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A B S T R A C T   

Daylight is ubiquitous and is crucial for mammalian vision as well as for non-visual input to the brain via the 
intrinsically photosensitive retinal ganglion cells (ipRGCs) that express the photopigment melanopsin. The 
ipRGCs project to the circadian clock in the suprachiasmatic nuclei and thereby ensure entrainment to the 24- 
hour day-night cycle, and changes in daylength trigger the appropriate seasonal behaviours. The ipRGCs also 
project to the perihabenular nucleus and surrounding brain regions that modulate mood, stress and learning in 
animals and humans. Given that light has strong direct effects on mood, cognition, alertness, performance, and 
sleep, light can be considered a “drug” to treat many clinical conditions. Light therapy is already well established 
for winter and other depressions and circadian sleep disorders. Beyond visual and non-visual effects via the 
retina, daylight contributes to prevent myopia in the young by its impact on eye development, and is important 
for Vitamin D synthesis and bone health via the skin. The sun is the most powerful light source and, dependent on 
dose, its ultraviolet radiance is toxic for living organisms and can be used as a disinfectant. Most research in
volves laboratory-based electric light, without the dynamic and spectral changes that daylight undergoes 
moment by moment. There is a gap between the importance of daylight for human beings and the amount of 
research being done on this subject. Daylight is taken for granted as an environmental factor, to be enjoyed or 
avoided, according to conditions. More daylight awareness in architecture and urban design beyond aesthetic 
values and visual comfort may lead to higher quality work and living environments. Although we do not yet have 
a factual basis for the assumption that natural daylight is overall “better” than electric light, the environmental 
debate mandates serious consideration of sunlight not just for solar power but also as biologically necessary for 
sustainable and healthy living.   

1. Introduction 

The last decades have seen a remarkable unravelling of the molecular 
secrets of the circadian clock in living organisms. In mammals, circadian 
rhythms in cells, tissues and organs are generated by self-sustained 
molecular core transcription-translation feedback loops [1]. We have 
learned a great deal about the synchronisation of the clock to the 
external day-night cycle, and the effect of different wavelengths, in
tensities, and timing of light on human physiology and behaviour. Dawn 
– dusk simulations have revealed the innate sensitivity of the clock to the 
gradually changing low light intensities found in nature [2], and clini
cians have used artificial bright light to treat mood and sleep disorders 

[3,4]. The field of biological rhythms is thereby truly interdisciplinary 
(bench to bedside and back again), where psychiatrists understand the 
formal properties of the circadian system, and cell biologists may 
contribute with experimental knowledge to improve sleep/wake 
functions. 

Light research has primarily been carried out under controlled lab
oratory conditions, using defined light–dark environments and timed 
application of artificial light. Given that the evolution of circadian clocks 
and entrainment to the 24-hour light–dark cycle occurred under natu
ralistic conditions long before the invention of electricity and use of light 
sources other than the sun, it seems appropriate that light research 
should now move towards understanding the impact of daylight on 
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human physiology and psychology under field conditions, even though 
such research is much more difficult due to the unpredictable and less 
controllable variations of environmental light [5]. 

Recently, under the auspices of the Daylight Academy, we published 
two focus papers related to daylight research: “Daylight: What makes the 
difference?” [6] and “The role of daylight for humans: Gaps in current 
knowledge” [7]. Although we know the physical differences between 
daylight and electric light quite well, it is technically extremely difficult 
to mimic all the properties of natural light with electric light and 
combine it into one light source (i.e. spectra, dynamics, temporal vari
ations, rate of change, spatial light distribution, flicker frequencies, 
polarisation [5,7]). Maybe it is this “uniqueness” which implies that 
natural light is superior to electric light. The specific benefits of daylight 
probably go beyond subjective preference or the positive symbolism of 
the sun, but we do not yet have the data to support this assumption. 

In everyday life, exposure to daylight is diminished by buildings and 
defined by their apertures to the outside; daylighting design is complex, 
and a view is an additional, crucial factor. Temperature also plays an 
important role – extreme heat and cold keep people indoors and create 
new engineering tasks to adequately adjust temperature in the indoor 
environment. Lastly, geographical, cultural aspects as well as societal 
practice and standards determine individual in- and outdoor-related 
behaviour. Here we focus on new developments that may stimulate 
real-life field studies. 

2. What is daylight? 

Daylight is direct and indirect electromagnetic radiation from the 
sun, which is altered by different reflections and conveyed and filtered 
through the atmosphere. The duration and availability of daylight de
pends on geographical latitude, season and atmospheric conditions. 
Daylight has a broad continuous spectral power distribution, changing 
within and across days and with weather and sky conditions in absolute 
power (irradiance), colour, diffuseness, polarity and direction. Outdoors 
on a sunny day light intensity (illuminance) varies between 20,000 and 
100,000 lx, is around 3,000 lx when it rains, and up to 1,000 lx during 
civil twilight. Indoors, daylight fluxes are usually much lower and 
decline exponentially with distance from windows. The highly dynamic 
pattern of daylight contrasts with the (almost everywhere) constant 
availability of electric light. Additionally, depending on the light source 
(incandescent, fluorescent, or LED), the spectral power distribution of 
the lights are quite different from each other and from daylight, even 
though they may all be perceived as “white” light [6]. 

