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Formal Verification of Verifiability in E-Voting Protocols

by Sevdenur BALOGLU

Election verifiability is one of the main security properties of e-voting protocols, referring to
the ability of independent entities, such as voters or election observers, to validate the outcome
of the voting process. It can be ensured by means of formal verification that applies mathemat-
ical logic to verify the considered protocols under well-defined assumptions, specifications,
and corruption scenarios. Automated tools allow an e�cient and accurate way to perform for-
mal verification, enabling comprehensive analysis of all execution scenarios and eliminating
the human errors in the manual verification. The existing formal verification frameworks that
are suitable for automation are not general enough to cover a broad class of e-voting proto-
cols. They do not cover revoting and cannot be tuned to weaker or stronger levels of security
that may be achievable in practice. We therefore propose a general formal framework that
allows automated verification of verifiability in e-voting protocols. Our framework is easily
applicable to many protocols and corruption scenarios. It also allows refined specifications
of election procedures, for example accounting for revote policies.

We apply our framework to the analysis of several real-world case studies, where we cap-
ture both known and new attacks, and provide new security guarantees. First, we consider
Helios, a prominent web-based e-voting protocol, which aims to provide end-to-end verifia-
bility. It is however vulnerable to ballot stu�ng when the voting server is corrupt. Second,
we consider Belenios, which builds upon Helios and aims to achieve stronger verifiability,
preventing ballot stu�ng by splitting the trust between a registrar and the server. Both of
these systems have been used in many real-world elections. Our third case study is Selene,
which aims to simplify the individual verification procedure for voters, providing them with
trackers for verifying their votes in the clear at the end of election. Finally, we consider the
Estonian e-voting protocol, that has been deployed for national elections since 2005. The
protocol has continuously evolved to o�er better verifiability guarantees but has no formal
analysis. We apply our framework to realistic models of all these protocols, deriving the first
automated formal analysis in each case. As a result, we find several new attacks, improve the
corresponding protocols to address their weakness, and prove that verifiability holds for the
new versions.
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Chapter 1

Introduction

The verifiability of e-voting protocols plays a fundamental role in establishing the credibility
of election outcomes. Verifiability refers to the ability of independent entities, such as voters,
election observers, or auditors, to validate the correctness and accuracy of the voting process.
It allows stakeholders to gain confidence that the final results faithfully represent the will of
the voters. While verifiability is crucial, its implementation in e-voting protocols presents
complex technical and cryptographic challenges. Traditional paper-based voting systems of-
ten rely on physical security measures, such as sealed ballot boxes, to assure the verifiability
of the election process. In contrast, e-voting protocols must employ cryptographic primitives
and rigorous mathematical techniques to provide verifiability in a digital environment, where
threats such as tampering, coercion, and implementation errors pose significant risks.

Formal verification techniques are essential in assessing the correctness of security of
protocols in general, and e-voting protocols in particular. By leveraging mathematical logic,
formal verification allows us to reason rigorously about the behaviour of e-voting protocols
and of a potential adversary, detect potential vulnerabilities, and provide proofs of their se-
curity properties. This enhances the trustworthiness and reliability of e-voting systems by
subjecting them to rigorous analysis and validation. Considering the complexity of e-voting
protocols, i.e. the cryptographic primitives employed, the multiple parties, and the presence
of a strong adversary, automated verification o�ers advantages in terms of e�ciency, com-
pleteness, and precision when applied to these protocols. Automated verification explores
all scenarios, and supports reproducibility, ensuring the correctness and security of e-voting
protocols against adversarial attacks.

There are several works in the literature to evaluate the security of e-voting protocols
within formal verification frameworks. The majority of them target formal verification of
privacy. Compared to privacy, the state-of-the-art for formal verification of election verifia-
bility is somehow poorer. There is no general definition that can be applied to a wide range of
protocols and scenarios and allows automated verification simultaneously. Thus, challenges
remain in achieving comprehensive and accurate analyses to assess verifiability, considering
various aspects of existing protocols. This thesis addresses these challenges by proposing
a general formal verification framework that allows to specify di�erent protocols, election
procedures, and revoting policies.

By providing a comprehensive verification framework, this thesis aims to contribute to the
advancement of secure and verifiable e-voting protocols. The research conducted in this thesis
bridges the gap between theoretical analysis and practical implementation by considering
real-world e-voting protocols, such as Helios, Belenios, Selene, and the Estonian e-voting
protocol, as case studies. The findings from the verifiability analyses of these protocols within
the proposed framework will contribute to the body of knowledge in the field and inform the
design and improvement of future e-voting systems.



4 Chapter 1. Introduction

1.1 State of the art of formal methods for verifiability

Verifiability [9, 10, 2, 37, 15] has emerged as one of the main requirements for the security of
the e-voting protocols. At first, this notion aimed to ensure the election outcome corresponds
to the votes cast by voters, and providing ballot casting assurance for voters, i.e. if the voters
verify their vote, then the vote should be counted for them. These two notions of verifiability
have been referred to as universal and individual verifiability, respectively. Subsequently,
more general end-to-end notions have been introduced. Another notion of verifiability was
introduced [38] to ensure the eligibility of the voters, i.e. votes to be counted in the result
should have been cast by eligible voters, and there should be at most one vote per voter. Those
three notions of verifiability entail end-to-end verifiability if the protocol enables voters to
verify their votes and anyone to verify the votes in the outcome corresponds to the votes cast
by eligible voters.

The first general symbolic definition [38] formalises individual, universal, and eligibility
verifiability as a triple of boolean tests. The definition was applied to the protocols Helios [1],
FOO [28], and Civitas [16], proving its generality. However, the definition requires all honest
voters to verify their votes, which is not realistic. Also, the boolean tests cannot be expressed
with the tools that allow automated verification, such as Tamarin and ProVerif. Another
approach is proposed by the type-based symbolic definition [22], which formalises individual,
universal, and end-to-end election verifiability as logical formulas to be checked by a type-
checker. It also defines a formula to ensure that there are no clash attacks on the protocol
and proves that these properties entail end-to-end verifiability. As a case study, Helios was
modelled and proved secure with respect to end-to-end verifiability. However, the definition
does not cover the notion of eligibility. It also does not capture revoting and is not suitable
for automated verification tools like Tamarin and ProVerif.

We focus on the two recent formal definitions of election verifiability aimed to guarantee
end-to-end verifiability: one from [20] is based on the classification of the multisets of votes
in the outcome, and the other from [17] is a symbolic definition based on logical formulas
(can be applied in Tamarin/ProVerif), and it implies the notion of multiset-based definition
in [20]. According to the multiset-based verifiability definition, an e-voting protocol is ver-
ifiable if the votes in the outcome corresponds to the union of three multisets of votes: 1)
the votes that have been cast and verified by honest voters; 2) a subset of votes that have
been cast by honest voters but have not been verified; and 3) a number of votes bounded by
the number of corrupt voters. On the other hand, the symbolic definition [17] is formulated
corresponding to the notions of recorded-as-intended, individual verifiability, and eligibility
and applied to BeleniosVS, a variant of Belenios. The definition in [17] varies according to
the trust assumptions of Belenios-like protocols. Thus, two definitions were proved to imply
end-to-end verifiability according to the multiset-based definition. These symbolic definitions
allow automated verification. However, the approach in [17] is not generic due to the defini-
tion varying according to the trust assumptions. It also does not allow revoting or dynamic
corruption of the voters. This means it cannot be directly applied to the protocols allowing
revoting or having a di�erent architecture, parties, and infrastructure components, i.e. it is
not general.

Next, we present the existing work on formal verifiability of our case studies. Helios [1],
the first web-based e-voting protocol providing end-to-end verifiability, has been extensively
analysed in the literature; thus, it is representative of the state-of-the-art. Among those anal-
yses, the three [38, 22, 40] focus on its verifiability in the symbolic model. The model in [22]
was proven to provide end-to-end verifiability with type-checkers. However, none of those
models enable revoting as a feature of Helios. Belenios [20, 18] has built upon Helios to
provide stronger end-to-end verifiability with weaker trust assumptions. There are two verifi-
ability analyses [20, 21] of Belenios in its computational model, i.e. the first provides a manual
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proof, and the second does a machine-checked proof with EasyCrypt. Also, the model in [21]
enables revoting. However, there is no verifiability analysis regarding its symbolic model.
Instead, another symbolic analysis was performed for BeleniosVS, a variant of Belenios, in
which BeleniosVS was proved to be secure with automated verification.

Selene [47] is an e-voting protocol that aims to provide both end-to-end verifiability and
receipt-freeness; thus, it aims to achieve the ultimate goal of the e-voting protocols, con-
tributing to the state-of-the-art. The analyses [36, 13] performed for Selene focus only on its
privacy. Finally, the Estonian e-voting protocol has been deployed for the national elections
since 2005. The first versions of the protocol did not enable individual verifiability for voters
or universal verifiability for external auditors. Individual verifiability [32] was introduced in
2013, whereas universal verifiability [33] was presented to data auditors with a system de-
sign change in 2016. In 2022, two attacks [44, 43] were proposed against its verifiability
and privacy. There is only one analysis [49] to the best of our knowledge, which evaluates
the protocol’s security in terms of practical aspects. However, the protocol has not yet been
formally or symbolically analysed, making it a good target for us to apply our framework.

Summary of limitations:

• The first general symbolic definition [38] formalises verifiability with the boolean tests
that cannot be expressed with the tools that allow automated verification, such as Tamarin
and ProVerif. Moreover, it assumes all honest voters verify their votes, which is not re-
alistic.

• The type-based symbolic definition [22] formalises verifiability as logical formulas
corresponding to individual, universal, and end-to-end election verifiability, where it
misses the notion of eligibility. It does not capture revoting and is not suitable for au-
tomated verification.

• The symbolic definition in [17] allows automated verification, but it is not general
enough: it varies under two di�erent trust assumptions, it does not allow revoting and
dynamic corruption of the voters, and it is too specifically focusing on Belenios.

• There is no symbolic analysis of verifiability that allows revoting.

• There is no symbolic verifiability analyses for Belenios, Selene, and the Estonian e-
voting protocol.

• There is no formal analysis for the stronger corruption scenarios in Helios, when the
server is corrupt, or in Belenios when both the registrar and server are corrupt.

1.2 Contributions

In this thesis, our main contribution is providing a general formal verification framework for
election verifiability that allows automated verification, accounts for revoting, covers a strong
adversary with extended capabilities, captures verifiability attacks in the literature, e.g. clash
attacks or ballot stu�ng, and any unknown potential attack, e.g. arising from revoting. Our
framework applies to a broad class of e-voting protocols, as we provide case studies from
real-world e-voting protocols, such as Helios, Belenios, Selene, and the Estonian e-voting
protocol. Thus, the second contribution is the verifiability analyses of those protocols with
the framework we provide. We elaborate on our contributions as follows:

1. We extend the multiset-based election verifiability proposed by Cortier et al. [20] to
obtain weaker or stronger notions of end-to-end verifiability according to what may be
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possible in various scenarios or protocols. Their definition covers individual verifiabil-
ity only for honest voters and limits the adversary to cast votes for only corrupt voters.
Some protocols may guarantee that the votes from corrupt voters are counted in the
tally if verified. For some protocols, the adversary may cast ballots also for the honest
voters who did not verify their votes. Thus, we define four notions of end-to-end veri-
fiability by combining two notions of weak or strong individual verifiability and result
integrity.

2. We improve the symbolic election verifiability presented in [17] by Cortier et al. and
propose a symbolic definition that is independent of trust assumptions, i.e. it does not
vary according to the corruption scenarios as in [17], accounts for revoting, captures
verifiability attacks, and allows automated verification. Thus, it is generic, general,
and applicable to many protocols. It also allows verifying stronger and weaker notions
of end-to-end verifiability. We prove that this definition is sound, i.e. it entails the
multiset-based end-to-end verifiability definition.

3. We provide realistic symbolic models for case studies in which:

(a) We consider a bulletin board that publishes the verifiable election data, as in many
real-world protocols. We model the individual verification procedure of the voters
using the information published on the bulletin board and any additional informa-
tion they may receive from election parties.

(b) We specify each election procedure according to the setup, voting, and tally phases,
as described in the considered protocols, or in the variants that we propose.

(c) We consider a stronger adversary capable of corrupting the communication net-
work and any party in the protocol, i.e. voters, talliers, registrar, voting server,
and voting platforms. We model corrupt voters as they can be corrupted anytime
in the protocol, not at the beginning of the election, i.e. we allow dynamic corrup-
tion of voters. We allow other parties to be fully corrupt unless the information
they provide is subjected to public verification. For example, we allow a corrupt
server to accept and record any ballot on the bulletin board. However, since the
validity of the ballot can be verified on the bulletin board, we ensure the ballots
recorded on the bulletin board are valid with some restrictions.

(d) If revoting is allowed by the protocol, we model it without any bound on the
number of ballots. Typically, the last ballot cast is tallied, but more complex
policies could also be expressed in our framework.

4. We perform a verifiability analysis for each case study considering a realistic model
with the extended abilities of the adversary. Our analysis is based on the verification
results obtained with Tamarin/ProVerif. Our findings for each case are as follows:

(a) For Helios and Belenios, we consider four individual verification procedures, such
as an individual verification procedure that allows voters to verify during the vot-
ing phase or another that allows it in the tally phase. We evaluate the verifiability
of those protocols with respect to di�erent individual verification procedures. We
find that while they are secure if verification is allowed in the tally phase, they
do not provide verifiability with the procedure allowing verification at any time
during the voting phase, even if this is the procedure allowed by the protocol in
practice.

(b) In Helios and Belenios, when revoting is allowed, we capture new versions of
clash attacks that are exploited only by the corrupt registrar. In the original sce-
nario of clash attacks, the voting server and voting platforms should be corrupt in
addition to the registrar.
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(c) For Helios and Belenios, we provide the first automated proofs of verifiability
when both the registrar and server are corrupt and individual verification is al-
lowed in the tally phase. The proof is produced with respect to our notion of
weak result integrity, i.e. the adversary is limited to casting ballots for corrupt
voters and also for honest voters that did not verify their votes.

(d) Even assuming its prescribed trust assumptions, we find new attacks in Belenios
when revoting is allowed and individual verification is performed during the vot-
ing phase. More precisely, our attacks exploit the corrupt network and/or the
corrupt registrar while the server is honest. We propose solutions for Belenios
in order to resist found attacks, and we introduce new variants of Belenios corre-
sponding to those solutions. We prove that the variant so-called Belenios+ pro-
vides end-to-end verifiability with respect to the trust assumptions of Belenios.

(e) We analyse the verifiability of BeleniosRF, a receipt-free variant of Belenios, to
evaluate the trade-o� between receipt-freeness and verifiability. We find new veri-
fiability attacks against BeleniosRF, implying that even if BeleniosRF strengthens
the privacy of Belenios, it weakens its verifiability.

(f) We perform verifiability analysis for Selene, which is another voting protocol that
provides both end-to-end verifiability and receipt-freeness. We prove that Selene
provides end-to-end verifiability for honest voters if they verify their votes. On
the other hand, we observe that Selene’s receipt-freeness is not as strong as Bele-
niosRF; however, it can be modified to provide the same level of receipt-freeness
with BeleniosRF in a variant so-called SeleneRF. We prove that SeleneRF pro-
vides the same verifiability guarantees as Selene. Thus, in the case of SeleneRF,
receipt-freeness does not weaken end-to-end verifiability. However, we should
note that usability of the receipt-freeness of Selene and SeleneRF is weaker, es-
pecially in presence of a vote buyer: while SeleneRF requires the voter to actively
construct a fake receipt, this is not needed in BeleniosRF.

(g) Hyperion is a variant of Selene that simplifies some procedures, employing di�er-
ent cryptographic primitives. We prove that Hyperion provides similar end-to-end
verifiability guarantees as Selene.

(h) In the analysis of the Estonian e-voting protocol, we capture the individual verifi-
ability attack proposed by Pereira in [44] and new attacks. We also discover that
the protocol is vulnerable to ballot copying attacks by checking standard notion
of privacy in our model. Thus, we propose two solutions that prevent verifiability
and ballot copying attacks. Our solutions require di�erent procedures by the vot-
ers when they perform their individual verification. One of our solutions is more
usable, and the other is more secure with respect to verifiability. Therefore, we
show that there is a trade-o� between usability and verifiability.

We note that even though there are security analyses in the literature for Helios and Be-
lenios in the computational model, we present the first symbolic verifiability analysis of Be-
lenios. Similarly, we provide the first formal symbolic analysis for BeleniosRF, Selene, Hy-
perion, and Estonian e-voting protocol.
Thesis structure: This thesis includes two parts, in which the first is dedicated to preliminaries
and foundations for formal verification of election verifiability, and the second is to the case
studies, i.e. Helios, Belenios, Selene, and the Estonian e-voting protocols. The first part has
four chapters, including the introduction, whereas the second has the remaining five, including
the conclusion. We summarise the chapters as follows:

• Chapter 1: First, we have introduced the general concept of e-voting protocols and the
formal verification of election verifiability as one of the main security goals. Then, we
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discussed the existing verifiability definitions and verifiability analyses in the literature.
Finally, we have summarised our contributions provided in this thesis.

• Chapter 2: We delve into the verifiable e-voting protocols, i.e. we present their com-
ponents in terms of cryptographic primitives used, the election parties and their roles,
the election procedures and individual verification procedures followed in the proto-
col. Then, we discuss their security properties and present an example of a verifiable
e-voting protocol.

• Chapter 3: We provide the formal verification preliminaries with respect to Tamarin
and ProVerif. We also give the Tamarin and ProVerif specifications of the verifiable
e-voting example presented in Chapter 2.

• Chapter 4: We discuss the informal notions and existing definitions of election verifi-
ability, and their weaknesses. Then, we introduce formal and generic e-voting events,
and use them to improve the existing definitions. The main result of this chapter is our
symbolic definition of election verifiability. We also provide proof of soundness for our
definition and illustrate its application to the verifiable e-voting example presented in
Chapter 2. The results of this chapter are based on our two papers [6, 5].
Case studies are given in Chapter 5, Chapter 6, Chapter 7, and Chapter 8.

• Chapter 5: We present the protocol structure, parties, and election procedures of He-
lios, including its individual verification procedure. Then, we provide its Tamarin spec-
ification, verification and our verifiability analysis, including security proofs and attacks
found. Our analysis is present in [6].

• Chapter 6: We present the Belenios protocol, its Tamarin specification, verification,
and analysis, as described for Helios above. Then, we improve Belenios with respect
to the found attacks and propose a variant of Belenios that we call Belenios+. We
prove that Belenios+ is resistant to all such attacks, and more generally we derive that
it satisfies end-to-end verifiability, by combining the positive results of Tamarin with
our soundness theorem. However, we should note that we performed an abstraction in
order to make Tamarin terminate for Belenios+: we accept at most four ballots cast
per voter. The main di�culty for Tamarin comes from the fact that Belenios+ sub-
sequently links the ballots from the same voter to each other to protect against ballot
reordering. Finally, we analyse the verifiability of BeleniosRF, a variant of Belenios
providing receipt-freeness, and evaluate the trade-o� between receipt-freeness and ver-
ifiability. The analyses that we performed regarding Belenios are published in [6, 7,
5].

• Chapter 7: We present the Selene, SeleneRF, and Hyperion protocols, their ProVerif
specifications, verifications, and analyses. Then, we discuss their verification results,
comparing their security and features. Our analyses are present in [5].

• Chapter 8: We present the Estonian e-voting protocol, its Tamarin specification, verifi-
cation, and analysis. Then, we improve both the verifiability and privacy of the protocol
with respect to the presented attacks, and we propose two variants of the Estonian e-
voting protocol, where they di�er in usability and practicality of the protocol.

• Chapter 9: We summarise our contributions and interpret our findings with respect to
the case studies. Then, we pose open questions related to the future of e-voting and the
practicality of the proposed solutions in the thesis.
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Chapter 2

Verifiable E-Voting Protocols

E-voting protocols are complex security protocols based on several cryptographic primitives,
including several protocol parties instead of two or three. Usually, the parties are categorised
into two: the election authorities that organise and maintain the election, such as adminis-
trator, registrar, server and talliers, and the election attendees that are voters and their voting
platforms. Also, the communication between those parties in the e-voting protocols can con-
tinue throughout the election, which may last from hours to a few days.

E-voting protocols are aimed to be used in real-world governmental elections because of
their e�ciency in collecting and tallying the votes, their availability to remote voters, and their
numerous other advantages. However, achieving their security in an environment harbouring
an adversary that intrudes on the communication or corrupts the protocol parties is really
hard. Therefore, many countries, such as Germany and Norway, have given up using e-voting
protocols for their governmental elections, while only a few countries, such as Estonia and
Switzerland, still deploy and continuously improve them. On the other hand, e-voting proto-
cols are widely deployed in low-stake elections, such as organisational elections to elect the
organisation’s president and vice president since those elections raise fewer security concerns
than governmental elections about the outcome.

To extend the deployment of e-voting protocols widely for any election, they should be us-
able by people independent of their age and abilities, and their security should be theoretically
and practically proved. Regarding e-voting, there is a consensus on two main security prop-
erties: privacy and verifiability. Privacy refers to the secrecy of the vote, i.e. no one knows
how a voter voted in a particular way. On the other hand, verifiability refers to the ability of
independent entities, such as voters, election observers, or auditors, to validate the election
outcome. Throughout the chapter, the verifiable e-voting protocols will be detailed regarding
their underlying cryptographic primitives, protocol parties, phases, and security properties.

Structure of the chapter. This chapter includes five sections. In Section 2.1, we present the
cryptographic primitives employed by the e-voting protocols. In Section 2.2 and Section 2.3,
we describe typical parties in an e-voting protocols along with their roles, and the election
phases that separates the communication into three parts. In Section 2.4, we present the main
security properties of the e-voting protocols. Finally, in Section 4.6, we provide examples for
verifiable e-voting protocols.

2.1 Cryptographic Primitives

The way of communication between two distant parties has left its place from postal services
to the internet, and thus, from envelopes carrying a message with sender-receiver information
to encryptions and digital signatures. Similarly, the paper ballots being put in the envelopes
in traditional voting have been replaced with digital ballots in e-voting that include the en-
cryption of the vote and the digital signature of the voter who cast it. Other primitives like
zero-knowledge proofs and commitments are used to ensure that the digital ballot has not
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been altered until it is recorded on behalf of the voter. For the tally, sometimes, mixnets
are deployed to anonymise the ballots against privacy violations. In this section, we briefly
summarise the cryptographic primitives used in e-voting protocols.

2.1.1 Encryption Algorithms

For democratic elections, the voters should be able to vote with their will for their preferred
choices, and this vote should be secret against vote buying and other types of coercion. Se-
crecy is directly provided for voters in traditional voting by preparing a ballot, i.e. covering
the vote with an envelope, in a private voting booth, and then leaving the ballot into a ballot
box, which anonymises the ballot among all other kinds and leaves no way to prove the con-
tent of the ballot. However, in e-voting, voters cast a digital ballot containing the vote that is
digitally collected in a ballot box.

Digital environments are vulnerable to intrusions by the adversary, which may leave lit-
tle evidence and be hard to discover. To provide security in digital environments, technical
methods have been developed and deployed. The method being used for confidentiality is
encryption. Encryptions hide data with a key and allow only those with the key to retrieve it.
Thus, even if the adversary obtains the encrypted data with an intrusion, they cannot reveal
the data without the key. In e-voting, the data being forwarded to the digital environment is
the vote, which is only intended for the election authorities who count it, and thus, it requires
confidentiality.

Encryptions have been used historically to hide a message content from unintended peo-
ple. Ancient methods were using ciphers based on alphabet manipulations, yet modern meth-
ods use encryption algorithms based on complex mathematical operations on bits. The en-
cryption algorithms are divided into two categories: symmetric and asymmetric encryption
algorithms. Symmetric encryption requires to encrypt and decrypt data with one singular se-
cret key. On the other hand, asymmetric encryption requires two keys: a private key is used
for the decryption, and a public key used for the encryption.

Symmetric encryption: Let m be a message to be encrypted and k be the key provided for the
encryption. A symmetric encryption algorithm generates a ciphertext c as an output, given
the input of the messagem and the key k. Assume the symmetric encryption algorithm utilises
the function enc, then the ciphertext will be generated as:

c = enc(m, k).

In symmetric encryption, the same key, i.e. the encryption key k, is also used for the decryp-
tion. Assume the decryption algorithm uses the function dec, then the decryption will extract
the original message as follows:

m = dec(c, k) = dec(enc(m, k), k).

Asymmetric encryption: Let m be a message to be encrypted and (k, pk(k)) be the key pair,
where k is the private key and pk(k) is the public key generated from k. Then, any asymmetric
encryption algorithm uses the public key pk(k) to generate a ciphertext c that encrypts the
message m. Assume the algorithm utilises the function aenc for the encryption, then the
ciphertext will be generated as:

c = aenc(m, pk(k)).

For the decryption of the message, the private key k is used. Assume the algorithm utilises
the function adec with the key k. Then, the decryption will extract the original message as
follows:

m = adec(c, k) = adec(aenc(m, pk(k)), k).
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The Figure 2.1 depicts the symmetric encryption/decryption on the left side whereas the
asymmetric encryption/decryption on the right side. In both figures, the encryption is per-
formed by Alice and Charlie, and Bob, upon receiving their encrypted messages, performs
the decryption of the messages. In Figure 2.1a, Bob shares a secret key kA with Alice and
another kC with Charlie. Then, Alice encrypts her message mA with the secret key kA, ob-
taining the ciphertext cA. Similarly, Charlie uses kC to encrypt her message mC and obtains
cC. They both send their ciphertexts to Bob. After receiving, Bob decrypts them using the
secret keys kept on the keychain. On the other hand, Bob generates a key pair (pkB, skB), pkB
of which is published to be used for encryption in Figure 2.1b. Alice and Charlie adds pkB to
their keychains and use it to encrypt their messages mA and mC. Then, they send the obtained
ciphertexts cA and cC to Bob so that he decrypts them using his private key skB to extract the
original messages.

Bob

Alice Charlie

kA
<latexit sha1_base64="AYWjNNmZG2YZYblliKMCnk/woc0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GXVjcsK9gFNKJPppB06mYR5CCX0N9y4UMStP+POv3GaZqGtBwYO59zLPXPClDOlXffbKa2tb2xulbcrO7t7+wfVw6OOSowktE0SnsheiBXlTNC2ZprTXiopjkNOu+Hkbu53n6hULBGPeprSIMYjwSJGsLaS78dYj1WUTQY3s0G15tbdHGiVeAWpQYHWoPrlDxNiYio04VipvuemOsiw1IxwOqv4RtEUkwke0b6lAsdUBVmeeYbOrDJEUSLtExrl6u+NDMdKTePQTuYZl725+J/XNzq6DjImUqOpIItDkeFIJ2heABoySYnmU0swkcxmRWSMJSba1lSxJXjLX14lnUbdu6g3Hi5rzduijjKcwCmcgwdX0IR7aEEbCKTwDK/w5hjnxXl3PhajJafYOYY/cD5/AEnjkdg=</latexit>

kC
<latexit sha1_base64="rSRXmf7nSfPnFpx19rMTa+H6z6c=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GWxG5cV7AOaUCbTSTt0MgnzEErob7hxoYhbf8adf+M0zUJbDwwczrmXe+aEKWdKu+63U9rY3NreKe9W9vYPDo+qxyddlRhJaIckPJH9ECvKmaAdzTSn/VRSHIec9sJpa+H3nqhULBGPepbSIMZjwSJGsLaS78dYT1SUTYet+bBac+tuDrROvILUoEB7WP3yRwkxMRWacKzUwHNTHWRYakY4nVd8o2iKyRSP6cBSgWOqgizPPEcXVhmhKJH2CY1y9fdGhmOlZnFoJ/OMq95C/M8bGB3dBhkTqdFUkOWhyHCkE7QoAI2YpETzmSWYSGazIjLBEhNta6rYErzVL6+TbqPuXdUbD9e15l1RRxnO4BwuwYMbaMI9tKEDBFJ4hld4c4zz4rw7H8vRklPsnMIfOJ8/TO2R2g==</latexit>

kA
<latexit sha1_base64="AYWjNNmZG2YZYblliKMCnk/woc0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GXVjcsK9gFNKJPppB06mYR5CCX0N9y4UMStP+POv3GaZqGtBwYO59zLPXPClDOlXffbKa2tb2xulbcrO7t7+wfVw6OOSowktE0SnsheiBXlTNC2ZprTXiopjkNOu+Hkbu53n6hULBGPeprSIMYjwSJGsLaS78dYj1WUTQY3s0G15tbdHGiVeAWpQYHWoPrlDxNiYio04VipvuemOsiw1IxwOqv4RtEUkwke0b6lAsdUBVmeeYbOrDJEUSLtExrl6u+NDMdKTePQTuYZl725+J/XNzq6DjImUqOpIItDkeFIJ2heABoySYnmU0swkcxmRWSMJSba1lSxJXjLX14lnUbdu6g3Hi5rzduijjKcwCmcgwdX0IR7aEEbCKTwDK/w5hjnxXl3PhajJafYOYY/cD5/AEnjkdg=</latexit>

mA<latexit sha1_base64="ve3HIjXtK20HoHbJbhH09bz9c/c=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdVNy4r2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnTDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7GmnEnaNsxw2ksUxSLktBtO7uZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM9ZRJgY3s0G15tbdHGiVeAWpQYHWoPrlD2OSCioN4VjrvucmJsiwMoxwOqv4qaYJJhM8on1LJRZUB1meeYbOrDJEUazskwbl6u+NDAutpyK0k3nGZW8u/uf1UxNdBxmTSWqoJItDUcqRidG8ADRkihLDp5ZgopjNisgYK0yMraliS/CWv7xKOo26d1FvPFzWmrdFHWU4gVM4Bw+uoAn30II2EEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AUzxkdo=</latexit>

cA<latexit sha1_base64="mg/Yrg87KCMKqZNXwrkVeZA4KuM=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7uZ+94kpzWP5aKYJ8yMykjzklBgreV5EzFiHGR3czAbVmlN3cuBV4hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsFnFSzVLCJ2QEetbKknEtJ/lmWf4zCpDHMbKPmlwrv7eyEik9TQK7GSecdmbi/95/dSE137GZZIaJuniUJgKbGI8LwAPuWLUiKklhCpus2I6JopQY2uq2BLc5S+vkk6j7l7UGw+XteZtUUcZTuAUzsGFK2jCPbSgDRQSeIZXeEMpekHv6GMxWkLFzjH8Afr8AT2rkdA=</latexit>

cC
<latexit sha1_base64="1dHuwhBEzQG5XDSq7HSBTllkoOE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtiNy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+YthZ+74kpzWP5aGYJ8yMyljzklBgreV5EzESHGR225sNqzak7OfA6cQtSgwLtYfXLG8U0jZg0VBCtB66TGD8jynAq2LzipZolhE7JmA0slSRi2s/yzHN8YZURDmNlnzQ4V39vZCTSehYFdjLPuOotxP+8QWrCWz/jMkkNk3R5KEwFNjFeFIBHXDFqxMwSQhW3WTGdEEWosTVVbAnu6pfXSbdRd6/qjYfrWvOuqKMMZ3AOl+DCDTThHtrQAQoJPMMrvKEUvaB39LEcLaFi5xT+AH3+AEC1kdI=</latexit>

