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 COVID-19 is a new disease caused by the Severe Acute Respiratory 

Syndrome Coronavirus 2 (SARS-CoV-2) variant. The initial symptoms of the 

disease commonly include fever (83-98%), fatigue or myalgia, dry cough (76-

82%), and shortness of breath (31-55%). Given the prevalence of coughing 

as a symptom, artificial intelligence has been employed to detect COVID-19 

based on cough sounds. This study aims to compare the performance of six 

different Convolutional Neural Network (CNN) models (VGG-16, VGG-19, 

LeNet-5, AlexNet, ResNet-50, and ResNet-152) in detecting COVID-19 

using mel-spectrogram images derived from cough sounds. The training and 

validation of these CNN models were conducted using the Virufy dataset, 

consisting of 121 cough audio recordings with a sample rate of 48,000 and a 

duration of 1 second for all audio data. Audio data was processed to generate 

mel-spectrogram images, which were subsequently employed as inputs for 

the CNN models. This study used accuracy, area under curve (AUC), 

precision, recall, and F1 score as evaluation metrics. The AlexNet model, 

utilizing an input size of 227×227, exhibited the best performance with the 

highest Area Under the Curve (AUC) value of 0.930. This study provides 

compelling evidence of the efficacy of CNN models in detecting COVID-19 

based on cough sounds through mel-spectrogram images. Furthermore, the 

study underscores the impact of input size on model performance. This 

research contributes to identifying the CNN model that demonstrates the best 

performance in COVID-19 detection based on cough sounds. By exploring 

the effectiveness of CNN models with different mel-spectrogram image sizes, 

this study offers novel insights into the optimal and fast audio-based method 

for early detection of COVID-19. Additionally, this study establishes the 

fundamental groundwork for selecting an appropriate CNN methodology for 

early detection of COVID-19. 
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1. INTRODUCTION  

COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, 

has emerged as a novel disease. Early-stage symptoms commonly include fever (83-98%), fatigue or myalgia, 

dry cough (76-82%), and shortness of breath (31-55%) [1]. The limited availability of COVID-19 testing 

facilities has resulted in delayed detection of many individuals who are positive for COVID-19, leading to 

inadvertent virus transmission and increased infection rates [2]. Furthermore, delayed detection can contribute 

to a higher mortality rate as patients may not receive timely or adequate treatment. To address this issue, 

researchers have explored the use of chest X-ray imaging for COVID-19 detection. However, this method is 

unreliable for early detection due to time-consuming radiography processes, lasting between 30 to 108 minutes 

[3], and can only be performed in specific hospitals with radiography facilities. Such limitations hinder the 

effective use of chest X-rays as an early detection tool. 
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Therefore, alternative approaches are necessary, such as audio-based COVID-19 detection. Several 

studies have investigated the use of audio, including the research by Zhou et al. [4] who utilized a CNN model 

for cough recognition on the ESC-50 and Speech Command Dataset with the duration of 1 second then 

transformed to mel-spectrogram. Nanni et al. [5] explored different CNN models and data augmentation 

techniques to enhance accuracy in classifying cat and bird sounds using the Cat [6], [7] and BIRDZ [8] datasets. 

Xu et al. [9] utilized CRNN for audio tagging and weakly supervised sound event detection on the Google 

Audioset [10]. Fernandes et al. [11] employed CNN models on the Abuzz Project dataset [12], which contains 

wingbeat sounds from various mosquito species, with the main goal of training the CNN model to detect Aedes 

aegypti mosquitoes. Another study by Kim et al. [13] employed SampleCNN [14], an architecture specifically 

designed for audio classification, with the MagnaTagATune [15], speech command [16], and audio tagging 

[17] datasets for music auto-tagging, keyword spotting, and acoustic scene tagging tasks. 

While models like SampleCNN utilize raw audio waveforms as input data, other CNN models such as 

VGG, LeNet-5, AlexNet, and ResNet require image inputs. Therefore, audio files need to be transformed into 

spectrogram images [18] to visualize the frequency signal of the audio. 