3. Light input to the eye and brain 

In mammals, light reaching the retina is crucial for vision (motion, 
spatial detail, colour), transduced into electrical signals in the rods and 
cones. Light is also important for non-visual input to the brain via a 
subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) that 
express the short-wavelength-sensitive photopigment melanopsin. The 
ipRGCs project to the circadian clock in the suprachiasmatic nuclei 
(SCN), where they release glutamate and PACAP. GABA is the most 
prevalent neurotransmitter in the SCN, co-expressed in VIP, AVP and 
GRP- expressing neurones. SCN cellular oscillators can be synchronised 
to one another to produce a precise, coherent output signal, mediated by 
synaptic and humoral factors [8]. The ipRGCs thereby mediate 
entrainment of the circadian clock in the SCN to the 24-hour light–dark 
cycle, modify sleep, alertness, pupil size and many more physiological 
functions. They also interact with other retinal ganglion cells to convey 
visual and non-visual light input [9]. These two photic systems were 
long considered independent, however newer evidence indicates in
teractions in animals [10,11], and in human visual perception [12,13], 
e.g. melanopsin-mediated information via the primary visual cortex 
[14]. The complexity has expanded even more since the finding that 
visual responses at all levels from ipRGCs to the primary visual cortex 

and retinal activity are modulated by arousal state [15], and with the 
discovery of new GABA-ergic pathways in animals [16]. 

The range of central nervous system functions found to be affected by 
light continues to grow. The most important - now classical - zeitgeber 
role of light, is to synchronise and shift circadian rhythms. Daylength 
(and rate of change of daylength) triggers seasonal responses, and the 
day-night transitions at twilight are crucial. Not only does light directly 
increase alertness, but daytime exposure appears to modify night-time 
sleep [17]. The mood-enhancing effects of light (known from clinical 
applications) are mediated not only by circadian mechanisms but also by 
a SCN-independent pathway linking ipRGCs to the perihabenular nu
cleus (PHb), itself close to neurons modulating mood and stress [18]. 
Photic information to the PHb can also influence learning separately 
from the circadian role of the SCN [18]. The habenulae are small paired 
nuclei in the brain contributing to many cognitive and motivational 
functions and are additionally part of the circadian circuitry. In both 
animals and humans, habenular neurones respond to retinal illumina
tion with a time of day dependency [19,20]. 

It is clear that further studies of such basic mechanisms relating to 
the eye and its signalling pathways to the brain and the neurotrans
mitters involved will remain laboratory based, using controlled and 
well-defined electric light sources. However, understanding these basic 
mechanisms will help define, direct and analyse daylight data from field 
research. 

4. Lack of daylight 

There are two major epidemiological developments related to 
daylight (or rather, lack of daylight). A widespread and growing 
occurrence of myopia in the young is a worrying trend, particularly in 
Asia [21]. It starts between 4 and 6 years of age or later, and even though 
wearing glasses can correct vision, it cannot stop the progression of 
myopia [22]. Exposure to natural light has been shown to be protective 
against the development of myopia in many species including young 
humans [22], such as being outdoors for 2–3 h daily and reducing the 
hours of near-work activities under low light levels combined with 
breaks [22,23]. A few hours of daylight exposure outdoors each day 
seem to be the simple “miracle” preventive prescription [22,23]. The 
biochemical pathways that lead to myopia-inducing eye growth are not 
fully understood. Mechanisms related to retinal dopamine, that is 
stimulated by light, control the growth of the eye [23]. Involvement of 
circadian regulation on refractive development in myopia has also been 
suggested [24]. 

Not only myopia, but more generally, children’s health in the digital 
age appears to be at risk with increased screen time [25]. Well known is 
the delay of sleep timing found in young people using blue-emitting 
screens of mobile phones or tablets in the evening. The developing 
child’s lack of natural daylight exposure, a major consequence of 
increased time spent indoors online, is correlated with multiple health 
risks ranging from physiological disorders (sleep, obesity), psychologi
cal problems (depression, anxiety), and cognitive impairment [25]. Key 
neurotransmitters widespread in brain neuronal networks are involved. 
For example, serotonin is a crucial neurotransmitter linked with mood 
and circadian regulation; dopamine regulates the brain’s reward circuits 
(motivation, attention) and movement centres [26]. 

