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ABSTRACT 

Purpose: To introduce phase-based conductivity mapping from a configuration space analysis. 

Methods: The frequency response function of balanced steady state free precession (bSSFP) is used to 

perform a configuration space analysis. It is shown that the transceive phase for conductivity mapping 

can be directly obtained by a simple Fast Fourier Transform (FFT) of a series of phase-cycled bSSFP 

scans. For validation, transceive phase and off-resonance mapping with FFT is compared to phase 

estimation using a recently proposed method, termed PLANET. Experiments were performed in 

phantoms and for in vivo brain imaging at 3 T using a quadrature head coil.  

Results: For FFT, aliasing can lead to systematic phase errors. This bias, however, decreases rapidly 

with increasing sampling points. Interestingly, Monte Carlo simulations, revealed a lower uncertainty 

for the transceive phase and the off-resonance using FFT as compared to PLANET. Both methods, 

however, essentially retrieve the same phase information from a set of phase-cycled bSSFP scans. As a 

result, configuration-based conductivity mapping was successfully performed using eight phase-cycled 

bSSFP scans in the phantoms and for brain tissues. Overall, the retrieved values were in good agreement 

with expectations. Conductivity estimation, and mapping of the field inhomogeneities can thus be 

performed in conjunction with the estimation of other quantitative parameters, such as relaxation, using 

configuration theory.  

Conclusions: Phase-based conductivity mapping can be directly estimated from a simple Fourier 

analysis, e.g. in conjunction with relaxometry, using a series of phase-cycled bSSFP scans. 
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INTRODUCTION 

Electrical properties tomography (EPT) retrieves the tissues’ electric permittivity (𝜀) and conductivity 

(𝜎) from an MRI measurement of the complex excitation field B1
+ (1–6). In good approximation, the 

Maxwell equations relate the curvature in the B1
+ magnitude and phase to the permittivity and 

conductivity, respectively. In practice, however, the B1
+ magnitude and phase are not measured 

simultaneously but in separate scans (7–9). As a result, frequently further assumptions are made to 

disentangle the electric properties from each other to retrieve only the permittivity from a measurement 

of the B1
+ magnitude or only the conductivity using the B1

+ phase (3,10–15). Such EPT methods are 

commonly referred to as “magnitude-based” and “phase-based” EPT. 

Magnitude-based EPT can make use of several existing B1 mapping methods (16–21), and their 

accuracy generally defines the accuracy of the EPT results (22). In contrast, the B1 transmit phase (𝜑+) 

is not easily determined from an MRI experiment, since it is intertwined with the B1 receive phase (𝜑−), 

forming what is referred to as transceive phase (𝜑±) (7,22). For phase-based conductivity 

reconstruction, however, knowledge of 𝜑+ is not necessarily required. Any linear combination of 𝜑+ 

and 𝜑− – and thus also 𝜑± – can be used, but it is critical that estimation of the transceive phase is free 

from any other contribution, such as from off-resonances, and is measured with a high signal-to-noise-

ratio (10,22). To this end, dedicated spin-echo methods are most common (5), but information of the 

transceive phase is often already contained in the measurement (22).  

In fact, balanced steady state free precession (bSSFP) has recently attracted increased interest for EPT 

(11,23,24). Moreover, bSSFP is known for its high efficiency, delivering one of the highest signal-to-

noise-ratios (SNR) per unit time (25). Off-resonances, however, are omnipresent and thus compromise 

a reliable transceive phase estimation. Methods to address this issue were recently proposed e.g. by 

Ozdemir et al. (23) using two phase-cycled bSSFP scans together with a main magnetic field 

inhomogeneity map (∆B0) and a T2 map, or by Gavazzi et al. (11) using a least-squares fit to retrieve 

multiple parameters, such as T1,T2, ∆B0 and also the transceive phase, from a geometrically inspired 

method termed PLANET. 