Spectrograms have been widely adopted as image representations of sound signals in various research 

domains, including speech recognition, music genre recognition, and sound recognition [19]–[21]. 

Transforming the audio files into spectrogram images enables the visualization of the frequency signal patterns 

present in the cough sounds. Analyzing the spectrogram images makes it possible to identify specific frequency 

patterns that may be indicative of COVID-19. Spectrograms have several variants, such as chromagrams [22], 

log-spectrograms [23], scalograms [24], and mel-spectrograms [25]. Mel-spectrograms utilize the mel scale, 

which closely aligns with human auditory perception of sound by considering the human ear's sensitivity to 

frequency differences at different levels. Hence, mel-spectrograms are commonly used in sound recognition, 

speaker identification, and emotion recognition. 

Despite the promise of using cough sounds for COVID-19 detection, several limitations must be 

addressed. Variations in cough patterns among individuals, influenced by age, gender, and underlying health 

conditions, can introduce challenges in accurately detecting COVID-19. Additionally, high-quality audio 

recordings are essential to capture the necessary frequency signal patterns for analysis. The influence of other 

factors, such as background noise or overlapping sounds, may also impact the accuracy of detection algorithms. 

This study aims to investigate the effectiveness of Convolutional Neural Network (CNN) models in 

detecting the COVID-19 status based on cough sounds. Our approach involves transforming cough sounds into 

mel-spectrogram images, enabling visualization of the frequency signal patterns present in the cough sound. 

The size of the mel-spectrogram image was resized to 32×32, 128×128, 227×227, and the default input size 

for each CNN models. The CNN models employed in this study include VGG-16, VGG-19, LeNet-5, AlexNet, 

ResNet-50, and ResNet-152. To assess the model’s performance, we evaluate the accuracy, the area under the 

curve (AUC), precision, recall, and F1 score, enabling a comprehensive comparison to identify the model with 

the highest performance. Furthermore, we analyze the impact of different input sizes on the performance of 

each model, aiming to determine the optimal input size for this particular study. 

The primary contribution of this research lies in identifying the CNN model that demonstrates the best 

performance in COVID-19 detection based on cough sounds. This study makes a unique contribution to the 

field of audio-based COVID-19 detection by focusing specifically on cough sounds. While previous research 

has explored various audio and CNN models, the use of different sizes for mel-spectrogram images is relatively 

unexplored. By exploring the effectiveness of CNN models with different mel-spectrogram image sizes, this 

study offers novel insights into the optimal and fast audio-based method for early detection of COVID-19. 

Additionally, this study establishes the fundamental groundwork for selecting an appropriate CNN 

methodology for early detection of COVID-19. 

2. METHODS  

The main objective of this research is to identify the most optimal method for early detection of COVID-

19. Segmentation was applied to the virufy dataset to divide the audio recordings into smaller segments, the 

data was transformed into mel-spectrogram images. These images were resized to standardized dimensions of 

32×32, 128×128, 227×227, and the default input size for each CNN models. The CNN models were evaluated 

using AUC, accuracy, precision, recall, and F1 score. The research workflow in this study can be seen in Fig. 

1.  
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Fig. 1. Research Workflow 

2.1 Data Collection 

The Virufy dataset [26] was utilized for training and testing in this study. The dataset was collected from 

a hospital under supervision by physicians following Standard Operating Procedures (SOP) and informed 

patient consent. The dataset contains a diverse range of cough sounds from different demographics. It 

comprises 121 cough audio recordings in MP3 format, classified into two classes: "pos" with 48 audio samples 

and "neg" with 73 audio samples. All audio samples have a sampling rate of 48,000 Hz. Table 1 presents the 

file names and labels of each audio sample. Waveform representations of samples from the (a) neg and (b) pos 

classes are depicted in Fig. 2, while their corresponding mel-spectrograms are shown in Fig. 3. The samples 

had different durations and still contained noise, so preprocessing was necessary to equalize the duration and 

remove noise from the audio. 