mC
<latexit sha1_base64="QzZYh6KYUsVa4qGHhVDRyFndcfE=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZfFblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+cthZ+74kqzWL5aGYJDQQeSxYxgo2VfF9gM9FRJoat+bBac+tuDrROvILUoEB7WP3yRzFJBZWGcKz1wHMTE2RYGUY4nVf8VNMEkyke04GlEguqgyzPPEcXVhmhKFb2SYNy9fdGhoXWMxHayTzjqrcQ//MGqYlug4zJJDVUkuWhKOXIxGhRABoxRYnhM0swUcxmRWSCFSbG1lSxJXirX14n3Ubdu6o3Hq5rzbuijjKcwTlcggc30IR7aEMHCCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AE/7kdw=</latexit>

kC
<latexit sha1_base64="rSRXmf7nSfPnFpx19rMTa+H6z6c=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GWxG5cV7AOaUCbTSTt0MgnzEErob7hxoYhbf8adf+M0zUJbDwwczrmXe+aEKWdKu+63U9rY3NreKe9W9vYPDo+qxyddlRhJaIckPJH9ECvKmaAdzTSn/VRSHIec9sJpa+H3nqhULBGPepbSIMZjwSJGsLaS78dYT1SUTYet+bBac+tuDrROvILUoEB7WP3yRwkxMRWacKzUwHNTHWRYakY4nVd8o2iKyRSP6cBSgWOqgizPPEcXVhmhKJH2CY1y9fdGhmOlZnFoJ/OMq95C/M8bGB3dBhkTqdFUkOWhyHCkE7QoAI2YpETzmSWYSGazIjLBEhNta6rYErzVL6+TbqPuXdUbD9e15l1RRxnO4BwuwYMbaMI9tKEDBFJ4hld4c4zz4rw7H8vRklPsnMIfOJ8/TO2R2g==</latexit>

kA
<latexit sha1_base64="AYWjNNmZG2YZYblliKMCnk/woc0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GXVjcsK9gFNKJPppB06mYR5CCX0N9y4UMStP+POv3GaZqGtBwYO59zLPXPClDOlXffbKa2tb2xulbcrO7t7+wfVw6OOSowktE0SnsheiBXlTNC2ZprTXiopjkNOu+Hkbu53n6hULBGPeprSIMYjwSJGsLaS78dYj1WUTQY3s0G15tbdHGiVeAWpQYHWoPrlDxNiYio04VipvuemOsiw1IxwOqv4RtEUkwke0b6lAsdUBVmeeYbOrDJEUSLtExrl6u+NDMdKTePQTuYZl725+J/XNzq6DjImUqOpIItDkeFIJ2heABoySYnmU0swkcxmRWSMJSba1lSxJXjLX14lnUbdu6g3Hi5rzduijjKcwCmcgwdX0IR7aEEbCKTwDK/w5hjnxXl3PhajJafYOYY/cD5/AEnjkdg=</latexit>

kC
<latexit sha1_base64="rSRXmf7nSfPnFpx19rMTa+H6z6c=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GWxG5cV7AOaUCbTSTt0MgnzEErob7hxoYhbf8adf+M0zUJbDwwczrmXe+aEKWdKu+63U9rY3NreKe9W9vYPDo+qxyddlRhJaIckPJH9ECvKmaAdzTSn/VRSHIec9sJpa+H3nqhULBGPepbSIMZjwSJGsLaS78dYT1SUTYet+bBac+tuDrROvILUoEB7WP3yRwkxMRWacKzUwHNTHWRYakY4nVd8o2iKyRSP6cBSgWOqgizPPEcXVhmhKJH2CY1y9fdGhmOlZnFoJ/OMq95C/M8bGB3dBhkTqdFUkOWhyHCkE7QoAI2YpETzmSWYSGazIjLBEhNta6rYErzVL6+TbqPuXdUbD9e15l1RRxnO4BwuwYMbaMI9tKEDBFJ4hld4c4zz4rw7H8vRklPsnMIfOJ8/TO2R2g==</latexit>

cC
<latexit sha1_base64="1dHuwhBEzQG5XDSq7HSBTllkoOE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtiNy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+YthZ+74kpzWP5aGYJ8yMyljzklBgreV5EzESHGR225sNqzak7OfA6cQtSgwLtYfXLG8U0jZg0VBCtB66TGD8jynAq2LzipZolhE7JmA0slSRi2s/yzHN8YZURDmNlnzQ4V39vZCTSehYFdjLPuOotxP+8QWrCWz/jMkkNk3R5KEwFNjFeFIBHXDFqxMwSQhW3WTGdEEWosTVVbAnu6pfXSbdRd6/qjYfrWvOuqKMMZ3AOl+DCDTThHtrQAQoJPMMrvKEUvaB39LEcLaFi5xT+AH3+AEC1kdI=</latexit>

cA<latexit sha1_base64="mg/Yrg87KCMKqZNXwrkVeZA4KuM=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7uZ+94kpzWP5aKYJ8yMykjzklBgreV5EzFiHGR3czAbVmlN3cuBV4hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsFnFSzVLCJ2QEetbKknEtJ/lmWf4zCpDHMbKPmlwrv7eyEik9TQK7GSecdmbi/95/dSE137GZZIaJuniUJgKbGI8LwAPuWLUiKklhCpus2I6JopQY2uq2BLc5S+vkk6j7l7UGw+XteZtUUcZTuAUzsGFK2jCPbSgDRQSeIZXeEMpekHv6GMxWkLFzjH8Afr8AT2rkdA=</latexit>

kA
<latexit sha1_base64="AYWjNNmZG2YZYblliKMCnk/woc0=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GXVjcsK9gFNKJPppB06mYR5CCX0N9y4UMStP+POv3GaZqGtBwYO59zLPXPClDOlXffbKa2tb2xulbcrO7t7+wfVw6OOSowktE0SnsheiBXlTNC2ZprTXiopjkNOu+Hkbu53n6hULBGPeprSIMYjwSJGsLaS78dYj1WUTQY3s0G15tbdHGiVeAWpQYHWoPrlDxNiYio04VipvuemOsiw1IxwOqv4RtEUkwke0b6lAsdUBVmeeYbOrDJEUSLtExrl6u+NDMdKTePQTuYZl725+J/XNzq6DjImUqOpIItDkeFIJ2heABoySYnmU0swkcxmRWSMJSba1lSxJXjLX14lnUbdu6g3Hi5rzduijjKcwCmcgwdX0IR7aEEbCKTwDK/w5hjnxXl3PhajJafYOYY/cD5/AEnjkdg=</latexit>

mA<latexit sha1_base64="ve3HIjXtK20HoHbJbhH09bz9c/c=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdVNy4r2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnTDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7GmnEnaNsxw2ksUxSLktBtO7uZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM9ZRJgY3s0G15tbdHGiVeAWpQYHWoPrlD2OSCioN4VjrvucmJsiwMoxwOqv4qaYJJhM8on1LJRZUB1meeYbOrDJEUazskwbl6u+NDAutpyK0k3nGZW8u/uf1UxNdBxmTSWqoJItDUcqRidG8ADRkihLDp5ZgopjNisgYK0yMraliS/CWv7xKOo26d1FvPFzWmrdFHWU4gVM4Bw+uoAn30II2EEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AUzxkdo=</latexit>

cA<latexit sha1_base64="mg/Yrg87KCMKqZNXwrkVeZA4KuM=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7uZ+94kpzWP5aKYJ8yMykjzklBgreV5EzFiHGR3czAbVmlN3cuBV4hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsFnFSzVLCJ2QEetbKknEtJ/lmWf4zCpDHMbKPmlwrv7eyEik9TQK7GSecdmbi/95/dSE137GZZIaJuniUJgKbGI8LwAPuWLUiKklhCpus2I6JopQY2uq2BLc5S+vkk6j7l7UGw+XteZtUUcZTuAUzsGFK2jCPbSgDRQSeIZXeEMpekHv6GMxWkLFzjH8Afr8AT2rkdA=</latexit>

cC
<latexit sha1_base64="1dHuwhBEzQG5XDSq7HSBTllkoOE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtiNy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+YthZ+74kpzWP5aGYJ8yMyljzklBgreV5EzESHGR225sNqzak7OfA6cQtSgwLtYfXLG8U0jZg0VBCtB66TGD8jynAq2LzipZolhE7JmA0slSRi2s/yzHN8YZURDmNlnzQ4V39vZCTSehYFdjLPuOotxP+8QWrCWz/jMkkNk3R5KEwFNjFeFIBHXDFqxMwSQhW3WTGdEEWosTVVbAnu6pfXSbdRd6/qjYfrWvOuqKMMZ3AOl+DCDTThHtrQAQoJPMMrvKEUvaB39LEcLaFi5xT+AH3+AEC1kdI=</latexit>

mC
<latexit sha1_base64="QzZYh6KYUsVa4qGHhVDRyFndcfE=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZfFblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+cthZ+74kqzWL5aGYJDQQeSxYxgo2VfF9gM9FRJoat+bBac+tuDrROvILUoEB7WP3yRzFJBZWGcKz1wHMTE2RYGUY4nVf8VNMEkyke04GlEguqgyzPPEcXVhmhKFb2SYNy9fdGhoXWMxHayTzjqrcQ//MGqYlug4zJJDVUkuWhKOXIxGhRABoxRYnhM0swUcxmRWSCFSbG1lSxJXirX14n3Ubdu6o3Hq5rzbuijjKcwTlcggc30IR7aEMHCCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AE/7kdw=</latexit>

kC
<latexit sha1_base64="rSRXmf7nSfPnFpx19rMTa+H6z6c=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiRV0GWxG5cV7AOaUCbTSTt0MgnzEErob7hxoYhbf8adf+M0zUJbDwwczrmXe+aEKWdKu+63U9rY3NreKe9W9vYPDo+qxyddlRhJaIckPJH9ECvKmaAdzTSn/VRSHIec9sJpa+H3nqhULBGPepbSIMZjwSJGsLaS78dYT1SUTYet+bBac+tuDrROvILUoEB7WP3yRwkxMRWacKzUwHNTHWRYakY4nVd8o2iKyRSP6cBSgWOqgizPPEcXVhmhKJH2CY1y9fdGhmOlZnFoJ/OMq95C/M8bGB3dBhkTqdFUkOWhyHCkE7QoAI2YpETzmSWYSGazIjLBEhNta6rYErzVL6+TbqPuXdUbD9e15l1RRxnO4BwuwYMbaMI9tKEDBFJ4hld4c4zz4rw7H8vRklPsnMIfOJ8/TO2R2g==</latexit>

Encryption 
with the secret key

Encryption 
with the secret key

Decryption 
with the secret key

Decryption 
with the secret key

(A) Symmetric Encryption/Decryption.

Bob

Alice Charlie

mA<latexit sha1_base64="ve3HIjXtK20HoHbJbhH09bz9c/c=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdVNy4r2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnTDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7GmnEnaNsxw2ksUxSLktBtO7uZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM9ZRJgY3s0G15tbdHGiVeAWpQYHWoPrlD2OSCioN4VjrvucmJsiwMoxwOqv4qaYJJhM8on1LJRZUB1meeYbOrDJEUazskwbl6u+NDAutpyK0k3nGZW8u/uf1UxNdBxmTSWqoJItDUcqRidG8ADRkihLDp5ZgopjNisgYK0yMraliS/CWv7xKOo26d1FvPFzWmrdFHWU4gVM4Bw+uoAn30II2EEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AUzxkdo=</latexit>

cA<latexit sha1_base64="mg/Yrg87KCMKqZNXwrkVeZA4KuM=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7uZ+94kpzWP5aKYJ8yMykjzklBgreV5EzFiHGR3czAbVmlN3cuBV4hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsFnFSzVLCJ2QEetbKknEtJ/lmWf4zCpDHMbKPmlwrv7eyEik9TQK7GSecdmbi/95/dSE137GZZIaJuniUJgKbGI8LwAPuWLUiKklhCpus2I6JopQY2uq2BLc5S+vkk6j7l7UGw+XteZtUUcZTuAUzsGFK2jCPbSgDRQSeIZXeEMpekHv6GMxWkLFzjH8Afr8AT2rkdA=</latexit>

cC
<latexit sha1_base64="1dHuwhBEzQG5XDSq7HSBTllkoOE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtiNy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+YthZ+74kpzWP5aGYJ8yMyljzklBgreV5EzESHGR225sNqzak7OfA6cQtSgwLtYfXLG8U0jZg0VBCtB66TGD8jynAq2LzipZolhE7JmA0slSRi2s/yzHN8YZURDmNlnzQ4V39vZCTSehYFdjLPuOotxP+8QWrCWz/jMkkNk3R5KEwFNjFeFIBHXDFqxMwSQhW3WTGdEEWosTVVbAnu6pfXSbdRd6/qjYfrWvOuqKMMZ3AOl+DCDTThHtrQAQoJPMMrvKEUvaB39LEcLaFi5xT+AH3+AEC1kdI=</latexit>

mC
<latexit sha1_base64="QzZYh6KYUsVa4qGHhVDRyFndcfE=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZfFblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+cthZ+74kqzWL5aGYJDQQeSxYxgo2VfF9gM9FRJoat+bBac+tuDrROvILUoEB7WP3yRzFJBZWGcKz1wHMTE2RYGUY4nVf8VNMEkyke04GlEguqgyzPPEcXVhmhKFb2SYNy9fdGhoXWMxHayTzjqrcQ//MGqYlug4zJJDVUkuWhKOXIxGhRABoxRYnhM0swUcxmRWSCFSbG1lSxJXirX14n3Ubdu6o3Hq5rzbuijjKcwTlcggc30IR7aEMHCCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AE/7kdw=</latexit>

cC
<latexit sha1_base64="1dHuwhBEzQG5XDSq7HSBTllkoOE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtiNy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+YthZ+74kpzWP5aGYJ8yMyljzklBgreV5EzESHGR225sNqzak7OfA6cQtSgwLtYfXLG8U0jZg0VBCtB66TGD8jynAq2LzipZolhE7JmA0slSRi2s/yzHN8YZURDmNlnzQ4V39vZCTSehYFdjLPuOotxP+8QWrCWz/jMkkNk3R5KEwFNjFeFIBHXDFqxMwSQhW3WTGdEEWosTVVbAnu6pfXSbdRd6/qjYfrWvOuqKMMZ3AOl+DCDTThHtrQAQoJPMMrvKEUvaB39LEcLaFi5xT+AH3+AEC1kdI=</latexit>

cA<latexit sha1_base64="mg/Yrg87KCMKqZNXwrkVeZA4KuM=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7uZ+94kpzWP5aKYJ8yMykjzklBgreV5EzFiHGR3czAbVmlN3cuBV4hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsFnFSzVLCJ2QEetbKknEtJ/lmWf4zCpDHMbKPmlwrv7eyEik9TQK7GSecdmbi/95/dSE137GZZIaJuniUJgKbGI8LwAPuWLUiKklhCpus2I6JopQY2uq2BLc5S+vkk6j7l7UGw+XteZtUUcZTuAUzsGFK2jCPbSgDRQSeIZXeEMpekHv6GMxWkLFzjH8Afr8AT2rkdA=</latexit>

mA<latexit sha1_base64="ve3HIjXtK20HoHbJbhH09bz9c/c=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdVNy4r2Ad0hpJJM21okhmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnTDjTxnW/ndLa+sbmVnm7srO7t39QPTzq6DhVhLZJzGPVC7GmnEnaNsxw2ksUxSLktBtO7uZ+94kqzWL5aKYJDQQeSRYxgo2VfF9gM9ZRJgY3s0G15tbdHGiVeAWpQYHWoPrlD2OSCioN4VjrvucmJsiwMoxwOqv4qaYJJhM8on1LJRZUB1meeYbOrDJEUazskwbl6u+NDAutpyK0k3nGZW8u/uf1UxNdBxmTSWqoJItDUcqRidG8ADRkihLDp5ZgopjNisgYK0yMraliS/CWv7xKOo26d1FvPFzWmrdFHWU4gVM4Bw+uoAn30II2EEjgGV7hzUmdF+fd+ViMlpxi5xj+wPn8AUzxkdo=</latexit>

cA<latexit sha1_base64="mg/Yrg87KCMKqZNXwrkVeZA4KuM=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMuqG5cV7AM6Q8mkmTY0kxmSjFCG/oYbF4q49Wfc+Tem01lo64HA4Zx7uScnSATXxnG+UWltfWNzq7xd2dnd2z+oHh51dJwqyto0FrHqBUQzwSVrG24E6yWKkSgQrBtM7uZ+94kpzWP5aKYJ8yMykjzklBgreV5EzFiHGR3czAbVmlN3cuBV4hakBgVag+qXN4xpGjFpqCBa910nMX5GlOFUsFnFSzVLCJ2QEetbKknEtJ/lmWf4zCpDHMbKPmlwrv7eyEik9TQK7GSecdmbi/95/dSE137GZZIaJuniUJgKbGI8LwAPuWLUiKklhCpus2I6JopQY2uq2BLc5S+vkk6j7l7UGw+XteZtUUcZTuAUzsGFK2jCPbSgDRQSeIZXeEMpekHv6GMxWkLFzjH8Afr8AT2rkdA=</latexit>

cC
<latexit sha1_base64="1dHuwhBEzQG5XDSq7HSBTllkoOE=">AAAB83icbVDLSgMxFL2pr1pfVZdugkVwVWaqoMtiNy4r2Ad0hpJJM21oJjMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OkAiujeN8o9LG5tb2Tnm3srd/cHhUPT7p6jhVlHVoLGLVD4hmgkvWMdwI1k8UI1EgWC+YthZ+74kpzWP5aGYJ8yMyljzklBgreV5EzESHGR225sNqzak7OfA6cQtSgwLtYfXLG8U0jZg0VBCtB66TGD8jynAq2LzipZolhE7JmA0slSRi2s/yzHN8YZURDmNlnzQ4V39vZCTSehYFdjLPuOotxP+8QWrCWz/jMkkNk3R5KEwFNjFeFIBHXDFqxMwSQhW3WTGdEEWosTVVbAnu6pfXSbdRd6/qjYfrWvOuqKMMZ3AOl+DCDTThHtrQAQoJPMMrvKEUvaB39LEcLaFi5xT+AH3+AEC1kdI=</latexit>

mC
<latexit sha1_base64="QzZYh6KYUsVa4qGHhVDRyFndcfE=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZfFblxWsA/oDCWTZtrQJDMkGaEM/Q03LhRx68+4829Mp7PQ1gOBwzn3ck9OmHCmjet+O6WNza3tnfJuZW//4PCoenzS1XGqCO2QmMeqH2JNOZO0Y5jhtJ8oikXIaS+cthZ+74kqzWL5aGYJDQQeSxYxgo2VfF9gM9FRJoat+bBac+tuDrROvILUoEB7WP3yRzFJBZWGcKz1wHMTE2RYGUY4nVf8VNMEkyke04GlEguqgyzPPEcXVhmhKFb2SYNy9fdGhoXWMxHayTzjqrcQ//MGqYlug4zJJDVUkuWhKOXIxGhRABoxRYnhM0swUcxmRWSCFSbG1lSxJXirX14n3Ubdu6o3Hq5rzbuijjKcwTlcggc30IR7aEMHCCTwDK/w5qTOi/PufCxHS06xcwp/4Hz+AE/7kdw=</latexit>

Encryption 
with Bob’s public key

Decryption 
with Bob’s private key

Decryption 
with Bob’s private key

skB
<latexit sha1_base64="F/gKWlnJ5SaVsGL31XBM526aN/A=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDVE8GjfmgXHGrbga0TrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDov9RNNY0wmeER7lkosqPbTLPQcXVhliMJI2ScNytTfGykWWs9EYCezkKveQvzP6yUmvPVTJuPEUEmWh8KEIxOhRQNoyBQlhs8swUQxmxWRMVaYGNtTyZbgrX55nbRrVe+qWnu4rtQbeR1FOINzuAQPbqAO99CEFhB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8j45JW</latexit>

pkB
<latexit sha1_base64="1udaAuHwJq6Vy46AVk/Gw3bxgqQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDNJ4MGvNBueJW3QxonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2nWeg5urDKEIWRsk8alKm/N1IstJ6JwE5mIVe9hfif10tMeOunTMaJoZIsD4UJRyZCiwbQkClKDJ9ZgoliNisiY6wwMbanki3BW/3yOmnXqt5VtfZwXak38jqKcAbncAke3EAd7qEJLSDwBM/wCm/O1Hlx3p2P5WjByXdO4Q+czx8fS5JT</latexit>

pkB
<latexit sha1_base64="1udaAuHwJq6Vy46AVk/Gw3bxgqQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDNJ4MGvNBueJW3QxonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2nWeg5urDKEIWRsk8alKm/N1IstJ6JwE5mIVe9hfif10tMeOunTMaJoZIsD4UJRyZCiwbQkClKDJ9ZgoliNisiY6wwMbanki3BW/3yOmnXqt5VtfZwXak38jqKcAbncAke3EAd7qEJLSDwBM/wCm/O1Hlx3p2P5WjByXdO4Q+czx8fS5JT</latexit>

pkB
<latexit sha1_base64="1udaAuHwJq6Vy46AVk/Gw3bxgqQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDNJ4MGvNBueJW3QxonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2nWeg5urDKEIWRsk8alKm/N1IstJ6JwE5mIVe9hfif10tMeOunTMaJoZIsD4UJRyZCiwbQkClKDJ9ZgoliNisiY6wwMbanki3BW/3yOmnXqt5VtfZwXak38jqKcAbncAke3EAd7qEJLSDwBM/wCm/O1Hlx3p2P5WjByXdO4Q+czx8fS5JT</latexit>

pkB
<latexit sha1_base64="1udaAuHwJq6Vy46AVk/Gw3bxgqQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDNJ4MGvNBueJW3QxonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2nWeg5urDKEIWRsk8alKm/N1IstJ6JwE5mIVe9hfif10tMeOunTMaJoZIsD4UJRyZCiwbQkClKDJ9ZgoliNisiY6wwMbanki3BW/3yOmnXqt5VtfZwXak38jqKcAbncAke3EAd7qEJLSDwBM/wCm/O1Hlx3p2P5WjByXdO4Q+czx8fS5JT</latexit>

pkB
<latexit sha1_base64="1udaAuHwJq6Vy46AVk/Gw3bxgqQ=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDNJ4MGvNBueJW3QxonXg5qUCO5qD81R9GJBFUGsKx1j3PjY2fYmUY4XRe6ieaxphM8Ij2LJVYUO2nWeg5urDKEIWRsk8alKm/N1IstJ6JwE5mIVe9hfif10tMeOunTMaJoZIsD4UJRyZCiwbQkClKDJ9ZgoliNisiY6wwMbanki3BW/3yOmnXqt5VtfZwXak38jqKcAbncAke3EAd7qEJLSDwBM/wCm/O1Hlx3p2P5WjByXdO4Q+czx8fS5JT</latexit>

Encryption 
with Bob’s public key

skB
<latexit sha1_base64="F/gKWlnJ5SaVsGL31XBM526aN/A=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDVE8GjfmgXHGrbga0TrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDov9RNNY0wmeER7lkosqPbTLPQcXVhliMJI2ScNytTfGykWWs9EYCezkKveQvzP6yUmvPVTJuPEUEmWh8KEIxOhRQNoyBQlhs8swUQxmxWRMVaYGNtTyZbgrX55nbRrVe+qWnu4rtQbeR1FOINzuAQPbqAO99CEFhB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8j45JW</latexit>

skB
<latexit sha1_base64="F/gKWlnJ5SaVsGL31XBM526aN/A=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZelblxWsA9oh5JJM21okhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1lGiCG2RiEeqG2BNOZO0ZZjhtBsrikXAaSeY3C38zpQqzSL5aGYx9QUeSRYygo2V/L7AZqzDVE8GjfmgXHGrbga0TrycVCBHc1D+6g8jkggqDeFY657nxsZPsTKMcDov9RNNY0wmeER7lkosqPbTLPQcXVhliMJI2ScNytTfGykWWs9EYCezkKveQvzP6yUmvPVTJuPEUEmWh8KEIxOhRQNoyBQlhs8swUQxmxWRMVaYGNtTyZbgrX55nbRrVe+qWnu4rtQbeR1FOINzuAQPbqAO99CEFhB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w8j45JW</latexit>

(B) Asymmetric Encryption/Decryption.

FIGURE 2.1: Symmetric Encryption vs. Asymmetric Encryption.

As can be realised, the receiver has to manage a key for each sender in symmetric en-
cryption, which is not e�cient to be used in communication. Therefore, the first asymmetric
encryption algorithm RSA was proposed in 1977 by Rivest, Shamir and Adleman, enabling an
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e�cient encryption algorithm for secure communication. The symmetric encryption, instead,
is being used for encryption of large data, for which it is faster than asymmetric encryption
algorithms, making it preferable. In e-voting, the encrypted data is transferred between vot-
ers and the election authorities. In this case, asymmetric encryption is much more convenient
since one key pair can be used securely for all encryption and decryption operations. The most
popular asymmetric encryption algorithms are ElGamal and Pallier, following RSA. In many
e-voting protocols, ElGamal cryptosystem is preferred since it randomises the ciphertext with
a randomness and allows homomorphic encryption, in which the ciphertexts generated by the
voters are combined and transformed into one ciphertext, helping voters with their privacy in
the protocol.

ElGamal encryption [27]: Let m be a message to be encrypted and (k, pk(k)) be the key
pair, where k is the private key and pk(k) is the public key generated from k. Then, the
ElGamal encryption algorithm uses the public key pk(k) with a freshly generated randomness
r to generate a ciphertext c for the input of the message m. Assume the function aenc denotes
the encryption algorithm. Then, the ciphertext is obtained as follows:

c = aenc(m, pk(k), r).

Assume the function adec decrypts the ciphertext c with the private key k. Then, the message
is revealed as follows:

m = adec(c, k) = adec(aenc(m, pk(k), r), k).

Mathematically, the algorithm uses a generator g of a group of prime order q. The private
key k is randomly chosen from Zq, and the public key corresponds to pk(k) = gk. For a
randomness r À Zq, the message m is encrypted as follows:

aenc(m, pk(k), r) = (gr,m � (gk)r).

Given the ciphertext c = (a, b), the message m is revealed with the key k by computing b_ak,
i.e.

m = m � (gk)r

(gr)k
.

ElGamal homomorphic encryption in e-voting: Let a vote v be encoded as an element in a
small subset of Zq. Then, the encryption of the vote v will be

c = aenc(v, pk(k), r) = (gr, gv � (gk)r),

for some randomness r À Zq. The ciphertext c is decrypted using the private key k as ex-
plained above, and the term gv is revealed. To retrieve the vote v from gv, the discrete loga-
rithm algorithm is used in the small subset of Zq. Thus, we have:

v = adec(c, k) = adec(aenc(v, pk(k), r)).

Assume c1 and c2 are the two ciphertexts obtained encrypting the votes v1 and v2, i.e.

c1 = aenc(v1, pk(k), r1) = (gr1 , gv1 � (gk)r1),
c2 = aenc(v2, pk(k), r2) = (gr2 , gv2 � (gk)r2),
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for some randomness r1 and r2. The ciphertexts c1 and c2 can be homomorphically multiplied
to obtain a ciphertext c:

c = c1 � c2 = aenc(v1, pk(k), r1) � aenc(v2, pk(k), r2)
= (gr1 , gv1 � (gk)r1) � (gr2 , gv2 � (gk)r2)
= (gr1+r2 , gv1+v2 � (gk)r1+r2)
= aenc(v1 + v2, pk(k), r1 + r2),

corresponding to the sum of votes v1 + v2:

v1 + v2 = adec(c, k) = adec(aenc(v1 + v2, pk(k), r1 + r2), k).

2.1.2 Digital Signatures

In traditional voting, the authorities in the polling stations lead voters to the voting booth
after checking their eligibility and follow them until they cast their ballot. In this way, they
can ensure that the ballot was cast by an eligible voter, and thus all the ballots in a ballot box.
However, in e-voting, a digital ballot box collects the ballots from voters through the digital
environment, e.g. through the internet, which gives rise to adversarial involvement. In this
case, the ballot to be counted should be ensured that it comes from an eligible voter, and the
integrity of the ballot should be satisfied, proving that the ballot has not been changed during
the submission. For these guarantees, digital signatures may be attached to the ballots of
the voters. Digital signatures provide authentication, non-repudiation and integrity in digital
environments.

If the digital signatures are sometimes used in e-voting, each voter typically owns a valid
signature key pair, which is similar to the key pair in asymmetric encryption, i.e. a private
key for signing the message and a public key for the verification of the signature. The voters
use their private key to sign the ciphertext corresponding to the encrypted vote so that the
signature proves the ciphertext is cast by the voter who owns the private key. In this way, the
voter cannot deny casting the ballot with the attached signature, providing non-repudiation.
The election authorities that receive the ballot from the voter, verify the signature using the
public key of the voter, which proves that the ballot has not changed after it is signed, and
thus, provides integrity.

Digital signatures are often used in a Public Key Infrastructure (PKI) which means that
each entity owning a signature key pair should be certified by a trusted Certification Authority
(CA). Thus, the receiver of the signature can ensure that the public key of the sender is valid,
not revoked or corrupted, with the certificate provided by CA. Otherwise, the signature key
pair does not provide authentication, i.e. it could be generated by the adversary.

Digital signature: Let m be the message to be signed by a sender A who owns the signature
key pair (skA, pkA), where the public key pkA is generated from the private key skA. The
sender A signs the message m using a function sign as follows:

s = sign(m, skA),

where s the signature of the message m. Then, A sends the tuple Ím, sÎ to the receiver B who
can verify the signature s with pkA:

verify(s, pkA) = verify(sign(m, skA), pkA) = true.

It may also check that pkA has a valid certificate, or has been provided by a trusted authority.
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2.1.3 Zero-Knowledge Proofs

Zero-knowledge proofs are used by a party to prove some knowledge or statement to an-
other party without revealing any detail about the secret part of the knowledge. The prover
develops/follows a strategy to prove their knowledge, making the verifier totally convinced
about the knowledge since it is impossible for the prover to fake in the end of strategy. A
zero-knowledge proof can be interactive or non-interactive. The interactive ones requires an
interaction between the prover and the verifier, i.e. the strategy is followed by both prover and
verifier in the manner of challenge and response. Interactive zero-knowledge proofs can be
made non-interactive with Fiat-Shamir heuristic technique. With this technique, the prover
assumes all the challenges and generates their corresponding responses without interacting
with the verifier. Then, the verifier receives the proof together with all the challenges and
responses and becomes convinced if they are all verified.

In e-voting, zero-knowledge proofs can be used to prove the validity of the vote with
respect to election candidates, as in Helios [1], or the knowledge of the vote used in encryption,
as in Selene [47] and Hyperion [46]. They may also be used to prove the correctness of the
decryption or mixing if the mixnet is used.

