop. 1.14].

Theorem 1.7 (Existence). Let d = 2, 3. Let θ ∈ Y Θ(Rd) be such that

θ 6≡ 0, θ ≥ 0 and

∫

Rd
(1 ∨ |x|) θ(x) dx < +∞, (1.19)

There exists a Lagrangian weak solution f ∈ AΘ([0, T ]) of the Vlasov–Poisson system (1.1),
starting from the initial datum

f0(x, v) =
1(−∞,0]

(

|v|2 − θ(x)
2
d

)

|B1| ‖θ‖L1

, for x, v ∈ R
d,
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such that f(t, ·) L 2d ∈ P1(R2d) for all t ∈ [0, T ] and

C ‖θ‖Lp ≤ ‖ρf ‖L∞([0,T ];Lp) ≤ CT ‖θ‖Lp for all p ∈ [1,+∞) ,

for some constants C,CT > 0, where CT depends on T .

The construction behind Theorem 1.7 builds upon the proofs of [22, Ths. 1.2 and 1.3] and
essentially applies the existence result proved in [19, Th. 1] to a suitable initial datum depending
on the chosen function θ ∈ Y Θ(Rd).

Note that any (non-zero) non-negative bounded and compactly supported function satis-
fies (1.19). Hence Theorem 1.7 becomes truly interesting if θ also satisfies

inf
p≥1

‖θ‖Lp

Θ(p)
> 0, (1.20)

that is, the Lp norm of θ grows as fast as Θ. In view of Theorem 1.6, we may restrict our
attention only to growth functions Θ for which ϕΘ is concave and condition (1.15) is met. This
is in fact the case for a countable family of growth functions of iterated-logarithmic type defined
as follows. For each m ∈ N, we let Θm : [0,+∞) → [0,+∞) be given by

Θm(p) =







p |log1(p)|2 |log2(p)|2 · · · |logm(p)|2 for p ≥ expm(1),

Θm(expm(1)) for p ∈ [0, expm(1)],

where exp0(1) = 1 and expm+1(1) = eexpm(1) recursively, and

logm =







id for m = 0

log log · · · log
︸ ︷︷ ︸

(m−1) times

| log | for m ≥ 1. (1.21)

Proposition 1.8 (Saturation of Θm). For each m ∈ N0, ϕΘm is concave, ΦΘm satisfies (1.15)
and there is θm ∈ Y Θm(Rd) with compact support satisfying (1.19) and (1.20).

Theorem 1.7, together with Proposition 1.8, yield that the class of admissible Lagrangian weak
solutions considered in Theorem 1.6 is non-empty for d ∈ {2, 3} and Θ = Θm for some m ∈ N0.
When m = 0, our results embed the example given in the proof of [22, Th. 1.3]. Actually,
the functions θm in Proposition 1.8 are modeled on a well-known example due to Yudovich
(see [32, Eq. (3.7)], [28, Rem. 1(i)] and the discussion around [6, Eq. (1.12)]) concerning 2-
dimensional Euler equations in vorticity form.

1.6. Organization of the paper. In Section 2 we provide an abstract approach to achieve the
well-posedness of the Cauchy problem (1.12) and the stability of admissible Lagrangian weak
solutions of the system (1.1), considering the generalized Vlasov–Poisson equations (1.18). We
refer the reader to Theorem 2.2 and Theorem 2.8, respectively. In Section 3, we detail the proofs
of the results presented above.

2. Lagrangian stability for a generalized Vlasov–Poisson system

In this section, we provide an abstract approach to obtain stability properties for Lagrangian
solutions of (a generalized version of) the Vlasov–Poisson system (1.1). Our stability result is
stated in Theorem 2.8 and exploits the well-posedness of the corresponding second-order Cauchy
problem provided by Theorem 2.2.
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2.1. Notation. Throughout this section, we consider

ϕ ∈ C([0,+∞); [0,+∞)), with ϕ(t) > 0 for t > 0. (2.1)

We also let Φ: [0,+∞) → [0,+∞) be given by

Φ(t) =

∫ t

0
ϕ(s) ds for all t ≥ 0. (2.2)

Note that Φ is a non-negative and non-decreasing C1 function. For certain results we will also
assume that Φ satisfies the additional condition

∫

0+

dt
√

Φ(t)
= +∞, (2.3)

i.e., the function
√

Φ satisfies the Osgood condition. Clearly, condition (2.3) implies that ϕ(0) =
0. Given δ, c > 0, we also define the function Ψδ,c : [0,+∞) → [0,+∞) by

Ψδ,c(t) =

∫ t

0

ds

δ +
√

2cΦ(s)
for all t ≥ 0.

To keep the notation short, we set Ψδ = Ψδ,1. Note that Ψδ,c is a non-negative and strictly
increasing C1 function with bounded derivative. In particular, Ψδ,c is invertible, with continuous
and strictly-increasing inverse. Note that, if (2.3) is assumed, then

lim
δ→0+

Ψδ,c(t) = +∞ and lim
δ→0+

Ψ−1
δ,c (t) = 0 for all t, c > 0.

2.2. Second-order Grönwall’s inequality. We begin with the following result, which may
be considered as a Grönwall-type lemma for a second-order differential inequality.

Lemma 2.1 (Grönwall). Let u ∈ W 2,∞([0, T ]) be such that u, u′ ≥ 0. If

u′′ ≤ cu′ + ϕ(u) a.e. in [0, T ] (2.4)

for some c > 0 and u′(0) ≤ δ for some δ > 0, then

u′(t) ≤ ect(δ +
√

2Φ(u(t))
)

and u(t) ≤ Ψ−1
δ

(

Ψδ(u(0)) + ect − 1
)

for all t ∈ [0, T ].

Proof. Multiplying (2.4) by u′ ≥ 0, we get

d

dt

[

(u′)2
]

≤ 2c(u′)2 + 2ϕ(u)u′ a.e. in [0, T ].

Integrating and changing variables, we can estimate

(u′(t))2 ≤ (u′(0))2 + 2Φ(u(t)) − 2Φ(u(0)) + 2c

∫ t

0
(u′(s))2 ds

≤ δ2 + 2Φ(u(t)) + 2c

∫ t

0
(u′(s))2 ds

for all t ∈ [0, T ]. Since t 7→ Φ(u(t)) is non-decreasing, by Grönwall’s inequality we get

(u′(t))2 ≤ e2ct
(

δ2 + 2Φ(u(t))
)

for all t ∈ [0, T ],

so that
u′(t)

δ +
√

2Φ(u(t))
≤ ect for all t ∈ [0, T ].