In this work, we present an alternative approach to directly extract the transceive phase from a series of 

phase-cycled bSSFP scans using configuration theory, as recently suggested for relaxometry (26). It 

will be shown that the transceive phase and the local off-resonance are inherently linked with the 

configuration modes and can thus be directly retrieved using a simple Fast Fourier Transformation 

(FFT). Since PLANET has been thoroughly compared to conventional methods for conductivity 

mapping, and phase estimation is performed essentially on the same underlying set of phase-cycled 

bSSFP data, FFT-based conductivity mapping is validated through a direct comparison of the phase 

information either retrieved with PLANET or FFT in phantoms and for in vivo brain at 3 T.  



4 

 

METHODS 

Configuration-based transceive phase estimation  

For bSSFP and immediately after the RF pulse, the complex magnetization (𝑀+) in the steady state, as 

a function of the RF flip angle (𝛼) and the tissue relaxation times T1 and T2, can be written in the form 

(e.g., cf. Ref. (27)) 

 𝑀+(𝜙) = −
𝑖

𝐷
(1 − 𝐸1) sin 𝛼 (1 − 𝐸2𝑒−𝑖𝜙), [1] 

where 

 𝐷 ≜ (1 − 𝐸1 cos 𝛼)(1 − 𝐸2 cos 𝜙) + (cos 𝛼 − 𝐸1)(𝐸2 − cos 𝜙)𝐸2 [2] 

where 𝐸1,2 ≜ 𝑒−𝑇𝑅/𝑇1,2 and 𝜙 ≜ 𝜗 − 𝜑 denotes the phase difference between the off-resonance related 

phase accumulation (𝜗) during one repetition time (TR) and the RF phase increment 𝜑. As usual, 

diffusion and finite RF pulse effects are neglected. Since 𝑀+(𝜙) is periodic with 𝜙, it can be expanded 

in configuration (Fourier) space, including all configuration orders 𝑀(𝑛): 

 𝑀+(𝜙) = ∑ 𝑒𝑖𝑛𝜙𝑀(𝑛)

∞

𝑛=−∞

 [3] 

At time 𝑡 =  𝑥 ⋅ 𝑇𝑅 (0 < 𝑥 < 1), the magnetization M, and thus the acquired signal  𝑆𝜙, becomes 

 𝑆𝜙(𝑡) = 𝜌𝑒𝑖𝜑±
𝑀(𝜙, 𝑡) = 𝜌𝑒𝑖𝜑±

𝐸2
𝑥𝑒𝑖𝑥𝜗𝑀+(𝜙) [4] 

where 𝜌 denotes a scaling factor, 𝜑± the transceive phase and 𝐸2
𝑥 ≜ 𝑒−𝑥∙𝑇𝑅/𝑇2. 

As shown in a seminal work of Zur et al. (28), the configurational modes can be retrieved from sampling 

the bSSFP frequency response function, e.g. using a set of phase-cycled bSSFP scans 

 {𝑆𝜙𝑗
(𝑡)|𝜙𝑗 ≡ 𝜗 − 𝜑𝑗 ∶  𝜑𝑗 ≜ −𝑗 ∙

2𝜋
𝑁 , 𝑗 = 0, 1, … 𝑁 − 1} [5] 

in combination with an N-point Fourier transform 

 

𝑆(𝑝)(𝑡) =
1

𝑁
∑ 𝑆𝜙𝑗

(𝑡)

𝑁−1

𝑗=0

𝑒−𝑖(
2𝜋
𝑁

)𝑗𝑝
 

= 𝜌𝑒𝑖𝜑±
𝐸2

𝑥𝑒𝑖𝑥𝜗
1

𝑁
∑ ∑ 𝑒𝑖𝑛𝜗𝑀(𝑛)𝑒

𝑖(
2𝜋
𝑁

)𝑗(𝑛−𝑝)

∞

𝑛=−∞

𝑁−1

𝑗=0

 