Non-interactive zero-knowledge proof for validity of the vote: Let v1 and v2 be the two
election candidates for some election with the public key pkE. Assume the election requires
encryption of the votes with an asymmetric key algorithm that randomises the ciphertext with
a freshly generated randomness r, i.e. the voters encrypt their votes v À {v1, v2} to obtain a
ciphertext c = aenc(v, pkE, r). The election also requires zero-knowledge proof for the validity
of votes with respect to election candidates Ív1, v2Î. Therefore, the voters generate a zero-
knowledge proof p, utilising the function zkp as follows:

p = zkp(c, r, Ív1, v2Î) = zkp(aenc(vi, pkE, r), r, Ív1, v2Î),

where v = vi for some i À {1, 2}. The election authorities receive the ballot containing the
ciphertext c and the zero-knowledge proof p. Then, they verify the validity of the vote inside
the ballot, verifying the zero-knowledge proof p as follows:

ver(p, c, pkE, Ív1, v2Î) = ver(zkp(c, r, Ív1, v2Î), c, pkE, Ív1, v2Î) = true.

Non-Interactive zero-knowledge proof of knowledge of the vote: Let r be the randomness
freshly generated to be used in the encryption of the vote v. After generating the ciphertext
for the vote, one can generate a proof p to prove the knowledge of v and of r. If the non-
interactive zero-knowledge proof algorithm utilises a function zkp, then p will be generated
as follows:

p = zkp(c, v, r),

where c is the ciphertext corresponding to the vote v. Then, the verification algorithm uses
a function ver to verify the proof p. Anyone can verify the proof with the ciphertext c and
election public key pkE:

ver(p, c, pkE) = ver(zkp(c, v, r), c, pkE) = true.

The proof described above is used to prove that the encryption is performed by the voter
who generates the randomness, and thus, it helps to ensure no adversarial involvement to the
generation of the ciphertext. However, it is not enough to prevent some attacks since it does
not help to ensure the ciphertext cannot be used out of the intended context. The adversary
could copy the ciphertext with the proof into another ballot, as in ballot copying attacks [19],
which will be regarded as if the adversary generated the ciphertext after the verification of the
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proof by election authorities. On the other hand, it will help adversary with learning the vote
of the voter who generated the ciphertext. Therefore, e-voting protocols may require the use
of zero-knowledge proof with the label of voter’s public key, as proposed for Belenios [18].
When the voter’s public key is added to the zero-knowledge proof, even if the adversary copies
the proof, it would not be verified by election authorities. Thus, labeled zero-knowledge proof
prevents the above-mentioned attack.

Non-interactive labeled zero-knowledge proof of knowledge of the vote: Assume each voter
is provided with a signature key pair in an election, i.e. the voter with id has (skid, pkid), and
the election requires labeled zero-knowledge proof with the voter’s public key pkid, which is
attached to the ciphertext generated by that voter. The ciphertext is obtained, encrypting the
vote v with fresh randomness r, i.e. c = aenc(v, pkE, r), where pkE is the election public key.
Then, the voter generates the labeled zero-knowledge proof p using their public key pkid as
follows:

p = zkp(c, v, r, pkid) = zkp(aenc(v, pkE, r), v, r, pkid).

Upon receiving the ballot for the voter with id, election authorities verify the proof p with the
voter’s public key pkid in the following:

ver(p, c, pkE, pkid) = ver(zkp(c, v, r, pkid), c, pkE, pkid) = true.

2.1.4 Commitments

Commitments are used to commit to a certain value with a secret, which hides the value
until the secret is revealed. If a commitment is made, then the party who commits cannot
deny or change the committed value by providing a di�erent secret afterwards. In e-voting,
commitments may be preferred to hide the votes of voters during the collection of votes,
as in FOO [28]. Then, for the tally, the voters reveal them, providing the randomness used
in the commitment that allows authorities to count their votes. Commitments may also be
used for other purposes, such as generating election credentials, i.e. trackers, for voters, as
in Selene [47]. In this case, election authorities commit to trackers at the beginning of the
election, and they provide the commitment randomness with the corresponding voters at the
end of the election, which allows voters to reveal their tracker and then verify their votes using
the revealed trackers.

Commitment: Assume a party wants to commit to a message m, using a function commit
with fresh randomness r:

com = commit(m, r),

and sends the commitment to another party that can open the commitment only if the ran-
domness is provided, i.e.

open(com, r) = open(commit(m, r), r) = m.

Commitment to the vote cast: Assume a voter who wants to cast a vote v commits to that vote
during voting of the election, using a function commit with fresh randomness r:

com = commit(v, r),

and sends the commitment to election authorities after signing it. If the signature is valid,
the authorities stores the commitment as a ballot of the voter. In the end of election, for the
tally procedure, the voter sends the randomness r to the authorities via anonymous channel to
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reveal the vote was cast, which allows authorities to open the commitment as follows:

open(com, r) = open(commit(v, r), r) = v.

2.1.5 Mixnets

Mixnets, i.e. mix networks, are applied to a set of elements to shu�e them through several
mixes. Each mix uses a permutation for shu�ing and combines permutations with a mathe-
matical operation, anonymising the output. In e-voting, mixnets provide anonymisation in the
tally, shu�ing the set of ciphertexts either re-encrypting or decrypting through a few mixes,
which contributes to the privacy of the voters, breaking their link to the outcome. Each mix
takes an input as a set of ciphertexts, re-encrypts/decrypts each element, permutes the resul-
tant set using a random permutation, and provides a zero-knowledge proof of correct shu�ing.
In the end, the output of the last mix gives a set of ciphertexts, which cannot be publicly linked
to the initial set of ciphertexts but still preserves the corresponding set of votes.

Re-encryption mixnet: Assume an election requires ElGamal encryption of the votes with
the public key pkE. Let {c1, ..., cn} be the set of ciphertexts of n voters at the end of the election
such that any ci = aenc(vi, pkE, ri) is the encryption of the vote vi with fresh randomness ri.
ElGamal encryption allows re-encryption of the ciphertexts, i.e. re-encryption of ci with fresh
randomness r®i is computed as:

c®i = renc(ci, pkE, r®i ) = aenc(vi, pkE, ri + r®i ).

Assume a re-encryption mixnet with k mixes, i.e. M1, ...,Mk, is applied to the set {c1, ..., cn}
of ciphertexts for their anonymisation in the tally. The first mix M1 takes the set {c1, ..., cn}
as input, re-encrypts each element in the set, permutes the set using a random permutation ⇢1,
and provides a zero-knowledge proof ⇡1 of correct shu�ing. The resultant set of ciphertexts,
i.e. {c1⇢1(1), ..., c

1
⇢1(n)} will be the input for the mix M2, which will re-encrypt each element,

permute the set with a random permutation ⇢2 and provide the proof ⇡2. After going through
all the mixes, i.e. after applying Mk as last,

{c1, ..., cn} {c1⇢1(1), ..., c
1
⇢1(n)} … {ck*1⇢k*1(1), ..., c

k*1
⇢k*1(n)}

⁄ ⁄ ⁄
M1 M2 … Mk
⁄ ⁄ ⁄

{c1⇢1(1), ..., c
1
⇢1(n)},⇡1 {c2⇢2(1), ..., c

2
⇢2(n)},⇡2 … {ck⇢k(1), ..., c

k
⇢k(n)},⇡k

the output set of the ciphertexts will be {ck⇢k(1), ..., c
k
⇢k(n)}, where each ck⇢k(i) corresponds to:

ck⇢k(i) = aenc(v⇢1˝…˝⇢k(i), pkE, ri + r1i +…+ rki ).

As can be seen, re-encryptions and permutations preserve the set of votes cast, while anonymis-
ing them compared to the initial set of ciphertexts.

2.2 E-Voting Protocol Parties

An e-voting protocol usually has multiple election authorities to set up and maintain the elec-
tion, count the votes cast during the election, and publish the outcome. It also has a number
of voters attending the election. Voters mainly use voting platforms to cast a ballot, but they
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sometimes use additional vote verification platforms, any of which can be independently cor-
rupt by the adversary. Therefore, we consider them as protocol parties. An election may also
have auditors who audit any data relevant to the election’s integrity.

2.2.1 Election Authorities

Election authorities are responsible for organising, maintaining, and finalising an election.
The authorities can all be internal parties or may include some external parties helping with
the election procedures. Sometimes external parties are added to the protocol to divide the
trust among the election authorities so that they could help to detect the corruption of internal
parties, or weaken the abilities of the adversary.

The authorities use a common bulletin board, denoted by BB, for the data utilised in the
election, allowing them to monitor the recorded data during the election. It also helps auditing
the election procedures with the data leading to the election outcome. Depending on the
protocol, BB may be private or public. The election data is recorded on BB in portions. For
example, the portion including the election key is denoted by BBkey.

- Administrator is responsible for organising the election, i.e. determines other election
authorities and assigns their roles, prepares the list of candidates and the list of eligible
voters, may determine other election parameters such as voter credentials to be used in
the election (an identity or another public credential), revote policy determining which
ballot will be tallied (first or last ballot if the voter revotes). Administrator records the
election candidates on BBcand.

- Tallier is responsible for generating the election key pair according to the algorithm
specified for the election. In general, a threshold key generation is preferred with mul-
tiple talliers, which distributes the trust between talliers and increases robustness in
case of a failure of some talliers. In threshold key generation, assume k talliers share
the election secret key, and at least t (t f k) of them have to cooperate to decrypt any
ciphertext encrypted with the election public key. More specifically, each of the talliers
generates some part of the election private key and its corresponding part of public
key, then shares the public part of the key with others, while keeping the private part to
themselves. The public part, when it is combined with others, constructs the election
public key, which is recorded on BBkey and used by the voters to encrypt their votes.
For the decryption of votes, each tallier decrypts the ciphertext output with their private
part of the election key. In the end, all decryptions are combined to obtain the outcome
of the election, which can be published on BBres.

- Voting Registrar: Some voting protocols require additional registrar for generating
election credentials for voters, according to the voter list provided by the administrator.
For example, the voting registrar may create a signature key pair for each voter to be
used for signing the ciphertext of the vote, or it may generate an alias for each voter to
cover their real identity. Because real identities, when they are attached to the ballots,
may lead adversary to compromise the privacy of the voters. The ballots usually contain
the encryptions of the votes, however, the encryption algorithm used can be deprecated
in the future, breaking the security of the encryption. This would compromise all the
votes attached to the identities, violating the privacy. If there is a voting registrar in
the protocol, it records all the public components of the election credentials, e.g. the
public keys of the signature pairs, on BBreg. Otherwise, the administrator records the
voter identities on BBreg.

- Voting Server is responsible for collecting the digital ballots from eligible voters in
the list of administrator, recording each ballot on its database, and publishing them
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on BBcast. For accepting ballots in the digital environment, some protocols require
authentication of the voters, for which voting server generates a password for each voter.
Then, voters need to authenticate themselves entering correct password provided by the
voting server, which allows them to submit their vote on behalf of them. Moreover,
the voting server is responsible for providing the ballots to be tallied by the talliers.
Thus, it records the ballots to be tallied on BBtally. If revoting is not allowed in the
protocol, BBcast and BBtally contain the same batch of ballots. Otherwise, the voting
server determines the ballot to be tallied for each voter according to the revote policy
specified by the administrator.

2.2.2 Voters and Their Voting Platforms

Voters attend the elections by casting a ballot on the voting server. To prepare their digital
ballots and submit them to the voting server, they use a voting platform, e.g. a website opened
by a browser or a voting application on an electronic device. The voting server may require
authentication before accepting a ballot generated by a voter. The authentication method may
vary among the protocols. In general, the voting server provides a password to each voter
before the election, and the voters must use this password to submit their ballot during the
election.

Voting platforms perform mathematical operations to prepare a ballot for the voter’s choice.
The ballot may contain only the encryption of the vote, which is the ciphertext obtained by
applying the encryption algorithm to the vote with the election public key published on the
BBkey. It may contain an additional signature of the voter, which is obtained by signing the
ciphertext with the public key of the voter. The signature proves that the ballot is prepared
by the voter who submits it since the private key can only be known by them. The ballot may
also contain a zero-knowledge proof proving that the ciphertext is created by the voter who
submits the ballot, i.e. the voter did not copy it from elsewhere.

Depending on the protocol, voting platforms may display a receipt for the submitted ballot
so voters can verify it on BB. If the voter verifies their ballot, it should be recorded as cast
for them, and election auditors should ensure it will be tallied as recorded later. Either the
same voting platform is used, or a separate verification platform is introduced to the voting
protocol for verifying the ballot.

The e-voting protocol may allow revoting, which is not possible for traditional voting.
This is an advantage for long-term elections since the voters may change their minds according
to the election campaigns. Another advantage is that the voters can revote if coerced, assuming
the coercer cannot follow the actions of the voters during the whole election period. In the
case of revoting, the voting platform may submit many ballots to the voting server. Each is
recorded on BBcast, but only one is selected to be tallied according to the revote policy and
then recorded on BBtally.

2.2.3 Election Auditors

The election procedures and data obtained, processed, and published during the election
should be audited by external parties called election auditors. This is needed to provide end-
to-end verifiability and ensure security of the election. Therefore, the auditors should verify
the eligibility of the voters who cast a ballot during the election, i.e. they match the lists of
voter credentials published on BBreg, BBcast, and BBtally. They should check the validity of
the ballots published on BBcast, i.e. check whether they contain a valid signature of the voter
who cast the ballot, a valid zero-knowledge proof if provided. The auditors should also verify
the proofs generated in the tally phase, i.e. they get the lists of BBtally and BBres and verify
the proof of correct decryption.
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2.3 E-Voting with respect to Election Phases

E-voting protocols usually consist of three phases of an election: a setup phase for determining
the election parameters, the election key, voters, the candidates to be chosen as votes, etc.; a
voting phase for collecting the ballots from voters, and a tally phase for deciding the ballots
to be opened, decrypting the ciphertexts inside them, and announcing the election result.
In general, e-voting protocols allow individual verification of the votes cast by the voters,
which is a procedure convincing the voter about their vote that was received and collected
correctly by the voting server. In the following, we describe a typical set of election procedures
according to the phases and the individual verification procedures.

2.3.1 Setup Phase

Tallier generates a private key skE and computes the public key pkE from skE, and then pub-
lishes the election public key on BBkey. It keeps skE secure for the decryption of votes later.
The administrator determines the candidates to be elected, i.e. v1,… , vk, and publishes them
on BBcand. It also makes a list of eligible voters, i.e. id1, ..., idn. The voting registrar gener-
ates an election credential for each voter id and publishes the public part cr on BBreg. The
voting registrar and server communicate to voter credentials required to authenticate and cast
a ballot. At the end of the setup phase, BB will contain the following information generated
by the election authorities:

BBkey : pkE; BBcand : v1, ..., vk; BBreg : cr1, ..., crn;

and the voters will have the credentials: id, cr, pwd.

2.3.2 Voting Phase

This phase mainly represents the communication between voters and the voting server. Voters
cast their ballots prepared by their voting platform. The voter chooses their vote v and the
voting platform encrypts v with the election public key pkE on BBkey and fresh randomness r,
and obtains a ciphertext c. The voter signs the ciphertext, i.e. the signature s is obtained. Then,
the voting platform produces a zero-knowledge proof p for the knowledge of the vote, leading
the ballot structure to b = Íc, s, pÎ, which is submitted to the voting server if it authenticates
the voter id. The server performs some checks on the ballot. First, it checks the credential
cr whether it is registered for the election, i.e. checks whether cr À BBreg. Then, it verifies
the signature s and the zero-knowledge proof p on the ballot. If verified, the voting server
publishes (cr, b) on BBcast. At the end of the voting phase, BBcast will contain a ballot for
each voter:

BBcast : (cr1, b1),… , (crn, bn),

where bi may be empty, i.e. bi = Ú, for some voters. If there is revoting in the protocol, BBcast
may contain several ballots for each voter:

BBcast : (cr1, b11, ..., b
l1
1 ),… , (crn, b1n, ..., b

ln
n ),

where li may equal to 1 or bli may equal to Ú for any i.

2.3.3 Tally Phase

After collecting all the ballots from voters and recording them on BBcast, the voting server
selects a ballot for each voter in the tally phase, complying with the revote policy. All these
ballots are published on BBtally so that they will be processed for the outcome. If there is no
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revoting, BBcast and BBtally will have the same set of ballots. Otherwise, BBtally will have
the following:

BBtally : (cr1, b
l1
1 ),… , (crn, b

ln
n ),

where li could be 1 for each i representing the first ballot of the voter, or it could be the greatest
one among all ballots of cri representing the last ballot of the voter depending on the revote
policy.

The administrator gets the list of ballots to be tallied from BBtally, detaches all the cre-
dentials next to the ballots, and fetches the ciphertexts from ballots. It may either assign the
tallier to use a mixnet for the election output or directly ask to decrypt the list of ciphertexts.
Assume the list of ciphertexts c1,… , cn collected by the administrator. If a mixnet is used by
the tallier, the ciphertexts will be mixed through re-encryptions and permutations, and thus,
in the end, the list of ciphertexts will be c®1,… , c®n. Otherwise, ci = c®i for any i. Moreover, if
the homomorphic encryption is utilised, then the set of ciphertexts will be combined into one
ciphertext c corresponding to all the votes collected. Then, either the ciphertext c or the list
of ciphertexts c®1,… , c®n is decrypted by the tallier using the private key of the election skE:

v = dec(c, skE) or vi = dec(ci, skE) for any i

corresponding to the outcome v1,… , vn. The result is published on BBres:

BBres : v1,… , vn.

Figure 2.2 displays election procedures followed by election authorities. The three elec-
tion phases are divided by the horizontal lines for election authorities and BB.

Election Authorities

skE
<latexit sha1_base64="GY6i50VuHvP50Mi4FalY6cMTb5k=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFEVxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OEHOmjet+O4W19Y3NreJ2aWd3b/+gfHjU0jJRhDaJ5FJ1AqwpZ4I2DTOcdmJFcRRw2g7Gt3O/PaFKMykezTSmfoSHgoWMYGMlvxdhM9Jhqsf9u1m/XHGrbga0SrycVCBHo1/+6g0kSSIqDOFY667nxsZPsTKMcDor9RJNY0zGeEi7lgocUe2nWegZOrPKAIVS2ScMytTfGymOtJ5GgZ3MQi57c/E/r5uY8NpPmYgTQwVZHAoTjoxE8wbQgClKDJ9agoliNisiI6wwMbanki3BW/7yKmnVqt5FtfZwWanf5HUU4QRO4Rw8uII63EMDmkDgCZ7hFd6cifPivDsfi9GCk+8cwx84nz8ocpJZ</latexit>

pkE
<latexit sha1_base64="w/R5NPlXFaghxfGZG6ZKEbmDG3Y=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFEVxWsA9oh5JJM21oJhOTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OIDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ThRhDZJzGPVCbCmnAnaNMxw2pGK4ijgtB2Mb+d+e0KVZrF4NFNJ/QgPBQsZwcZKfi/CZqTDVI77d7N+ueJW3QxolXg5qUCORr/81RvEJImoMIRjrbueK42fYmUY4XRW6iWaSkzGeEi7lgocUe2nWegZOrPKAIWxsk8YlKm/N1IcaT2NAjuZhVz25uJ/Xjcx4bWfMiETQwVZHAoTjkyM5g2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdKqVb2Lau3hslK/yesowgmcwjl4cAV1uIcGNIHAEzzDK7w5E+fFeXc+FqMFJ985hj9wPn8AI9qSVg==</latexit>

BBkey :
<latexit sha1_base64="ugLt79goeH6+hTlgA73vebJhJ5Q=">AAAB+HicbVDLSsNAFL3xWeujUZduBovgqiRVUFyVunFZwT6gDWUynbRDJ5MwMxFi6Je4caGIWz/FnX/jNM1CWw8MHM65l3vm+DFnSjvOt7W2vrG5tV3aKe/u7R9U7MOjjooSSWibRDySPR8rypmgbc00p71YUhz6nHb96e3c7z5SqVgkHnQaUy/EY8ECRrA20tCuDEKsJyrIms0pTW9mQ7vq1JwcaJW4BalCgdbQ/hqMIpKEVGjCsVJ914m1l2GpGeF0Vh4kisaYTPGY9g0VOKTKy/LgM3RmlBEKImme0ChXf29kOFQqDX0zmcdc9ubif14/0cG1lzERJ5oKsjgUJBzpCM1bQCMmKdE8NQQTyUxWRCZYYqJNV2VTgrv85VXSqdfci1r9/rLaaBZ1lOAETuEcXLiCBtxBC9pAIIFneIU368l6sd6tj8XomlXsHMMfWJ8/vUWTIw==</latexit>

BBcand :
<latexit sha1_base64="qByvUwwGIUj3rFNc0MnyMSjWQaE=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRVUFyVunFZwT6gDWUymbRDJ5MwMymU0D9x40IRt/6JO//GaZqFth4YOJxzL/fM8RPOlHacb6u0sbm1vVPereztHxwe2ccnHRWnktA2iXksez5WlDNB25ppTnuJpDjyOe36k/uF351SqVgsnvQsoV6ER4KFjGBtpKFtDyKsxyrMmk2CRXA3H9pVp+bkQOvELUgVCrSG9tcgiEkaUaEJx0r1XSfRXoalZoTTeWWQKppgMsEj2jdU4IgqL8uTz9GFUQIUxtI8oVGu/t7IcKTULPLNZJ5z1VuI/3n9VIe3XsZEkmoqyPJQmHKkY7SoAQVMUqL5zBBMJDNZERljiYk2ZVVMCe7ql9dJp15zr2r1x+tqo1nUUYYzOIdLcOEGGvAALWgDgSk8wyu8WZn1Yr1bH8vRklXsnMIfWJ8/XL2Teg==</latexit>

BBreg :
<latexit sha1_base64="oHJmNZd9Annsq+kgBT+L5hzwj4c=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZIqKK5K3bisYB/QljKZ3rRDJ5MwMxFq6Je4caGIWz/FnX/jNM1CWw8MHM65l3vm+DFnSrvut7W2vrG5tV3YKe7u7R+U7MOjlooSSbFJIx7Jjk8UciawqZnm2IklktDn2PYnt3O//YhSsUg86GmM/ZCMBAsYJdpIA7vUC4keqyCt1yWObmYDu+xW3AzOKvFyUoYcjYH91RtGNAlRaMqJUl3PjXU/JVIzynFW7CUKY0InZIRdQwUJUfXTLPjMOTPK0AkiaZ7QTqb+3khJqNQ09M1kFnPZm4v/ed1EB9f9lIk40Sjo4lCQcEdHzrwFZ8gkUs2nhhAqmcnq0DGRhGrTVdGU4C1/eZW0qhXvolK9vyzX6nkdBTiBUzgHD66gBnfQgCZQSOAZXuHNerJerHfrYzG6ZuU7x/AH1ucPrJGTGA==</latexit>

BBcast :
<latexit sha1_base64="yVt5DOGpahjEmicBle71KDgYeMk=">AAAB+XicbVDLSsNAFL2pr1pfUZdugkVwVZIqKK5K3bisYB/QljKZTtqhk0mYuSmU0D9x40IRt/6JO//GaZqFth4YOJxzL/fM8WPBNbrut1XY2Nza3inulvb2Dw6P7OOTlo4SRVmTRiJSHZ9oJrhkTeQoWCdWjIS+YG1/cr/w21OmNI/kE85i1g/JSPKAU4JGGth2LyQ41kFar1Oi8W4+sMtuxc3grBMvJ2XI0RjYX71hRJOQSaSCaN313Bj7KVHIqWDzUi/RLCZ0Qkasa6gkIdP9NEs+dy6MMnSCSJkn0cnU3xspCbWehb6ZzHKuegvxP6+bYHDbT7mME2SSLg8FiXAwchY1OEOuGEUxM4RQxU1Wh46JIhRNWSVTgrf65XXSqla8q0r18bpcq+d1FOEMzuESPLiBGjxAA5pAYQrP8ApvVmq9WO/Wx3K0YOU7p/AH1ucPfMCTjw==</latexit>

BBres :
<latexit sha1_base64="QUbrcrcUhoBOM+HKJVvy2CPexOY=">AAAB+HicbVDLSsNAFL3xWeujUZdugkVwVZIqKK5K3bisYB/QhjKZ3rRDJ5MwMxFq6Je4caGIWz/FnX/jtM1CWw8MHM65l3vmBAlnSrvut7W2vrG5tV3YKe7u7R+U7MOjlopTSbFJYx7LTkAUciawqZnm2Ekkkijg2A7GtzO//YhSsVg86EmCfkSGgoWMEm2kvl3qRUSPVJjV6xLVzbRvl92KO4ezSryclCFHo29/9QYxTSMUmnKiVNdzE+1nRGpGOU6LvVRhQuiYDLFrqCARKj+bB586Z0YZOGEszRPamau/NzISKTWJAjM5j7nszcT/vG6qw2s/YyJJNQq6OBSm3NGxM2vBGTCJVPOJIYRKZrI6dEQkodp0VTQleMtfXiWtasW7qFTvL8u1el5HAU7gFM7BgyuowR00oAkUUniGV3iznqwX6936WIyuWfnOMfyB9fkDvtmTJA==</latexit>

v1, ..., vk
<latexit sha1_base64="+xZF+KJYmIur9i2tYDuW1rcSsco=">AAAB/XicbVDLSsNAFL3xWesrPnZuBovgooSkCrosunFZwT6gDWEynbRDJw9mJoUair/ixoUibv0Pd/6N0zQLbT0wcDjnXu6Z4yecSWXb38bK6tr6xmZpq7y9s7u3bx4ctmScCkKbJOax6PhYUs4i2lRMcdpJBMWhz2nbH93O/PaYCsni6EFNEuqGeBCxgBGstOSZx70Qq6EMsrHnVC3Lqo690dQzK7Zl50DLxClIBQo0PPOr149JGtJIEY6l7Dp2otwMC8UIp9NyL5U0wWSEB7SraYRDKt0sTz9FZ1rpoyAW+kUK5ervjQyHUk5CX0/mWRe9mfif101VcO1mLEpSRSMyPxSkHKkYzapAfSYoUXyiCSaC6ayIDLHAROnCyroEZ/HLy6RVs5wLq3Z/WanfFHWU4ARO4RwcuII63EEDmkDgEZ7hFd6MJ+PFeDc+5qMrRrFzBH9gfP4ASWKUdg==</latexit>

cr1, ..., crn
<latexit sha1_base64="KDK2XKh3GFweoEKFs5XmzgKg9Sk=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm2ARXJSQVEGXRTcuK9gHtCFMppN26GQSZiZCiV34K25cKOLW33Dn3zhNs9DWAwOHc+7lnjlBwqhUjvNtlFZW19Y3ypuVre2d3T1z/6At41Rg0sIxi0U3QJIwyklLUcVINxEERQEjnWB8M/M7D0RIGvN7NUmIF6EhpyHFSGnJN4/6EVIjGWZY+G7Ntu2aJnzqm1XHdnJYy8QtSBUKNH3zqz+IcRoRrjBDUvZcJ1FehoSimJFppZ9KkiA8RkPS05SjiEgvy/NPrVOtDKwwFvpxZeXq740MRVJOokBP5mkXvZn4n9dLVXjlZZQnqSIczw+FKbNUbM3KsAZUEKzYRBOEBdVZLTxCAmGlK6voEtzFLy+Tdt12z+363UW1cV3UUYZjOIEzcOESGnALTWgBhkd4hld4M56MF+Pd+JiPloxi5xD+wPj8Acc/lUs=</latexit>

(cr1, b1), ..., (crn, bn)
<latexit sha1_base64="5UWvqCIWD4KIfwQu/Zx9/ZXzZcY=">AAACC3icbVDLSsNAFJ34rPUVdelmaBFaKCGpgi6LblxWsA9oQ5hMJ+3QySTMTIQSunfjr7hxoYhbf8Cdf+MkzUJbDwyce869zL3HjxmVyra/jbX1jc2t7dJOeXdv/+DQPDruyigRmHRwxCLR95EkjHLSUVQx0o8FQaHPSM+f3mR+74EISSN+r2YxcUM05jSgGCkteWZlGCI1kUFaw8JzGr7n1BuWZTWykuuS1+eeWbUtOwdcJU5BqqBA2zO/hqMIJyHhCjMk5cCxY+WmSCiKGZmXh4kkMcJTNCYDTTkKiXTT/JY5PNPKCAaR0I8rmKu/J1IUSjkLfd2Zb77sZeJ/3iBRwZWbUh4ninC8+ChIGFQRzIKBIyoIVmymCcKC6l0hniCBsNLxlXUIzvLJq6TbtJxzq3l3UW1dF3GUwCmogBpwwCVogVvQBh2AwSN4Bq/gzXgyXox342PRumYUMyfgD4zPH6FsmN4=</latexit>

v1, ..., vn
<latexit sha1_base64="xTKLfzb88s1nt+pNS+WogBCaqro=">AAAB/XicbVDLSsNAFL3xWesrPnZugkVwUUJSBV0W3bisYB/QhjCZTtqhk0mYmRRqKP6KGxeKuPU/3Pk3TtMstPXAwOGce7lnTpAwKpXjfBsrq2vrG5ulrfL2zu7evnlw2JJxKjBp4pjFohMgSRjlpKmoYqSTCIKigJF2MLqd+e0xEZLG/EFNEuJFaMBpSDFSWvLN416E1FCG2dh3q7ZtV8c+n/pmxbGdHNYycQtSgQIN3/zq9WOcRoQrzJCUXddJlJchoShmZFrupZIkCI/QgHQ15Sgi0svy9FPrTCt9K4yFflxZufp7I0ORlJMo0JN51kVvJv7ndVMVXnsZ5UmqCMfzQ2HKLBVbsyqsPhUEKzbRBGFBdVYLD5FAWOnCyroEd/HLy6RVs90Lu3Z/WanfFHWU4ARO4RxcuII63EEDmoDhEZ7hFd6MJ+PFeDc+5qMrRrFzBH9gfP4ATfGUeQ==</latexit>

pkE
<latexit sha1_base64="w/R5NPlXFaghxfGZG6ZKEbmDG3Y=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxUQZdFEVxWsA9oh5JJM21oJhOTTKEM/Q43LhRx68e4829Mp7PQ1gOBwzn3ck9OIDnTxnW/ncLa+sbmVnG7tLO7t39QPjxq6ThRhDZJzGPVCbCmnAnaNMxw2pGK4ijgtB2Mb+d+e0KVZrF4NFNJ/QgPBQsZwcZKfi/CZqTDVI77d7N+ueJW3QxolXg5qUCORr/81RvEJImoMIRjrbueK42fYmUY4XRW6iWaSkzGeEi7lgocUe2nWegZOrPKAIWxsk8YlKm/N1IcaT2NAjuZhVz25uJ/Xjcx4bWfMiETQwVZHAoTjkyM5g2gAVOUGD61BBPFbFZERlhhYmxPJVuCt/zlVdKqVb2Lau3hslK/yesowgmcwjl4cAV1uIcGNIHAEzzDK7w5E+fFeXc+FqMFJ985hj9wPn8AI9qSVg==</latexit>

Voter(cri)
<latexit sha1_base64="158XDKkSgKvrbkXjiTOW9TrMRdw=">AAAB+HicbVBNS8NAFHypX7V+NOrRy2IR6qUkVdBj0YvHCrYW2hA22027dLMJuxuhhv4SLx4U8epP8ea/cZvmoK0DC8PMe7zZCRLOlHacb6u0tr6xuVXeruzs7u1X7YPDropTSWiHxDyWvQArypmgHc00p71EUhwFnD4Ek5u5//BIpWKxuNfThHoRHgkWMoK1kXy7OoiwHqswqxPps7OZb9echpMDrRK3IDUo0Pbtr8EwJmlEhSYcK9V3nUR7GZaaEU5nlUGqaILJBI9o31CBI6q8LA8+Q6dGGaIwluYJjXL190aGI6WmUWAm85jL3lz8z+unOrzyMiaSVFNBFofClCMdo3kLaMgkJZpPDcFEMpMVkTGWmGjTVcWU4C5/eZV0mw33vNG8u6i1ros6ynAMJ1AHFy6hBbfQhg4QSOEZXuHNerJerHfrYzFasoqdI/gD6/MHl0OTCg==</latexit>

(cri, bi)
<latexit sha1_base64="ImOSU9jQSu904iEZgZ8v+SNKw0Y=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBItQQUpSBV0W3bisYB/QhjCZTtqhk0mYmQgh1F9x40IRt36IO//GaZqFth4YOJxzL/fM8WNGpbLtb6O0tr6xuVXeruzs7u0fmIdHXRklApMOjlgk+j6ShFFOOooqRvqxICj0Gen509u533skQtKIP6g0Jm6IxpwGFCOlJc+sDkOkJjLI6lh49Nz36NnMM2t2w85hrRKnIDUo0PbMr+EowklIuMIMSTlw7Fi5GRKKYkZmlWEiSYzwFI3JQFOOQiLdLA8/s061MrKCSOjHlZWrvzcyFEqZhr6ezKMue3PxP2+QqODazSiPE0U4XhwKEmapyJo3YY2oIFixVBOEBdVZLTxBAmGl+6roEpzlL6+SbrPhXDSa95e11k1RRxmO4QTq4MAVtOAO2tABDCk8wyu8GU/Gi/FufCxGS0axU4U/MD5/AEsflIg=</latexit>

Encryption

Decryption

Authentication/Verification

FIGURE 2.2: Election procedures with respect to phases.