Integrating the above inequality, we conclude that

Ψδ(u(t)) − Ψδ(u(0)) ≤ ect − 1 for all t ∈ [0, T ],

from which the conclusion follows immediately. �
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2.3. Second-order Cauchy problem. We let b : [0, T ] × R
2d → R

2d be given by

b(t, x, v) =
(
F (t, x, v), E(t, x)

)
for t ∈ [0, T ], x, v ∈ R

d, (2.5)

where E ∈ L∞([0, T ];Cb(Rd;Rd)) satisfies

ess sup
t∈[0,T ]

|E(t, x) − E(t, y)| ≤ ϕ(|x− y|) for all x, y ∈ R
d (2.6)

with ϕ as in (2.1) and F ∈ L∞([0, T ];C(R2d;Rd)) satisfies

ess sup
t∈[0,T ]

|F (t, x, v) − F (t, y, w)| ≤ L [|x− y| + |v − w|] for all x, y, v, w ∈ R
d (2.7)

for some fixed L ∈ [0,+∞). For any given x, v ∈ R
d, we consider the Cauchy problem

{

γ̇x,v = b(t, γx,v), for t ∈ (0, T ),

γ(0) = (x, v).
(2.8)

Note that (2.8) is in fact a second-order Cauchy problem and can be rewritten as







Ẋ = F (t,X, V ), for t ∈ (0, T ),

V̇ = E(t,X), for t ∈ (0, T ),

X(0) = x, V (0) = v,

(2.9)

denoting γx,v(t) = (X(t, x, v), V (t, x, v)) for t ∈ [0, T ], x, v ∈ R
d.

Theorem 2.2 (ODE well-posedness). Problem (2.8) admits a globally-defined classical solution

γx,v ∈ W 1,∞([0, T ];R2d) for all x, v ∈ R
d. Moreover, if Φ in (2.2) satisfies condition (2.3), then

the solution of (2.8) is unique for all x, v ∈ R
d. Finally, letting

Γ: [0, T ] × R
2d → R

2d

with Γ(t, x, v) = γx,v(t) for t ∈ [0, T ], x, v ∈ R
d, be the associated flow map, if divx F = 0, then

Γ(t, ·) is a measure-preserving homeomorphism on R
2d for all t ∈ [0, T ].

Since b ∈ L∞([0, T ];C(R2d;R2d)) has at most linear growth, the first part of Theorem 2.2
concerning the global existence of at least one solution of (2.8) follows by standard ODE Theory
(namely, by Peano’s Theorem and Grönwall’s inequality). Instead, the validity of the second part
of Theorem 2.2 concerning the uniqueness of the solution of (2.8) and the measure-preserving
property of the associated flow map follows from the following result.

Proposition 2.3 (ODE stability). Let i = 1, 2, let bi = (Fi, Ei) be as in (2.5), with Ei ∈
L∞([0, T ];Cb(Rd;Rd)) satisfying (2.6) and Fi ∈ L∞([0, T ];C(R2d;Rd)) satisfying (2.7), and let

γi = (Xi, Vi) ∈ W 1,∞([0, T ];R2d) be a solution of (2.8) with initial condition (xi, vi) ∈ R
2d. If

L|x1 − x2| + L|v1 − v2| + L‖E1 − E2‖L∞(C) + ‖F1 − F2‖L∞(C) ≤ δ

for some δ > 0, then

‖γ1 − γ2‖L∞ ≤ |v1 − v2| + ‖E1 − E2‖L∞ + Ψ−1
δ,L

(

Ψδ,L(|x1 − x2|) + eLT − 1
)

+ Tϕ
(

Ψ−1
δ,L

(

Ψδ,L(|x1 − x2|) + eLT − 1
))

.



10 G. CRIPPA, M. INVERSI, C. SAFFIRIO, AND G. STEFANI

Proof. In the following, we drop the spatial variables to keep the notation short. In virtue
of (2.7) and (2.9), we can estimate

|X1(t) −X2(t)| ≤ |x1 − x2| +

∫ t

0
|F1(s,X1(s), V1(s)) − F2(s,X2(s), V2(s))| ds

≤ |x1 − x2| +

∫ t

0
|F1(s,X1(s), V1(s)) − F1(s,X2(s), V2(s))| ds

+

∫ t

0
|F1(s,X2(s), V2(s)) − F2(s,X2(s), V2(s))| ds

≤ |x1 − x2| + L

∫ t

0
|X1(s) −X2(s)| ds+ L

∫ t

0
|V1(s) − V2(s)| ds+ t‖F1 − F2‖L∞

(2.10)

for all t ∈ [0, T ]. Because of (2.6) and again of (2.9), we can also estimate

|V1(s) − V2(s)| ≤ |v1 − v2| +

∫ s

0
|E1(r,X1(r)) − E2(r,X2(r))| dr

≤ |v1 − v2| +

∫ s

0
|E1(r,X1(r)) − E1(r,X2(r))| dr

+

∫ s

0
|E1(r,X2(r)) − E2(r,X2(r))| dr

≤ |v1 − v2| + ‖E1 − E2‖L∞ +

∫ s

0
ϕ(|X1(r) −X2(r)|) dr

(2.11)

for all s ∈ [0, T ]. Therefore, we obtain that

|X1(t) −X2(t)| ≤ |x1 − x2| + t [L|v1 − v2| + L‖E1 − E2‖L∞ + ‖F1 − F2‖L∞ ]

+ L

∫ t

0
|X1(s) −X2(s)| ds+ L

∫ t

0

∫ s

0
ϕ(|X1(r) −X2(r)|) dr ds

(2.12)

for all t ∈ [0, T ]. Letting u ∈ W 2,∞([0, T ]) be the function in the right-hand side of (2.12), we
observe that u ≥ 0, u(0) = |x1 − x2|,

u′(t) = L|v1 − v2| + L‖E1 −E2‖L∞ + ‖F1 − F2‖L∞ + L|X1(t) −X2(t)|

+ L

∫ t

0
ϕ(|X1(s) −X2(s)|) ds,

(2.13)

for all t ∈ [0, T ] and so, in particular,

u′(0) = L|x1 − x2| + L|v1 − v2| + L‖E1 − E2‖L∞ + ‖F1 − F2‖L∞ ≤ δ.