[6] 

which yields 
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 𝑆(𝑝)(𝑡) = 𝜌𝑒𝑖𝜑±
𝐸2

𝑥𝑒𝑖𝑥𝜗(𝑒𝑖𝑝𝜗𝑀(𝑝) + 𝑒𝑖(𝑝±𝑁)𝜗𝑀(𝑝±𝑁) + 𝑒𝑖(𝑝±2𝑁)𝜗𝑀(𝑝±2𝑁) … ) [7] 

since 

 ∑ 𝑒
𝑖(

2𝜋
𝑁

)𝑗(𝑛−𝑝)

∞

𝑛=−∞

= {
𝑁, 𝑖𝑓 

𝑛 − 𝑝

𝑁
 ∈  ℤ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
 [8] 

In the steady state, the modes 𝑀(𝑝) decrease exponentially with increasing configuration order |𝑝| with 

a decay rate that depends on the flip angle 𝛼 and the relaxation time ratio T2/T1 (27). As a result, aliasing 

can be neglected in Eq. [7] for large enough N, which yields for the two lowest order components 

 𝑆(0) ≈  𝑒𝑖𝜑±
𝑒𝑖𝑥𝜗𝑀(0), 𝑆(−1) ≈  𝑒𝑖𝜑±

𝑒𝑖(𝑥−1)𝜗𝑀(−1) [9] 

As a result, the off-resonance related precession angle 𝜗 can be directly retrieved from the argument of 

the configurational ratio 

 arg [
𝑆(0)

𝑆(−1)
] = 𝜗 + arg [

𝑀(0)

𝑀(−1)
] = 𝜗 − 𝜋 [10] 

considering that positive modes (𝑝 ≥ 0) have a phase of −𝜋/2, whereas negative ones (𝑝 < 0) have a 

phase of 𝜋/2 (27). Similarly, the transceive phase is obtained by the argument of the configurational 

product 

 arg[𝑆(0) ∙ 𝑆(−1)] = 2𝜑± + 𝜗 (𝑥 −
1

2
) + arg[𝑀(0) ∙ 𝑀(−1)] = 2𝜑± + 𝜗 (𝑥 −

1

2
) [11] 

which becomes independent of 𝜗 for a centered echo (𝑥 = 1/2), 

 arg[𝑆(0) ∙ 𝑆(−1)] = 2𝜑± [12] 

 

Numerical simulations  

In order to benchmark FFT against PLANET for transceive phase mapping, bSSFP signal simulations 

were performed using a TR (TE) of 4.6 (2.3) ms, a flip angle of 25° and a T1/T2 = 832 ms / 80 ms, as 

suggested for PLANET by Gavazzi et al. (11). According to Eq. [5], signals were simulated for N = 8 

and N = 16 phase-cycling steps. The simulated complex bSSFP signals were then subjected to a N-point 

Fourier transform yielding the configurational modes 𝑆(𝑝) (reaching from 𝑝 = −𝑁/2 to 𝑝 = 𝑁/2 − 1). 

The results were then compared to the limit of continuous RF phase increments to assess possible 

systematic errors in the transceive phase and off-resonance due to discrete sampling. 

In addition, Monte Carlo simulations were performed to assess random noise propagation in both, FFT 

and PLANET, as a function of the flip angle and TR using 10000 drawings. To this end, Gaussian noise 
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with a standard deviation of 1/1000 M0 (with M0 = 1) was added independently to the real and imaginary 

part of the simulated bSSFP signals. TR was varied from 1 ms to 33 ms while the flip angle covered the 

range from 0° to 90°. Furthermore, as in Gavazzi et al. (11), the off-resonance was set to 15 Hz and the 

transceive phase to −60°.  

All simulations and calculations were performed in MatLab (R2019a, MathWorks, Natick, MA). 