Vitamin D is essential for bone development and health. We know 
that without Vitamin D bones can become soft, thin and brittle (rickets, 
osteoporosis). New data suggest that Vitamin D, synthesised by 
ultraviolet-B in daylight reaching the skin, is additionally linked to the 
circadian system and the sleep-wake cycle, possibly through the immune 
system [27–29] or the newly discovered melanopsin-photosensitive 
system in human skin [30]. Immune responses are also regulated by 
central and peripheral circadian clocks [31]. Their proper coordination 
is crucial for adaptive immunity, such as for protective antibody pro
duction after vaccination (e.g. via T and B-cells). The responses also vary 
with time of day [32,33], season [34] and sleep [35]. Low Vitamin D 
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levels are associated with a higher risk of COVID-19 infection [29]; a 
recent study of a Vitamin D metabolite administered to hospitalised 
COVID-19 patients showed significantly reduced intensive care unit 
admission [36]. These findings open up entirely new interactions of 
daylight with clocks, sleep, and immunological health, with emphasis on 
the current pandemic COVID-19 situation worldwide [37]. 

5. Light and mood disorders 

The link between affective disorders and circadian rhythms has a 
long history (reviewed in [38,39]), in that altered sleep-wake cycles and 
periodic mood shifts have been documented since the early psychiatric 
literature. In our modern times it has been found that imposed circadian 
disruptions due to shift work, light at night, and transmeridian flight 
promote affective symptoms in vulnerable individuals [39,40]. Animal 
models suggest that even short-term exposure to nighttime light can 
trigger depressive-related symptoms [41]; irregular light schedules act 
directly via ipRGCs to increase depression-related behaviours and 
learning, reversible with antidepressant drugs [42]. On the other hand, 
bright light is an established antidepressant for seasonal and other de
pressions [38]. A daily walk outdoors can similarly improve mood in 
SAD [43]. Additionally, increased electric light [44] or mixed (day-) 
light exposure can ameliorate mood in neurodegenerative diseases [45]. 
Again, linking to today’s COVID-19 pandemic, daylight might be helpful 
in limiting both the psychiatric sequelae of hospitalisation [46] and the 
probability of infection itself: through the antidepressant effect of bright 
light, and its disinfectant properties [47,48]. 

6. A future with daylight? 

The climate change and the environmental debate [49] mandate 
serious consideration of sunlight not just for solar power but also for 
health. Even though the new generation of LEDs can approach the 
spectral distribution of daylight and are programmable in terms of in
tensity and Correlated Colour Temperature throughout the day to 
simulate daylight as well as the crucial dawn-dusk transitions, a new 
focus on natural daylight is required in architectural solutions to attain 
better energy efficiency. There remain key gaps of knowledge in 
daylight research related to uncertainty as to the ‘daylight quantity and 
quality needed for ’optimal’ physiological and psychological func
tioning and general health’ [7]. We still do not have standardised tools 
to accurately and continuously measure individual daylight (and electric 
light) exposure across multiple time scales including spectral composi
tion [5]. Not only is the daily exposure to a given light intensity, dura
tion, wavelength and timing important, but the modification by prior 
light exposure, age, eye problems, medication etc. needs to be docu
mented and integrated into optimisation of (day-)light exposure. We 
need consensus on methodologies to determine the effects of daylight on 
visual, psychological, and somatic functions, as well as a better inte
gration and exchange of daylight knowledge bases from different dis
ciplines (Fig. 1). 

On a broader scale, this means translation into appropriate design for 
daylight-enhanced buildings and urban settings. The research problem 
is clear: daylight as a dynamic natural source is difficult to control, 
predict, or replicate. Can we develop a metric to measure the “natural
ness” of light? And can we determine if and how the effects of daylight 
are different from the effects of electric light? It is clear that in everyday 
life we move between daylight and electric light, so that the conse
quences of exposure to a pure naturalistic photoperiod can only be 
measured in communities living isolated far from artificial light sources 
[50], or camping in the wild [51]. 

And lastly, daylight may also be efficiently used to strengthen 
circadian entrainment (e.g. in hospitals) in order to improve efficacy and 
reduce side effects of any therapeutic intervention. The timing of an 
individual’s clock is relevant for the timing of drug administration, and 
the timing of treatment in turn modifies its effects [52–54] . 

A list of the gaps in knowledge about the impact of daylight on 
humans can be found in [7]. Given the growing recognition of the 
importance of Circadian Rhythm and Sleep-wake Dependent Regulation of 
Behaviour and Brain Function (as in this issue of Biochemical Pharma
cology) in relation to health and well-being, our two “white papers” on 
daylight [6,7] provide a detailed blueprint for future research. 

In summary, we need more evidence-based data to support the 
premise that access to natural daylight is necessary and advantageous 
for sustainable and healthy living. The circadian and sleep community is 
intellectually rich enough to meet this research challenge to define the 
necessary parameters, but will need to interact better across disciplines 
and develop an updated theoretical framework, in which it will be 
crucial to integrate the findings of daylight research, thus creating the 
groundwork for beneficial community applications. 
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