We also observe that

u′′(t) ≤ L|Ẋ1(t) − Ẋ2(t)| + Lϕ(|X1(t) −X2(t)|) for a.e. t ∈ [0, T ]. (2.14)

We now estimate the right-hand side of (2.14) in terms of u. Exploiting (2.7), (2.9) and the
estimate in (2.11), we have

|Ẋ1(t) − Ẋ2(t)| = |F1(t,X1(t), V1(t)) − F2(t,X2(t), V2(t))|
≤ ‖F1(t) − F2(t)‖C + L|X1(t) −X2(t)| + L|V1(t) − V2(t)|
≤ ‖F1 − F2‖L∞ + L|X1(t) −X2(t)| + L|v1 − v2|

+ L‖E1 − E2‖L∞ + L

∫ t

0
ϕ(|X1(s) −X2(s)|) ds

= u′(t)

for all t ∈ [0, T ] in virtue of (2.13). We thus get that u satisfies

u′′ ≤ Lu′ + Lϕ(u) a.e. in [0, T ],
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as in (2.4) in Lemma 2.1, from which we immediately get that

|X1(t) −X2(t)| ≤ Ψ−1
δ,L

(

Ψδ,L(|x1 − x2|) + eLt − 1
)

for all t ∈ [0, T ]. Consequently, by (2.11), we also find that

|V1(t) − V2(t)| ≤ |v1 − v2| + ‖E1 − E2‖L∞ + t ϕ
(

Ψ−1
δ,L

(

Ψδ,L(|x1 − x2|) + eLT − 1
))

for all t ∈ [0, T ], from which the conclusion immediately follows. �

From Proposition 2.3, we plainly deduce the following approximation result.

Corollary 2.4 (ODE convergence). Let n ∈ N, let b = (F,E), bn = (Fn, En) be as in (2.5),
with E,En ∈ L∞([0, T ];Cb(Rd;Rd)) satisfying (2.6) and F,Fn ∈ L∞([0, T ];C(R2d;Rd)) satisfy-

ing (2.7), and let γn = (Xn, Vn) ∈ W 1,∞([0, T ];R2d) be a solution of (2.8) with initial condition

(x, v) ∈ R
2d. If Φ in (2.2) satisfies (2.3) and

lim
n→+∞

‖bn − b‖L∞ = 0, (2.15)

then (γn)n∈N is a Cauchy sequence in C([0, T ] ×R
2d), and each of its limit points γ = (X,V ) is

a solution of (2.8) relative to b = (F,E) with initial condition (x, v).

Proof. By Proposition 2.3, we immediately infer that

‖γm − γn‖L∞ ≤ δm,n + Ψ−1
δm,n,L(eLT − 1) + Tϕ

(

Ψ−1
δm,n,L(eLT − 1)

)

.

for all m,n ∈ N, where

δm,n = ‖Em − En‖L∞ + ‖Fm − Fn‖L∞ + 1
m + 1

n .

Since δm,n → 0+ as m,n → +∞, by (2.3) we infer that Ψ−1
δm,n,L(eLT − 1) → 0+ as m,n → +∞,

easily yielding the conclusion. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. We just need to deal with the second part of the statement concerning
the uniqueness of the solution of (2.8) and the measure-preserving property of the associated
flow map. The uniqueness part is an immediate consequence of Proposition 2.3. Indeed, if γ1

and γ2 are two solutions of (2.8) relative to b starting from the same initial datum (x, v), with
x, v ∈ R

n, then Proposition 2.3 implies that

‖γ1 − γ2‖L∞ ≤ Ψ−1
δ,L(eLT − 1) + Tϕ

(

Ψ−1
δ,L(eLT − 1)

)

for all δ > 0. Since Ψ−1
δ,L(eLT − 1) → 0+ as δ → 0+, we get γ1 = γ2. The measure-preserving

property of the associated flow map, instead, follows from an approximation argument and
Corollary 2.4. We leave the simple details to the reader. �

2.4. Generalized Vlasov–Poisson system. From now on, we fix a measurable function
K : R2d → R

d, that we call kernel, which is assumed to be antisymmetric, i.e., K(x, y) =
−K(x, y) for a.e. x, y ∈ R

d. We thus consider the associated Vlasov–Poisson-type system






∂tf + F · ∇xf + Ef · ∇vf = 0 in (0, T ) × R
2d,

Ef (t, x) =

∫

Rd
K(x, y) ρf (t, y) dy for t ∈ [0, T ], x ∈ R

d,

ρf (t, x) =

∫

Rd
f(t, x, v) dv for t ∈ [0, T ], x ∈ R

d,

f(0, ·) = f0 on R
2d,

(2.16)
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where the unknown density is f ∈ L∞([0, T ];L1(R2d)) and the initial datum is f0 ∈ L1(R2d).
The function F ∈ L∞([0, T ];C(R2d;Rd)) in the first line of (2.16) always satisfies (2.7), and
may be additionally assumed to satisfy divx F = 0. If F (t, x, v) = v, then (2.16) reduces to
the classical Vlasov–Poisson system, while, if F (t, x, v) = v√

1+|v|2
, then (2.16) becomes the

relativistic Vlasov–Poisson system.

Definition 2.5 (Weak ϕ-solution). We say that f ∈ L∞([0, T ];L1(R2d)) is a weak ϕ-solution

of (2.16) with initial datum f0 ∈ L1(R2d) if

(t, x) 7→
∫

Rd
|K(x, z)| |ρf (t, z)| dz ∈ L∞([0, T ] × R

d), (2.17)

ess sup
t∈[0,T ]

∫

Rd
|K(x, z) −K(y, z)| |ρf (t, z)| dz ≤ ϕ(|x − y|) for all x, y ∈ R

d (2.18)

and
∫ T

0

∫

R2d

(
∂tψ + F · ∇xψ + Ef · ∇vψ

)
f dxdv dt = −

∫

R2d
ψ(0, ·) f0 dxdv (2.19)

for all ψ ∈ C∞
c ([0, T ) × R

2d), where Ef , ρf are as in (2.16).

Note that, if f is a weak ϕ-solution of (2.16) as in Definition 2.5, then (2.17) and (2.18) lead
to Ef ∈ L∞([0, T ];Cb(R

d;Rd)) satisfying (2.6). In particular, the equation (2.19) is well defined,

since fEf ∈ L∞([0, T ];L1(R2d;Rd)) thanks to (2.17).