 

Imaging experiments 

Imaging was performed at 3 T (Magnetom Prisma, Siemens Healthcare, Erlangen, Germany) using a 

dual tuned 1H/23Na quadrature head coil for transmission and reception (Rapid Biomedical GmbH, 

Rimpar, Germany). For the phantom scans, two bottles with 2 g/L and 8.8 g/L sodium chloride were 

prepared, yielding an estimated electrical conductivity of 0.34 S/m and 1.39 S/m, respectively (29). In 

addition, the saline solutions had 0.125 mM MnCl to provide tissue comparable relaxation times (T1 ~ 

870 ms, T2 ~ 70 ms). 

For configuration-based analysis, eight phase-cycled 3D bSSFP scans were acquired with RF phase 

increments of 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°. Slab-selective excitation with a flip angle of 

25° was used. For the phantom scans, a TR (TE) of 4.6 ms (2.3 ms) was used and the voxel size was 

set to 1.3x1.3x1.3 mm3 for an imaging matrix of 192x168x120 with 20 % slice oversampling, elliptical 

scanning and 343 Hz/px bandwidth. A single bSSFP scan took 92 s and scanning was completed in 

about 12 min. For the in vivo scans, a TR (TE) of 3.13 ms (1.57 ms) was used. As for the phantom scan, 

the same imaging matrix of 192x168x120 with 20 % slice oversampling and elliptical scanning was 

used, yielding a voxel size of 1.3x1.3x1.3 mm3, interpolated to 0.7 mm isotropic (using the scanner 

software provided by the manufacturer). The bandwidth was set to 790 Hz/px. A single bSSFP scan 

took 76 s and overall scanning was completed in less than 10 min. To ensure proper steady state 

conditions, 1000 dummy TRs were used. 

In vivo scans were approved by the local Ethics Board. 

 

Transceive phase estimation and conductivity mapping 

First, to account for possible movements between the phase-cycled scans, the in vivo brain scans were 

rigidly registered using elastix (30) prior to any postprocessing. Then, the complex modes, entering 

Eqs. [10] and [12], are retrieved from the sampled complex bSSFP frequency response function using 

FFT. In contrast, PLANET makes use of the same phase-cycled bSSFP data but analyses the signal 

geometrically in the complex plane. As the magnitude of the complex phase-cycled signal of a voxel 

follows the bSSFP frequency response, the signal forms an ellipse in the complex plane. The ellipse 
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holds information about the voxel’s properties such as T1, T2, ∆B0 and 𝜑±. PLANET was implemented 

as described by Shcherbakova et al. (31) and Gavazzi et al. (11) using a numerically stable direct least 

squares ellipse fit (32–34). The off-resonance and transceive phase maps were unwrapped using an in-

house developed phase unwrapping algorithm. 

Subsequently, the local conductivity was reconstructed from the transmit phase 𝜑+ via the simplified 

homogenous Helmholtz equation (35) using the transceive phase assumption, 𝜑+ = 𝜑± 2⁄ : 

 𝜎 ≈
∇2𝜑±

2𝜇0𝜔
  [13] 

This approximation of the transmit phase holds for field strengths up to 3 T when a quadrature birdcage 

coil is used for excitation and reception and when the scanned object is of cylindrical form (7). In Eq. 

[13], 𝜇0 is the magnetic vacuum permeability and 𝜔 is the Larmor frequency. 

The Laplacian was estimated using the coefficients of a locally fitted second-order polynomial, 

restricted to voxels with magnitude values similar to the center point of the window (36). The Laplace 

estimate was subsequently smoothed with a tissue boundary preserving median filter and a 2D Gaussian 

bilateral filter (using imbilatfilt from Matlab with the degree of smoothing set to 0.1) (10,36). The 

window size for both the Laplace estimation and the median filter was set to 9×9×9 px3 for the phantom 

scans and 21×21×21 px3 for the interpolated in-vivo scans. 