2.3.4 Individual Verification

Most e-voting protocols allow individual verification by voters, which is the procedure that
helps voters to ensure that their ballot is recorded as cast to the voting server. For the veri-
fication, the voter should match their vote or their ballot with the one recorded on BB. For
directing the voter to the correct ballot, the protocol may provide a receipt for tracking. Usu-
ally, the verification procedure is independent of the voting procedure, and thus, the receipt
helps to find the correct ballot among all other ballots on BB. Regarding the complexity of
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the ballot, which is a long output of bits, matching the ballot cast with the one on BB could be
hard for the voter. Therefore, the e-voting protocol may choose to publish a short version of
the ballot for comparison, i.e. the hash of the ballot. Hashing shortens the ballot length in a
way that the output does not collude with others since the input is di�erent, i.e. the ballots are
di�erent for each other. Thus, publishing the hash of the ballots does not violate the security
of the election.

The individual verification procedures may vary among the protocols. In the following,
the various verification procedures will be discussed briefly:

- Individual verification of any ballot on BBcast: Assuming revoting is enabled for the
e-voting protocol, the voters are allowed to verify any of their ballot cast anytime during
the voting phase on BBcast. This means that BBcast displays all ballots cast by each
voter.

- Individual verification of last ballot on BBcast: Similar to the above case, if revoting
is allowed, the voters can verify only their last ballot cast on BBcast during the voting
phase. If they revote, they lose the option to verify a former ballot. This means that
BBcast hides former ballots cast from the voter if a new ballot is cast by them, i.e.
BBcast only displays the last ballot for each voter on its database. If there is no revoting,
BBcast just displays the ballot received from the voter. Otherwise, the ballot would be
Ú.

- Individual verification of the ballot on BBtally: In this case, the voters are allowed to
verify only the ballot to be tallied for them. Thus, the verification is performed at the
end of the election after the voting phase has ended. The ballot to be verified could also
be Ú so that the voter could verify that nobody used their credentials to cast a ballot.

- Individual verification of the vote on BBres: In some e-voting protocols, the voters
are provided with additional credentials, i.e. trackers, that allow voters to verify their
vote in the clear on BBres. The trackers are used to provide privacy to the voters,
while making the verification procedure much more easier. Instead of verification of
the ballots by matching complex numbers, the voters just match their vote with a tracker
provided by the election authorities. The trackers are generated uniquely for each voter
so that any two voters’ trackers will not collide.

2.4 Security Properties of E-Voting Protocols

The security needs for e-voting are di�erent than the ones in traditional voting since the digital
environment is more vulnerable to coercers and adversaries that can violate the privacy of the
voters and easily manipulate the election even without being noticed by election authorities.
To prevent any attempt making the election fail, several security properties, such as privacy,
verifiability, integrity, robustness, etc., were proposed in the literature. Nevertheless, privacy
and verifiability are the two mainly sought properties for e-voting protocols.

Privacy is based on hiding the link of the voter to the clear vote, and therefore, removing
any means in the protocol that will disclose to the adversary the voter’s vote. On the other
hand, verifiability is based on transparency of the procedures followed by the protocol. For
example, all the votes cast should be tracked to eligible voters to ensure that there is no ad-
versarial involvement. Thus, one property requiring secrecy naturally conflicts with another
requiring transparency. The eventual aim in e-voting protocols is to achieve a good balance
between privacy and verifiability without sacrificing one to another. In addition to them,
usability is another property which is essential among all e-voting protocols. The protocol
should be simple and usable by any person independent of their age and abilities.



22 Chapter 2. Verifiable E-Voting Protocols

2.4.1 Privacy

In democratic elections, anyone should express their will by voting for the candidate they
desire without being suppressed or coerced. Traditional voting prevents coercion to a great
extent since the vote is covered by an envelope in a private voting booth, and the ballot (the
vote covered by an envelope) becomes anonymous in the ballot box among all others, which
also restricts the abilities of voters to prove how they voted. The coercer may attempt vote
buying if the voter can provide a proof, such as a photograph taken in the voting booth, or the
coercer may prevent the voter from voting, i.e. making them absentee.

On the other hand, e-voting leads to coercion on a broader scale. Digital ballots are mostly
accompanied with election credentials of the voters, which is needed for verifiability. Then,
the ballots cannot contain clear votes not to violate privacy of the voters, i.e. the ballots con-
tain encoded votes of the voters. Therefore, the voters should verify their ballot to ensure that
it contains their votes. Many e-voting protocols allow voters to verify their ballot providing
them with some receipt. This receipt can be requested by the coercer to verify the vote, which
makes voter vulnerable to coercion. The receipt may also be used for vote buying.

The e-voting protocols, in general, should preserve their strength regarding coercion with
some devised techniques allowing individual verification. Fundamentally, the protocol should
provide ballot privacy, i.e. the vote should not be linked to the voter by any means. Then,
a higher level of privacy requires receipt-freeness, i.e. the voter cannot provide any receipt
to the coercer for verifying the vote. Lastly, the highest level of privacy requires coercion
resistance, i.e. even though the voter cooperates with the coercer, there is no way for them
to prove how they voted. Achieving coercion resistance is really challenging since, in many
e-voting protocols, all the ballots received by the authorities are published, and in that case,
the coercer may notice that the voter voted even if they coerced the voter to be absentee.

- Ballot privacy: Nobody should learn how the voter voted, i.e. the vote cast by the voter
should be anonymised among others.

- Receipt-freeness: The voter cannot provide a receipt to prove how they voted.

- Coercion resistance: The voter cannot prove how they voted or whether they voted in
any way, even though they cooperate with the coercer.

Among our case studies, we will have Helios and Belenios that only satisfy ballot privacy,
and BeleniosRF, Selene, Hyperion, and the Estonian e-voting protocol that aim to satisfy
receipt-freeness.

2.4.2 Verifiability

Verifiability basically tracks all the election data to their origin and ensures that the procedures
held by the election authorities are followed in the right way. This is needed to ensure that
there is no adversarial involvement in the election, i.e. the adversary cannot fake an election
credential, cast adversarial ballots for fake credentials, change the ballots cast by eligible
voters nor change the election outcome.

One aspect of verifiability involves voters verifying that their ballot is correctly collected
by the election authorities. The verification procedure varies among e-voting protocols. In
some protocols, the voter’s vote is verified in the clear, whereas in others, a receipt is provided
to the voter for verification of the ballot encoding the vote. The other aspects of verifiability
involve anyone verifying that all ballots collected by the election authorities were cast by
eligible voters and that all the votes in the outcome come from the ballots collected by the
authorities. In contrast to traditional voting, in e-voting, the voters can cast multiple ballots
during the election if the protocol allows revoting. In that case, the protocol specifies a revote
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policy for selecting the ballot to be tallied, i.e. the vote to be counted for each voter. In general,
the revote policy selects the last ballot cast by each voter for the tally. Thus, the selection of the
correct ballot, among others, should also be verified. A protocol that is verifiable with respect
to all election procedures is called end-to-end verifiable. End-to-end verifiable protocols give
security guarantees about the election outcome that it reflects the intention of the eligible
voters.

- Individual verifiability: Any voter should be able to verify that their ballot was col-
lected as it was cast.

- Eligibility verifiability: Anybody should be able to verify that all the votes counted by
election authorities were cast by eligible voters.

- Universal verifiability: Anybody should be able to verify that the election outcome
corresponds to the set of ballots collected by election authorities, complying with the
revote policy.

We will discuss more about verifiability in Chapter 4.

2.4.3 Usability

Usability is an essential property of e-voting protocols. Security can be defined with di�er-
ent measures, leading the protocol to deploy very complex cryptographic primitives that are
combined with complicated election procedures. For many people, those procedures are hard
to follow and barely understood. Thus, this ambiguity a�ects people’s trust in the protocol
being deployed and decreases the voters’ participation in the elections, which is not desired
for democracy. Therefore, the election procedures should be very simple and understandable
to be followed by anyone regardless of their educational background, age, and abilities.

2.5 Verifiable E-Voting Protocols with Examples

In this section, we give three examples of verifiable e-voting protocols, focusing on the in-
dividual verification procedures of the voters. In each example, the verification credentials
di�er from those in others. The protocol in Example 1 uses a mechanism similar to Helios [1],
where the verification credentials are the voter identities. Example 2 is similar to the Bele-
nios [18] protocol, where the public keys of the voters are the verification credentials, and
the protocol in Example 3 is similar to Selene [47] since it allows voters to verify their votes
using trackers. After providing examples, we present a diagram in Figure 2.3 to illustrate the
third example of verifiable e-voting protocols.

Example 1. Let the election credentials of the voters be their identities. Then, for any eligible
voter holding the identity id, the id is published on BBreg. In the voting phase, the voter
prepares a ballot b containing the vote v and attaches their identity to b for submission to
election authorities, i.e. (id, b) is submitted to the voting server and published on BBcast. For
individual verification, the voter matches b with the ballot b® posted next to their id on BBcast.

In Example 1, the identities are clearly published on BBcast with the ballots cast by them.
Assuming the ballot contains the encryption of the vote, the privacy of the identity depends
on the security of encryption algorithms. Most of the encryption algorithms used today are
secure only for today. Anytime in the future, they can be broken or require longer key lengths.
This means that the adversary can possess the election secret key used for the decryption to
learn the votes of the identities in the future, which will violate their privacy. Therefore, many
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protocols do not prefer to use identities as election credentials. Instead, they generate or utilise
other credentials, such as aliases or public keys of the signature key pairs.

Example 2. Let the election credentials of the voters be their public keys. Then, for any
eligible voter with id, the voting registrar generates a signature key pair, where the public
key of the pair, denoted by cr, is published on BBreg. In the voting phase, the voter prepares
a ballot b containing the vote v and the signature s, then attaches their credential to b for
submission to election authorities, i.e. (cr, b) is submitted to the voting server. The voting
server verifies the signature in the ballot and publishes (cr, b) on BBcast. For individual
verification, the voter matches b with the ballot b® posted next to their credential cr on BBcast.

In Example 2, the crucial point is the uniqueness of the election credentials. A credential
generated by the voting registrar should not be assigned to more than one voter. Otherwise,
the votes of those voters will be counted as one in the tally phase. Encryption of the vote with
fresh randomness makes the ballot unique. Therefore, even if many voters share a credential,
their ballots will be di�erent. Thus, if they attempt to verify their ballot on BB, only one
of those will achieve it, making others detect the attack. However, if revoting is allowed by
the protocol, the ballot on BB will be replaced each time the credential submits a ballot. In
this case, catching the attack by individual verification will be harder. The voters may have
to perform individual verification many times to ensure no voter sharing the same credential
overwrites their ballot, i.e. their ballot is received and will be counted.

Example 3. Assume the protocol provides voters with two election credentials; one is their
public credentials, and the other is their verification credentials. Let the public credentials be
the public keys of the voters. As in Example 2, the voting registrar generates a signature key
pair for each voter, i.e. a public credential cr is assigned to the voter with id, which is also
published on BBreg. Election authorities also generate a verification credential allowing the
voter to track their vote, which is called a tracker and denoted by tr. Similar to Example 2,
the voter submits (cr, b), and the voting server publishes it on BBcast. All the ballots are
opened in the tally phase, and the votes obtained are published on BBres next to the trackers.
Receiving the tracker from authorities, the voter verifies their vote on BBres, i.e. the voter
finds (tr, v®) on BBres and matches v with v®.

In the example above, the votes are published in the clear on BBres at the end of the
election, making the verification procedure easier for voters. For the verification of the ballots,
the voters need to match long, complex strings, constituting the ciphertexts or their hashes,
which is complicated for many voters. The simplest way to perform an individual verification
is to match the clear votes. The Figure 2.3 displays a diagram for Example 3.
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Voter(id) Election Auth BB

setup phase

generate: cr, tr

Ícr, trÎ cr

BBreg : cr

voting phase

select: v
generate: b for v

Íid, cr, bÎ
Ícr, bÎ

BBcast : (cr, b)

tally phase

open(b) = v®

Ítr, v®Î

BBres : (tr, v®)

individual verification

tr

v®

verify: v = v®

FIGURE 2.3: Verifiable e-voting protocol example.
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Chapter 3

Formal Verification Preliminaries

Protocols are the building blocks of today’s communication through the internet. They organ-
ise the communication flow between parties so that any party can successfully communicate
with another via a private or public channel. The protocols are designed for a specific purpose,
requiring some properties to be achieved. For example, Di�e-Hellman key exchange proto-
col [25] allows two parties to establish a shared secret key via a public channel. Each party
in the protocol generates a key pair (private-public keys), sends the public key to the other
party using a public channel, and then combines the received public key with their private key
to compute the shared key. This protocol satisfies the secrecy of the shared key against any
eavesdropper since the eavesdropper cannot compute the shared key from the information on
the public channel, i.e. from the public keys of the two parties. In general, protocols can be
much more complex than this, especially the e-voting protocols.

To ensure the protocols satisfy the required properties, they should be analysed rigorously,
considering systematically all possible scenarios. A failure of any property concerning a
scenario may point to a flaw in the design of a protocol. If it is the failure of some security
property, it can lead to security breaches that definitely will not be desired for communication.
Considering complex protocols that are held through the internet, security flaws may not be
easily discovered. To capture any fault in the protocol or ensure there is no flaw, formal
methods can be applied to the protocol to obtain an abstract mathematical model. Then, the
formal verification of the specified model with respect to its properties will either show the
fault or provide proof, ensuring those properties through the model. In case of a failure of
any property, the protocol design can be improved to prevent it.

Formal verification of a protocol specification ensures the required properties providing
manual proof, machine-assisted proof, or fully automated proof. Manual proofs are error-
prone due to many tedious details that can be missed easily. Machine-assisted proofs require
interaction with a user to generate them and are typically used for computational models. Fully
automated proofs are generated on symbolic models by the tools in an automated way, giving
more assurance than manual proofs. Symbolic models require a language for specifying the
protocol and a logic for specifying the properties.

Tamarin [51, 41, 48] and ProVerif [45, 11] are the two promising tools that allow auto-
mated verification of the symbolic models of the protocols. In these tools, the protocol is
symbolically modelled, specifying the actions of the parties, i.e. the generation and exchange
of messages through public or private channels, and the actions of the adversary that controls
the public channels and the messages exchanged, e.g. it can also corrupt the protocol parties
using its abilities. Cryptography is assumed to be perfect; the adversary can perform crypto-
graphic operations only if it possesses all the required terms. Then, the automated verification
is performed, exhausting all the traces of the protocol specification and checking whether the
security properties that are specified as trace properties hold.

Structure of the chapter: This chapter includes three sections for which Section 3.1 is ded-
icated to Tamarin, Section 3.2 is to ProVerif, and Section 3.3 presents the generic protocol
specifications and properties, regarding Tamarin and ProVerif.
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3.1 Formal Verification with Tamarin

Tamarin is an automated verification tool [51, 41, 48] that has an expressive language to spec-
ify protocols and adversaries as labeled transition systems based on multiset rewriting rules.
The rules are constructed using the symbolic representations of the protocol’s states, fresh in-
formation to generate the messages, and the messages received/sent from/to a public channel
also representing the adversary’s knowledge. When executed, each rule consumes some of
the mentioned protocol states and messages and generates new states and messages, recording
actions as events in the traces of the transition system. Security properties are specified as
trace properties that are checked against all possible traces of the transition system or spec-
ified as equivalence properties that are checked in terms of the observational equivalence of
two transition systems.

3.1.1 Specifying Protocols and Properties in Tamarin

In Tamarin, messages (or terms) are built from a set of function symbols and properties of
cryptographic primitives are modelled by a set of equations. Cryptography is assumed perfect,
thus, there is no other way to derive messages other than applying function symbols and
equations. Let F be a set of function symbols. Then, messages are built by applying functions
symbols from F to variables from an infinite set X , constants from F , names from an infinite
set N or, iteratively, to other messages built in this way. Certain names may be specified to
be fresh and private in an execution trace. The prefix $ refers to a public name within the
adversary’s knowledge. The function symbols can be endowed with a set of equations E ,
specifying term equalities according to the properties of functions. Equalities between terms
are implicitly interpreted as being modulo E .

Example 4. Let F = {pk, enc, dec, sign, verify} and E be the set of following equations:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true.

A term enc(m, pk(k), r) represents a ciphertext where m is the plaintext of a message, pk(k)
is the public key corresponding to the private key k, and r is the randomness used by the
encryption algorithm. Equations (1) and (2) specify the standard properties of asymmetric
encryption and digital signatures. The ciphertext enc(m, pk(k), r) can be decrypted only if
the private key k is provided. Similarly, the signature sign(m, k®) for the message m can be
verified only with the public key pk(k®) corresponding to the private key k®.

The set of symbols is extended with fact symbols to represent protocol state information
and adversarial knowledge. A fact is represented by F(m1,… ,mk), where F is a fact symbol
and m1,… ,mk are messages. There are four types of special fact symbols built in Tamarin:
In and Out - for a message received from and send to the public channel controlled by the
adversary, respectively, K for the adversary’s knowledge and Fr for a fresh (random) informa-
tion. Other symbols may be added as required for representing the protocol state. Facts can
be persistent, i.e. used as premise any number of times, or linear, i.e. used at most once. A
fact is preceded by ! to denote that it is persistent, e.g. !F(m1,… ,mk).

A multiset rewriting rule is defined by [L]**[ M ]ô[N], in which a set of premise facts
L allows to derive a set of conclusion facts N , while recording certain events in action facts
M . To ease protocol specification, the syntax of multiset rewriting rules can be extended with
variable assignments and equality constraints, i.e. for a rule of the form [L]**[ E,M ]ô[N],
L may contain expressions x = t to define local variables and E may contain a set of equations
of the form u í v. The expressions are specified with let … in notation in Tamarin.
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For two multisets of facts F0,F1 and rule R : [L]**[ E,M ]ô[N], F1 can be obtained
from F0 by applying the rule R, instantiated with a substitution ✓ if every equality in E✓ is
true and every fact in L✓ is included in F0. Both of these statements are evaluated according
to the equational theory. Then, F1 is obtained from F0 by removing linear facts included in
L✓ and adding all facts from N✓.

There are three special classes of rules in Tamarin: network deduction rules specify that
the adversary obtains protocol’s outputs, provides protocol’s inputs, knows public information
and does not know freshly generated information; intruder deduction rules allow the adver-
sary to apply functions and exploit their equational properties (a function can be declared
private if the adversary is not supposed to use it); protocol rules allow to specify the actions
of honest parties.

Example 5. Consider the set Qses of the following rules modelling session key exchange
protocol between server and client:

Rkey : [ Fr(k) ]**[ ]ô[ !Sk(k), !Pk(pk(k)),Out(pk(k)) ]
Renc : let c = enc(s, x, r) in

[ In(x), Fr(s), Fr(r) ]**[ Key(s),Enc(c) ]ô[ !SessionKeyC(s),Out(c) ]
Rdec : [ In(y), !Sk(k) ]**[ Dec(y) ]ô[ !SessionKeyS(dec(y, k)) ]

The rule Rkey models the generation of the server’s key pair that will be used to exchange the
session keys with clients. The server generates a fresh secret key k, which is stored for later
use in Sk, while the corresponding public key is also stored in Pk and output to the network.
The rule Renc specifies a client’s actions for generating a fresh session key s that will be used
for the encryption of the session with the server, receiving the public key of the server from
the network, i.e. the input x, encrypting the session key s with x using fresh randomness r and
outputting the ciphertext c to the server. In the rule Rdec, the server receives the encryption of
the session key, i.e. the input y, and decrypts it using its secret key k stored in Sk. The session
key is stored in SessionKeyS on the server’s side, whereas in SessionKeyC on the client’s side,
to encrypt and decrypt the messages exchanged during the session. The action facts Key(s),
Enc(c), and Dec(y) record the respective events in the execution trace.

Trace Properties. For a set of rules P , an execution trace ⌧ is defined by a sequence of
multisets of facts F0,… ,Fn and a sequence of rules R1,… ,Rn À P such that, for every
i À {1,… , n}, Fi can be obtained from Fi*1 by applying Ri instantiated with a substitution
✓i. Let Act(R) be the action facts of a rule R. For a trace ⌧ as above and any i À {1,… , n},
we define Facts(⌧, i) to be the set of action facts occurred in the trace ⌧ at the timepoint i.

• Facts(⌧, i) = Act(Ri)✓i if Ri is a protocol or network deduction rule. This represents
the fact that certain actions took place at timepoint i.

• Facts(⌧, i) = {K(v✓i)} if Ri is an intruder deduction rule with conclusion {K(v)}. This
represents the fact that the adversary knows v✓i at timepoint i.

Temporal variables are used to specify the timepoints when actions occurred in a trace.
If an action fact F should occur at a timepoint i, then it is denoted by F@i. A trace property
is a first-order logic formula over action facts and timepoints. Thus, the formula is obtained
from universal and existential quantifications over term and temporal variables, logical con-
nectives such as implication, conjunction, disjunction, and negation, action constraints such
as F@i, temporal ordering i « j or equality i = j for temporal variables i and j, and message
equalities m1 = m2 for the messages m1 and m2. Similarly, a restriction is a logical formula
that constrains the execution traces with respect to the action facts and timepoints.
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The satisfaction relation ⌧ Ù �, for a trace ⌧ and a trace formula � is defined recur-
sively following the usual semantics for logical connectives, quantifiers, and time ordering
constraints. We have the following notable case for action facts: ⌧ Ù F@i if and only if
F À Facts(⌧, i). Note that term variables are interpreted over terms and temporal variables
over timepoints. For a set of rules P , let tr(P ) be the set of traces of P . Then, for a trace
formula �, P Ù � if and only if any trace in tr(P ) satisfies the formula �. Moreover, let
(P ; ) be the specification of P with a restriction formula  . Then, (P ; ) Ù � if and only if
any trace in tr(P ) satisfying the restriction  also satisfies the trace formula �. That is:

P Ù � ⌥ ≈⌧ À tr(P ). ⌧ Ù �,
(P ; ) Ù � ⌥ ≈⌧ À tr(P ). ⌧ Ù  Ÿ �.

Example 6. Continuing Example 5, the formula �sec : ≈x, i. Key(x)@i Ÿ ¬(«j. K(x)@j)
states that if a term x is a secret session key recorded in Key generated by the second rule,
then there is no timepoint at which the intruder knows it. We have Qses °Ù �sec since the
adversary in the middle may replace the server’s public key with its public key to learn the
session key.

3.1.2 Case Study: Verifiable E-Voting Example

We present the Tamarin specification of Example 3 from Section 2.5 in the following. Re-
call that digital ballots contain the encryption of the vote and the voter’s signature on the
encryption such that encryption is computed using an asymmetric encryption algorithm that
randomises the ciphertext with fresh randomness, and the signature is generated using a digi-
tal signature algorithm compatible with the encryption algorithm. Therefore, we use the two
equations defined in Example 4 to model the properties of those algorithms with the function
symbols pk, enc, dec, sign, verify:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true.

Next, we provide the specification (P ; ), where P is the set of rules specifying the ac-
tions of the parties in the protocol, and  is the conjunction of restrictions. There are three
parties: Voter, Election Auth and BB, as represented in Figure 2.3, corresponding to Exam-
ple 3, denoted byV, EA andBB in the specification, respectively. The actions ofBB are limited
to publishing the received messages, and EA privately sends those messages. Therefore, the
party BB is omitted in the specification; instead, the messages published on BB are recorded
as action facts in the rules of EA. Then, the set P will be the union of the sets of rules speci-
fying the actions of V and EA such that P = PV ‰ PEA. Any rule in PA for A À {V,EA} will
then be denoted by RA

n , where n is a name describing the action of A in the rule.
Considering that there are three phases of an election in the considered protocol, the rules

specify the phases in which the actions took place, i.e. they record the following action facts:
Phase(®setup®), Phase(®voting®), and Phase(®tally®). In the setup phase, EA generates an election
key pair (skE, pkE) and publishes pkE on BBkey, which is modelled by the following rule:

REA
key : let pkE = pk(skE) in

[ Fr(skE) ]**[ BBkey(pkE), Phase(®setup®) ]ô[ !SkE(skE), !PkE(pkE) ]

In the rule REA
key, the election’s private key skE is freshly generated, and the corresponding

public key pkE computed by applying the function pk to skE. Then, the persistent facts SkE
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and PkE record the respective keys for later use. The public key published on BB is recorded
in the action fact BBkey(pkE).

EA continues their actions for the setup, receiving election candidates from the network
and publishing them on BBcand. Similarly, EA receives the voter id from the network and
registers it, generating a signature key pair (skid, pkid) and a tracker tr for the voter and pub-
lishing the voter’s public key as a public credential cr on BBreg. The mentioned EA actions
are modelled as follows:

REA
cand : [ In(Ív1, v2Î) ]**[ BBcand(v1),BBcand(v2), Phase(®setup®) ]ô

[ !Cand(v1), !Cand(v2) ]
REA
cred : let pkid = pk(skid); cr = pkid in

[ In(id), Fr(skid), Fr(tr) ]**[ BBreg(cr), Phase(®setup®) ]ô
[ !Cred(id, skid, cr, tr), !Voter(id, cr, tr) ]

In the above rules, two election candidates v1, v2 and the voter id received from the network are
modelled with the fact In. For the voter id, the credentials skid and tr are freshly generated, cr
is computed from skid, and all the credentials are assigned to the voter being recorded in Cred.
The fact Cred, generated by EA and used by V, represents the communication of credentials
to the corresponding voter through a private channel.

In the voting phase, V interacts with EA to cast a ballot b, which contains the encryption
of their vote v and the signature generated for the encryption. EA checks whether cr was
registered for the election, verifies the signature inside the ballot, and then publishes the ballot
with the voter’s public credential. The following two rules model the V’s action for casting a
ballot and the EA’s action for accepting and publishing it:

RV
vote : let c = enc(v, pkE, r); s = sign(c, skid); b = Íc, sÎ in

[ !Cred(id, skid, cr, tr), !Cand(v), !PkE(pkE), Fr(r) ]
**[ Vote(id, v), Phase(®voting®) ]ô[ !Voted(id, v),Out(Íid, cr, bÎ) ]

REA
cast : let b = Íc, sÎ in

[ In(Íid, cr, bÎ), !Voter(id, cr, tr) ]
**[ verify(s, c, cr) í true,BBcast(cr, b), Phase(®voting®) ]ô[ !Cast(cr, b) ]

The rule RV
vote records the voting action of V with the fact Vote(id, v), outputting the respective

ballot b with their credentials to the network. On the other hand, the rule REA
cast checks the

voter’s eligibility, matching the received credentials with the ones in Voter and verifies the
signature matching the equality in the middle part of the rule before recording the action of
EA for publishing the ballot with the fact BBcast(cr, b).

In the tally phase, EA retrieves the V’s ballot from Cast, decrypts the ballot with the
election’s private key recorded in SkE, and publishes the output with the tracker for V on
BBres. Then, V verifies their vote by matching it with the one next to their tracker on BBres.
The EA’s action for tally and V’s for vote verification are modelled with the following rules:

REA
tally : let b = Íc, sÎ; v® = dec(c, skE) in

[ !Cast(cr, b), !SkE(skE), !Voter(id, cr, tr) ]
**[ BBres(tr, v®), Phase(®tally®) ]ô[ !Res(tr, v®) ]

RV
verify : [ !Cred(id, skid, cr, tr), !Voted(id, v), !Res(tr, v®) ]

**[ v í v®,Verif ied(id, v), Phase(®tally®) ]ô[ ]

The rule RV
verify records the action of verification with the fact Verif ied(id, v) after verifying

the vote equality.
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The specification of the actions V and EA has been completed with the following set of
rules described above:

PV = {RV
vote,R

V
verify},

PEA = {REA
key,R

EA
cand,R

EA
cred,R

EA
cast,R

EA
tally}.

Now, we specify the restrictions for the ordering of the phases and the uniqueness of the
election key as follows:

 order1
: ≈i, j. Phase(®setup®) @i · Phase(®voting®) @j Ÿ i « j

 order2
: ≈i, j. Phase(®voting®) @i · Phase(®tally®) @j Ÿ i « j

 key : ≈x, y, i, j. BBkey(x) @i · BBkey(y) @j Ÿ x = y

The restrictions  order1
and  order2

constrain the execution traces with respect to the expected
phase ordering, and  key unifies all the election keys generated during the election, i.e. there
can be at most one. Then, the restriction  for P will be the conjunction of the restrictions
above, i.e.  =  order1

·  order2
·  key. Thus, the specification of the protocol described in

Example 3 will be the following:

(P ; ) = (PV ‰ PEA; order1
· order2

· key).

Assume we want to verify a trace property �valid that ensures the validity of the ballot
published on BBcast. Specifically, we want to check whether the ballot contains an encryption
of a valid vote on BBcand with the expected election public key, recorded on BBkey. The
property �valid can be formulated as follows:

�valid : ≈cr, c, s, i. BBcast(cr, Íc, sÎ) @i
Ÿ «k, v, r, j, l. BBkey(k) @j · BBcand(v) @l · c = enc(v, k, r).