Definition 2.6 (Lagrangian weak ϕ-solution). We say that f ∈ L∞([0, T ];L1(R2d)) is a La-

grangian weak ϕ-solution of (2.16) with initial datum f0 ∈ L1(R2d) if f is a weak ϕ-solution
of (2.16) as in Definition 2.5 and, moreover,

f(t, ·) = Γ(t, ·)#f0 for all t ∈ [0, T ], (2.20)

where Γ is any flow map associated to the Cauchy problem (2.8) with b = (F,E).

The following result collects two basic features of Lagrangian weak ϕ-solutions of (2.16) that
will be useful in the sequel.

Lemma 2.7 (Sign and moment preservation). Assume divx F = 0 and Φ in (2.2) satisfies (2.3).
Let f ∈ L∞([0, T ];L1(R2d)) be a Lagrangian weak ϕ-solution of (2.16) with initial datum f0 ∈
L1(R2d). If f0 ≥ 0, then also f(t, ·) ≥ 0 for all t ∈ [0, T ]. Moreover, if µ0 = f0 L 2d ∈ P1(R2d),
then also µ(t, ·) = f(t, ·) L 2d ∈ P1(R2d) for all t ∈ [0, T ].

Proof. Fix t ∈ [0, T ]. Since Γ(t, ·) is a measure-preserving homeomorphism by Proposition 2.3,
then from (2.20) we easily deduce that

L
2d
({

z ∈ R
2d : f(t, z) < 0

})

= L
2d
({

z ∈ R
2d : f(t,Γ(t, z)) < 0

})

= L
2d
({

z ∈ R
2d : f0(z) < 0

})

= 0,

so that f(t, ·) ≥ 0. In addition, if
∫

R2d
|z| dµ0(z) =

∫

R2d
|z| f0(z) dz < +∞,

then again by (2.20) we get
∫

R2d
|z| dµ(t, z) =

∫

R2d
|z| f(t, z) dz =

∫

R2d
|Γ(t, z)| f0(z) dz < +∞,

since |Γ(t, z)| ≤ C|z|eCT for all t ∈ [0, T ] and z ∈ R
2d, for some C > 0 depending on ‖Ef ‖L∞

and ‖F‖L∞(Lip) only, by standard ODE Theory, in virtue of (2.7) and (2.17). �
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We can now state and prove the main result of this section, providing a stability property
for Lagrangian weak ϕ-solutions of the Vlasov–Poisson-type system (2.16). The proof of Theo-
rem 2.8 adopts the elementary point of view of [6] and extends the approaches exploited in the
proofs of [22, Th. 1.1] and [13, Th. 1.9].

Theorem 2.8 (Lagrangian stability). Let i = 1, 2, let µi ∈ L∞([0, T ]; P1(R2d)) be such that

µi = fi L 2d, where fi ∈ L∞([0, T ];L1(R2d)) is a Lagrangian weak ϕ-solution of (2.16), relative

to (Fi, Ei), Ei = Efi
, with Fi ∈ L∞([0, T ];C(Rd;Rd)) satisfying (2.7) for some L ∈ [1,+∞) and

divx Fi = 0, with initial datum f i
0 ∈ L1(R2d). Assume that ϕ in (2.1) is concave and Φ in (2.2)

satisfies (2.3). If

2LW1(µ1
0, µ

2
0) + ‖F1 − F2‖L∞ < δ

for some δ > 0, then

W1(µ1(t, ·), µ2(t, ·)) ≤ Ψ−1
δ,2L

(
Ψδ,2L(W1(µ1

0, µ
2
0)) + eLt − 1

)

+ eLt
(

δ +
√

4LΦ
(
Ψ−1

δ,2L

(
Ψδ,2L(W1(µ1

0, µ
2
0)) + eLt − 1

))
)

for all t ∈ [0, T ]. In particular, if f1
0 = f2

0 and F1 = F2, then f1 = f2.

Proof. Let π0 ∈ Plan(µ1
0, µ

2
0) be an optimal plan. By Definition 2.6, we can write µi(t, ·) =

Γi(t, ·)#µ
i
0 for t ∈ [0, T ] and i = 1, 2, so that

π(t, ·) = (Γ1(t, p1),Γ2(t, p2))#π0 ∈ Plan(µ1(t, ·), µ2(t, ·)) (2.21)

for all t ∈ [0, T ]. Since Γi = (Xi, Vi), i = 1, 2, we define

X (t) =

∫

R2d×R2d
|X1(t, p) −X2(t, q)| dπ0(p, q) (2.22)

V(t) =

∫

R2d×R2d
|V1(t, p) − V2(t, q)| dπ0(p, q)

for all t ∈ [0, T ], where p = (x, v) and q = (y,w). Arguing as in (2.10), we can estimate

|X1(t, p) −X2(t, q)| ≤ |x− y| + L

∫ t

0
|X1(s, p) −X2(s, q)| ds+ L

∫ t

0
|V1(s, p) − V2(s, q)| ds

+ t‖F1 − F2‖L∞

for all t ∈ [0, T ], so that

X (t) ≤
∫

R2d×R2d
|x− y| dπ0(p, q) + t‖F1 − F2‖L∞ + L

∫ t

0
X (s) ds+ L

∫ t

0
V(s) ds

≤ W1(µ1
0, µ

2
0) + t‖F1 − F2‖L∞ + L

∫ t

0
X (s) ds+ L

∫ t

0
V(s) ds

Similarly arguing as in (2.11), we also get that

|V1(t, p) − V2(t, q)| ≤ |v −w| +

∫ t

0
|E1(s,X1(s, p)) − E2(s,X2(s, q))| ds

for all t ∈ [0, T ], so that

V(t) ≤
∫

R2d×R2d
|v − w| dπ0(p, q)

+

∫ t

0

∫

R2d×R2d
|E1(s,X1(s, p)) − E2(s,X2(s, q))| dπ0(p, q) ds

≤ W1(µ1
0, µ

2
0) +

∫ t

0

∫

R2d×R2d
|E1(s,X1(s, p)) − E2(s,X2(s, q))| dπ0(p, q) ds

(2.23)
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for all t ∈ [0, T ] and so, in particular,

X (t) ≤ (1 + Lt) W1(µ1
0, µ

2
0) + t‖F1 − F2‖L∞ + L

∫ t

0
X (s) ds

+ L

∫ t

0

∫ s

0

∫

R2d×R2d
|E1(r,X1(r, p)) − E2(r,X2(r, q))| dπ0(p, q) dr ds

for all t ∈ [0, T ]. Now we have

|E1(r,X1(r, p)) − E2(r,X2(r, q))| ≤ |E1(r,X1(r, p)) −E1(r,X2(r, q))|
+ |E1(r,X2(r, q)) − E2(r,X2(r, q))|.