The uncertainty in the phase image (𝑆𝐷𝜑±) in radians can be generally estimated by the inverse of the 

signal-to-noise-ratio (SNR) of the magnitude image 𝑆𝑁𝑅𝑀𝑎𝑔𝑛 (37,38): 

 𝑆𝐷𝜑± = (𝑆𝑁𝑅𝑀𝑎𝑔𝑛)
−1

 [14] 

In this work, the transceive phase 𝜑± results from the product of two configurational mode images (cf. 

Eq. [12]). The 𝑆𝑁𝑅𝑀𝑎𝑔𝑛 is thus related to the SNR of the individual mode images, according to 

 𝑆𝑁𝑅𝑀𝑎𝑔𝑛 = [(𝑆𝑁𝑅𝑀𝑎𝑔𝑛
𝑆(0)

)
−2

+ (𝑆𝑁𝑅𝑀𝑎𝑔𝑛
𝑆(−1)

)
−2

]
−1

 [15] 

A detailed derivation of this relation is given in Appendix A. 

 

RESULTS 

The complex signal of bSSFP (cf. Eq. [4]) is shown in Figure 1A for tissues and for a centered echo in 

magnetization and configuration space. For eight phase-cycled scans, the retrieved configurational 

modes using FFT coincide almost perfectly with the ideal result, that is for a continuous RF phase 
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increment. Generally, however, aliasing can lead to deviations which become more conspicuous for 

higher order modes. This can lead to a systematic error for the FFT-based estimation of ∆B0 and 𝜑±, as 

shown in Figure 1B for 8 and 16 phase-cycling steps, but decreases rapidly with increasing number of 

RF phase increments (26). Overall, from the discrete sampling, the error, as a function of the off-

resonance related phase accumulation, undergoes a harmonic modulation with a period of 2𝜋/𝑁.  

Generally, it can also be expected that the FFT-based systematic error in the estimation of ∆B0 and 𝜑± 

depends on the shape of the frequency response function and thus on T2/T1 (in the limit of TR << T2) 

and on the flip angle. Figure 2 shows the maximum systematic error for both ∆B0 and 𝜑± as a function 

of relaxation times for a fixed flip angle (𝛼 = 25°). Notably, the maximum systematic error for 𝜑± 

estimation is approximately one order of magnitude lower than for ∆B0 (see also Figure 1B). 

Noise leading to random phase accruals in the estimation of ∆B0 and 𝜑± is evaluated and compared in 

Figure 3 for both methods, FFT and PLANET, as a function of the TR and flip angle. For tissues, the 

recommended settings for PLANET (TR = 4.6 ms and flip angle α = 25°) yield a transceive phase  

uncertainty that is approximately 30 % higher than the one using FFT, whereas for the local off-

resonance, the error is more than 3 times less using FFT as compared to PLANET.   

For the phantom scan, off-resonance maps and transceive phase images estimated with both methods, 

FFT and PLANET, are shown for comparison in Figures 4 and 5. The corresponding set of phase-cycled 

magnitude and phase images, as well as their pendant in Fourier space, are shown in Supporting 

Information Figures S1 and S2. Apart from minor phase unwrapping errors at the edges, ∆B0 (Figure 

4A) and 𝜑± (Figure 5A) appear visually identical for both methods. This finding is confirmed by line 

plots for ∆B0 (Figure 4B) and 𝜑± (Figure 5B). As a result, except for the expected different noise 

behavior, both methods essentially retrieve the same phase information from the underlying set of 

phase-cycled bSSFP data. For the FFT, the 𝑆𝑁𝑅𝑀𝑎𝑔𝑛 (cf. Eq. [15]) of the phantom scan is found to be 

around 300, yielding a transceive phase uncertainty of 𝑆𝐷𝜑± = 1/300 rad.  

The product of the magnitude images of the two lowest configurational modes, together with a 

reconstruction of the conductivity using Eq. [13], is shown in Figure 6. The results without the 

application of the boundary-preserving median filter are shown in Supporting Information Figure S3A. 

For the phantom with the lower salt concentration, a bulk conductivity of 0.43 ± 0.04 S/m was measured. 