For the verification of the property �valid with respect to the protocol specification (P ; ),
Tamarin checks all the traces of (P ; ) and concludes (P ; ) Ù �valid. Here, the ballot on
BBcast is received from the network, leaving a possibility for the adversary’s intrusion. How-
ever, the signature on the ballot with respect to a valid credential protects the ballot against
any alteration by the adversary. Moreover, the model specifies only honest voters preparing a
ballot selecting a candidate from BBcand, and encrypting it using the public key from BBkey.
Therefore, the property �valid holds as expected, ensuring the ballot validity. The ballot va-
lidity ensures that the election outcome will correspond to legitimate candidates.

3.2 Formal Verification with ProVerif

ProVerif is an automated verification tool [45, 11] whose language, a variant of the applied
pi calculus, allows to specify protocols as concurrent processes specifying the actions of the
parties that generate messages and exchange them via channels while recording events to rep-
resent those actions. Security properties are specified as trace properties that are checked
against all possible traces of the transition system, or specified as equivalence properties that
are checked in terms of the observational equivalence of two transition systems. Given a sym-
bolic model and properties, ProVerif automatically constructs a proof or presents a counter-
example representing an attack for a property specified within the protocol, instantiating pro-
cesses for an unbounded number of times in parallel.
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3.2.1 Specifying Protocols and Properties in ProVerif

In ProVerif, messages are represented in an equational theory where terms are built from a
set of types T , a set of names N , a set of constants, a set C of constructors endowed with
a set D of destructors. Types are not essential for describing the protocol specifications in
this thesis, therefore, they will be skipped. A tuple is a term of the form (M1, ...,Mn), where
M1, ...,Mn are terms. A constructor is a function symbol f used to build a term f (M1, ...,Mk),
from terms M1, ...,Mk. A destructor is a symbol with associated rewrite rules modelling the
properties of cryptographic primitives. Rewrite rules are equations u = v that should be read
from left to right. For example, a destructor proji can be defined to fetch the arguments of
f : proji(f (M1, ...,Mk)) = Mi. If a term contains a destructor for which no rewrite rule can be
applied, it is denoted by t = Ú, i.e. the evaluation of the term fails. A public communication
channel is represented by a special name pub À N in this thesis. Unless declared private,
names and functions are known by the adversary. A term M can be stored in a table, e.g.
Tb(M) for a table named Tb. Tables are based on private constructors and are not accessible
by the adversary. Terms can be checked with equality or disequality conditions, and such
conditions may be combined with logical connectors, see Figure 3.1.

Example 7. The set of constructors C = {pk, enc, sign} can model cryptographic primitives
along with the corresponding destructors defined by:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true.

Equations (1) and (2) specify the standard properties of asymmetric encryption and digital
signatures, as also specified in Example 4. Cryptography is assumed perfect: there is no way
to derive messages other than by applying function symbols and equations.

Processes are denoted by P,Q,…, and generated with the grammar from Figure 3.1. Re-
cursively, 0 represents the null process, P  Q the parallel execution of P and Q, and !P an
arbitrary number of parallel executions of P. The restriction new n ; P generates the name
n, which can represent fresh randomness in the process P. The process in(pub, x) ; P mod-
els a message received from channel pub and stored in x, while the process out(pub,M) ; P
models a process sending the message M on channel pub and continuing as P. The condi-
tional if M then P else Q runs P if M evaluates to true, runs Q if M = false. If a term M
contains a destructor where no rewrite rule can be applied, M fails. The term evaluation
let x = M in P else Q, bounds x to M and executes P, when M does not fail. If M fails, it di-
rectly executes the process Q. The table insertion insert Tb(M) ; P stores the term M in Tb.
The table extraction get Tb(x) suchthat M in P else Q selects an entry from Tb that evaluates
to M. If there is no such entry, it executes Q.

Example 8. The processes in Figure 3.2 model the session key exchange protocol between
server and client corresponding to the Tamarin specification described in Example 5. The
facts in Tamarin are modelled by tables in ProVerif. For example, the server’s secret key is
stored in the table Sk, while its public key is in Pk. The fresh terms are generated by new,
e.g. k, s, r. The protocol is executed on the public channel. The server sends its public key
to client, who generates a session key s and uses the public key received from the channel to
encrypt it, while recording events Key and Enc for the session key and the encryption of it.
Then, the client sends the encryption to the server, which retrieves its secret key k from the
table Sk and decrypts the ciphertext recording an event Dec. They both store the session key
on the tables SessionKeyC and SessionKeyS.

Security Properties. ProVerif can prove reachability properties, correspondence assertions,
and observational equivalence. Reachability queries can be stated by e(M) for a term M and
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M,N := terms
a, b, c, ... names
x, y, z, ... variables
(M1, ...,Mk) tuples
f (M1, ...,Mk) functions
M = N term equality
M <> N term disequality
M && N conjunction
M  N disjunction
not(M) negation

P,Q := processes
0 null process
P Q parallel composition
!P replication
new n ; P name restriction
in(pub, x) ; P message input
out(pub,M) ; P message output
if M then P else Q conditional
let x = M in P else Q term evaluation
insert Tb(M) ; P table insertion
get Tb(x) suchthat M in P else Q table extraction
event e(M1, ...,Mk) ; P event

FIGURE 3.1: Terms and processes in ProVerif grammar.

proved by searching all the traces of a process P for the event’s occurrence. A reachability
query can be stated for the adversarial knowledge of a term such that attacker(M), in which
ProVerif tests the secrecy of the term. Correspondence assertions capture the relations be-
tween events. For example, the formula e(M) Ÿ e®(M®) states that if the event e(M) is executed
in the trace, then the event e®(M®) has been executed before in that trace for the terms M and
M®. Queries can be more complex, combining events with relations between terms inside
the events, e.g. M = M® can be added on the right-hand side of the previous query. A query
may also use temporal variables to specify the timepoints where events occurred in a trace.
The event e(M)@i represents the event occurring at the timepoint i. A trace property is a
first-order logic formula over events and timepoints. Thus, the formula is obtained from logi-
cal connectives such as implication, conjunction, disjunction, and negation, event constraints
such as e(M)@i, temporal ordering i f j or equality i = j for temporal variables i and j,
and term equalities M = M® for the terms M and M®. The timepoint can be omitted from the
event if it is not relevant for the property in the following. Similarly, a restriction is a log-
ical formula that constrains the execution traces with respect to the events. Observational
equivalence refers to the indistinguishability of the two processes, i.e. the adversary cannot
distinguish a process P from another process Q. The observational equivalence of the two
processes P and Q is denoted by P ˘ Q.

Example 9. Considering the processes from Figure 3.2, the secrecy of the session key can
be queried by attacker(s). Moreover, the correspondence assertion for the events Enc(x) and
Dec(x) can be formulated as follows: Dec(x) Ÿ Enc(x). This formula checks whether for
each x occurred in the event Dec there is a corresponding event Enc for the same term that
occurred before in the same trace.
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let ServerKey =
new k;
insert Sk(k);
insert Pk(pk(k));
out(pub, (pk(k))).

let ServerDec =
get Sk(k) in
in(pub, y);
event Dec(y);
insert SessionKeyS(dec(y, k)).

let ClientEnc =
in(pub, x);
new s;
event Key(s);
insert SessionKeyC(s);
new r;
let c = enc(s, x, r) in
event Enc(x);
out(pub, c).

FIGURE 3.2: Session key exchange between client and server.

An execution trace ⌧ of a process P is defined as a sequence of events e1, ..., en that oc-
curred during the execution of P. The satisfaction relation ⌧ Ù �, for a trace ⌧ and a trace
formula �, is defined recursively applying the usual semantics of logical and ordering con-
nectives. We have the following notable case for events: ⌧ Ù e(M)@i if and only if e(M)
occurs on the i-th step of the trace. For a process P, let tr(P) be the set of traces of P. Then, for
a trace formula �, P Ù � if and only if any trace in tr(P) satisfies the formula �. Moreover,
let (P; ) be the specification of P with a restriction formula  . Then, (P; ) Ù � if and only
if any trace in tr(P) satisfying the restriction  also satisfies the trace formula �. That is:

P Ù � ⌥ ≈⌧ À tr(P). ⌧ Ù �,
(P; ) Ù � ⌥ ≈⌧ À tr(P). ⌧ Ù  Ÿ �.

3.2.2 Case Study: Verifiable E-Voting Example

We present the ProVerif specification of the verifiable e-voting Example 3 from Section 2.5
in the following. Similar to its Tamarin specification, we use the two equations defined in
Example 7 to represent its encryption and digital signature algorithms with the constructors
pk, enc, sign and the destructors dec, verify:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true.

The ProVerif specification (P; ) of Example 3 is similar to its Tamarin specification, but
here P denotes the process specifying the actions of the parties in the protocol. The parties
Voter and Election Auth are similarly denoted by V and EA, and the party BB is omitted in the
specification. The messages published on BB will be recorded as events in the processes of
EA. Then, the process P is defined by the parallel executions of the subprocesses specifying
the actions of V and EA such that P = PV  PEA. Any process in PA for A À {V,EA} will then
be denoted by An, where A is the abbreviation of the party, and n is a name describing the
action of A within the process.

Considering the three phases of an election, the processes modelling the actions of EA
in the setup phase are described in Figure 3.3. In the setup phase, EA generates an election
key pair (skE, pkE) and stores the election’s private key and public key in the tables SkE and
PkE, respectively. Then, EA publishes pkE on BB, which is recorded in the event BBkey.
The generation of the election key pair and the related actions are modelled in the process
EAkey. Setting the candidates for the election is modelled in the process EAcand, in which
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EA receives the election candidates from the public channel, stores them in the table Cand
and publishes them on BBcand, recording the events BBcand for the respective candidates.

let EAkey =
new skE;
let pkE = pk(skE) in
event BBkey(pkE);
insert SkE(skE);
insert PkE(pkE).

let EAcand =
in(pub, (v1, v2));
event BBcand(v1);
event BBcand(v2);
insert Cand(v1);
insert Cand(v2).

let EAcred =
in(pub, id);
new skid;
let pkid = pk(skid) in
let cr = pkid in
new tr;
event BBreg(cr);
insert Cred(id, skid, cr, tr);
insert Voter(id, cr, tr).

FIGURE 3.3: Processes specifying the setup phase of Example 3.

The voter registration and the election credentials generation for the respective voter are
modelled in the process EAcred. EA receives the voter id from the public channel, generates
a signature key pair (skid, pkid) and a tracker tr for the voter, and publishes the voter’s public
key as a public credential cr on BB, recording the event BBreg. EA also stores all the creden-
tials of the voter id in the table Cred that will be extracted by V later, which represents the
communication of credentials to the voter via a private channel.

The processes modelling the actions of V and EA in the voting phase are described in the
processes Vvote and EAcast, respectively, in Figure 3.4. In the voting phase, V extracts the
voter credentials, the vote, and the election’s public key from the tables Cred, Cand, and PkE,
respectively. Then, V uses the election’s public key to generate a ciphertext of the vote, and
the signing key skid to sign the ciphertext, i.e. generates a ballot in the form b = (c, s). The
action for voting is recorded in the event Vote, and the vote v is stored in the table Voted for
the voter id. The ballot b is sent to EA with the voter credentials attached to it. EA checks
voter’s eligibility, i.e. matches id and cr with the ones stored in Voter. Then, EA verifies the
signature inside the ballot and publishes the ballot with the voter’s public credential on BB,
recording the event BBcast. The table Cast stores the ballot b for the voter id.

let Vvote =
get Cred(id, skid, cr, tr) in
get Cand(v) in
get PkE(pkE) in
new r;
let c = enc(v, pkE, r) in
let s = sign(c, skid) in
let b = (c, s) in
event Vote(id, v);
insert Voted(id, v);
out(pub, (id, cr, b)).

let EOcast =
get Voter(id, cr, tr) in
in(pub, (= id,= cr, b));
let b = (c, s) in
if verify(s, c, cr) = true then
event BBcast(cr, b);
insert Cast(cr, b).

FIGURE 3.4: Processes specifying the voting phase of Example 3.
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The processes modelling the actions of EA and V in the tally phase are described in the
processes EAtally and Vverify, respectively, in Figure 3.5. In the tally phase, EA retrieves the
election’s secret key, the voter credentials, and the voter’s ballot from the tables SkE, Voter,
and Cast, respectively. Then, EA decrypts the ciphertext inside the ballot with the election’s
secret key and publishes the output with the voter’s tracker on BB, recording the event BBres
and storing them in the table Res. V verifies their vote stored in Voted by matching it with the
one next to their tracker stored in Res. The action for the verification of the vote is recorded
in the event Verif ied.

let EOtally =
get SkE(skE) in
get Voter(id, cr, tr) in
get Cast(= cr, b) in
let b = (c, s) in
let v® = dec(c, skE) in
event BBres(tr, v®);
insert Res(tr, v®).

let Vverify =
get Cred(id, skid, cr, tr) in
get Voted(id, v) in
get Res(tr, v®) in
if v = v® then
event Verif ied(id, v).

FIGURE 3.5: Processes specifying the tally phase of Example 3.

The specification of the actions V and EA will be the parallel executions of the respective
subprocesses described above:

PV = Vvote  Vverify,
PEA = EAkey  EAcand  EAcred  EAcast  EAtally.

The restriction  key : BBkey(x) · BBkey(y) Ÿ x = y is specified to ensure the uniqueness
of the election key. Thus, the ProVerif specification of Example 3 is:

(P; ) = (PV  PEA; key).

We can similarly verify the property�valid : BBcast(cr, (c, s)) Ÿ BBkey(k) · BBcand(v)
· c = enc(v, k, r) to ensure the validity of the ballot published on BBcast. For the verification
of the property�valid with respect to the protocol specification (P ; ), ProVerif checks all the
traces of (P ; ) and concludes (P ; ) Ù �valid.

3.3 Generic Protocol Specifications and Properties

We have seen that both Tamarin and ProVerif rely on a protocol specification (P ; ), where
P is a set of rules or processes recording the action facts or events in the execution traces of
P , respectively, and  is the restriction that constraints the execution traces with respect to
those action facts or events and timepoints. The properties to be verified are first-order logic
formulas over those facts or events and the timepoints where they occur. For a property �,
(P ; ) Ù � if and only if any trace in the set tr(P ) of all traces of P satisfies the formula �,
i.e.

(P ; ) Ù � ⌥ ≈⌧ À tr(P ). ⌧ Ù  Ÿ �.

Therefore, in the rest of the thesis, we will consider generic protocol specifications S =
(P ; ), whose executions generate a set of traces with sets of action facts or events asso-
ciated to each timepoint. Properties � can then be evaluated over the sets of traces of such a
specification.
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For notation, we omit the quantifiers «,≈, the prefix @, and the declaration of vari-
ables from the properties and restrictions, unless stated otherwise. In general, a formula
will be of the form �1 Ÿ �2, where all variables in �1 are quantified universally, and all
variables in �2, which are not in �1, are quantified existentially. Thus, a simplified formula
F1(x1, x2) Ÿ F2(y1, y2) represents ≈x1, x2, i. F1(x1, x2)@i Ÿ «y1, y2, j. F2(y1, y2)@j. More-
over, we represent the logical connectives used in the trace formulas by the same symbols for
Tamarin and ProVerif, i.e. conjunction by ·, disjunction by ‚, the negation by ¬, and term
disequality by M ë M® for the terms M and M®. For example, the property

�valid : ≈cr, c, s, i. BBcast(cr, Íc, sÎ) @i
Ÿ «k, v, r, j, l. BBkey(k) @j · BBcand(v) @l · c = enc(v, k, r)

specified for the verifiable e-voting example is simplified as:

�valid : BBcast(cr, Íc, sÎ) Ÿ BBkey(k) · BBcand(v) · c = enc(v, k, r).
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Chapter 4

Formal Definition of Election
Verifiability

Election verifiability has emerged as a requirement for the security of the e-voting protocols,
aiming to ensure the election outcome corresponds to the votes recorded in the digital ballot
box or on the bulletin board. Later, it evolved to cover ballot casting assurance for honest
voters and prohibit ballot stu�ng for non-eligible voters. For ballot casting assurance, the
protocol provides voters with some means of individual verification of their votes on the bul-
letin board, which will assure them their ballot will be tallied, i.e. their vote will be counted
on their behalf. On the other hand, to prevent ballot stu�ng, only the ballots from eligible cre-
dentials, i.e. the ones registered at the beginning of the election, are recorded on the bulletin
board, and one vote per such credential is counted in the election result.

In this chapter, we first present the existing notions and definitions of election verifiability
in the literature, corresponding to the evolution of the verifiability property mentioned above.
In particular, we focus on the verifiability definition in [20] that we call the multiset-based
definition since it is based on counting the votes in the election outcome as multisets of votes
and the symbolic definition in [17] since it is the most recent in the literature and allows
automated verification with Tamarin/ProVerif.

The multiset-based definition in [20] partitions the votes in the outcome into the votes
from honest voters who verified their votes, the votes from honest voters who did not verify,
and the votes from corrupt voters that may be cast by the adversary. Therefore, it ensures that
the votes from honest voters, if verified, are counted in the result, and the adversary can cast
ballots only for corrupt voters, which entails end-to-end verifiability. This definition can be
extended in a few ways. Indeed, in some cases, corrupt voters may verify their votes, unaware
of the corruption of their credentials. Their votes should also be counted in the result. For
some protocols or adversarial models, the adversary could be stronger to cast ballots even
for honest voters, if they did not perform the individual verification procedure. Accounting
for stronger individual verifiability and a stronger adversary, we extend the multiset-based
definition to cover stronger or weaker notions of end-to-end verifiability.

The symbolic definition in [17] is too specific to a variant of Belenios, which does not
allow revoting and requires di�erent trust assumptions based on two main corruption scenar-
ios: a corrupt registrar and a corrupt server, where both are not corrupt at the same time.
Therefore, the symbolic definition, i.e. the conditions that achieve end-to-end verifiability,
vary according to the corruption case, which results in two di�erent proofs. This means it
cannot be directly applied to the protocols allowing revoting or having a di�erent architec-
ture, parties, and infrastructure components. To cover a broad class of e-voting protocols, we
improve the symbolic definition in [17] and propose a general symbolic election verifiability
that accounts for revoting, allows automated verification, and is independent of the corruption
scenarios and the protocol. Our symbolic definition is sound and can be instantiated accord-
ing to the level of end-to-end verifiability expected to hold in the protocol, i.e. it guarantees
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the stronger and/or weaker notions of end-to-end verifiability, implying the extended multiset-
based verifiability definition we propose in this chapter. Also, it applies to various e-voting
protocols, such as Helios, Belenios, Selene, and Estonian e-voting protocols, as we show in
the second part of the thesis.

Structure of the chapter: Section 4.1 provides the existing notions and definitions of election
verifiability. In Section 4.2, we define the general e-voting events that are recorded in the
execution traces of an e-voting protocol. The e-voting events help us to propose the extended
version of the multiset-based verifiability definition in Section 4.3 and the symbolic verifi-
ability definition in Section 4.4. Section 4.5 provides the soundness proof of the symbolic
verifiability definition, i.e. it implies the multiset-based election verifiability. Finally, in Sec-
tion 4.5, we apply our symbolic verifiability definition to an example of verifiable e-voting
protocols.

4.1 Existing Notions and Definitions

In this section, we will go through the existing notions of election verifiability and the multiset-
based definition resulting from all these notions. Then, we will focus on the symbolic verifi-
ability definitions in the literature and discuss their limitations, which motivate us to propose
our definition in the following sections.

4.1.1 Informal Notions and Multiset-based Definition

The security of e-voting protocols is based on cryptographic primitives deployed by the pro-
tocol as well as the behaviours of the election authorities. Cryptographic primitives provide,
if they are correctly deployed, the correctness of all the operations. They can be considered
functions; given an input, they generate the corresponding output. However, if one is able
to make some changes to the input, such as a corrupt election authority, then the protocol
security may be a�ected even if the cryptography deployed is correct. Therefore, besides the
security of cryptographic primitives, the correct behaviours of the election authorities should
be ensured. This is the point where the election verifiability emerges.

Election verifiability ensures that all the election operations and procedures achieve their
goal, even though some parties in the protocol are corrupt. In other words, the corrupt parties
cannot misbehave in their particular actions if the election procedures are verifiable. In a
typical election procedure of an e-voting protocol, the voters generate a ballot encrypting
their vote using a voting platform, which sends their ballots to the election authorities that
will record them on the bulletin board. At the end of the election, the set of ballots on the
bulletin board is tallied into a set of votes, which is also recorded on the bulletin board as the
election result. Considering these procedures, the correctness of the tally should be ensured.
Furthermore, if a voter casts a ballot, the voter should be able to ensure that the ballot is
delivered to the authorities and recorded on the bulletin board.

Correctness of the tally and the guarantees provided to the voters for their vote cast are
referred to in the literature [37, 15, 38] as the following two notions of election verifiability:

- Individual verifiability: a voter is able to verify that the voting server correctly records
their ballot, i.e. their vote.

- Universal verifiability: anyone is able to verify that the outcome corresponds to the
ballots recorded on the bulletin board.

Kremer et al. added another notion of verifiability [38] to the notions above as follows:
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- Eligibility verifiability: anyone is able to verify that any vote in the outcome was cast
by an eligible voter, i.e. a registered voter, and there is at most one vote per voter.

Eligibility ensures that all the ballots recorded on the bulletin board were legitimately cast,
i.e. the ballots from non-eligible voters are not recorded on the bulletin board. Thus, it limits
ballots stu�ng, restricting the adversary’s abilities to cast ballots only for eligible corrupt
voters.

The voter’s ability to verify their ballot was correctly cast and recorded on the bulletin
board, and anyone’s ability to verify that all the votes in the outcome corresponds to ballots
cast by eligible voters, i.e. verifiability provided in all election procedures from ballot casting
to the tally procedure is called end-to-end verifiability. In any end-to-end verifiable election,
the eligible voters can be divided into honest and corrupt. In [38], all honest voters are as-
sumed to verify their votes, which is not realistic. Some honest voters verify their votes, and
others do not. In general, end-to-end verifiability guarantees that the votes from honest voters
who successfully verified their votes will be counted on their behalf. However, it does not
provide any guarantee for honest voters who did not verify their votes. Therefore, the adver-
sary may drop the ballots from some of those voters. Considering these aspects, Cortier et
al. improved the end-to-end verifiability definition from [38] and proposed a multiset-based
definition of election verifiability in [20]. According to this definition, any e-voting protocol
is verifiable if the votes in the election outcome can be partitioned into the three multisets of
votes as follows:

1. the votes cast by honest voters that verified their vote was cast correctly;

2. a subset of the votes cast by honest voters that did not verify their vote was cast correctly;

3. at most n valid votes where n is the number of corrupt voters.

For generality, we will show that it is useful to consider also di�erent partitions. For example,
the votes from corrupt voters, if verified, could be counted in the result, and this can be ensured
by some protocols and scenarios. This may also be desirable. Assume the voter has leaked
their credentials unwittingly and thus becomes corrupt according to the formal definition. In
this case, if the voter verifies their vote successfully, their vote should also be counted. On the
other hand, some scenarios may allow a stronger adversary to cast ballots for the voters who
did not verify their votes. In this sense, the adversary would not be limited to casting ballots
only for corrupt voters. Thus, we will extend the multiset-based definition in Section 4.3,
allowing us to specify di�erent levels of individual verifiability and ballot stu�ng restrictions
for the adversary.

4.1.2 Existing Symbolic Definitions

There are two approaches developed to analyse protocols and prove their security. The analy-
sis can be performed either on the computational model, focusing on the cryptographic primi-
tives deployed by the protocol, or on the symbolic model, abstracting the cryptographic prim-
itives and focusing on the logical flow of the protocol. In this thesis, we adopt the approach of
symbolic modelling, which also allows us to perform automated verification using the tools
Tamarin or ProVerif. Thus, we go through the existing symbolic definitions of election veri-
fiability in the literature, specifically the ones from [38, 22, 17].

The first general symbolic definition, defined in [38], formalises individual, universal,
and eligibility verifiability as a triple of boolean tests. A boolean test corresponds to the
conjunctions and disjunctions of term equalities in applied pi-calculus. The symbolic protocol
models are subjected to boolean tests to ensure verifiability. The definition is applied to the
protocols Helios [1], FOO [28], and Civitas [16]. This proves the generality of the definition.
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However, the definition requires all honest voters to verify their votes, which is not realistic.
Also, the boolean tests cannot be expressed with the tools that allow automated verification,
such as Tamarin and ProVerif.

The type-based symbolic definition in [22] formalises individual, universal, and end-to-
end election verifiability as logical formulas to be checked by a type-checker (F<). It also
defines a formula to ensure no clash attacks on the protocol and proves that if no clash for-
mula holds, individual and universal verifiability entail end-to-end verifiability. As a case
study, Helios is modelled in two versions; one version with mixnets and the other with the
homomorphic tally, and both proved secure with respect to end-to-end verifiability. The anal-
ysis is also made with respect to privacy for the version with the homomorphic tally. Thus,
the paper [22] proposes the first automated verification of Helios with the homomorphic tally.
However, the definition does not account for ballot stu�ng, allowing non-eligible voters to
cast ballots. It also does not capture revoting, and is not suitable for automated verification
tools like Tamarin and ProVerif. In the following, we give more details about clash attacks
and the property proposed in [22] that ensures no clash attacks.

Clash attacks [40]: These are the attacks against the verifiability of e-voting protocols, caus-
ing a clash on the public credentials of the voters and their respective ballots. In this attack, the
adversary targets a number of voters who will vote for the same candidate. Then, it corrupts
the registrar responsible for generating public credentials to distribute the same credential to
those voters. Moreover, the adversary corrupts the voting platforms of those voters so that
those platforms use the same randomness to generate a ciphertext of the vote, i.e. they gen-
erate the same ballot. Furthermore, the adversary corrupts the voting server to record only a
single ballot on the BB for the public credential shared by the voters. Thus, the votes of tar-
geted voters are counted as a single vote, where the adversary is able to cast votes for di�erent
credentials as many as the number of targeted voters (minus 1). This attack will not be de-
tected by observing the public bulletin board nor by the voters who share the same credential
since they are able to verify their ballot on the bulletin board. The following property was
described in [22] to ensure no clash on the ballots of the two voters:

�cl : MyBallot(id1, v1, b) · MyBallot(id2, v2, b) Ÿ id1 = id2 · v1 = v2

However, this property is not su�cient to capture new versions of clash attacks with revoting.
For example, when revoting is allowed, the adversary does not need to corrupt the voting
platforms of the targeted voters or the voting server. Just with a corrupt registrar, a similar
attack can be mounted without requiring the clash on the ballots. For example, assume that
the individual verification is allowed anytime during the voting phase. The voters who receive
the same public credential from the registrar may cast their individual ballots and verify them
successfully on the BB. The procedure of a voter for casting a ballot and verifying it on the
BB can be followed by the procedure of another voter. This will look like revoting from the
public view of BB. However, in the election result, one vote will be counted for the voters
who share the same credential, even though each verifies their ballot on BB. In this attack, the
clash is not on the ballots but on the public credentials of the voters who verify. Therefore,
the formula �cl should be improved regarding a general class of clash attacks.

The symbolic definition from [17] is closest to our goal, being the most recent in the
literature and allowing automated verification. Thus, we present the definition in detail and
discuss its limitations in the following.

Symbolic definition from [17]: Cortier et al. formalise end-to-end election verifiability as log-
ical formulas corresponding to the notions of recorded-as-intended, individual, and eligibility
verifiability in [17], proving that these formulas entail multiset-based end-to-end verifiability
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similar to the one in [20]. The definition is formulated for Belenios-like protocols, where
the registrar and the server are not simultaneously corrupt. Belenios-like protocols require
a registrar to distribute election credentials to the voters in addition to the login credentials
provided by the voting server. In the case of a corrupt registrar, the voting server is assumed
to be honest. It can be trusted to ensure some consistency properties between voter identities
and cast ballots, i.e. it does not accept two ballots for the same identity. This gives rise to
a variant of the verifiability definition that is called identity-based. On the contrary, in the
case of a corrupt voting server, the registrar is assumed to be honest and trusted to ensure the
consistency between identities and election credentials of the voters. Since revoting is not
allowed, the corrupt server cannot accept two ballots for the same credential. Therefore, the
credentials are reliable in this case to define credential-based verifiability. Thus, their defini-
tion requires two di�erent sets of formulas to achieve verifiability for the two main corruption
scenarios of a corrupt registrar and a corrupt server, respectively.

The definition from [17] considers the following events of a protocol:

- Voter(id, cr,l) : A voter id has been registered with the credential cr and labelled with
l, where l À {H,D}, representing an honest voter or a dishonest (corrupt) voter. A
dishonest voter leaks all his credentials to the adversary.

- Vote(id, v) : The voter id has cast a vote v.

- GoingToTally(id, cr, b) : The voting server has recorded the ballot b on the bulletin
board after associating it with id and cr.

- Verif ied(id, v) : The voter id has verified their vote v.

It defines three notions forming end-to-end verifiability: recorded-as-intended, eligibility ver-
ifiability and individual verifiability. Recorded-as-intended property, i.e. a short form of
recorded-as-cast and cast-as-intended together, ensures that the ballots from honest voters,
recorded on the bulletin board, correctly encode the votes cast by them. Eligibility ensures
that any valid ballot on the bulletin board has been cast by a registered voter: either honest
or corrupt. Therefore, it allows the adversary to cast a ballot only with the credentials of a
corrupt voter. Individual verifiability ensures that if a voter verifies a vote, and their ballot is
on the bulletin board, then the ballot really encodes the vote verified.

These notions are formulated for identity-based verifiability as follows:

�id
rec : GoingToTally(id, cr, b) · Voter(id, cr®,H) Ÿ Voted(id, v) · v = open(b)
�id

eli : GoingToTally(id, cr, b) · valid(b) Ÿ Voter(id, cr®,l) · open(b) À V

�id
iv : Verif ied(id, v) Ÿ GoingToTally(id, cr, b) · valid(b) · v = open(b)

�id
cons : GoingToTally(id, cr, b) · GoingToTally(id, cr®, b®) Ÿ b = b®

where open is a function that models opening a ballot and revealing the vote inside. It is
usually a decryption function but may also be defined di�erently. The last formula, �id

cons,
ensures consistency between identities and ballots, i.e. there is at most one ballot recorded
for a voter identity. The formulas for credential-based verifiability are similar:

�cr
rec : GoingToTally(id, cr, b) · Voter(id®, cr,H) Ÿ Voted(id®, v) · v = open(b)
�cr

eli : GoingToTally(id, cr, b) · valid(b) Ÿ Voter(id®, cr,l) · open(b) À V

�cr
iv : Verif ied(id, v)

Ÿ Voter(id, cr,H) · GoingToTally(id®, cr, b) · valid(b) · v = open(b)
�cr

cons1 : GoingToTally(id, cr, b) · GoingToTally(id®, cr, b®) Ÿ b = b®

�cr
cons2 : Voter(id, cr,l) · Voter(id®, cr®,l®)

Ÿ (id = id® · cr = cr®) ‚ (id ë id® · cr ë cr®)
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The formula �cr
iv above has an additional Voter event on the right to make a connection be-

tween the credential associated with the ballot on the bulletin board and the credential of
the honest voter who performs the verification. In this case, the voting server is assumed
to be corrupt, and the registrar is honest. Therefore, each voter should have been registered
with one credential, and each two voters should have been registered with two di�erent cre-
dentials, which is ensured with an additional consistency formula �cr

cons2. Note also that the
corresponding formulas in the two cases di�er in whether they put a constraint for identities
or credentials, respectively.