On the one side, since f1 is a weak ϕ-solution of (2.16) with respect to (F1, E1), by (2.18) E1

satisfies (2.6), and thus we can estimate

|E1(r,X1(r, p)) − E1(r,X2(r, q))| ≤ ϕ(|X1(r, p) −X2(r, q)|).
On the other side, again since f1 and f2 are weak ϕ-solutions of (2.16), we can write

|E1(r,X2(r, q)) − E2(r,X2(r, q))|

=

∣
∣
∣
∣

∫

Rd
K(X2(r, q), z) ρ1(r, z) dz −

∫

Rd
K(X2(r, q), z′) ρ2(r, z′) dz′

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R2d
K(X2(r, q), z) f1(r, z, u) dz du−

∫

Rd
K(X2(r, q), z′) f2(r, z′, u′) dz′ du′

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R2d
K(X2(r, q),X1(r, o)) f1

0 (o) do−
∫

Rd
K(X2(r, q),X2(r, o′)) f2

0 (o′) do′

∣
∣
∣
∣

where in the last equality we changed variables, in virtue of (2.20), letting o = (z, u) and
o′ = (z′, u′) for brevity. Since π0 ∈ Plan(µ1

0, µ
2
0), we can thus write

∣
∣
∣
∣

∫

R2d
K(X2(r, q),X1(r, o)) f1

0 (o) do−
∫

Rd
K(X2(r, q),X2(r, o)) f2

0 (o′) do′

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R2d
K(X2(r, q),X1(r, o)) dµ1

0(o) −
∫

Rd
K(X2(r, q),X2(r, o)) dµ2

0(o′)

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R2d×R2d

(
K(X2(r, q),X1(r, o)) −K(X2(r, q),X2(r, o′))

)
dπ0(o, o′)

∣
∣
∣
∣

≤
∫

R2d×R2d

∣
∣K(X2(r, q),X1(r, o)) −K(X2(r, q),X2(r, o′))

∣
∣ dπ0(o, o′)

Therefore, again changing variables in virtue of (2.20), we get
∫

R2d×R2d
|E1(r,X2(r, q)) − E2(r,X2(r, q))| dπ0(p, q)

≤
∫

R2d×R2d

∫

R2d×R2d

∣
∣K(X2(r, q),X1(r, o)) −K(X2(r, q),X2(r, o′))

∣
∣ dπ0(p, q) dπ0(o, o′)

=

∫

R2d×R2d

∫

R2d

∣
∣K(h,X1(r, o)) −K(h,X2(r, o′))

∣
∣ ρ2(t, h) dhdπ0(o, o′)

≤
∫

R2d×R2d
ϕ(|X1(r, o) −X2(r, o′)|) dπ0(o, o′).

Recalling that ϕ is concave, by Jensen’s inequality we conclude that
∫

R2d×R2d
|E1(r,X1(r, p)) − E2(r,X2(r, q))| dπ0(p, q)

≤ 2

∫

R2d×R2d
ϕ(|X1(r, p) −X2(r, q)|) dπ0(p, q) ≤ 2ϕ(X (r)),
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so that

X (t) ≤ (1 + Lt) W1(µ1
0, µ

2
0) + t‖F1 − F2‖L∞ + L

∫ t

0
X (s) ds+ 2L

∫ t

0

∫ s

0
ϕ(X (r)) dr ds (2.24)

for all t ∈ [0, T ]. In addition, recalling (2.23), we also get that

V(t) ≤ W1(µ1
0, µ

2
0) + 2

∫ t

0
ϕ(X (s)) ds (2.25)

for all t ∈ [0, T ]. Now, letting u ∈ W 2,∞([0, T ]) be the function on the right-hand side of (2.24),
we immediately get that u, u′ ≥ 0 with u(0) = W1(µ1

0, µ
2
0) and

u′(t) = LW1(µ1
0, µ

2
0) + ‖F1 − F2‖L∞ + LX (t) + 2L

∫ t

0
ϕ(X (s)) ds (2.26)

for all t ∈ [0, T ], so that, u′(0) ≤ 2LW1(µ1
0, µ

2
0) + ‖F1 − F2‖L∞ . Furthermore, we have

u′′(t) = LẊ (t) + 2Lϕ(X (t))

for a.e. t ∈ (0, T ). Note that, in virtue of the definition in (2.22) and of problem (2.9),

Ẋ (t) ≤
∫

R2d×R2d
|Ẋ1(t, p) − Ẋ2(t, q)| dπ0(p, q)

=

∫

R2d×R2d
|F1(t,X1(t, p), V1(t, p)) − F2(t,X2(t, q), V2(t, q))| dπ0(p, q)

≤ ‖F1 − F2‖L∞ ,

so that, recalling (2.24) and (2.26) and since ϕ is non-decreasing,

u′′(t) ≤ L‖F1 − F2‖L∞ + 2Lϕ(X (t)) ≤ Lu′(t) + 2Lϕ(u(t))

for a.e. t ∈ (0, T ). Thanks to Lemma 2.1, we thus conclude that, if

2LW1(µ1
0, µ

2
0) + ‖F1 − F2‖L∞ < δ

for some δ > 0, then

X (t) ≤ Ψ−1
δ,2L

(
Ψδ,2L(W1(µ1

0, µ
2
0)) + eLt − 1

)

for all t ∈ [0, T ]. Moreover, from (2.25) and (2.26), we also get that V(t) ≤ u′(t), so that

V(t) ≤ eLt(δ +
√

4LΦ(X (t))
)

≤ eLt
(

δ +
√

4LΦ
(
Ψ−1

δ,2L

(
Ψδ,2L(W1(µ1

0, µ
2
0)) + eLt − 1

))
)

for all t ∈ [0, T ], in virtue of Lemma 2.1. To conclude, we simply note that, by (2.21),

W1(µ1(t, ·), µ2(t, ·)) ≤
∫

R2d×R2d
|p− q| dπ(t, p, q)

=

∫

R2d×R2d
|Γ1(t, p) − Γ2(t, q)| dπ0(p, q) ≤ X (t) + V(t)

for all t ∈ [0, T ], readily ending the proof. �

3. Proofs of the main results

3.1. Proof of Lemma 1.1. We begin with the proof Lemma 1.1. Actually, we achieve the
following slightly stronger result. Here and in the following, the kernel K is as in (1.2).