For the high saline phantom, a conductivity of 1.46 ± 0.08 S/m was observed.  

In complete analogy, complex configuration modes are derived using Fourier transformation of the set 

of eight phase-cycled in-vivo bSSFP brain scans (data not shown). Resulting axial phase images for the 

off-resonance and the transceive phase using FFT and PLANET are shown in Figures 7 and 8. The 

retrieved phase information is essentially identical for both methods. In contrast to the phantom results, 

however, the different noise performance of FFT and PLANET becomes visually noticeable especially 
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in the retrieved ∆B0 maps (Figure 7). In contrast, transceive phase images for FFT and PLANET show 

a similar noise level (Figure 8A), as confirmed by the line profiles (Figure 8B). In this case, as the 

𝑆𝑁𝑅𝑀𝑎𝑔𝑛 (cf. Eq. [15]) averaged over the whole brain was found to be around 100, resulting in a 

transceive phase uncertainty of 𝑆𝐷𝜑± = 1/100 rad.  

Finally, Figure 9 shows a collection of axial corresponding magnitude and conductivity brain images 

(corresponding results before the application of the median filter are shown in Supporting Information 

Figure S3B). For selected regions-of-interest (ROI) in different tissues of the brain conductivity values 

were retrieved. For white matter (ROI 1) a value of 0.44 ± 0.01 S/m was observed. Cortical gray matter 

(ROI 2) showed a conductivty of 0.73 ± 0.01 S/m. For the putamen (ROI 3) a conductivity of 0.61 ± 

0.01 S/m was obtained. A conductivity of 0.77 ± 0.02 S/m was measured for the thalamus (ROI 4) while 

cerebrospinal fluid (ROI 5) yielded the highest conductivity value of 1.89 ± 0.08 S/m. 

 

DISCUSSION 

Under ideal conditions, such as at on-resonance or in the limit of TR << T2 for low off-resonance related 

precession, bSSFP is able to provide an estimate of the transceive phase. Generally, even for the brain, 

off-resonances can become quite severe and in turn the TR not sufficiently short that these criteria can 

be fulfilled throughout. As a result, multiple phase-cycled bSSFP scans need to be acquired. In this 

work, we have shown that configuration theory provides direct access to the transceive phase from such 

a set of phase-cycled bSSFP scans. Similary, configuration theory was recently suggested for 

relaxometry (26,39). Thus, essentially the same framework can be used to gain access not only to tissue 

relaxometry but also to conductivity mapping.  

Recently, a different framework, termed PLANET, was proposed to extract relaxation parameters, as 

well as the local off-resonance and the transceive phase information, from a set of phase-cycled bSSFP 

scans (11,31). Notably, Gavazzi et al. (11) performed a thorough validation of PLANET for phase-

based EPT. Thus, for validation purposes, we compared FFT to PLANET, since both methods can be 

run on essentially the same data sets. To this end, imaging and simulations were performed with the 

recommended settings for PLANET (11).  

Generally, estimation of the configurational states from a finite number of samples using FFT is prone 

to aliasing (28), as reflected by a residual oscillitaing systematic bias, but can easily be mitigated by 

using a higher number of phase-cycles (cf. Figure 1B). Interestingly, Monte Carlo simulations revealed 

that there is lower noise propagation in FFT not only for typical bSSFP settings, that is TR < 10 ms and 

flip angle α > 10°, but generally over almost the whole range of simulated values for the repetition time 

and flip angle compared to PLANET (cf. Figure 3). This finding might be due to the model-based 
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complex least-squares estimator used for PLANET whereas FFT only relies on a periodicity assumption 

of the signal which might be less sensitive to outliers.  

As with tissue relaxometry, conductivity can be biased by many factors. Besides the fact that tissues 

are not pure, conductivity mapping also relies on an estimation of the not directly accessible transmit 

phase using the transceive phase assumption. Generally, the validity of this assumption reduces for non-

cylindrical geometries, such as the head, or with increasing Larmor frequency (7).  