 

Table 1. Dataset description 
No cough_filename corona_test 

1 neg-0421-083-cough-m-53-0.mp3 neg 

2 neg-0421-083-cough-m-53-1.mp3 neg 

...... ......  

72 neg-0421-083-cough-m-53-10.mp3 neg 

73 neg-0421-083-cough-m-53-11.mp3 neg 

74 pos-0421-094-cough-m-51-4.mp3 pos 

75 pos-0421-094-cough-m-51-5.mp3 pos 

...... ......  

120 pos-0422-096-cough-m-31-6.mp3 pos 

121 pos-0422-096-cough-m-31-8.mp3 pos 

 
  

a b 

Fig. 2. Visualization of samples in waveform format 
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a b 

Fig. 3. Visualization of cough samples in mel-spectrogram format 

2.2 Preprocessing Data 

In order to address the difficulty in recognizing sounds caused by very short-duration audio or blending 

of cough sounds with unrelated sounds in very long-duration audio, the cough audio data was segmented, and 

noise components were identified and removed manually by audio editing software. Each audio file was 

divided into one-second segments to ensure consistent duration. The audio segments were then transformed 

into mel-spectrogram images using the Librosa library [27], to make it compatible with CNN algorithms. The 

mel-spectrogram images were resized four times, including input sizes of 32×32, 128×128, 227×227, and the 

default input size of the six models. This process was automated using python programming. The choice of 

32×32 input size was based on the smallest default input size among the models, which is 32×32 for LeNet-5 

[28]. The 227×227 input size was derived from the model with the largest default input size, which is AlexNet 

[29]. The value of 128×128 was chosen as the midpoint between 32×32 and 227×227, with a multiple of 32. 

The VGG-16 model has a default input size of 224×224 [30], as well as the VGG-19, ResNet-50, and ResNet-

152 models, which all have the same default input size [31]–[33]. The smaller input size would likely consume 

less memory, while the larger input size consumes more. The dataset was then split into 70% training data and 

30% testing data using a random split. 

 

2.3 Convolutional Neural Network 

The mel-spectrogram images were processed through a Convolutional Neural Network (CNN) to 

determine the presence of COVID-19 based on cough audio. Convolutional Neural Networks are one of the 

most popular deep learning architectures used in computer vision due to their remarkable ability to detect 

patterns in images [34]. The CNN models used in this study include AlexNet [35], VGG-16 [36], VGG-19 

[37], LeNet-5 [38], ResNet-50 [39], and ResNet-152 [40]. All models were trained using the parameters listed 

in the Table 2. 

 

Table 2. The parameters used in the models 
Parameter Value 

Batch size 8 

Epochs 50 

Learning Rate 0.0001 

Optimizer Adam 

Activation Relu 

Dropout Rate 0.5 

 

The CNN architecture is built with three main types of layers: convolutional layers, pooling layers, and 

fully connected layers [41]. The convolutional layer [42] is the key layer that extracts features from the input 

data. It utilizes a mathematical operation called convolution to perform processing. The convolution operation 

involves using a filter (kernel) to traverse the input data gradually. This filter shifts (performs shifting) across 

the input, and at each shift, it multiplies the covered input values with the corresponding weights in the filter. 

After multiplication, all the resulting products are summed up into a single value. This process is performed 

for each part of the input data, resulting in a new feature map. In Fig. 4, it can be observed that the filter matrix 

(middle) is multiplied with the focus area (left matrix), which is marked with blue and red colors as the center. 

The resulting products are then stored in the corresponding locations centered on the next layer. 

The pooling layer [44] is used to reduce the dimensionality of the feature maps generated by the 

convolutional layer. The pooling layer helps reduce the network's complexity and improves resilience to spatial 

shifts in the input data. The pooling layer also employs a shifting filter to perform operations such as taking 
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the maximum value (max pooling) or the average value (average pooling) from the area covered by the filter. 