16 G. CRIPPA, M. INVERSI, C. SAFFIRIO, AND G. STEFANI

Proposition 3.1 (Mapping properties of K). There is a dimensional constant Cd > 0 with the

following property. If ρ ∈ L1(Rd) ∩ Y Θ
ul (Rd), then K ∗ ρ ∈ C0,ϕΘ

b (Rd), with

‖K ∗ ρ‖L∞ ≤ Cd

(

‖ρ‖L1 + ‖ρ‖Y Θ
ul

)

, (3.1)
∫

Rd
|K(x− z) −K(y − z)| ρ(z) dz ≤ Cd

(

‖ρ‖L1 + ‖ρ‖Y Θ
ul

)

ϕΘ(|x− y|) ∀x, y ∈ R
d. (3.2)

To prove Proposition 3.1, we need the following simple estimate, which generalizes [6, Eq. (2.2)]
to any dimension d ≥ 2.

Lemma 3.2 (Oscillation). There exists a dimensional constant Cd > 0 such that

|K(x− z) −K(y − z)| ≤ Cd

(
1

|x− z||y − z|d−1
+

1

|y − z||x− z|d−1

)

|x− y| (3.3)

for all x, y, z ∈ R
d with x, y 6= z.

Proof. We can assume z = 0 without loss of generality. For x, y ∈ R
d \ {0}, we have

∣
∣
∣
∣

x

|x|d − y

|y|d
∣
∣
∣
∣

2

=
1

|x|2(d−1)
+

1

|y|2(d−1)
− 2(x · y)

|x|d|y|d =

[

|x|x|d−2 − y|y|d−2|
|x|d−1|y|d−1

]2

,

so that
∣
∣
∣
∣

x

|x|d − y

|y|d
∣
∣
∣
∣ =

|x|x|d−2 − y|y|d−2|
|x|d−1|y|d−1

for all x, y ∈ R
d \ {0}. Letting Fd(ξ) = ξ|ξ|d−2 for all ξ ∈ R

d, we have |∇Fd(ξ)| ≤ Cd|ξ|d−2 for
all ξ ∈ R

d, where Cd > 0 is a dimensional constant. Hence
∣
∣
∣x|x|d−2 − y|y|d−2

∣
∣
∣ ≤ |x− y| sup

t∈[0,1]
|∇Fd(x+ t(x− y))| ≤ Cd |x− y| sup

t∈[0,1]
|x+ t(x− y)|d−2

for all x, y ∈ R
d. Since d ≥ 2, and thus the function ξ 7→ |ξ|d−2 is convex, we can estimate

|x+ t(x− y)|d−2 ≤ (1 − t)|x|d−2 + t|y|d−2 ≤ |x|d−2 + |y|d−2

for all x, y ∈ R
d. Therefore, we get that
∣
∣
∣
∣

x

|x|d − y

|y|d
∣
∣
∣
∣ =

|x|x|d−2 − y|y|d−2|
|x|2(d−1)|y|d−1

≤ Cd |x− y|
[

|x|d−2 + |y|d−2

|x|d−1|y|d−1

]

for all x, y ∈ R
d \ {0}, yielding (3.3) for z = 0. �

We can now prove Proposition 3.1. We follow the strategy of the proofs of [6, Th. 2.2 and
Cor. 2.4]. We also refer to the proofs of [13, Lem. 2.1] and [8, Ths. A and B].

Proof of Proposition 3.1. We write K = K1 + K∞, with K1 = K1B1 ∈ L
d+1

d (Rd) and K∞ =

K1Bc
1

∈ L∞(Rd). Since ρ ∈ L1 ∩ Ld+1
ul (Rd), we can estimate

|K| ∗ ρ(x) ≤ |K1| ∗ ρ(x) + |K∞| ∗ ρ(x) ≤ ‖K1‖
L

d+1
d

‖ρ‖Ld+1(B1(x)) + ‖K∞‖L∞‖ρ‖L1

≤ max

{

‖K1‖
L

d+1
d
, ‖K∞‖L∞

}(

‖ρ‖Ld+1
ul

+ ‖ρ‖L1

)

≤ Cd (‖ρ‖Ld+1
ul

+ ‖ρ‖L1)

≤ Cd

(

Θ(d+ 1) ‖ρ‖Y Θ
ul

+ ‖ρ‖L1

)

≤ Cd (‖ρ‖Y Θ
ul

+ ‖ρ‖L1)

for all x ∈ R
d, yielding (3.1). To prove (3.2), fix x, y ∈ R

d and set ε = |x− y|. Due to (3.1), we
can assume ε < e−d−1 without loss of generality. We write

∫

Rd
|K(x− z) −K(y − z)| ρ(z) dz
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=

(
∫

B2(x)c
+

∫

B2(x)\B2ε(x)
+

∫

B2ε(x)

)

|K(x− z) −K(y − z)| ρ(z) dz.

By Lemma 3.2, we can estimate the first integral as
∫

B2(x)c
|K(x− z) −K(y − z)| ρ(z) dz

≤ Cd |x− y|
∫

B2(x)c

(
1

|x− z||y − z|d−1
+

1

|y − z||x− z|d−1

)

ρ(z) dz

≤ Cd |x− y| ‖ρ‖L1 .