The retrieved conductivity values in the phantoms are close to the expectations but appear to 

overestimate the underlying conductivity values. This might be either due to a bias between the real and 

estimated conductivity based on the salt concentrations or due the used conductivity reconstruction 

based on Eq. [13]. It is known that the simplified homogenous Helmholtz equation for phase-based EPT 

yields higher conductivity values as expected due to neglected gradient terms of the complex B1
+-field 

(7,22,35). It is assumed that with reconstruction algorithms based on the full Helmholtz equation more 

accurate results can be achieved (8,9,13). Especially for tissue, other factors might lead to deviations, 

such as asymmetries in the bSSFP’s frequency response profile (40,41). But in general, brain tissue 

conductivities are in good agreement with what is reported in the literature for phase-based EPT (7,35). 

In complete analogy to the recently proposed PLANET methodology (11,31), configuration-based 

transceive phase estimation builds up on a set of phase-cycled bSSFP scans. In this work, the transceive 

phase separates from the estimation of tissue relaxivities and becomes directly accessible by means of 

a simple Fourier transform, whereas PLANET requires least-square fitting of a bSSFP signal model. 

Generally, as with PLANET, conductivity mapping can be performed in conjunction with tissue 

relaxometry, and thus without the need of additional scans or scan time. 

 

CONCLUSION 

In conclusion, we have shown that the transmit phase and thus the conductivity can be directly estimated 

from a set of phase-cycled bSSFP scans using straightforward arithemtics. The validity of the proposed 

methodology was confirmed in phantoms and the feasibility was demonstrated for brain in vivo. From 

a set of phase-cycled bSSFP scans, conductivity mapping can be performed in conjunction with tissue 

relaxation, and thus without scan time prolongation. Overall, this might facilitate successful translation 

of conductivity mapping into the clinical setting. 
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APPENDIX A 

For the derivation of the magnitude SNR of the product of two images we consider two signals 

 𝑠1,2 = 𝑥1,2 + 𝑛1,2 [A1] 

with constant amplitude (x) and Gaussian noise (n) of variance 

 𝜎1,2
2 = 〈(𝑠1,2 − 𝑥1,2)

2
〉 = 〈𝑛1,2

2〉 [A2] 

and mean 

 〈𝑠1,2〉 = 𝑥1,2, 〈𝑛1,2〉 = 0, 〈𝑛1𝑛2〉 = 0 [A3] 

For the product 𝑠 of the two signals,  

 𝑠 = 𝑠1 · 𝑠2 = 𝑥1𝑥2 + 𝑥1𝑛2 + 𝑥2𝑛1 + 𝑛1𝑛2 ≡ 𝑥 + 𝑛 [A4] 

with 

 𝑥 ≜ 𝑥1𝑥2, 𝑛 ≜ 𝑥1𝑛2 + 𝑥2𝑛1 + 𝑛1𝑛2, [A5] 

we find the variance 

 

𝜎2 = 〈(𝑠 − 𝑥1𝑥2)2〉 = 〈(𝑥1𝑛2 + 𝑥2𝑛1 + 𝑛1𝑛2)2〉 = ⋯ 

= x1
2𝜎2

2 + x2
2𝜎1

2 + 𝑂(𝑛4) 

 

[A6] 

Assuming a reasonable SNR, that is 〈𝑥1,2〉 ≫ 𝜎1,2, we thus find 

 |𝑆𝑁𝑅|−2 ≜
𝜎2

x2 
≈

x1
2𝜎2

2 + x2
2𝜎1

2

𝑥1
2𝑥2

2 = |𝑆𝑁𝑅2|−2 + |𝑆𝑁𝑅1|−2 [A7] 

For the magnitude SNR of the individual mode images (SNR1,2), the ratio was taken between the 

average signal magnitude within the object and the standard deviation of the real part of the image in 

the background (air).  
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FIGURES 