The symbolic definition above implies end-to-end verifiability under a few assumptions:

a) The voters are labelled at the registration, as being honest or corrupt. A voter cannot
be registered with both labels.

b) If a voter performs an individual verification for a vote, then the voter should have cast
that vote before. Furthermore, only votes verified by honest voters are guaranteed to be
counted in the result.

c) There is no revoting, i.e. the voters can cast a single ballot.

d) There are no duplicate ballots on the bulletin board associated with any identity and
credential.

Considering all, the definition from [17] has the following limitations:

1. The definition is based on two di�erent trust assumptions depending on the corruption
scenario of a corrupt registrar or server, respectively. Therefore, the definition varies
according to the corruption case, i.e. identity-based verifiability when the registrar is
corrupt and credential-based verifiability when the server is corrupt. Thus, the formu-
las required to obtain identity-based verifiability di�er from the ones for credential-
based verifiability. Consequently, two di�erent proofs are required to show that these
symbolic definitions are sound concerning multiset-based verifiability. However, for
generality, the definition should be independent of the trust assumptions; therefore, it
should apply to corruption scenarios other than the ones considered in this definition.
Furthermore, the definition should be protocol independent and as generic as possible
to be applicable to a broader range of protocols.

2. The assumptions of the definition makes it very specific to the protocols, in which (i)
the voters are labelled as honest or corrupt at the beginning of the election, (ii) there is
no revoting. Therefore, it is not suitable for many protocols, even for Belenios itself,
where revoting is allowed. The approach of labelling the voters at the beginning of the
election does not create a problem since the voters can cast a single vote. However,
when there is revoting, the voters may become corrupt at any moment in the election.

3. The event GoingToTally(id, cr, b) plays a key role in the definition, representing the
ballot recorded on the bulletin board. Thus, it is used in all three formulas for end-to-
end verifiability. However, it specifically models the action of the voting server that
records the ballot b on the bulletin board after associating it with a voter identity id and
a credential cr. Considering that the voting server is assumed to be corrupt in one of
the two cases, the definition should not rely on the information provided by the voting
server; instead, it should rely on the one on the bulletin board, which is verifiable by
anybody. Therefore, there should be an event for the information on the bulletin board,
recording only (cr, b).
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4. Clash attacks exploit the verifiability of an e-voting protocol since they allow the adver-
sary to manipulate the election outcome. Therefore, any verifiability definition should
consider the case of clash attacks and ensure their nonexistence. The definition in [17]
does not include an explicit notion to ensure no clash attacks. Instead, it relies on dis-
tinct assumptions and formulas to prevent this in each case. These assumptions would
not hold in more general scenarios, e.g. when revoting is allowed or both registrar and
server are corrupt. The classic clash attacks [40] hold when both the registrar and server
are corrupt, and this is by definition out of the scope of [17]. As we show later, even
when the server is honest and revoting is allowed, there can be clash attacks, and these
would also not be captured by [17]. In this case, the adversary can exploit another ver-
sion of clash attacks that only relies on a corrupt registrar: the voter id1 and the voter
id2 receive the same credential cr; the voter id1 casts the ballot b1 and verifies it on the
bulletin board; the voter id2 casts the ballot b2 verifies it on the bulletin board; only one
ballot b2 is tallied for the credential cr.

The definition in [17] can be generalised to cover protocols that allow revoting, and at the
same time, it can be improved with respect to the limitations discussed above. Adapting the
definition to the case of revoting requires the following points to be considered:

• The voters may cast several votes, and thus, may verify any of them.

• There should be a revote policy to determine which votes to be tallied. Furthermore,
individual verifiability formula should ensure that the verified vote complying with the
revote policy goes to tally.

• The individual verification can be performed anytime, during, and after the voting
phase.

• The voters may become corrupt anytime during the election, i.e. they can be corrupted
after they cast a vote or even after they verify a vote.

• New versions of clash attacks [40] become possible only with a corrupt registrar de-
pending on the individual verification procedure.

Accounting for all the points stated above and improving the symbolic definition from [17],
we propose a general symbolic end-to-end verifiability definition in Section 4.4, which covers
a broad class of e-voting protocols and allows automated verification.

4.2 Election Verifiability Events

Certain events are recorded in an execution trace of a protocol, representing the particular
actions of the parties and publicly observable information. Then, the recorded events allow
us to verify if certain properties hold with respect to the execution of the protocol. In this
section, we define the events related to an execution trace of an e-voting specification that
will allow us to define multiset-based verifiability in Section 4.3 and symbolic verifiability in
Section 4.4. We start with an informal description of events before gathering them together
in Definition 1, which specifies the class of verifiable e-voting specifications.

4.2.1 Public Events

Verifiable e-voting protocols rely on a bulletin board, denoted by BB, to record all the public
election data. The data on BB can be classified as eligible candidates, eligible voters (repre-
sented with their public credentials), the ballots cast by the voters, the votes in the outcome,
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and any publicly verifiable zero-knowledge proofs. As explained in the following, we will
denote parts of BB with specific names.

At the beginning of an election, all the candidates eligible to be elected, i.e. v1,… , vk, are
determined and recorded on BBcand. Then, all the identities eligible to vote, i.e. id1,… , idn
are determined, and their public credentials cr1,… , crn are recorded on BBreg. In many e-
voting protocols, the public credentials are chosen to be di�erent than the identities since
using identities may violate the privacy of the voters.

In the voting phase, the voters cast their ballots which are recorded on BBcast, where the
tuple (cr, b) on BBcast denotes the ballot b cast by the eligible credential cr. For generality,
assume revoting is allowed. In this case, the existing ballot on BBcast may be overwritten
by a new ballot cast for a credential. Even so, all the ballots received could be logged for
audits in the protocol. Therefore, assume BBcast contains all the ballots cast by the voters.
Then, at the end of the voting phase, BBcast may contain several ballots for a credential, i.e.
(cr, b1,… , bl) À BBcast. Among them, one is selected according to a revote policy, usually
the last one (bl), and goes to the tally. The ballot to be tallied for each credential is recorded
on BBtally.

For the tally, all the ballots recorded on BBtally are opened, and the votes inside are re-
vealed. This is achieved in a publicly verifiable way relying on re-encryption mixnets or ho-
momorphic tally, whose goal is to compute the result correctly while hiding the link between
each credential and corresponding vote. In our symbolic models, we will assume the tally
procedure is perfect, as in [17], and the election outcome consists in open(b1),… , open(bn),
where the function open is used to retrieve the votes from ballots, i.e. open(b) = v. Even if
the result is published as a set of votes on BB, we associate each vote to the corresponding
credential and symbolically represent it by an event BBres, i.e. BBres(cr, v) í BBtally(cr, b) ·
v = open(b). Moreover, a zero-knowledge proof ⇡res is produced to prove the correctness of
the tally, i.e. it proves that the votes recorded on BBres are obtained from the ballots recorded
on BBtally applying the function open. Hence, in addition to the candidates published on
BBcand, the information on BB of a verifiable e-voting protocol will be as follows:

Setup: BBreg : cr1 … crn

Voting: BBcast : (cr1, b11,… , bl11 ) … (crn, b11,… , blnn )

Tally: BBtally : (cr1, b
l1
1 ) … (crn, b

ln
n )

Result: BBres : ( cr1 , v1) … ( crn , vn) ⇡res

In some protocols like Selene, after revealed, the votes are recorded next to the trackers, i.e.
tr1,… , trn, that are verification credentials di�erent from public credentials. The trackers are
provided to the associated voters, which allows them to verify their votes anonymously. Thus,
for such protocols, we have the following as the election result:

Result: BBres : (tr1, v1) … (trn, vn) ⇡res

From the information on BB, we can ensure that all ballots on BBcast have been cast by
eligible credentials recorded on BBreg, all ballots on BBtally correspond to the ballots from
BBcast for which the revote policy is applied, and similarly, all the votes on BBres correspond
to the ballots on BBtally. The last one is ensured by verifying the zero-knowledge proof ⇡res.
While all these parts of BB may be necessary to enforce the specification of the protocol, to
ensure end-to-end verifiability, we just need the election result and the list of eligible public
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credentials. Therefore, the following public information on BB is required:

Setup: BBreg : cr1 … crn

Result: BBres : (tr1, v1) … (trn, vn)

Thus, we assume the executions of verifiable e-voting protocols record the public events
BBreg(cr) and BBres(tr, v) to denote the public eligible credentials and the votes recorded
next to trackers in the election outcome. Note that for generality, we assume that the votes are
associated with the trackers on a symbolic BBres. For the protocols that do not use trackers,
we have tr = cr, and BBres is obtained from BBtally, as explained above.

4.2.2 Events for consistency

From the public information on BB, we can ensure that all the ballots to be tallied have been
cast by eligible credentials. However, for eligibility, any vote in the outcome should corre-
spond to a registered voter, and there should be at most one vote per such voter. Therefore,
there should be a one-to-one correspondence between voter identities id1,… , idn and public
credentials cr1,… , crn recorded on BBreg, i.e. each voter identity should hold at most one
credential, and each credential should be given at most one voter identity. To ensure that
each voter identity is associated with a public credential, we assume the executions of verifi-
able e-voting protocols record an event Reg(id, cr) whenever an election authority associates
a voter identity with a public credential. To ensure the consistency between voter identities
and public credentials, the association should be made by an honest authority. Therefore, the
placement of the event Reg(id, cr) can change according to the specification of the protocol
with respect to the corruption scenarios. For example, in Belenios-like protocols, the regis-
trar, when honest, can associate voter identities with public credentials since it generates the
public credentials and communicates them to voters. Otherwise, the honest voting server can
associate identities with public credentials when it receives ballots attached to those public
credentials via a login operation. If both are corrupt, the event Reg(id, cr) can be recorded in
the specification of voters.

Similarly, we can ensure that all the votes in the result correspond to the ballots recorded
on BBtally if the zero-knowledge proof ⇡res of the correct tally is verified. However, for the
protocols that use trackers, i.e. when tr ë cr, we need to ensure further the one-to-one cor-
respondence between public credentials and trackers. In reality, the authorities who assign
the trackers to the public credentials provide zero-knowledge proof, which should imply, in
particular, a unique association between public credentials and trackers. Thus, we assume
the protocol execution records the events Link(cr, tr) as soon as the public information, e.g.
the zero-knowledge proofs, allows one to ensure the link between a public credential and a
tracker. In some protocols, this association can also be made by a trusted party.

As a consequence, we can ensure that the voter identities are associated with public cre-
dentials through the events Reg(id, cr), and similarly, the public credentials are linked to the
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trackers through the events Link(cr, tr) as follows:

id1 … idn

Reg(id1, cr1) … Reg(idn, crn)

BBreg : cr1 … crn

Link(cr1, tr1) … Link(crn, trn)

BBres : (tr1, v1) … (trn, vn)

4.2.3 Voter Events

To partition the votes in the election outcome according to the multiset-based verifiability,
first, we should make a distinction between the votes cast by either honest voters or corrupt
voters. The voters cast their ballots using their voting platforms, where we assume the event
Vote(id, v) is recorded for this action, representing the voter id casts a ballot for the vote v. On
the other hand, if the voter is corrupt, the adversary can generate a ballot and cast it on behalf
of the corrupt voter through the public channel. This means that for the ballot recorded on
BBcast, there may not be a corresponding Vote(id, v) event. Therefore, we assume the corrupt
voter identities are recorded in the events Corr(id) when they leak their credentials. Then,
it can be ensured that for any ballot on BBcast, i.e. for any vote on BBres, either the event
Vote(id, v) or the event Corr(id) is recorded. Thus, we can directly determine the set of corrupt
voter identities whose votes are recorded on BBres. On the other hand, we can obtain the set
of honest voter identities by excluding corrupt voter identities recorded in Corr(id) from those
recorded in the events Vote(id, v). Next, we determine the voters who verified their votes with
verification events.

4.2.4 Verification Events

Verification events allow us to determine the votes that have been verified in the outcome
and, thus, the voters who perform individual verification for those votes. Assume the event
Verif ied(id, cr, v, t) is recorded in the execution trace when the voter id verifies for a credential
cr the vote v that has been cast at time t. If the e-voting protocol satisfies individual verifiability
and does not allow revoting, then the vote v recorded in the event Verif ied(id, cr, v, t) gives
us the vote in the outcome that is verified by the voter id. However, if revoting is allowed,
the recorded vote in Verif ied may not be tallied for the voter id. In the case of revoting, a
revote policy determines the ballot to be tallied, i.e. the vote to be counted. Then, individual
verifiability is satisfied, provided that the revote policy selects the vote verified. Consider
that a voter has verified many votes during the voting phase but not the one to be counted. In
that case, there is no guarantee for individual verifiability. Therefore, we represent the revote
policy with a formula ⌦(id, v, t) which specifies the vote v that has to be tallied among all the
votes cast by the voter id, depending on the time t that it has been cast. For example,⌦(id, v, t)
may select the last vote cast by the voter id, ordering the times and selecting the vote v for
the last occurrence of t. Then, we can ensure that a vote v recorded on BBres is also verified
if ⌦(id, v, t) has selected the vote v for the time t and there is an event Verif ied(id, cr, v, t)
recorded in the execution trace.

See the following example for the association of the time t recorded when the vote is cast
with the one recorded when the vote is verified. The example is given as a snippet from a
Tamarin specification.
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Example 10. Assume the Tamarin specification of an e-voting protocol specifies the rules
Rvote and Rverify for ballot casting procedure and the individual verification procedure of the
voter, respectively, as follows:

Rvote : let c = enc(v, pkE, r); s = sign(c, skid); b = Íc, sÎ in

[ !Cred(id, cr, skid), !BBcand(v), !BBkey(pkE), Fr(r), Fr(t) ]
**[ Vote(id, v),VoteTime(id, v, t) ]ô[ Voted(id, cr, v, b, t),Out(Íid, cr, bÎ) ]

Rverify : [ Voted(id, cr, v, b, t),BBcast(cr, b) ]**[ Verif ied(id, cr, v, t) ]ô[ ]

In the rule Rvote, a ballot b = Íc, sÎ is generated as a tuple of ciphertext c of the chosen vote v
and the respective signature s. The vote v is chosen from BBcand and encrypted with the pub-
lic key on BBkey and fresh randomness r. The signature is generated with the signing key skid
recorded in Cred. Then, the ballot b is cast through the communication network. The rule,
when executed, records the events (action facts) Vote(id, v) and VoteTime(id, v, t), represent-
ing the voter id casts a vote v. The event VoteTime also records the fresh term t, representing
the time the voter casts the vote v. All the information is recorded in Voted to be used for
individual verification. The rule Rverify uses the facts Voted and BBcast for the verification.
Whenever the ballots in both match, the rule records an event Verif ied, representing the voter
id verified the vote v cast at time t for the credential cr.

Assume an e-voting specification S records the public, consistency, voter and verification
events corresponding to the information recorded on BB, the association of voter identities
with public credentials, as well as public credentials with trackers, votes cast or verified by
the voter identities, the voter identities corrupted by the adversary, as discussed above. Then,
we can verify whether S satisfies end-to-end verifiability, either by counting the votes in the
outcome according to the classification given in [20] or by checking correspondence asser-
tions between these events as done in symbolic definitions suitable for automated verification.

Definition 1. A protocol specification S is a verifiable e-voting specification if it relies on
fact symbols

BBreg,BBres,Reg,Link,Vote,Verif ied,Corr

to record the following events:

– BBreg(cr): the public credential cr has been recorded on BB as eligible;

– BBres(tr, v): the vote v has been recorded on BB next to the tracker tr as counted in the
result;

– Reg(id, cr): the voter id has been registered with the public credential cr;

– Link(cr, tr): the public credential cr has been linked to the tracker tr;

– Vote(id, v): the voter id has cast a vote v;

– Verif ied(id, cr, v, t): the voter id with public credential cr has successfully performed
the verification procedure related to the vote v that was cast at time t;

– Corr(id): the voter id has leaked all their credentials to the adversary.

In Definition 1, when tr = cr, we may have BBres(cr, v) and omit Link(cr, tr), which is
trivial in this case.
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4.2.5 Revote Policy

A revote policy specifies the vote to be counted among the votes cast by a voter, i.e. if the voter
casts several votes v1… , vl, only one of these votes, say vi, will be counted in the outcome,
according to the revote policy in place. For an e-voting protocol to guarantee individual
verifiability, the vote vi (selected by the revote policy and counted in the result) should have
been verified by the voter. For the protocols that allow individual verification of the votes
in the tally phase, if the vote vi is verified, that vote will be counted on the voter’s behalf.
However, if the protocol allows individual verification at any time during the election, even
if the voter verifies the vote vj as to be counted, another vote vi could be selected for the tally.

For example, assume the revote policy selects the last vote cast by the voter, and the
protocol allows individual verification at any time during the election. Moreover, assume
the protocol records an event Verif ied(id, cr, v) whenever the voter id verifies the vote v for a
credential cr. Then, consider the following scenario: The voter id casts two di�erent votes
v1 and v2, and verifies the vote v2 cast as last, recording the event Verif ied(id, cr, v2) in the
execution trace of the protocol. However, the adversary in the network reorders the votes,
and after the voter verifies v2, it casts the vote v1 on the voter’s behalf. Thus, according
to its database, the voting server selects the last vote v1 for the tally. This scenario shows
that the event Verif ied(id, cr, v) recorded in the execution trace is not su�cient to ensure the
corresponding vote v will be counted for the voter id. Therefore, the formal definition of
verifiability requires additional constraints to be satisfied for the verified vote to be counted.

We can consider a parameterised formula ⌦(id, v), i.e. a policy, to add the respective
constraints for a given triple (id, cr, v). For example, the policy

⌦last(id, v) : Vote(id, v) @i Ÿ (Vote(id, v®) @j Ÿ j « i ‚ v = v®)

specifies the last vote v cast by the voter id, based on the event Vote(id, v). Then, ⌦last(id, v)·
Verif ied(id, cr, v) restricts the verified vote v to be the last vote cast by the voter id. However,
the constraint on the event Verif ied(id, cr, v) only matches v and, thus, the last vote v cast by
the voter id could have been verified as the first vote cast. For instance, the events Vote(id, v)*
Verif ied(id, cr, v)*Vote(id, v®)*Vote(id, v)* Link(cr, tr)*BBres(tr, v®) could be recorded in
the execution trace. That is, the voter id casts a vote v and verifies it. Then, the voter revotes
for the vote v® and again for the vote v, but does not verify any of them. The adversary drops
the last vote of the voter. Therefore, the voting server tallies the vote v® for the voter id, linking
their credential cr to the tracker tr. In this execution trace, even though the voter did not verify
their last vote cast,⌦last(id, v)·Verif ied(id, cr, v) implies it as verified and, thus, it will cause a
false individual verification attack. Thus, the policy does not correctly capture what we want
to achieve.

Consider the following policy:

⌦last(id, v, t) : VoteTime(id, v, t) @i Ÿ (VoteTime(id, v®, t®) @j Ÿ j « i ‚ t = t®)

where the event Votetime records a fresh term t to model the voting time whenever id casts
a vote v, as in Example 10. The policy ⌦last(id, v, t) specifies the last time t recorded for the
voter id, i.e. the last vote cast by the voter id. Thus, even though the voter casts the same vote
several times, the last one will be specified with the time t recorded last for that voter. In this
case, the term t should be inherited in the specification and thus be a parameter of the event
Verif ied, as in Example 10. Only then, ⌦last(id, v, t) · Verif ied(id, cr, v, t) will point out the
verified vote as the last vote cast. If the protocol does not allow revoting, then the verifiability
definition considers a trivial policy ⌦no(id, v, t), which is set to be always true, and requires
any verified vote to be counted.
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Definition 2 introduces a revote policy to a verifiable e-voting protocol specification,
which either specifies a vote among all cast votes with respect to the times they were cast
or is trivial when revoting is not allowed.

Definition 2. A verifiable e-voting protocol specification S admits a revote policy ⌦ if

(1) (a) every Vote(id, v) event is accompanied by VoteTime(id, v, t) event, where t is a
fresh randomness, and

(b) ⌦(id, v, t) is a formula of the form VoteTime(id, v, t) @i Ÿ ⌦®(id, v, t, i) for some
formula ⌦®(id, v, t, i),

(2) ⌦(id, v, t) = true if there is no revoting (or no revote policy).

4.3 Multiset-based Election Verifiability

In this section, we recall the multiset-based definition of election verifiability in [20] and
extend it to have a general notion that can cover stronger or weaker guarantees of election
verifiability depending on considered voting protocols or trust assumptions. We also introduce
some notation that is useful for both the multiset-based definition and the symbolic definition
of election verifiability.

The definition of election verifiability from [20] covers the notion of end-to-end verifia-
bility, counting the votes in the final result as partitioning them into three multisets of votes,
i.e. V1,V2,V3, where

1. V1 are votes cast by honest voters who verified their votes;

2. V2 is a subset of the votes from honest voters who did not verify their votes; it contains
at most one vote for each such voter, but some votes may be dropped by the adversary;

3. V3 represents the votes cast by the adversary, and its size should be bounded by the
number of corrupt voters.

In this definition, individual verifiability guarantees at point 1) are provided only for honest
voters. However, corrupt voters may also cast and verify their votes. In some cases, it may be
desirable and possible to provide individual verifiability guarantees even for corrupt voters.
Therefore, the point 1) can be strengthened by requiring that all verified votes should be
present in the outcome, not only those of honest voters but also those of corrupt voters. On the
other hand, in some protocols, we may not be able to prevent ballot stu�ng for honest voters
that have not verified their votes. For example, this is the case in Helios when the voting
server is corrupt. To also provide end-to-end verifiability guarantees in that case, the point 3)
can be weakened by allowing the adversary to cast votes for honest voters who did not verify
their vote. Thus, the existing multiset-based end-to-end election verifiability definition can
be improved as we show in the following.

Consider the following multisets/sets associated with a trace, defined informally for now:

• Ver÷ - the multiset of all verified votes complying with the revote policy;

• Ver˝ - as above, but only including votes verified by honest voters;

• Adv÷ - the set of corrupt voter identities;

• Adv˝ - the set of voter identities that includes corrupt voter identities and voter identities
who did not perform any verification procedure for their cast votes.
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• Vote÷,↵ - the set containing all subsets of the votes from non-adversarial voter iden-
tities who have not verified their votes, i.e. the voter identities who are not in Adv↵

and have not verified their votes; the definition of this set varies according to the sce-
nario (Ver÷id,Adv

↵) for ÷, ↵ À {÷, ˝}, where Ver÷id represents the set of voter identities
corresponding to Ver÷.

• Res - the multiset of votes in the result of the election.

The definitions of the multisets Ver÷ and Ver˝ require verified votes complying with the revote
policy. If there is no revoting, the revote policy will be trivially true, and the votes in those sets
will be verified votes among all cast votes. In the case of revoting, the multisets Ver÷ and Ver˝

will be the subset of all verified votes. Consider that a voter has verified many votes during
the voting phase but not the one complying with the revote policy. Then, the definition of the
multisets Ver÷ and Ver˝ require this vote not to be included. The set Adv˝ includes corrupt
voter identities from the set Adv÷ and also the ones who did not perform any verification
procedure. Thus, it represents the voter identities for which the adversary may cast a ballot if
the protocol is not strong enough. For illustration, consider a few scenarios where a vote from
a particular voter may not be counted: (i) the voter does not vote; (ii) the adversary drops the
cast vote; (iii) revoting is allowed, and the adversary replaces the cast vote. In all these cases,
the voter can perform the verification procedure for their choice, i.e. for the abstention in (i),
and for the cast vote in (ii) and (iii). Adv˝(id) says that the adversary can cast a vote for the
respective voter only if the voter did not perform the verification procedure. Adv÷(id) only
allows this when id is corrupt. For the set Vote÷,↵, assume s honest voters voted during the
election but did not verify their votes. Moreover, assume that the adversary did not cast any
vote for them, i.e. their identities are not in Adv˝. If the adversary does not drop the vote of
any such voters, the set of votes in the outcome will be { v1,… , vs }. If the adversary drops
only the vote of the voter ids, then the multiset in the outcome will be { v1,… , vs*1 }. More
generally, any subset of { v1,… , vs } may be dropped. Considering each such multiset of
votes for s voters, i.e. the multiset of votes in the outcome, the set of multisets define Vote÷,↵.
For example, for the two voters id1 and id2 who voted for v1 and v2, respectively, but did not
verify, Vote÷,↵ = {{ v1 }, { v2 }, { v1, v2 }}. Finally, the set Res is defined by the votes in
the election outcome.

The following definition formally defines the sets described above, relating them to the
events of an e-voting specification.

Definition 3. Let ⌧ be a trace produced by a verifiable e-voting specification S having ⌦ as
revote policy. Assuming the following formulas:

Ver÷(id, cr, v) í «t. Verif ied(id, cr, v, t) · ⌦(id, v, t)
Ver˝(id, cr, v) í «t. Verif ied(id, cr, v, t) · ⌦(id, v, t) · ¬Corr(id)

Adv÷(id) í Corr(id)
Adv˝(id) í Corr(id) ‚ ¬«cr, v®. Ver˝(id, cr, v®)

we define the following sets for ÷, ↵ À {˝, ÷}:

Ver÷(⌧) = { v  «id, cr. ⌧ Ù Ver÷(id, cr, v) · v ë Ú }
Ver÷id(⌧) = {id  «cr, v. ⌧ Ù Ver÷(id, cr, v) · Reg(id, cr) · v ë Ú}
Adv↵(⌧) = {id  ⌧ Ù Adv↵(id)}
Res(⌧) = { v  «tr. ⌧ Ù BBres(tr, v) · v ë Ú }
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Additionally, let Vote÷,↵(⌧) be the set of multisets { v1, ..., vs } such that there are distinct
id1, ..., ids and for all i À {1,… , s},

⌧ Ù Vote(idi, vi) · idi Ã (Ver÷id(⌧) ‰Adv↵(⌧) ).

Considering the sets formally defined above, we define the extended notion of end-to-end
election verifiability as follows.

Definition 4. A trace ⌧ of an e-voting specification S having ⌦ as revote policy satisfies
[iv÷, res↵]-election verifiability for ÷, ↵ À {˝, ÷} if and only if there exist multisets V1,V2,V3
of votes such that Res(⌧) = V1 € V2 € V3 and

(1) V1 = Ver÷(⌧),
(2) V2 À Vote÷,↵(⌧),
(3) V3 f Adv↵(⌧) ‰Ver÷id(⌧),

which is denoted by ⌧ ˆ E2E[iv÷, res↵]. If all traces of S satisfy it, then S ˆ E2E[iv÷, res↵].

Definition 4 gives four di�erent notions of verifiability:

• E2E[iv÷, res÷] is the strongest notion, ensuring that verified votes of corrupt voters are
also included in the final tally (this is strong individual verifiability).

• E2E[iv˝, res÷] corresponds to the definition from [20, 21, 17], providing individual ver-
ifiability only for honest voters.

• E2E[iv÷, res˝]: in addition to corrupt voters, this notion allows the adversary to cast
votes for voters who have not performed the verification procedure (this is sometimes
called ballot stu�ng). However, for corrupt voters who successfully verified their votes,
it can be ensured that these votes are correctly counted.

• E2E[iv˝, res˝] is the weakest notion, only allowing individual verifiability for honest
voters and allowing ballot stu�ng for honest voters who did not verify their votes.

4.4 Symbolic Election Verifiability

In this section, improving the symbolic definition in [17], we propose a more general end-to-
end verifiability definition that covers a broad class of e-voting protocols. Our definition is
similarly structured as a conjunction of formulas, corresponding to the individual verifiability
(�÷

iv1,�
÷
iv2,�

÷
iv3), eligibility (�eli), result integrity (�↵

res), and the consistency (�reg1,�reg2,
�link1,�link2,�one). However, our formulas are more generic, relying on the events introduced
in Section 4.2. They also account for revoting and a more general class of clash attacks.

Definition 5. Consider the formulas from Figure 4.1. For ÷, ↵ À {˝, ÷}, let

�÷
iv = �÷

iv1 ·�
÷
iv2 ·�

÷
iv3 (individual verifiability)

�÷cons = �reg1 ·�reg2 ·�link1 ·�link2 ·�one (consistency)

�˝
cons = �˝

reg2 ·�link1 ·�link2 ·�one (weak consistency)

and
(a) SE2E[iv÷, res↵] = �÷

iv ·�eli ·�↵
res ·�÷cons

(b) SWE2E[iv˝, res˝] = �˝
iv ·�eli ·�˝

res ·�˝
cons
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An e-voting specification S satisfies

(a) [iv÷, res↵]-symbolic election verifiability if and only if S Ù SE2E[iv÷, res↵],

(b) [iv˝, res˝]-symbolic weak election verifiability if and only if S Ù SWE2E[iv˝, res˝].

Basic properties defining symbolic E2E verifiability

�÷
iv1 : Ver

÷(id, cr, v) · Link(cr, tr) · BBres(tr, v®) Ÿ v = v® (individual verifiability)

�÷
iv2 : Ver

÷(id, cr, v) · Ver÷(id®, cr, v®) Ÿ id = id® (no clash)

�÷
iv3 : Ver

÷(id, cr, v) Ÿ Link(cr, tr) · BBreg(cr) (eligibility)

�eli : BBres(tr, v) Ÿ Link(cr, tr) · BBreg(cr) · (Reg(id, cr) ‚ v = Ú) (eligibility)

�↵
res : BBres(tr, v) · Link(cr, tr) · Reg(id, cr) (result integrity)

Ÿ Vote(id, v) ‚ Adv↵(id) ‚ v = Ú

Consistency properties

�reg1 : Reg(id, cr) · Reg(id®, cr) Ÿ id = id®

�reg2 : Reg(id, cr) · Reg(id, cr®) Ÿ cr = cr®

�link1 : Link(cr, tr) · Link(cr®, tr) Ÿ cr = cr®

�link2 : Link(cr, tr) · Link(cr, tr®) Ÿ tr = tr®

�one : BBres(tr, v) @i · BBres(tr, v®) @j Ÿ i = j
�cand : BBres(tr, v) Ÿ BBcand(v) ‚ v = Ú
�˝

reg2 : ¬Adv
˝(id) Ÿ �reg2

Two possible cases for Ver÷(id, cr, v)

Ver÷(id, cr, v) : «t. Verif ied(id, cr, v, t) · ⌦(id, v, t)
Ver˝(id, cr, v) : «t. Verif ied(id, cr, v, t) · ⌦(id, v, t) · ¬Corr(id)

Two possible cases for Adv↵(id)

Adv÷(id) : Corr(id)
Adv˝(id) : Corr(id) ‚ ¬«cr, v®. Ver˝(id, cr, v®)

Examples of revote policies ⌦

⌦no(id, v, t) : true
⌦last(id, v, t) : VoteTime(id, v, t) @i Ÿ (VoteTime(id, v®, t®) @j Ÿ j « i ‚ t = t®)

FIGURE 4.1: Formulas for symbolic election verifiability.