Concerning the second integral, since

|y − z| ≥ 1

2
|x− z| for all z ∈ B2(x) \B2ε(x),

again by Lemma 3.2 we can estimate
∫

B2(x)\B2ε(x)
|K(x− z) −K(y − z)| ρ(z) dz

≤ Cd |x− y|
∫

B2(x)\B2ε(x)

(
1

|x− z||y − z|d−1
+

1

|y − z||x− z|d−1

)

ρ(z) dz

≤ Cd |x− y|
∫

B2(x)\B2ε(x)

ρ(z)

|x− z|d dz ≤ Cd |x− y| ‖ρ‖Lp(B2(x))

(∫ 2

2ε
r−dp′+d−1 dr

) 1
p′

≤ Cd |x− y| ‖ρ‖Lp
ul

(

2−dp′+d(1−ε−dp′+d)
−dp′+d

) 1
p′

≤ Cd |x− y| ‖ρ‖Lp
ul

2− d
p (ε− d

p−1 − 1)
p−1

p

(
p−1

d

) p−1
p

≤ Cd |x− y| ‖ρ‖Lp
ul
p ε

− d
p ≤ Cd pΘ(p) ‖ρ‖Y Θ

ul
|x− y|1− d

p .

for any p > d+ 1, with p′ the conjugate of p. Finally, regarding the third and last integral, since
B2ε(x) ⊂ B3ε(y), we can estimate

∫

B2ε(x)
|K(x− z) −K(y − z)| ρ(z) dz ≤

∫

B2ε(x)

ρ(z)

|x− z|d−1
dz +

∫

B3ε(z)

ρ(z)

|y − z|d−1
dz

≤ Cd ‖ρ‖Lp
ul

(∫ 3ε

0
r(−d+1)p′+d−1 dr

) 1
p′

≤ Cd ‖ρ‖Lp
ul

(

(3ε)(−d+1)p′+d

(−d+1)p′+d

) 1
p′

≤ Cd ‖ρ‖Lp
ul

(3ε)
1− d

p

(
p−1
p−d

) p−1
p ≤ Cd pΘ(p) ‖ρ‖Y Θ

ul
|x− y|1− d

p

again for p > d+ 1. Putting everything altogether, we conclude that
∫

Rd
|K(x− z) −K(y − z)| ρ(z) dz ≤ Cd

(

‖ρ‖L1(Rd) + ‖ρ‖Y Θ
ul

)

pΘ(p) |x− y|1− d
p

for x, y ∈ R
d with |x− y| < e−d−1 and p > d+ 1. In particular, choosing p = − log|x− y|, since

r
d

log(r) = ed for r ∈ (0, 1), we obtain that
∫

Rd
|K(x− z) −K(y − z)| ρ(z) dz

≤ Cd (‖ρ‖L1 + ‖ρ‖Y Θ
ul

) |x− y| | log|x− y|| Θ(| log|x− y||) |x − y|
d

log |x−y|

≤ Cd (‖ρ‖L1 + ‖ρ‖Y Θ
ul

)ϕΘ(|x− y|)

for x, y ∈ R
d with |x− y| < e−d−1, completing the proof of (3.2). �
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3.2. Proof of Theorem 1.6. In view of Theorem 2.8, we just have to check that, if f ∈
AΘ([0, T ]) is a Lagrangian weak solution of (1.1) in the sense of Definition 1.4, then f is a
Lagrangian weak ϕΘ-solution of (2.16) with F (t, x, v) = v for t ∈ [0, T ] and x, v ∈ R

d and
Ef = K ∗ ρf , where K is as in (1.2). Indeed, we just need to check the validity of (2.17)
and (2.18), but these respectively follow from (3.1) and (3.2) in Proposition 3.1. �

Remark 3.3 (Relativistic case). Note that the above argument verbatim applies to the relativistic
setting, that is, choosing F (t, x, v) = v√

1+|v|2
for t ∈ [0, T ] and x, v ∈ R

d.

3.3. Proof of Theorem 1.7. From now on, we assume d ∈ {2, 3}. We begin with the following
result, providing a suitable initial datum for the construction of the weak solution in Theorem 1.7.

Lemma 3.4 (Datum). If θ : Rd → R satisfies (1.19), then f0 : R2d → [0,+∞) given by

f0(x, v) =
1(−∞,0]

(

|v|2 − θ(x)
2
d

)

|B1| ‖θ‖L1

, for x, v ∈ R
d, (3.4)

satisfies f0 ∈ L1(R2d) ∩ L∞(R2d), f0 L 2d ∈ P1(R2d) and, for some constant C > 0,

∫

R2d
|v|p f0(x, v) dxdv ≤

‖θ‖
p
d

+1

L
p
d

+1

‖θ‖L1

for all p ∈ [1,+∞). (3.5)

Proof. Note that |v| ≤ θ(x)
1
d for all (x, v) ∈ suppf0. We thus have

ρ0(x) =

∫

Rd
f0(x, v) dv =

L d
({

v ∈ R
d : |v| ≤ θ(x)

1
d

})

|B1|‖θ‖L1

=
θ(x)

‖θ‖L1

(3.6)

for all x ∈ R
d. Consequently, we can estimate

∫

R2d
|v|p f0(x, v) dxdv ≤

∫

R2d
|θ(x)|

p
d f0(x, v) dxdv =

∫

R2d
|θ(x)|

p
d ρ0(x) dx =

‖θ‖
p
d

+1

L
p
d

+1

‖θ‖L1

,

readily yielding the conclusion. �

We can now prove Theorem 1.7. Actually, we prove the following more precise result.

Proposition 3.5 (Existence). Assume that θ ∈ Y Θ(Rd) satisfies (1.19). There exists a La-

grangian weak solution

f ∈ C([0, T ];Lp(R2d)) ∩ L∞([0, T ] × R
2d) ∩ AΘ([0, T ]) for all p ∈ [1,+∞)

of the system (1.1) starting from f0 in (3.4) of Lemma 3.4 such that f(t, ·) L 2d ∈ P1(R2d),

ρf ∈ C([0, T ];Lp(Rd)) for all p ∈ [1,+∞) (3.7)

and, for some constant CT > 0 depending on T ,

‖θ‖Lq

‖θ‖L1

≤ ‖ρf ‖L∞([0,T ];Lq) ≤ CT ‖θ‖Lq for all q ∈ [1,+∞) . (3.8)

Proof. By [19, Th. 1] (for d = 3, the case d = 2 being similar, see [13,22]), there exists

f ∈ C([0,+∞);Lp(R2d)) ∩ L∞([0,+∞) × R
2d) for all p ∈ [1,+∞)

a weak solution of the system (1.1) starting from f0 in (3.4) of Lemma 3.4 and such that

sup
t∈[0,T ]

∫

R2d
|v|p f(t, x, v) dxdv < +∞ for all p ∈ [1,+∞). (3.9)
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Note that the notion of weak solution here is well-posed in the sense of Definition 1.2, since
Ef ∈ L∞([0, T ] × R

d) in virtue of (3.9) and [19, Eq. (16)]. Moreover, f is constant along
characteristic curves of (1.12) which are defined almost everywhere. Finally, by [19, Eq. (8)]
and (3.5), we get (3.7). Thus, we just need to show (3.8), so that f ∈ AΘ([0, T ]) in particular.
For the first inequality in (3.8), we observe that

‖ρf ‖L∞(Lq) ≥ ‖ρf (0, ·)‖Lq = ‖ρ0‖Lq =
‖θ‖Lq

‖θ‖L1

because of (3.6) and (3.7). For the second inequality in (3.8), we argue as in [22, Sec. 3].
By [19, Eq. (14)], we can estimate

‖ρf (t, ·)‖
L

p
d

+1 ≤ CMp(t)
d

p+d for t ∈ [0, T ],

for some constant CT > 0 independent of p and t ∈ [0, T ], but dependent on T > 0, which may
vary from line to line in what follows, where

Mp(t) =

∫

R2d
|v|p f(t, x, v) dxdv.