 

Figure 1. (A) On-resonance steady state bSSFP signal 𝑆𝜙 (left) and corresponding modes 𝑆(𝑝) (right) 

for N = 8 phase cycles (black dots) and for a continuous RF phase increment (blue line). The dashed 

blue line connecting the discrete configurational modes only serves visual purpose and has no physical 

meaning. (B) The systematic error of ∆B0 and 𝜑± estimation as a function of the off-resonance for N = 

8 (left) and N = 16 (right) phase-cycling steps. (The simulation was performed for a tissue with 𝜌 = 1, 

a T1 / T2 = 832 ms / 80 ms, a TR (TE) = 4.6 (2.3) ms, a flip angle α = 25°, and for 𝜑± = 0; M0 is the 

equilibrium magnetization). 
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Figure 2. Maximum systematic error (see Figure 1B) as a function of T1 and T2. Locations of WM (T1 

/ T2 = 832 ms / 80 ms) and CSF (T1 / T2 = 4500 ms / 2200 ms) are indicated in the plot. (Other simulation 

parameters were identical to Figure 1). 

 

Figure 3. The uncertainty of ∆B0 and φ± with respect to TR and flip angle using FFT and PLANET 

(Simulation parameters were: T1 / T2 = 832 ms / 80 ms, 𝜗 = 15 Hz, 𝜑± = −60°, TR = {1, 1.5, 2, ... 32.5, 

33} ms and flip angle = {0, 1, ..., 90}°, and TE = TR/2). 
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Figure 4. (A) Exemplary coronal and axial ∆B0 maps for the phantom scan calculated using FFT and 

PLANET. (B) Line profiles for the two post processing methods. The locations are indicated by the 

colored lines in (A). 

 

Figure 5. (A) Exemplary coronal and axial transceive phase φ± maps for the phantom scan calculated 

using FFT and PLANET. (B) Line profiles for the two post processing methods. The locations are 

indicated by the colored lines in (A). 
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Figure 6. Exemplary coronal and axial image of the reconstructed band-free magnitude and 

conductivity (cf. Eq. [13]) of the phantoms. For the conductivity in the bulk, values of 1.46 ± 0.08 S/m 

(left) and 0.42 ± 0.04 S/m (right) are found. 

 

Figure 7. (A) Exemplary axial ∆B0 maps for the in-vivo brain scan calculated using FFT and PLANET. 

(B) Line profiles for the two post processing methods. The locations are indicated by the colored lines 

in (A). 
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Figure 8. (A) Exemplary axial transceive phase φ± maps for the in-vivo brain scan calculated using 

FFT and PLANET. (B) Line profiles for the two post processing methods. The locations are indicated 

by the colored lines in (A). 

 

Figure 9. Exemplary axial slices of the reconstructed band-free magnitude (top row) and conductivity 

(bottom row) for the brain of a volunteer. The ROIs indicate locations where a value for the conductivity 

was retrieved for different brain tissues, with ROI 1 indicating white matter, ROI 2 cortical gray matter, 

ROI 3 putamen, ROI 4 thalamus and ROI 5 cerebrospinal fluid. 
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Supporting Information Figure S1 Exemplary magnitude and phase images of the phantoms from the set of 

eight phase-cycled bSSFP volume scans with different RF phase increment. 
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Supporting Information Figure S2 Exemplary magnitude and phase images of the configurational modes of 

the phantoms calculated from the set of eight phase-cycled bSSFP volume scans with different RF phase 

increment in S1. Note that all magnitude images are scaled equally. 

 

Supporting Information Figure S3 (A) Exemplary coronal and axial images of the reconstructed conductivity 

before applying the magnitude based boundary-preserving median filter. (B) Likewise, the reconstructed 

conductivity before applying the magnitude based boundary-preserving median filter for the exemplary axial 

slices of the in-vivo brain. 

 