The formulas used in Definition 5 can be explained informally as follows:

• The property �÷
iv = �÷

iv1 · �
÷
iv2 · �

÷
iv3 corresponds to individual verifiability, where

�÷
iv1 represents the intuitive notion of individual verifiability, �÷

iv2 ensures no clash,
and �÷

iv3 guarantees eligibility of the voters who perform verification. The formula
�÷

iv1 is therefore complemented with the other two to obtain formal guarantees.

– �÷
iv1 specifies that if a voter id successfully verified a vote v complying with the

revote policy, then the vote v is counted for that voter id in the election result,
which is ensured when the voter’s public credential cr is linked to a tracker tr and
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the voter’s vote v is recorded next to that tracker in the outcome. Note that both
eventsVer÷ andBBres are placed on the left in the formula. For instance, the event
BBres can happen after the event Ver÷, and when it happens, the desired property
is ensured. Thus, it covers the protocols that allow individual verification during
or after the voting phase, in the tally phase, or even after the result is announced.

– �÷
iv2 specifies that no clash should occur on the public credentials: two distinct

voters who successfully verified their votes should have di�erent public creden-
tials. Note that the formula �÷

iv2 is more general than the no clash property de-
scribed in [22], which considers the clash only on the credentials, not the ballots.
Therefore, our formula covers a more general class of clash attacks.

– �÷
iv3 ensures that, for every voter, successful verification implies that the cor-

responding public credential is registered on the bulletin board and linked to a
tracker tr.

• �eli corresponds to the eligibility of the trackers in the outcome, ensuring that each
tracker is linked to a registered public credential. If there is a vote next to the tracker,
i.e. v ë Ú, it further ensures that the credential is also linked to a voter identity. As
discussed before, the party which records the event Reg(id, cr) varies according to the
specification: it could be that not all voters are registered with a public credential, i.e.
the credential may not be linked to the voter identity if the voter did not vote during
the election. In this case, the tracker points to Ú. Consequently, we have Reg(id, cr) or
v = Ú.

• �↵
res corresponds to result integrity, specifying that any vote in the outcome, recorded

with a tracker that is linked to a registered public credential associated with a voter
identity, should have been cast either by that voter identity or by the adversary who
corrupts that voter identity, or the vote is empty, i.e. v = Ú. Relying on Adv↵(id) as
a parameter, �↵

res further circumscribes adversarial influence on the final result: the
adversary is able to cast votes for corrupt voters when ↵ = ÷, the adversary is able to
cast votes for corrupt voters and also for the voters who did not verify their votes when
↵ = ˝.

• Consistency properties �reg1 and �reg2 ensure that each voter identity is uniquely as-
sociated with a public credential. Conversely, each public credential is uniquely asso-
ciated with a voter identity.

• Consistency properties �link1 and �link2 ensure that each public credential is uniquely
associated with a tracker. Conversely, each tracker is uniquely associated with a public
credential.

• The consistency property �one ensures that there is at most one vote counted for each
tracker.

• The consistency property �cand ensures that all the votes in the outcome are valid, as
being recorded on BBcand or empty, i.e. v = Ú. For the protocols that require a
homomorphic tally of the ballots, this property prevents the adversary from casting
multiple votes within a single ballot. For others requiring a tally based on mixnets,
each ballot is decrypted individually; thus, invalid votes can be removed directly from
the outcome.

Definition 5 provides two symbolic definitions, where the weak one SWE2E[iv˝, res˝] dif-
fers from the other SE2E[iv÷, res↵] with one missing formula�reg1 and the weaker notions of
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individual verifiability, result integrity, and the consistency, i.e. �˝
iv, �

˝
res, and �˝

cons, respec-
tively. Typically, if the party that registers the voter identities with credentials is honest, the
consistency between registered voter identities and the public credentials is ensured, and thus
the formulas �reg1 and �reg2 hold. However, suppose there is no honest party in the protocol
to register voter identities, e.g. in Helios, when the server is corrupt, or in Belenios, when
both registrar and server are corrupt. In that case, we cannot ensure this consistency, but still,
the protocol may provide the weaker notion of end-to-end verifiability E2E[iv˝, res˝] and we
can rely on SWE2E[iv˝, res˝] to prove it symbolically.

The formula�reg1 ensures that no two voter identities are registered with the same public
credential, and the formula �reg2 similarly ensures that no two public credentials are reg-
istered for a single voter identity. If the registration party is corrupt, non-adversarial voter
identities, i.e. honest voter identities that verify their votes, can ensure that they do not own
more than one credential, i.e. the formula �˝

reg2 holds. However, if �reg1 fails, they will not
know whether they were registered with a credential that is shared with another voter identity.
Nevertheless, due to the no clash property �˝

iv2, no two voter identities verified a ballot for
the same credential, i.e. all the credentials used for a successful individual verification corre-
spond to di�erent voter identities, i.e. honest voter identities. This will allow us to ensure that
all verified votes are in the outcome and also to avoid ballot stu�ng for these voters, which
is why we can obtain �˝

res and deduce E2E[iv˝, res˝]. We will show the formal implication in
our soundness proof.

4.5 Soundness Proof of Symbolic Election Verifiability

In this section, we provide soundness proof for the symbolic election verifiability proposed in
Section 4.4. Definition 5 is sound with respect to multiset-based election verifiability based on
counting the number of votes in the outcome. Informally, the multiset-based definition states
that: 1) the final outcome should include all of the votes that have been successfully verified;
2) the number of votes in the final outcome coming from the adversary should be bounded by
the number of adversarial voter identities; 3) all other votes in the outcome correspond to a
vote from a non-adversarial voter identity - the adversary is allowed to drop, but not change
such votes.

Recall the general flow of electronic voting protocols: a set of public credentials is deter-
mined at registration and recorded on BBreg; ballots from corresponding voters are collected,
and the ballot to be tallied for each credential is recorded on BBtally; the final result is com-
puted from the ballots in BBtally. Assuming there are n public credentials, the information
recorded on BB is as follows:

Setup: BBreg : cr1 … crn

Tally: BBtally : (cr1, b1) … (crn, bn)

Result: BBres : (tr1, v1) … (trn, vn)

where bi = Ú and vi = Ú in case of abstention, invalid ballot casting, or ballot blocking
by the adversary. Recall that in some e-voting protocols like Helios and Belenios, BBres is
defined implicitly from BBtally taking tri = cri and vi = open(bi). To prove general end-
to-end verifiability, one additional assumption is required about the execution trace of an e-
voting specification, namely that it contains the final state of the bulletin board. The following
formula can formalise a trace containing the final state of the bulletin board:

 E2E : {cr  ⌧ Ù BBreg(cr)} = {tr  «v. ⌧ Ù BBres(tr, v)}
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stating that the number of trackers recorded on the final result bulletin board is equal to the
number of registered credentials. A trace that satisfies  E2E is called an end-to-end e-voting
trace.

To prove general end-to-end verifiability for symbolic weak election verifiability, another
assumption is required about the end-to-end e-voting trace of an e-voting specification. That
is, the number of voter identities is equal to the number of public credentials. Before formal-
ising the assumption, we define the following sets:

Voteid(⌧) = {id  «v. ⌧ Ù Vote(id, v)}
Verif iedid(⌧) = {id  «cr, v. ⌧ Ù Verif ied(id, cr, v)}

Corr(⌧) = {id  ⌧ Ù Corr(id)}

which allows us to define the set of identities occur in the execution trace as follows:

Id(⌧) = Voteid(⌧) ‰Verif iedid(⌧) ‰Corr(⌧)

Then, we can define the following formula to formalise the assumption:

 E2E® : {id  ⌧ Ù Id(id)} = {cr  ⌧ Ù BBreg(cr)}

stating that the number of voter identities is equal to the number of registered credentials.

Theorem 1. For every e-voting specificationS , symbolic election verifiability implies multiset-
based election verifiability for end-to-end e-voting traces. That is, for any trace ⌧ of S ,

(a) ⌧ Ù SE2E[iv÷, res↵] · ⌧ Ù  E2E ⌃ ⌧ ˆ E2E[iv÷, res↵],

(b) ⌧ Ù SWE2E[iv˝, res˝] · ⌧ Ù  E2E · E2E® ⌃ ⌧ ˆ E2E[iv˝, res˝].

Proof. We prove the two cases simultaneously, showing how case (b) is handled di�erently
due to the missing formulas. The proof strategy is as follows: (1) we link the trackers in the
outcome to the registered credentials, (2) we associate registered public credentials with voter
identities, (3) we associate each vote in the outcome with a registered voter identity, (4) we
partition the set defined containing the identity-vote pairs at (3) and show that the partition
satisfies the requirements in Definition 4.

Assume

(a) ⌧ Ù SE2E[iv÷, res↵] · ⌧ Ù  E2E, (b) ⌧ Ù SWE2E[iv˝, res˝] · ⌧ Ù  E2E · E2E® ,

for any end-to-end e-voting trace ⌧ of an e-voting specification.

(1) Let {cr  ⌧ Ù BBreg(cr)} be the set of all registered public credentials. Assume there
are n such credentials in total, i.e. cr1, ..., crn. By ⌧ Ù  E2E, we have n = {tr  «v. ⌧ Ù
BBres(tr, v)}, implying that there are precisely n distinct trackers {tr1, ..., trn} for which
⌧ Ù BBres(tr, v) is true for some v. By ⌧ Ù �eli, any tracker tri À {tr1, ..., trn} is linked to
a credential cri À BBreg, i.e. we have ⌧ Ù Link(cri, tri). From the consistency properties
�link1 and �link2, i.e. ⌧ Ù �link1 · �link2, for any ⌧ Ù Link(cri, tri) · Link(crj, trj), we
have tri ë trj and cri ë crj for any i ë j. Furthermore, by ⌧ Ù �one, there is at most
one occurrence of the event BBres(tr, v) for each tracker. Therefore, we can deduce that
there is a one-to-one correspondence between the trackers in the outcome, i.e. tr1, ..., trn,
and the credentials that are linked to those, i.e. cr1, ..., crn.

(2) Without loss of generality, let tr1, ..., trk be all the trackers in the outcome for which v ë

Ú. By ⌧ Ù �eli, for any tracker tri in this subset, we have ⌧ Ù Link(cri, tri) · Reg(idi, cri),
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which implies that each such tracker tri has been linked to a credential cri registered
with a voter identity idi. By (1), there are exactly k distinct credentials, i.e. cr1, ..., crk,
corresponding to tr1, ..., trk.

(a) From the consistency properties �reg1 and �reg2, i.e. ⌧ Ù �reg1 · �reg2, for any
⌧ Ù Reg(idi, cri) · Reg(idj, crj), we have idi ë idj and cri ë crj for any i ë j. This
implies that each credential cri has been registered with a distinct voter identity
idi. Therefore, there are exactly k distinct voter identities id1, ..., idk correspond-
ing to the credentials cr1, .., crk for which we have ⌧ Ù Reg(idi, cri). By (1), we
can conclude that there is a one-to-one correspondence between the distinct voter
identities id1, ..., idk and the trackers tr1, ..., trk for which v ë Ú on BBres.

(b) From the weak consistency property�˝
reg2, i.e. ⌧ Ù �˝

reg2, for any ⌧ Ù Reg(id, cr)·
Reg(id, cr®), we have cr ë cr® for any non-adversarial voter identity id, i.e. id is
honest and verified their vote. Assume there are s such voter identities id1,… , ids
for which ⌧ Ù Ver˝(idi, cri, vi). By ⌧ Ù �˝

iv2, for any idi, idj À {id1,… , ids}, ⌧ Ù
Ver˝(idi, cri, vi) ·Ver˝(idj, crj, vj) implies that cri ë crj for some i ë j. Thus, there
are exactly s mutually distinct public credentials cr1,… , crs corresponding to the
voter identities id1,… , ids for which we have ⌧ Ù Reg(idi, cri). Thus, we establish
a one-to-one correspondence between registered non-adversarial voter identities
id1,… , ids and their public credentials cr1,… , crs.
On the other hand, by ⌧ Ù  E2E® , there are precisely n distinct voter identities
{id1, ..., idn} since n = {cr  ⌧ Ù BBreg(cr)}. Among those voter identi-
ties, s of them, i.e. id1,… , ids, are honest and verified their votes. Thus, the
remaining identities, i.e. ids+1,… , idn, are the adversarial voter identities, i.e.
idi À Adv˝(id). Moreover, from the public credentials cr1,… , crk associated with
the trackers in the outcome for which v ë Ú, s of them, i.e. cr1,… , crs, are associ-
ated with the voter identities id1,… , ids. Thus, the remaining public credentials,
i.e. crs+1,… , crk, are associated with the adversarial voter identities. There are
k* s such public credentials. Since k* s f n* s, we can choose for each creden-
tial cri À {crs+1,… , crk} a distinct voter identity idj À {ids+1,… , idn}. Thus, we
establish a one-to-one correspondence between k* s mutually distinct adversarial
voter identities and the public credentials crs+1,… , crk.
Overall, we establish a one-to-one correspondence between distinct voter identi-
ties id1, ..., idk and public credentials cr1, .., crk. Hence, by (1), we can conclude
that there is a one-to-one correspondence between the distinct voter identities
id1, ..., idk and the trackers tr1, ..., trk for which v ë Ú on BBres.

For the rest of the proof, consider ↵,÷ À {˝, ÷} for (a) and ↵,÷ = ˝ for (b).

(3) In order to associate each vote v ë Ú in the outcome with a registered voter identity,
we define the following set:

ResID,V(⌧) = {(id, v)  ⌧ Ù BBres(tr, v) · Link(cr, tr) · Reg(id, cr) · v ë Ú}.

According to the one-to-one correspondence between trackers and voter identities es-
tablished at point (2), we have:

ResID,V(⌧) = {(tr, v)  ⌧ Ù BBres(tr, v) · v ë Ú} = k.

On the other hand, by Definition 3, we have:

Res(⌧) = { v  «tr. ⌧ Ù BBres(tr, v) · v ë Ú }.



4.5. Soundness Proof of Symbolic Election Verifiability 59

Thus, Res(⌧) = { v  (id, v) À ResID,V(⌧) }.

(4) By ⌧ Ù �↵
res, for any (id, v) À ResID,V(⌧), either ⌧ Ù Vote(id, v) or ⌧ Ù Adv↵(id), and

these events may not be mutually exclusive. Let us define the following multisets:

VoteID,V(⌧) = { (id, v)  ⌧ Ù Vote(id, v) }
AdvID,V(⌧) = { (id, v)  id À Adv↵(⌧) }

Considering the multisets above, we can define the following sets:

R®2 = (ResID,V(⌧) „VoteID,V(⌧) ) ‰AdvID,V(⌧),
R®3 = ResID,V(⌧) „AdvID,V(⌧).

Then, any (id, v) À ResID,V(⌧) is either in R®2 or in R®3, where R®2 „R®3 = Á. Intuitively,
R®2 and R®3 represent the partition of the final result according to honest or adversarial
votes, i.e. Res(⌧) = R®2 €R®3. Now, let us define:

VerID,V(⌧) = {(id, v)  «cr. ⌧ Ù Ver÷(id, cr, v) · Reg(id, cr)}

and
R1 = ResID,V(⌧) „VerID,V(⌧),
R2 = R®2 ‰VerID,V(⌧),
R3 = R®3 ‰VerID,V(⌧).

By definition, R1 „R2 = R1 „R3 = R2 „R3 = Á. Thus, we can conclude ResID,V(⌧) =
R1 €R2 €R3, i.e. they form a partition. It follows that Res(⌧) = V1 € V2 € V3, where
Vi = { v  «id. (id, v) À Ri } for i = 1, 2, 3. Next, we show that the multisets V1,V2,V3
satisfy the requirements of Definition 4, respectively, i.e.

(1) V1 = Ver÷(⌧),
(2) V2 À Vote÷,↵(⌧),
(3) V3 f Adv↵(⌧) ‰Ver÷id(⌧).

(4.1) By definition, V1 ” Ver÷(⌧). Thus, we show Ver÷(⌧) ” V1. Let id1,… , idq be the set of
(mutually distinct) voter identities who verified their votes (di�erent from Ú) for some
credential. This means that there are non-empty sets of votes A1,… ,Aq such that

≈i À {1,… , q},≈v À Ai,«cr. ⌧ Ù Ver÷(idi, cr, v).

Intuitively, for each idi, Ai represents the set of votes that are verified by that voter and
which satisfy the revote policy. By definition, we have Ver÷(⌧) = A1 €… €Aq.
For each i À {1,… , q}, let Ci be the set of credentials for which ⌧ Ù Ver÷(idi, cr, v).
From no clash property, i.e. ⌧ Ù �÷

iv2, we deduce that Ci „ Cj = Á for any i ë j. Fur-
thermore, assume Ci = {cr1,… , crs} for some i À {1,… , q}. By ⌧ Ù �÷

iv3 ·�link2,

⌧ Ù Link(cr1, tr1) ·… · Link(crs, trs),
⌧ Ù BBreg(cr1) ·… · BBreg(crs),

for mutually distinct tr1,… , trs. Let Ti be the set of trackers linked to the credentials in
Ci, i.e. Ti = {tr1,… , trs}. Then, by ⌧ Ù �link1 and Ci „Cj = Á, we conclude Ti „ Tj = Á
for any i ë j. Moreover, there is a one-to-one correspondence between Ci and Ti.
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On the other hand, as we showed at point (1), each cr on BBreg is linked to a unique
tr on BBres with ⌧ Ù Link(cr, tr). From the consistency properties �link1 and �link2,
the same credential cannot be linked to two di�erent trackers. Then, we can deduce
that each set Ti of trackers, that are linked to the credentials in Ci, are included in the
final result. Moreover, by ⌧ Ù �one, there is at most one vote per tracker in the result.
Therefore, we have

⌧ Ù BBres(tr1, v®1) ·… · BBres(trs, v®s),

for some votes v®1,… , v®s.
For each i À {1,… , q}, let A®i be the set of votes in the result that correspond to the
trackers in Ti. From one-to-one correspondence between Ci (associated with the set Ai)
and Ti (associated with the set A®i ), there is also a one-to-one correspondence between
the sets Ai and A®i . We show that these sets are actually equal. Indeed, for any cr À Ci,
v À Ai and associated tr À Ti, v® À A®i , we have

⌧ Ù Ver÷(idi, cr, v) · Link(cr, tr) · BBres(tr, v®).

By ⌧ Ù �÷
iv1, we deduce v = v®, and we can conclude that Ai = A®i . Therefore, we

obtain:
Ver÷(⌧) = A®1 €… €A®q = {v®1, ..., v

®
p} (?)

for some votes v®1, ..., v
®
p and some p g q (every voter verified at least one vote).

On the other hand, by definition of the set R1, it consists of all the pairs (id, v) À
ResID,V(⌧) such that v ë Ú and some id® verified v. Thus, we deduce

{(id1, v®1),… , (idp, v®p)} ” R1, and therefore
{v®1,… , v®p} ” V1 (??)

From (?) and (??), we deduce Ver÷(⌧) ” V1 and we can conclude V1 = Ver÷(⌧) as
required. Furthermore, since p g q, we have also established

 ResID,V(⌧) „VerID,V(⌧)  g  Ver÷id(⌧)  (<)

i.e. the number of verified votes in the final result is greater than or equal to the number
of voters for whom their votes are verified.

(4.2) We show that V2 À Vote÷,↵(⌧). By definition, we have

R2 = (ResID,V(⌧) „VoteID,V(⌧)) ‰ (VerID,V(⌧) ‰AdvID,V(⌧))

and V2 = { v  «id. (id, v) À R2 }. Furthermore, by (2), there can be no two distinct
identities associated to each vote in the result:

R2 = {(id1, v1),… , (ids, vs)} and V2 = {v1,… , vs}

for some mutually distinct id1,… , ids. Thus, for all i À {1,… , s} we have:

⌧ Ù Vote(idi, vi) · idi Ã (Ver÷id(⌧) ‰Adv↵(⌧) )

Therefore, using the definition of Vote÷,↵(⌧), we can conclude that V2 À Vote÷,↵(⌧).

(4.3) We show that V3 f Adv↵(⌧) ‰Ver÷id(⌧).
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(a) By definition, we have

R3 = (ResID,V(⌧) „AdvID,V(⌧)) ‰VerID,V(⌧)

and V3 = { v  «id. (id, v) À R3 }. Furthermore, by (2),

ResID,V(⌧) „AdvID,V(⌧) = {(id1, v1),… , (idt, vt)}

for some mutually distinct id1,… , idt. We can also deduce that

ResID,V(⌧) „AdvID,V(⌧) f Adv↵(⌧) (†)

By (<) and ⌧ Ù �one, there is one and only one vote in the result for each tracker;
therefore for each voter id by (3), we deduce

 ResID,V(⌧) „VerID,V „AdvID,V(⌧)  g  Ver÷id(⌧) „Adv↵(⌧)  (††)

Thus, we can conclude that

R3 =  (ResID,V(⌧) „AdvID,V(⌧)) ‰VerID,V(⌧) 
f  (ResID,V(⌧) „AdvID,V(⌧)) ‰ (ResID,V(⌧) „VerID,V(⌧)) 
f  Adv↵(⌧) ‰Ver÷id(⌧) 

where, to deduce the second inequality, we rely on (†), (††) and the general set
theory fact that for all sets A1,A2,B1,B2:

A1 f A2 · A1 „B1 g A2 „B2
⌃ A1 ‰B1 f A2 ‰B2

Hence, V3 = R3 f Adv↵(⌧) ‰Ver÷id(⌧), as required.
(b) By definition, we have

R3 = ResID,V(⌧) „AdvID,V(⌧)

and V3 = { v  «id. (id, v) À R3 }. Furthermore, as shown at point (2),

ResID,V(⌧) „AdvID,V(⌧) = {(id1, v1),… , (idk*s, vk*s)}

for some mutually distinct id1,… , idk*s, where ResID,V(⌧) = k and s is the num-
ber of pairs in ResID,V(⌧) corresponding to the non-adversarial voter identities.
By ⌧ Ù  E2E® and (2), there are precisely n distinct voter identities and n* s of
them are the adversarial voter identities, i.e. Adv˝(⌧) = n* s. Thus, since k f n,
we have k* s f n* s. Therefore, we can deduce that

ResID,V(⌧) „AdvID,V(⌧) f Adv˝(⌧)

Hence, V3 = R3 f Adv˝(⌧), as required.

4.6 Case Study: Verifiable E-Voting Example

Assume the verifiable e-voting example, Example 3, in Section 2.5 records the events specified
in Figure 4.2. For the voter id, election authorities generate a public credential cr and a tracker
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tr, recording the event Reg(id, cr) for the association between id and cr, the event BBreg(cr)
for the eligibility of cr, and the event Link(cr, tr) for linking cr to tr. Then, the authorities send
the credential and tracker to the voter via a private channel. In the voting phase, the voter id
votes for v, generating a ballot b for the vote v and recording the event Vote(id, v), and then
the voter sends the ballot with their public credential to the authorities via a public channel.
Authorities publish the ballot on BB with the public credential who cast it. In the tally phase,
election authorities open the ballot b for the credential cr and obtain the vote v®. Then, they
extract the tracker tr which is linked to the credential cr, and publish the vote v® together with
the tracker tr, recording the event BBres(tr, v®). The voter id uses their tracker tr received from
the election authorities in the setup phase to verify their vote v on BBres. As soon as their
vote v matches with the one v® recorded with their tracker tr, i.e. v = v®, the voter completes
the individual verification, recording the event Verif ied(id, cr, v).

In this example, individual verification procedures are performed at the end of the election
via trackers. Assuming there is no revoting, i.e. ⌦(id, v, t) = true, and all the voters are honest,
Ver÷(id, cr, v) = Verif ied(id, cr, v). Since Verif ied(id, cr, v) is recorded as soon as the voter id
matches the vote v with the one recorded with their tracker tr on BBres, and there is an event
Link(cr, tr) recorded when election authorities link the voter’s public credential cr to tr,

Verif ied(id, cr, v) · Link(cr, tr) · BBres(tr, v®) Ÿ v = v®,

i.e. �iv1 holds for the specification Sex corresponding to Figure 4.2. Assuming election au-
thorities are all honest, each public credential is freshly generated for each voter id, i.e.

Verif ied(id, cr, v) · Verif ied(id®, cr, v®) Ÿ id = id®.

Therefore, Sex Ù �iv2. Moreover, each public credential is privately sent to the corresponding
voter id and linked to a freshly generated tracker. Therefore, if a voter id successfully performs
a verification procedure, their public credential should be registered on BBreg and linked to
tr, i.e.

Verif ied(id, cr, v) Ÿ Link(cr, tr) · BBreg(cr).

Thus, Sex Ù �iv3.
The election result consists of all the votes published together with trackers on BBres.

Each (tr, v) pair in the outcome is obtained from a pair (cr, b), where open(b) = v and cr is
linked to tr, recording the event Link(cr, tr). Furthermore, each cr is generated for a voter id,
i.e. associated with a voter id, recording the event Reg(id, cr). Therefore,

BBres(tr, v) Ÿ Link(cr, tr) · BBreg(cr) · Reg(id, cr),

i.e. Sex Ù �eli. Since all the voters are honest, for each pair (tr, v) in the outcome, either v = Ú
or the vote v has been cast by a voter id, recording the event Vote(id, v). This follows that

BBres(tr, v) · Link(cr, tr) · BBreg(cr) Ÿ Vote(id, v) ‚ v = Ú,

i.e. Sex Ù �res.
Finally, since all public credentials and trackers are freshly generated for each voter, the

consistency properties �reg1, �reg2, �link1, and �link2 hold for Sex. Hence, Sex satisfies end-
to-end verifiability.
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Voter(id) Election Auth

setup phase

generate: cr, tr
event: Reg(id, cr),

BBreg(cr),
Link(cr, tr)

Ícr, trÎ

voting phase

select: v
generate: b for v
event: Vote(id, v)

Íid, cr, bÎ

tally phase

open(b) = v®

event: BBres(tr, v®)

individual verification

tr

v®

verify: v = v®

event: Verif ied(id, cr, v)

FIGURE 4.2: Verifiable e-voting protocol example with events.
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Chapter 5

Helios

Helios [1, 34] is the first web-based e-voting protocol that provides end-to-end verifiability
guarantees for voters. It aims to obtain verifiability notions defined in the literature in a prac-
tical protocol that allows voters to audit their ballot generation, verify their ballot on a public
bulletin board, and the election outcome that comes from the ballots collected on the bulletin
board. Helios is not suitable for government elections, where coercion is a concern. It aims
to be used in low-stakes elections that require ballot secrecy, such as local club elections and
university elections. Thus, it has been used in many elections, including the one to elect the
Catholic University of Louvain president in 2009 and the ones to elect new board directors of
the International Association for Cryptographic Research (IACR) since 2010 [35].

The first variant of Helios [1], designed in 2008, deploys the Helios server to generate
the election key pair, register voters, manage a public bulletin board that displays all ballots
cast, and tally the ballots using a mixnet at the end of the election. The second variant of
Helios [3] upgrades the first to be used in the presidential election of the Catholic University
of Louvain in 2009, which considers an additional registration server to register voters with
the credentials not known by the Helios server, and multiple talliers to generate the election’s
public key in a distributed fashion, where the private key is not known to a single tallier.
However, none is secure against ballot stu�ng attacks by a corrupt server. The corrupt server
in [1] or the corrupt registration server in [3] can cast ballots on behalf of the voters, and
public checks on the bulletin board may not detect this.

Helios has been extensively analysed in the literature [38, 22, 40]. The first symbolic
model of Helios for its second variant, presented in [38], considered a corrupt server to pub-
lish the election data and proved individual and universal verifiability based on boolean tests.
Later, extending the adversary’s abilities to corrupt the registrar and voting platform, [40] dis-
covered clash attacks against the verifiability of Helios. Another symbolic model of Helios,
presented in [22], considered an approach to evaluate privacy and verifiability with type-
checkers and provided the first automated verification of Helios with homomorphic encryp-
tion. The approach in [22] included no clash property but did not consider eligibility verifia-
bility. Considering all, the approaches presented so far are limited, and none of those analyses
has modelled revoting as a feature of Helios.

This chapter provides a formal analysis of Helios based on the end-to-end election ver-
ifiability definition from Chapter 4, using the automated verification tool Tamarin. In this
analysis, revoting is accounted for, the e�ects of di�erent individual verification procedures
on verifiability are explored, and the verifiability is checked automatically with Tamarin on
several corruption scenarios for the protocol parties. As a result, the known attacks against
Helios; ballot stu�ng and clash attacks, are captured. In addition, new versions of clash at-
tacks are found, accounting for revoting and individual verification at any time during the
election.

Structure of the chapter: In Section 5.1, we describe the protocol structure and the election
procedures of Helios. Then, in Section 5.2, we present the Tamarin specification of Helios
with respect to di�erent individual verification procedures and several corruption scenarios.
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Finally, in Section 5.3, we provide the verifiability analysis of Helios, i.e. the security proofs
and attacks found with automated verification for the concerned corruption scenarios.

5.1 Helios Protocol Structure

Helios has the regular parties of an e-voting protocol as described in Section 2.2:

– Administrator A is responsible for the election configuration, i.e. it determines the
candidates and voters eligible for the election, and talliers if the Helios server is not
deployed to generate the election key pair.

– Talliers T generate an election key pair: a private key and its corresponding public key,
and tally all the ballots at the end of the election. A single tallier, the Helios server
itself, may generate the election key pair, or multiple talliers generate the public key in
a distributed way, where no tallier knows the private part of the key generated by the
other tallier. For the tally, T either shu�es all the encrypted ballots through a mixnet
and decrypts each randomised ballot or decrypts the single ciphertext corresponding to
the homomorphic tally of the ballots.

– Registrar VR registers public credentials of the voters for the election. VR may generate
a public credential for each voter, i.e. an alias, or it may just register the voter identities
as public credentials.

– Voting server VS generates a login credential, i.e. a password, for each registered voter,
accepts ballots from the voters if they are authenticated with the login credential, and
then publishes them on the bulletin board.

– Voting platform VP allows voters to generate a ballot, i.e. an encryption of their choice
with the election public key, and cast their ballot to the voting server via a login oper-
ation. It also allows voters to audit their ballot, revealing the encryption randomness.

– Voters V registered to the election as eligible may cast several ballots using their voting
platform during the election or abstain from voting.

– Election auditors EA audit the public information recorded on the bulletin board. They
ensure that all ballots have been cast by eligible public credentials, all the ballots recorded
on the bulletin board are valid, the ballots to be tallied are the ones recorded last for the
credentials on the bulletin board, and the election result corresponds to the tallied bal-
lots. To ensure the correctness of the tally, for example, they verify the zero-knowledge
proofs produced by T.

In Helios, VR and VS are usually subsumed under the same party, i.e. the Helios server.
Helios relies on an append-only public bulletin board, denoted by BB, to display the public
election data: the election’s public key, the election candidates, the public credentials of the
registered voters, the cast ballots, the tallied ballots, the produced zero-knowledge proofs and
the election outcome. It allows voters to verify their ballots and election auditors to verify
the public election data on BB. The data on BB can be displayed in portions; for example, the
portion of BBkey displays the election’s public key.