Exploiting (1.12) and the fact that f is constant along characteristics, we can estimate

Mp(t) ≤ Mp(0) + CT p

∫ t

0
Mp(s)1− 1

p ds

By a simple Grönwall-type argument, we infer that

sup
t∈[0,T ]

Mp(t) ≤ Mp(0) + Cp
T for all t ∈ [0, T ].

Since f(0, ·) = f0, by (3.5) we get

Mp(t)
d

p+d ≤






‖θ‖
p
d

+1

L
p
d

+1

‖θ‖L1

+ Cp
T






d
p+d

≤ CT ‖θ‖
L

p
d

+1,

proving the second inequality in (3.8) and ending the proof. �

3.4. Proof of Proposition 1.8. We need some notation and the preliminary Lemma 3.6 below.
For each m ∈ N, we define ℓm : [0,+∞) → [0,+∞) by letting

ℓm(r) = 1(0,εm)(r) logm(r) for all r ≥ 0, (3.10)

where εm ∈ (0, 1) is such that logm(εm) = −1 (recall the notation in (1.21)).

Lemma 3.6. For m ∈ N, there are pm ∈ [1,+∞) and 0 < am < bm < +∞ such that

am logm−1(p) ≤ ‖ℓm(| · |)‖Lp ≤ bm logm−1(p) for all p ≥ pm. (3.11)

Proof. Given p ≥ log(1/εm), we can easily estimate

‖ℓm(| · |)‖p
Lp =

∫

Bεm

| logm(|x|)|p dx ≥
∫

Be−p

| logm(|x|)|p dx ≥ Cd e
−dp| logm−1(p)|p (3.12)

for all m ∈ N, proving the lower bound in (3.11). For the upper bound in (3.11), we argue by
induction. If m = 1, then by direct computation we have

‖ℓ1(| · |)‖p
Lp =

∫

B1

| log(|x|)|p dx = Cd

∫ 1

0
(− log r)p rd−1 dr = Cd d

−(p+1) Γ(p+ 1)
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and the desired upper bound readily follows by Stirling’s formula. If m ≥ 2, then

‖ℓm(| · |)‖Lp =

(
∫

Bεm

| logm(|x|)|p dx

)1/p

=
|Bεm |1/p

p

(

−
∫

Bεm

∣
∣
∣ log

(

logm−1(|x|)
)p
∣
∣
∣

p
dx

)1/p

.

Now r 7→ (log r)p is concave on
[

ep−1,+∞
)

. Since logm−1(εm) = −e, for p ≥ 2 we have

−
∫

Bεm

∣
∣
∣ log

(
logm−1(|x|)

)p
∣
∣
∣

p
dx ≤

(

log

(

−
∫

Bεm

∣
∣ logm−1(|x|)

∣
∣
p

dx

))p

≤ pp
(

log
(

|Bεm|−1/p ‖ℓm−1(| · |)‖Lp

) )p

by Jensen’s inequality, so that

‖ℓm(| · |)‖Lp ≤ |Bεm |1/p log
(

|Bεm |−1/p ‖ℓm−1(| · |)‖Lp

)

,

readily yielding the conclusion. �

Proof of Proposition 1.8. For each m ∈ N, there exists δm > 0 such that

ϕΘm(r) = r | log r| Θm(|log r|) = Θm+1(r) for all r ∈ [0, δm].

Hence ϕΘm is concave on [0, δm] with ϕΘm(0) = 0. Therefore, we can estimate

ΦΘm(t) =

∫ t

0
ϕΘm(s) ds ≤ t ϕΘm(t) = tΘm+1(t) for all t ∈ [0, δm].

In particular, we readily infer that

lim
ε→0+

∫ δm

ε

dt
√

ΦΘm(t)
≥ lim

ε→0+

∫ δm

ε

dt
√

tΘm+1(t)

= lim
ε→0+

∫ δm

ε

dt

t |log t| |log2(t)| · · · |logm+1(t)| = +∞,

so that ΦΘm satisfies (1.15). To conclude, we define θm : Rd → [0,+∞) as

θm(x) = ℓ1(|x|) ℓ2(|x|)2 . . . ℓm+1(|x|)2 for x ∈ R
d.

On the one side, arguing as in (3.12), we easily see that

‖θm‖p
Lp ≥

∫

Be−p

| log1(|x|)|p | log2(|x|)|2p . . . | logm+1(|x|)|2p dx

≥ Cd e
−dp pp | log1(p)|2p . . . | logm(p)|2p = Cd e

−dp Θm(p)p

for all p ∈ [1,+∞). On the other side, by Lemma 3.6 and Hölder’s inequality, we get

‖θm‖Lp ≤ ‖ℓ1(| · |)‖L(m+1)p ‖ℓ2(| · |)2‖L(m+1)p . . . ‖ℓm+1(| · |)2‖L(m+1)p

= ‖ℓ1(| · |)‖L(m+1)p ‖ℓ2(| · |)‖2
L2(m+1)p . . . ‖ℓm+1(| · |)‖2

L2(m+1)p

≤ Cm p log1(p)2 . . . logm(p)2 = Cm Θm(p)

for all p ≥ pm for some constant Cm > 0 depending on m only, yielding the conclusion. �

Remark 3.7 (Saturation of Θα(p) = p1/α). Fix α ∈ [1,∞). Arguing as above, one can easily see
that θα(x) = ℓ1(|x|)1/α, for x ∈ R

d, saturates the growth function Θα(p) = p1/α in the sense of
Proposition 1.8, giving an alternative proof of [13, Prop. 1.14].
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