The visualization of the pooling layer operation can be seen in Fig. 5. 

 

 
Fig. 4. The operation of the convolutional layer [43] 

 

 
Fig. 5. The operation of the pooling layer [45] 

After passing through the convolutional and pooling layers, the resulting features are flattened into a 

vector and connected to the fully connected layer. The fully connected layer [46] is a layer where each neuron 

is connected to all units in the previous layer. The purpose of the fully connected layer is to learn the linear and 

non-linear relationships between the input and output. This layer acts as the classification or regression output 

layer, transforming the previously extracted features into the final predictions based on the given task. The 

visualization of the fully connected layer operation can be seen in Fig. 6. 

 

 
Fig. 6. The operation of fully connected layer [45] 
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2.4 Assessment Indices 

This study uses accuracy, the area under curve (AUC), precision, recall, and F1 score as evaluation 

metrics for classifying COVID-19 based on cough sounds.  

Accuracy [47] is a metric that measures how well a model or classification system can correctly classify 

data overall. Accuracy indicates how well the model can correctly classify cough sounds as indicative or non-

indicative of COVID-19. A higher accuracy value suggests a better overall performance of the model in 

correctly identifying COVID-19 cases. The formula for accuracy is shown in (1). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

Recall [48], also known as sensitivity or true positive rate (TPR), is one of the evaluation metrics used in 

classification problems. Recall represents the ability of the model to identify cough sounds from COVID-19 

positive individuals correctly. A higher recall value indicates a lower rate of false negatives, meaning the model 

is correctly capturing a higher number of actual COVID-19 cases. The formula for the recall is shown in (2). 

AUC [49] measures the area under the receiver operating characteristic (ROC) curve. The ROC curve is 

a plot that shows the relationship between the true positive rate (also known as recall) as the Y-axis and the 

false positive rate (FPR) as the X-axis. AUC represents the model's performance in distinguishing between 

cough sounds from COVID-19 positive individuals and those from COVID-19 negative individuals. A higher 

AUC value indicates a better ability of the model to classify COVID-19 cases while minimizing false positives 

correctly. The formulas for TPR and FPR are shown in (2) and (3). 

 𝑇𝑃𝑅/𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2) 

 𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (3) 

Precision [50] measures the extent to which positive predictions made by a model or classification system 

are correct. Precision indicates the proportion of correctly identified COVID-19 cases among all the cough 

sounds classified as positive. A higher precision value suggests a lower rate of false positives, which means 

the model is making fewer incorrect predictions of COVID-19. The formula for precision can be seen in (4). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

F1 Score [51] is a metric that combines precision and recall into a single value that reflects the balance 

between the two. This metric is useful when there is an imbalance in the class distribution or when we want to 

consider both metrics in a balanced way. A higher F1 score indicates a good balance between correctly 

identifying COVID-19 cases and minimizing false positives and false negatives. The formula for F1 Score is 

shown in (5). 

 𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

These five evaluation metrics are calculated using a confusion matrix, which includes the following four 

measures: 

• True Positive (TP): The number of positive cases correctly classified as positive by the model. 

• True Negative (TN): The number of negative cases correctly classified as negative by the model. 

• False Positive (FP): The number of negative cases incorrectly classified as positive by the model. 

• False Negative (FN): The number of positive cases incorrectly classified as negative by the model. 

3. RESULTS AND DISCUSSION  

3.1 Result 

After the preprocessing process, all audio samples underwent noise removal, and their duration was 

standardized to one second. The effectiveness of the preprocessing can be observed in Fig. 7. 

Subsequently, the data was divided into 70% training data and 30% testing data for the classification 

model’s training. Four experiments were conducted, employing different input sizes, namely 32×32, 128×128, 

227×227, and the default input size for each model. 
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The models were tested using the testing data. The results for the different input sizes (32×32, 128×128, 

227×227, and default) can be found in Table 3, Table 4, Table 5, and  

Table 6, respectively. The detailed performance of each test can be observed in the confusion matrices 

presented in Table 7 to Table 10. 

 

Before After 
  

a 
  

b 

Fig. 7. The results of preprocessing, (a) negative and (b) positive 

Table 3. Experimental results for 32×32 input size 

Model 
Training 

Time (s) 
AUC Accuracy Precision Recall F1 Score 

Standard 

Deviation 

VGG-16 18.94 0.812 0.757 0.727 0.842 0.780 0.045 

VGG-19 22.37 0.864 0.730 0.818 0.750 0.783 0.054 

AlexNet 12.71 0.852 0.784 0.818 0.818 0.818 0.024 

LeNet-5 (Greyscale) 11.01 0.824 0.838 0.818 0.900 0.857 0.033 

LeNet-5 (RGB) 11.00 0.834 0.811 0.818 0.857 0.837 0.018 

ResNet-50 34.01 0.794 0.757 0.818 0.783 0.800 0.023 

ResNet-152 71.38 0.618 0.595 0.773 0.630 0.694 0.072 

 

Table 4. Experimental results for 128×128 input size 

Model 
Training 

Time (s) 
AUC Accuracy Precision Recall F1 Score 

Standard 

Deviation 

VGG-16 31.72 0.752 0.676 0.591 0.813 0.684 0.084 

VGG-19 35.49 0.724 0.784 0.818 0.818 0.818 0.041 

AlexNet 21.48 0.9 0.838 0.818 0.900 0.857 0.037 

LeNet-5 (Greyscale) 10.66 0.870 0.838 0.864 0.864 0.864 0.012 

LeNet-5 (RGB) 11.26 0.894 0.784 0.909 0.769 0.833 0.063 

ResNet-50 48.06 0.830 0.703 0.909 0.690 0.784 0.091 

ResNet-152 100.11 0.828 0.730 0.636 0.875 0.737 0.093 

 

Table 5. Experimental results for 227×227 input size 

Model 
Training 

Time (s) 
AUC Accuracy Precision Recall F1 Score 

Standard 

Deviation 

VGG-16 62.48 0.758 0.703 0.727 0.762 0.744 0.024 

VGG-19 83.41 0.727 0.676 0.636 0.778 0.700 0.053 

AlexNet 21.58 0.930 0.865 0.909 0.870 0.889 0.027 

LeNet-5 (Greyscale) 11.98 0.906 0.811 0.818 0.857 0.837 0.038 

LeNet-5 (RGB) 14.08 0.894 0.838 0.870 0.870 0.870 0.020 

ResNet-50 88.72 0.795 0.703 0.818 0.720 0.766 0.049 

ResNet-152 160.08 0.764 0.703 0.955 0.677 0.792 0.109 
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Table 6. Experimentel result for default input size of each models 

Model Input Size 
Training 

Time (s) 
AUC Accuracy Precision Recall 

F1 

Score 

Standard 

Deviation 

VGG-16 224×224×3 59.62 0.773 0.703 0.773 0.739 0.756 0.029 

VGG-19 224×224×3 83.41 0.767 0.730 0.773 0.773 0.773 0.019 

AlexNet 227×227×3 21.58 0.930 0.865 0.909 0.870 0.889 0.027 

LeNet-5 

(Greyscale) 
32×32×1 11.01 0.824 0.838 0.818 0.900 0.857 0.033 

LeNet-5 

(RGB) 
32×32×3 11 0.833 0.811 0.818 0.857 0.837 0.018 

ResNet-50 224×224×3 89.01 0.798 0.784 0.955 0.750 0.840 0.079 

ResNet-152 224×224×3 160.61 0.753 0.649 0.409 1.000 0.581 0.219 

 

Table 7. Confusion matrix performance for 32×32 input size 
Model TP TN FP FN 

VGG-16 16 12 6 3 

VGG-19 18 9 4 6 

AlexNet 18 11 4 4 

LeNet-5 (Greyscale) 18 13 4 2 

LeNet-5 (RGB) 18 12 4 3 

ResNet-50 18 10 4 5 

ResNet-152 17 5 5 10 

 

Table 8. Confusion matrix performance for 128×128 input size 
Model TP TN FP FN 

VGG-16 13 12 9 3 

VGG-19 18 11 4 4 

AlexNet 18 13 4 2 

LeNet-5 (Greyscale) 19 12 3 3 

LeNet-5 (RGB) 20 9 2 6 

ResNet-50 20 6 2 9 

ResNet-152 14 13 8 2 

 

Table 9. Confusion matrix performance for 227×227 input size 
Model TP TN FP FN 

VGG-16 16 10 6 5 

VGG-19 14 11 8 4 

AlexNet 20 12 2 3 

LeNet-5 (Greyscale) 18 12 4 3 

LeNet-5 (RGB) 20 11 3 3 

ResNet-50 18 8 4 7 

ResNet-152 21 5 1 10 

 

Table 10. Confusion matrix performance for default input size of each models 
Model TP TN FP FN 

VGG-16 17 9 5 6 

VGG-19 17 10 5 5 

AlexNet 20 12 2 3 

LeNet-5 (Greyscale) 18 13 4 2 

LeNet-5 (RGB) 18 12 4 3 

ResNet-50 21 8 1 7 

ResNet-152 9 15 13 0 

 

3.2 Discussion 

As shown in Table 3, Table 4, Table 5, and Table 6, the input size of 32×32 yielded the highest AUC 

score of 0.864 for VGG-19, followed closely by AlexNet with a score of 0.851. These models demonstrated 

strong accuracy, precision, recall, and F1 score. On the other hand, LeNet-5 (Greyscale) and LeNet-5 (RGB) 

also performed well, with AUC scores exceeding 0.82. This suggests that for smaller input sizes, these models 

were able to capture relevant features effectively and achieve good discriminative ability. 
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However, as the input size increased to 128×128, AlexNet emerged as the top performer with an AUC 

score of 0.9. This indicates that AlexNet had excellent discriminative ability when presented with larger input 

sizes. Similarly, LeNet-5 (Greyscale) and LeNet-5 (RGB) demonstrated high AUC scores above 0.86, 

showcasing their effectiveness in capturing relevant features even with larger input sizes. In contrast, VGG-16 

and VGG-19 exhibited relatively lower AUC scores in this configuration. 

For the largest input size of 227×227, AlexNet maintained its strong performance with a high AUC score 

of 0.930. LeNet-5 (Greyscale) and LeNet-5 (RGB) also achieved AUC scores above 0.89, indicating their 

robust discriminative ability. However, VGG-16 and VGG-19 displayed lower AUC scores compared to 

smaller input sizes. This suggests that as the input size increased further, these models struggled to maintain 

their discriminative performance. 

The decrease in performance for certain models, such as VGG-16 and VGG-19, with larger input sizes 

can be attributed to several factors. One reason could be the increased computational complexity associated 

with larger input sizes, which might have posed challenges in capturing intricate details and patterns. 

Additionally, overfitting becomes a concern when dealing with larger input sizes, as the models may struggle 

to generalize well to unseen data. Furthermore, architectural limitations of the VGG models could have played 

a role in their decreased performance with larger input sizes. 

Across all four testing sets, all models performed well across different input size settings, and parameter 

choices also played a role. AlexNet consistently demonstrated outstanding AUC performance, attaining the 

highest score of 0.930. LeNet-5 (Greyscale) and LeNet-5 (RGB) also exhibited commendable performance, 

particularly with larger input sizes. VGG-16 and VGG-19 achieved satisfactory AUC scores but displayed a 

potential decrease when the input size increased, while ResNet-50 showed slightly lower scores. Despite 

ResNet-152's high recall, it obtained a lower AUC score due to an imbalance between precision and recall. 

Comparative performance graphs for each experimental set are presented in Fig. 8. 
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e 

Fig. 8. Performance charts of each input size settings (a) AUC, (b) Accuracy, (c) Precision, (d) Recall, (e) F1 

Score 
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Table 4 shows that for the input size of 32×32, AlexNet exhibited the shortest training time of 12.71 

seconds, followed by LeNet-5 (Greyscale) with a time of 11.01 seconds and LeNet-5 (RGB) with a time of 

11.00 seconds. VGG-16 and VGG-19 required training times of 18.94 seconds and 22.37 seconds, respectively. 

The ResNet models, ResNet-50 and ResNet-152, had the longest training times of 34.01 seconds and 71.38 

seconds, respectively. 

Moving to Table 5, which employed a larger input size of 128×128, an increase in training times can be 

observed for most models. VGG-16 and VGG-19 displayed training times of 31.72 seconds and 35.49 seconds, 

respectively. AlexNet took 21.48 seconds, while LeNet-5 (Greyscale) and LeNet-5 (RGB) exhibited similar 

training times of 10.66 seconds and 11.26 seconds. ResNet-50 and ResNet-152 demonstrated longer training 

times of 48.06 seconds and 100.11 seconds. 

In Table 6 training times continued to rise by utilizing an increased input size of 227×227. VGG-16 and 

VGG-19 had training times of 62.48 seconds and 83.41 seconds, respectively. AlexNet maintained a relatively 

shorter training time of 21.58 seconds. LeNet-5 (Greyscale) and LeNet-5 (RGB) showcased similar training 

times as the previous table, with 11.98 seconds and 14.08 seconds, respectively. ResNet-50 and ResNet-152 

exhibited the longest training times among all input sizes, with times of 88.72 seconds and 160.08 seconds, 

respectively. 

Lastly, Table 7 provides the training time for the default input size of each model. VGG-16, VGG-19, 

and ResNet-50, with a default input size of 224×224, displayed training times of 59.62 seconds, 83.41 seconds, 

and 89.01 seconds, respectively. AlexNet, with a default input size of 227×227, still utilized the performance 

results from the 227×227 experiment, which was 21.58 seconds. Similarly, LeNet-5 (Greyscale) and LeNet-5 

(RGB) with a default input size of 32×32 employed the performance results from the 32×32 experiment, 

amounting to 11.01 seconds and 11.00 seconds, respectively. ResNet-152, with a default input size of 224x224, 

had the longest training time among all models, totalling 160.61 seconds. 

Based on the results, it is evident that training times increased as the input size grew larger. This can be 

attributed to the increased numbers of parameters and computations required to process larger images. Models 

like VGG and ResNet, which have deeper and more complex architectures, tend to have longer training times 

compared to simpler models like LeNet-5 and AlexNet. It is also worth noting that longer training times do not 

necessarily guarantee significantly better performance. Models like AlexNet and LeNet consistently showed 

good performance across different input sizes, even with relatively shorter training times. A visualization 

comparing the training times for each input size can be observed in Fig. 9. 

 

 
Fig. 9. Training time of each input size settings 

Based on the performance results obtained from the confusion matrix, several conclusions can be drawn 

regarding the model's performance in this research task. One notable model that consistently performed well 

across all four testing sets was AlexNet, exhibiting the ability to accurately identify positive cases (True 

Positive) with high accuracy. Additionally, both LeNet-5 (Greyscale) and LeNet-5 (RGB) models 

demonstrated solid performance by correctly identifying both positive and negative cases. However, some 

models such as VGG-16 and VGG-19 tended to produce relatively higher numbers of false positives, 

particularly with increased input sizes. This suggests that these models may have a tendency to classify objects 

as the actual object with slight differences. On the other hand, the ResNet-152 model exhibited a high number 

of false negatives in certain tests, especially with larger input sizes. This indicates that the model tends to miss 

some positive object cases that should have been correctly identified. This was likely caused by differences in 

the architecture of the CNN model. 
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Furthermore, it is evident that the model's performance can be influenced by the input size. Some models 

displayed a decline in performance as the input size increased, while others demonstrated stable or even 

improved performance. Hence, choosing an appropriate input size can significantly impact the model's 

performance and final outcomes. Table 11 presents a comparison of input size, AUC, accuracy, precision, 

recall, and ROC values for several models previously used in similar cases, alongside the models employed in 

this research. 

 

Table 11. Comparison of evaluation matrices with other models 
Models Input Size AUC Accuracy Precision Recall F1 Score 

CIdeR [52] - 0.846 - - - - 

ResNet-18 [53] 224×224 - 0.76 - - - 

VGG-16 32×32 0.812 0.76 0.66 0.8 0.73 

VGG-19 32×32 0.863 0.73 0.70 0.6 0.64 

AlexNet 227×227 0.930 0.86 0.86 0.8 0.83 

LeNet-5 227×227 0.906 0.81 0.75 0.8 0.77 

ResNet-50 128×128 0.830 0.70 0.75 0.4 0.52 

ResNet152 128×128 0.828 0.73 0.62 0.87 0.72 

 

Based on the comparison between the models used in this research and models from previous studies with 

similar cases, it can be concluded from Table 11 that VGG-19, AlexNet, and LeNet-5 models showcased 

superior performance based on the AUC values compared to the models used in previous research. 

Nevertheless, it is essential to note that the choice of dataset significantly influences the model's performance. 

Additionally, parameters and model architecture also play a crucial role in influencing the performance 

achieved. 

In the given study, it is important to consider certain limitations that could have influenced the results. 

Firstly, the study only focused on a specific dataset, and the findings may not generalize to other datasets with 

different characteristics. The performance of the models could vary when applied to different domains or 

datasets with distinct features, such as variations in image quality, object types, or class imbalances. Another 

limitation is that the study evaluated the models using a fixed set of parameters. The selection of 

hyperparameters, such as learning rate, regularization techniques, and optimization algorithms, can 

significantly impact the model's performance. It is possible that different parameter settings could have led to 

different results. Performing a hyperparameter tuning or optimization could further enhance the performance 

of the models. Lastly, it is worth mentioning that the study primarily focused on training times as a measure of 

computational efficiency. However, training time alone may not be the sole factor determining the practicality 

of a model. In real-world applications, factors like inference time, model size, and hardware requirements also 

play a significant role. Considering these aspects would provide a more holistic understanding of the models' 

efficiency and practicality. 

Future research could address these limitations by exploring different datasets, exploring a wider range 

of CNN models, optimizing hyperparameters, examining interpretability, and considering other practical 

aspects beyond training time. 

4. CONCLUSION 

This study investigated the impact of different input sizes on the performance of six CNN models in 

classifying COVID-19 positive or negative status based on cough sounds. Through four testing scenarios, it 

was observed that varying input sizes had an influence on the model's performance, with some models 

demonstrating improved performance as the input size increased, while others exhibited a decrease. 

Among the models tested, AlexNet delivered the best performance, achieving the highest AUC of 0.930 

at an input size of 227×227. The other models also exhibited relatively good performance, with an average 

AUC above 0.80. The ResNet-152 model showed the poorest performance at an input size of 32×32, with an 

AUC of 0.618.  

The complexity of the models, including the number of layers and input size, had a notable impact on the 

training time. Larger input sizes and more complex models required longer training times. 

It is crucial to emphasize that the dataset, model architecture, and parameters used play significant roles 

in determining the model's performance. For future research, it is recommended to employ larger and more 

diverse datasets, including samples from different populations, age groups, and disease severity levels, 

incorporate a more comprehensive set of features, explore different CNN models, and incorporate 

hyperparameter tuning techniques such as grid search or bayesian optimization to further enhance the 

performance of CNN models in this domain. 
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