The election procedures and the individual verification procedure of Helios are described
as follows:

Setup phase. A determines the list of candidates v1,… , vk and voters id1,… , idn that are
eligible for the election, delegates T to generate the election key pair (skE, pkE), VR to generate
public credentials cr1,… , crn, where each cri corresponds to the voter idi, and VS to generate
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a login credential pwdi for each voter idi. The public information displayed on the portions of
BB is as follows:

BBkey : pk; BBcand : v1,… , vk; BBreg : cr1,… , crn

In this phase, each voter id obtains a public credential cr and a password pwd.

Helios with identities. The administrator A in Helios may decide to use voter identities as
public credentials; in this case, cr = id. Then, the cast ballot is displayed on the bulletin
board next to the voter identity who cast it. However, using voter identities in the clear may
violate privacy if T is corrupt and leaks the secret key. It could also be the case that the secret
key itself can be broken in the future. Therefore, in general, it is not preferred.

Voting phase. V interacts with VP to construct a ballot b:

VP : downloads pkE À BBkey and v1,… , vk À BBcand,
V : selects v À BBcand,

VP : encrypts v with pkE and a randomness r : c = enc(v, pkE, r),
produces a proof : p = prR(c, r, Ív1,… , vkÎ).

The zero-knowledge proof p is produced if a homomorphic tally is chosen for the election,
which proves the encrypted vote is within a valid range Ív1,… , vkÎ. Thus, VP constructs the
ballot b = Íc, pÎ, and V decides to cast or audit it. In the case of auditing, VP reveals the
vote v and the randomness r so that V can encrypt v with the same randomness and match the
ciphertexts. Otherwise, VP asks for login credentials of V to cast the ballot b. V provides their
id and pwd obtained in the setup phase, which prompts a connection toVS. IfVS authenticates
V, it receives the ballot b on behalf of id, verifies the proof p, and then records it on BBcast
next to the public credential cr of id.

Tally phase. At the end of the voting phase, VS selects the last ballot recorded on BBcast for
each credential and publishes it on BBtally. The final version of BBtally is:

BBtally : (cr1, b1),… , (crn, bn),

where b = Ú if no ballot was cast for cr. T tallies the ciphertexts corresponding to non-empty
ballots on BBtally and announces the final result along with a zero-knowledge proof for the
result, showing that it corresponds to the input, i.e. the set of ciphertexts. More specifically,
if the protocol requires a tally with mixnets, there will be proofs for correct shu�ing and
decryption of the ciphertexts. On the other hand, if it requires a homomorphic tally, then the
proof will be for the correctness of the homomorphic tally.

Individual verification. In Helios, V can verify that the ballot generated by VP correctly
encodes their chosen vote with an audit option. VP does not cast the ballot audited; instead, it
generates another ballot for casting. However, since each ballot is generated with a possibility
of an audit, the corruptVP cannot cheat on the ballot generation or cannot take the risk of being
caught. Thus, the voter ensures that the ballot is cast as intended. Moreover, V can verify that
VS correctly captures and records their ballot on BB. For that, Helios provides V with the
hash of their ballot and presents the same hash next to their credential on BB. Then, V has to
match the two hashes to ensure the ballot is recorded as cast.

Helios allows revoting, and each time a ballot is received for a credential, the old ballot
is replaced with the new one on BB. Thus, V cannot verify an older ballot on BB. Helios
publishes all the ballots to be tallied on BB. If V verifies their last ballot cast on BBtally, then
V can ensure that their ballot will be tallied and their vote will be counted on their behalf.
The tally procedure of Helios is verifiable by anyone, i.e. the public data on BB allows one to
verify the lists of tallied ballots and counted votes with produced zero-knowledge proofs.
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5.2 Tamarin Specification of Helios

This section presents the Tamarin specification S
H

of the Helios protocol. To distinguish
di�erent individual verification procedures and adversary models, the specification S

H
is

separated into three components, i.e. S
H
= (P

H
,V ,A), where

- P
H

models the actions of the honest parties,

- V models individual verification procedures,

- A models adversarial capabilities.

Each component above has its own rules and restrictions that are intended for the execution
of its rules.

The protocol specification P
H

. Helios uses the ElGamal encryption algorithm to encrypt the
votes, and a non-interactive zero-knowledge protocol to prove that the encrypted votes are in
a valid range of eligible candidates. Thus, the specification requires the following equations
defined for E

H
:

(1) dec(enc(x, pk(y), z), y) = x,
(2) (≈i) verR(prR(enc(xi, y, z), z, Íx1,… , xkÎ), enc(xi, y, z), y, Íx1,… , xkÎ) = true.

We have described the protocol parties of Helios in Section 5.1, as abbreviated by A, T,
VR, VS, V, EA. Now, we model the actions of those parties with the rules in P

H
. Any rule

in P
H

is denoted by Ra
n, where a is the party’s abbreviation, and n is the name describing

the action in the rule. For simplicity, we remove the symbol ! from the facts, representing
persistent facts, since we consider all protocol facts except the special ones (In, Out, and Fr)
persistent. We model Helios, considering the three phases of an election.

Setup phase. T generates an election key pair (skE, pkE) and publishes pkE on BBkey, whereas
A determines the lists of eligible candidates and voters, which we model with the following
rules:

RT
key : [ Fr(skE) ]**[ BBkey(pk(skE)) ]ô[ SkE(skE),BBkey(pk(skE)),Out(pk(skE)) ]

RA
cand : let vlist = Ív1,… , vkÎ in

[ In(vlist) ]**[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]ô
[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]

RA
id : [ In(id) ]**[ ]ô[ Id(id) ]

In the rule RT
key, the election’s public key pk(skE) is made available to the adversary with the

fact Out. In the rules RA
cand and RA

id, the eligible candidates and voters are received from the
network with the fact In, implying that the adversary chooses, and thus, knows them. The fact
Vlist records the list of candidates to produce and verify the zero-knowledge proofs in each
ballot. Note that the candidates recorded in Vlist correspond to all the candidates on BBcand.

Continuing the setup phase, VR_VS generates a public credential for each id recorded in
Id, whereas VS generates a password for each such id. VS also prepares BBcast, recording Ú
for each registered credential that will be filled with a ballot if the voter with that credential
casts one, as follows:

RVR_VS
reg : [ Id(id), Fr(cr) ]**[ Reg(id, cr),BBreg(cr) ]ô[ Voter(id, cr),BBreg(cr),Out(cr) ]
RVS
pwd : [ Id(id), Fr(pwd) ]**[ ]ô[ Pwd(id, pwd) ]
RVS
bb : [ BBreg(cr) ]**[ BBcast(cr,Ú) ]ô[ BBcast(cr,Ú) ]
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In the rule RVR_VS
reg , VR_VS associates id with a public credential cr, which is recorded in the

action fact Reg. A voter id obtains their credentials as recorded in the facts Voter and Pwd.
The action facts BBreg and BBcast record the related information displayed on BB.

Voting phase. VP generates a ballot b for the voter id, encrypting the vote recorded on BBcand
and producing a zero-knowledge proof using the vote list recorded inVlist. The voter’s authen-
tication via a login credential is abstracted with the help of a hash function h. Hash functions
are generally used to ensure data integrity. In this case, they ensure that the ballot is sent
by the voter id who shares the secret, i.e. pwd, with VS. This is modelled by computing an
authentication message a = h(Íid, pwd, bÎ) that hides pwd inside the hash h on VP’s side, then
computing a similar authentication message a® with the knowledge of pwd on VS’s side and
checking whether they match. If the authentication messages match and the proof p is inside
the ballot is verified, VS records the ballot next to the voter’s credential cr on BBcast. The
actions of VP and VS are modelled in the following two rules:

RVP
vote : let c = enc(v, pkE, r); p = prR(c, r, vlist); b = Íc, pÎ; a = h(Íid, pwd, bÎ) in

[ Voter(id, cr), Pwd(id, pwd),BBcand(v),Vlist(vlist),BBkey(pkE), Fr(r), Fr(t) ]
**[ Vote(id, v),VoteB(id, cr, b),VoteTime(id, v, t) ]ô
[ Voted(id, cr, v, b, t),Out(Íid, b, aÎ) ]

RVS
cast : let b = Íc, pÎ; a® = h(Íid, pwd, bÎ) in

[ In(Íid, b, aÎ),Voter(id, cr), Pwd(id, pwd),BBkey(pkE),Vlist(vlist) ]
**[ a® í a, verR(p, c, pkE, vlist) í true,VScast(id, b),BBcast(cr, b) ]ô
[ BBcast(cr, b) ]

 VS
order : VoteB(id, cr, b) @i · VoteB(id, cr, b®) @j ·

VScast(id, b) @k · VScast(id, b®) @l · i « j Ÿ k « l

 VS_EA
cast : BBcast(cr, b) Ÿ BBreg(cr) · ( b ë Ú Ÿ

BBkey(pkE) · Vlist(vlist) · b = Íc, pÎ · verR(p, c, pkE, vlist) = true )

The rule RVP
vote can be executed many times for a voter, recording the event Vote, either for the

same vote v or for a di�erent vote v®, which models revoting. The action factVoteB records the
ballot cast on VP, whereas VScast records it on VS. The fact Voted records the data necessary
for individual verification. In reality, the voter knows what they voted for and obtains the
ballot hash after casting one. The fact VoteTime is required for the revote policy. It records
a fresh term t whenever the voter casts a vote v, which allows the revote policy to select the
last vote cast among all cast votes of the voter id with a constraint on t.

On the other hand, the restrictions  VS
order and  VS_EA

cast ensure that VS processes the ballots
cast by VP in the order they have been sent, any ballot published on BBcast corresponds to a
registered credential, and if the ballot is not Ú, the proof p inside the ballot is also correctly
verified. The second restriction also represents the public verifications of the election data
provided on BB by the election auditors EA.

Tally phase. VS selects all the ballots to be tallied by retrieving the last ballot cast for each
credential and publishes them on BBtally with the following rule and restriction:

RVS
tally : [ BBcast(cr, b) ]**[ BBtally(cr, b) ]ô[ BBtally(cr, b) ]

 VS_EA
tally : BBcast(cr, b) @i · BBcast(cr, b®) @j · BBtally(cr, b) @k Ÿ j « i ‚ b = b®

The restriction  VS_EA
tally ensures the ballot to be tallied is the last one among all cast ballots,

which models the action of VS on selecting the correct ballot for each credential as well as the
audits by EA for the correct tallying. The full protocol specification P

H
is given in Figure 5.3.
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R0
ver : voter verifies the ballot on BBcast

[ Voted(id, cr, v, b, t),BBcast(cr, b) ]
**[ Verif ied(id, cr, v, t),VerB(id, cr, b) ]ô[ ]

R1
ver : voter verifies the ballot on BBtally

[ Voted(id, cr, v, b, t),BBtally(cr, b) ]**[ Verif ied(id, cr, v, t) ]ô[ ]

R2
ver : voter verifies there is no ballot on BBtally

[ Voter(id, cr),BBtally(cr,Ú) ]**[ Verif ied(id, cr,Ú,Ú) ]ô[ ]

R0
ver can be combined with restrictions below:

 last : the verified ballot is currently the last on BB
BBcast(cr, b) @i · BBcast(cr, b®) @j ·
VerB(id, cr, b) @k · i « k · j « k Ÿ j « i ‚ b = b®

 mine : all ballots currently on BB are cast by id
VerB(id, cr, b) @i · BBcast(cr, b®) @j · j « i
Ÿ VoteB(id, cr, b®) @k

Specification Voter instructions

V1 : (R0
ver; last) verify the last ballot on BBcast

V2 : (R0
ver; last · mine) as V1, and ensure all ballots are theirs

V3 : (R1
ver) verify the ballot directly on BBtally

V4 : (R2
ver) verify abstention directly on BBtally

FIGURE 5.1: Individual verification procedures.

Individual verification procedures V . In the specification S
H

, individual verification proce-
dures are intended for verifying the ballot on BB; thus, they are not concerned about verifying
the correct vote encryption on the voting platform. Helios allows individual verification of
the ballot cast anytime on BB until another ballot is cast for the same credential. In that case,
the ballot present on BB is replaced with the new one. It also allows individual verification
of an empty ballot, which is Ú next to an eligible credential, i.e. a voter can verify on BB
that nobody has cast a ballot on their behalf. In addition, we model another version of BB in
which no old ballot is replaced with the new one. Instead, the BB displays all cast ballots until
the end of the election. Then, whenever a voter performs an individual verification for their
last ballot cast, they can also verify that they cast all other ballots present on BB next to their
credential, i.e. all other ballots are theirs. Note that this version of BB is not used in Helios.
We model this for experimental purposes.

We present the specifications of the abovementioned individual verification procedures in
Figure 5.1. The regular procedure, i.e. the individual verification of the last ballot cast anytime
during the voting phase, is denoted by V1. The procedure for which we consider another
version of BB, i.e. the voters verify their last ballot cast and all former ballots displayed next
to their credentials are theirs, is denoted by V2. On the other hand, V3 denotes the procedure
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C
V
corr : corrupt voter to reveal credentials

[ Voter(id, cr), Pwd(id, pwd) ]**[ Corr(id) ]ô[ Out(Íid, cr, pwdÎ) ]

C
T
key : corrupt talliers to control the private election key

[ In(skE) ]**[ BBkey(pk(skE)) ]ô[ SkE(skE),BBkey(pk(skE)) ]

C
VS
cast : corrupt server to stu� ballots

[ In(Ícr, bÎ) ]**[ BBcast(cr, b) ]ô[ BBcast(cr, b) ]

C
VR_VS
reg : corrupt registrar/server to control credentials

[ In(cr), Id(id) ]**[ Reg(id, cr),BBreg(cr) ]ô[ Voter(id, cr),BBreg(cr) ]

C
VP
vote : corrupt platform to control encryption randomness

rule RVP
vote where Fr(r) is replaced with In(r)

FIGURE 5.2: Rules modelling corrupt parties in Helios.

Adversary Models A1 A2 A3 A4

Talliers C C C C
Server H C C C
Registrar H H C C
Voting Platform H H H C

TABLE 5.1: Adversary models for Helios.

that describes the individual verification of the last ballot cast at the end of the election, i.e.
in the tally phase, and V4 represents the one for verifying the abstention.

Adversary models A. For Helios, A models an adversary with the ability to corrupt parties
in the ways described in Figure 5.2. The rules that model corrupt parties in the protocol are
as follows. The rule CV

corr models the corruption of voters any time during the election, where
the voters leak their credentials to the adversary. Note that this rule brings flexibility in the
way of corruption of the voters so that they can be corrupted after they cast a ballot. Thus, the
corrupt voters are not labelled at the beginning of the election as they are modelled in [17].
The rule CT

key allows the adversary to control the election’s private key since its leakage is not
a concern for verifiability. The rule C

VS
cast models a corrupt server that forgoes the prescribed

way of validating ballots before casting them on BB. Therefore, it allows the adversary to
stu� any ballot for any credential. Note, however, that the restriction  VS_EA

cast in the specifi-
cation P

H
restricts the adversary to cast only valid ballots and for eligible credentials, which

is justified by the fact that public checks can ensure it. The rule C
VR_VS
reg represents a corrupt

registrar/server that allows the adversary to determine election credentials for the voters. Fi-
nally, the rule CVP

vote specifies a corrupt voting platform that allows the adversary to control the
randomness used to encrypt the chosen vote by the voter.

Table 5.1 represents the adversary models for Helios, in which corrupt parties are denoted
by C, whereas honest parties are by H. In addition to corrupt parties represented in Table 5.1,
we consider the network corrupt, i.e. the communication is held through a public channel.
Moreover, in all cases, some voters are corrupt. The actions of corrupt parties are described
with the rules from Figure 5.2. Whenever a party is corrupt, we replace the rule modelling
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its honest behaviour in the specification P
H

with the one modelling its corrupt behaviour.
Moreover, when the server is corrupt, we remove the restriction  VS

order from the specification
since a corrupt server may not process the ballots in the correct order. Additionally, the event
Reg(id, cr) is required to be recorded by an honest party. In A3 and A4, we assume they are
recorded by voters when they receive their election credentials. This is similar to the case of
registration by a corrupt registrar/server. Therefore, we keep the event Reg(id, cr) in the rule
C
VR_VS
reg .

In the specification of A, the corrupt registrar is not considered a separate case from the
corrupt server. One reason is that, in general, the Helios server registers voters. The second
reason is that if a separate registrar is used, as in [3], this party should also be responsible for
authenticating the voters to accept their ballots. Thus, it forwards all received ballots to the
server for recording them to BB. In the case of a corrupt registrar, the adversary can cast any
ballot without authentication, and the honest server will publish them. Therefore, this case is
not di�erent from the corruption case in A3.

5.3 Verification Results and Analysis

In this section, we provide the verifiability analysis of Helios with respect to the several sce-
narios obtained from the individual verification procedures and adversary models defined in
Section 5.2. For each scenario, we present the verification results of the automated verifi-
cation with Tamarin. Then, we analyse the verification results for the concerned adversary
models. We show that for some scenarios, Helios guarantees end-to-end verifiability. For
others, we capture verifiability attacks, including the well-known ballot stu�ng and classical
clash attacks and the new versions of clash attacks possible with revoting.

For the analysis, we consider 16 scenarios. Each scenario is formally defined as an e-
voting specification (P

H
,Vi,Aj) that assembles the Helios protocol specification P

H
, an in-

dividual verification procedureVi from Figure 5.1, and an adversary modelAj from Table 5.1.
The Tamarin codes corresponding to the specifications of those scenarios are available on-
line [52]. To check verifiability with respect to those scenarios, we use the formulas described
in Figure 4.1, where tr = cr and BBres(cr, v) í BBtally(cr, b) · open(b) = v. We model
the functionality of open with the following equation added to E

H
:

open(Íenc(v, pkE, r), pÎ) = v.

Moreover, we fix the number of candidates at two in order to specify the zero-knowledge proof
equations in E

H
. As revote policies, we use ⌦last(id, v, t) for the individual verification proce-

dures V1 and V2 that represent the verification any time during the election, and ⌦no(id, v, t)
for the procedures V3 and V4 that represent the verification performed at the end of the elec-
tion. Thus, we check each formula from Figure 4.1 with Tamarin and show whether Helios
guarantees E2E[iv÷, res↵] for the specified scenario (P

H
,Vi,Aj) and ÷, ↵ À {˝, ÷}.

We present the verification results in Table 5.2, where [Vi,Aj] represents (P
H
,Vi,Aj),

the symbol 3 represents the successful verification, i.e. the security proof, whereas 7 does
the failure, i.e. an attack. The Tamarin execution for any scenario, where all formulas are
checked together, typically takes less than a minute. Note that the formulas �÷cons and �˝

cons
in Table 5.2 represent the conjunctions of the formulas�reg1 ·�reg2 ·�one and�˝

reg2 ·�one,
respectively, and the formulas�÷

iv2 and�÷
iv3 represent both cases, where either÷ = ˝ or÷ = ÷.

Recall that

SWE2E[iv˝, res˝] = �˝
iv1 ·�

˝
iv2 ·�

˝
iv3 ·�eli ·�˝

res ·�˝
cons.



5.3. Verification Results and Analysis 75

[Vi,Aj]_�type �÷iv1 �˝
iv1 �÷

iv2 �÷
iv3 �eli �÷res �˝

res �÷cons �˝
cons

[Vi,A1], i À {1, 2} 7 3 3 3 3 3 3 3 3

[Vi,A1], i À {3, 4} 3 3 3 3 3 3 3 3 3

[Vi,A2], i À {1, 2} 7 7 3 3 3 7 7 3 3

[Vi,A2], i À {3, 4} 3 3 3 3 3 7 3 3 3

[V1,A3] 7 7 7 3 3 7 7 7 3

[V2,A3] 7 7 3 3 3 7 7 7 3

[V3,A3] 3 3 3 3 3 7 3 7 3

[V4,A3] 3 3 7 3 3 7 3 7 3

[Vi,A4], i À {1, 2} 7 7 7 3 3 7 7 7 3

[Vi,A4], i À {3, 4} 3 3 7 3 3 7 3 7 3

TABLE 5.2: Verification results for Helios.

Adversary A1. For the procedure V1, i.e. the verification of the last ballot cast at any time dur-
ing the election, we have (P

H
,V1,Ai) °Ù �÷iv for any i, representing the violation of individual

verifiability of corrupt voters. In these cases, Ai casts a ballot using the corrupt voter’s cre-
dentials after the voter has verified their vote. On the other hand, we have (P

H
,V1,A1) Ù �˝

iv
for honest voters. Indeed, all other formulas hold for A1, i.e. (P

H
,V1,A1) Ù SE2E[iv˝, res↵],

for ↵ À {˝, ÷}, amounting to strong end-to-end verifiability guarantees, i.e. E2E[iv˝, res↵], for
honest voters. We also have (P

H
,Vi,A1) Ù SE2E[iv÷, res↵] for i À {3, 4} and ↵ À {˝, ÷}, guar-

anteeing strong end-to-end verifiability even for corrupt voters when they perform individual
verification at the end of the election. Note that we assume a di�erent BB displaying all cast
ballots (not only the last ballot cast for each credential) and require additional voter checks
with V2, i.e. the voters also verify the older ballots cast by them. Intuitively, this deployment
of BB with V2 helps to prevent clash attacks exploited with revoting, as we discuss in A3.
However, it does not help to prevent ballot stu�ng since the adversary casts a ballot for the
voter’s credential after they performed the individual verification. Thus, we obtain the same
results for the scenarios (P

H
,V1,A1) and (P

H
,V2,A1).

Adversary A2. We have (P
H
,Vi,A2) °Ù �÷res for any i, representing the well-known ballot

stu�ng attacks in Helios when the server is corrupt. On the positive side, (P
H
,Vi,A2) Ù

SE2E[iv÷, res˝], for i À {3, 4} and ÷ À {˝, ÷}, meaning that the server stu�s ballots only for
voters who did not perform individual verification at the end of the election. Thus, Helios
guarantees weak end-to-end verifiability, i.e. E2E[iv÷, res˝] for ÷ À {˝, ÷}, with the proce-
dures V3 and V4.

Adversary A3. We have (P
H
,V3,A3) Ù SWE2E[iv˝, res˝], representing the first automated

proof of end-to-end verifiability for Helios when the server is fully corrupt, i.e. the corruption
of the server also includes the registration of the voters. Note that V3 is the procedure per-
formed after the voting phase, whereas V1 represents the procedure currently deployed and
used in [34]. For V1, in addition to the ballot stu�ng attacks (as for A2), (P

H
,V1,A3) °Ù �÷

iv2,
for ÷ À {˝, ÷}, corresponding to a new version of the clash attacks [40], which is originally
exploited with A4. The attack scenario is presented in AS1

H
. It can be seen that, if the reg-

istrar/server assigns the same credential, i.e. cr1, to two voters, they can both be happy with
their verification results, by verifying BBcast at di�erent points in time. Election auditors
cannot detect any irregularity on BB, since the public sequence of ballots is consistent with
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revoting performed by cr1. The server can then stu� a ballot for cr2, in order to create the
impression that ballots from all voters have been taken into account.

Attack Scenario AS1
H

(clash attack by A3)

1. VR_VS creates cr1, cr2, and registers both V(id1) and
V(id2) with cr1, resulting in Reg(id1, cr1), Reg(id2, cr1).

2. V(id1) casts a ballot b1 and verifies (cr1, b1) À BBcast.
3. V(id2) casts a ballot b2 and verifies (cr1, b2) À BBcast.
4. EA sees (cr1, b1) followed by (cr1, b2) on BBcast.
Outcome: only one ballot is tallied for id1 and id2.

The attack AS1
H

is particularly e�ective when BBcast shows only the last ballot cast for
each credential, as in the current deployment. However, the other deployment options for
BBcast may prevent similar attacks. For example, assume all ballots cast by each voter are
displayed on the bulletin board, and voters are instructed to ensure all previous ballots cast
for their credential are theirs when they verify their last ballot cast, as in procedure V2. Then,
adapting the above scenario, after id2 casts b2, (cr1, b1), (cr1, b2) À BBcast. The voter id2 has
a chance to spot a problem related to cr1. Therefore, the attack AS1

H
can be prevented by V2.

An interesting version of this attack is when id1 and id2 choose to abstain. In that case, they
can still verify the bulletin board to ensure no ballot is cast on their behalf. The adversary that
corrupts the registrar/server to register id1, id2 with the same cr1 can, again, cast a ballot for
cr2. This entails (P

H
,V4,A3) °Ù �÷

iv2, for ÷ À {˝, ÷}. Remarkably, this attack is more di�cult
to prevent than before. The verification results show that procedures that protect participating
voters do not protect the abstainers. The attack AS1

H
can be prevented by V3, i.e. verifying

ballots directly on BBtally, or by V2, i.e. verifying the last ballot and ensuring all ballots on
BBcast are recognised as theirs by voters. However, it is not possible to prevent clash attacks
on abstaining voters; (i) there is no ballot on BBcast, (ii) verification on BBtally also does not
help, since two abstaining voters would both be happy seeing no ballot.

Attack Scenario AS2
H

(clash attack by A4)

1. VR_VS creates cr1, cr2, and registers both V(id1) and
V(id2) with cr1, resulting in Reg(id1, cr1), Reg(id2, cr1).

2. VP prepares the same ballot b for V(id1) and V(id2).
3. V(id1) casts the ballot b and verifies (cr1, b) À BBtally.
4. V(id2) casts the ballot b and verifies (cr1, b) À BBtally.
Outcome: only one ballot is tallied for id1 and id2.

Adversary A4. We capture the classical clash attacks [40], as presented in AS2
H

. There are
some notable di�erences from the scenario of AS1

H
: voters id1 and id2 are assumed to vote for

the same candidate; voting platforms of both voters is assumed corrupt; the attack is possible
even when revoting is not allowed and voters perform the stronger verification procedure V3.
Here, the adversary also needs to create a clash on ballots, and not only on public credentials,
since there is at most one ballot on BBtally for each credential. That is where it relies on the
voting platform.

Helios with identities. The verification results for the specification of Helios with identities
are similar to the one given in Table 5.2, except for the clash attacks caught with the property
�÷

iv2 in A3 and A4. The property �÷
iv2 is trivially satisfied in all scenarios since cr = id.
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Conclusion. Helios is vulnerable to ballot stu�ng attacks by a corrupt server and clash at-
tacks by a corrupt server, registrar, and voting platform. In our analysis, we have captured
those attacks with adversary models A2 and A4, respectively. In addition, we have discovered
new versions of clash attacks exploited with A3 when revoting is allowed. In the new ver-
sion, the adversary does not have to corrupt voting platforms; thus, the clash is not required
on ballots.

On the other hand, we have experimented the e�ects of the di�erent individual verification
procedures deployed by the protocol. When individual verification is allowed any time during
the election with V1, as in the deployment of Helios, the voters are subjected to ballot stu�ng
attacks even if they have verified their last ballot cast on BB. However, if the verification is
allowed at the end of the election with V3, Helios provides end-to-end verifiability guarantees
even for corrupt voters and even if the server is fully corrupt. Thus, we have obtained the
first automated proof of end-to-end verifiability for Helios when the server is fully corrupt.
Moreover, we have assumed a di�erent BB displaying all cast ballots by voters, not just the
last cast one, and thus a di�erent individual verification procedure V2, where the voters verify
their last cast ballot and also the older ballots cast by them at any time during the election.
We have observed that V2 protects voters against new versions of clash attacks; however, it
does not protect them against ballot stu�ng.

The findings of our analysis motivate us to perform a similar analysis on Belenios, an
e-voting protocol built upon Helios. Belenios introduces a separate registrar to generate elec-
tion credentials for voters and splits the trust between the registrar and the server. Thus, it
prevents ballot stu�ng and provides stronger end-to-end verifiability. Our goal is to explore
the verifiability of the protocol, especially in the case of revoting.
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SETUP PHASE

RT
key : generate election key pair

[ Fr(skE) ]**[ BBkey(pk(skE)) ]ô[ SkE(skE),BBkey(pk(skE)),Out(pk(skE)) ]

RA
cand : determine candidates to be elected

let vlist = Ív1,… , vkÎ in

[ In(vlist) ]**[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]ô
[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]

RA
id : determine identities eligible to vote

[ In(id) ]**[ ]ô[ Id(id) ]

RVR_VS
reg : register voter with a public credential

[ Id(id), Fr(cr) ]**[ Reg(id, cr),BBreg(cr) ]ô[ Voter(id, cr),BBreg(cr),Out(cr) ]

RVS
pwd : generate password for voter authentication

[ Id(id), Fr(pwd) ]**[ ]ô[ Pwd(id, pwd) ]

RVS
bb : setup initial BBcast for registered voters

[ BBreg(cr) ]**[ BBcast(cr,Ú) ]ô[ BBcast(cr,Ú) ]

VOTING PHASE

RVP
vote : construct a ballot, authenticate and send it to VS

let c = enc(v, pkE, r); p = prR(c, r, vlist); b = Íc, pÎ; a = h(Íid, pwd, bÎ) in

[ Voter(id, cr), Pwd(id, pwd),BBcand(v),Vlist(vlist),BBkey(pkE), Fr(r), Fr(t) ]
**[ Vote(id, v),VoteB(id, cr, b),VoteTime(id, v, t) ]ô[ Voted(id, cr, v, b, t),Out(Íid, b, aÎ) ]

RVS
cast : authenticate voter, verify and publish ballot

let b = Íc, pÎ; a® = h(Íid, pwd, bÎ) in

[ In(Íid, b, aÎ),Voter(id, cr), Pwd(id, pwd),BBkey(pkE),Vlist(vlist) ]
**[ a® í a, verR(p, c, pkE, vlist) í true,VScast(id, b),BBcast(cr, b) ]ô[ BBcast(cr, b) ]

 VS
order : ensure correct order of ballots

VoteB(id, cr, b) @i · VoteB(id, cr, b®) @j ·
VScast(id, b) @k · VScast(id, b®) @l · i « j Ÿ k « l

 VS_EA
cast : ensure ballot validity; can be audited by EA

BBcast(cr, b) Ÿ BBreg(cr) · ( b ë Ú Ÿ
BBkey(pkE) · Vlist(vlist) · b = Íc, pÎ · verR(p, c, pkE, vlist) = true )

TALLY PHASE

RVS
tally : select ballot to be tallied for a public credential

[ BBcast(cr, b) ]**[ BBtally(cr, b) ]ô[ BBtally(cr, b) ]

 VS_EA
tally : ensure the last ballot cast is tallied; can be audited by EA

BBcast(cr, b) @i · BBcast(cr, b®) @j · BBtally(cr, b) @k Ÿ j « i ‚ b = b®

FIGURE 5.3: Tamarin specification of Helios.
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Chapter 6

Belenios and Its Variants

Belenios [18, 8] has built upon Helios to provide stronger end-to-end verifiability with weaker
trust assumptions, as described first in [20]. It introduces a separate registrar responsible for
generating signing key pairs for the voters but keeps the server responsible for voter authenti-
cation. Therefore, voters receive a key pair from the registrar and a password from the server,
sign their ballots before casting and use the password for authentication to the server. In this
way, Belenios splits the trust between the registrar and the server so that none of them knows
both credentials to cast a ballot. Thus, it prevents ballot stu�ng by a corrupt server.

The first version of Belenios [20] was described in a computational model and proved to be
secure with respect to end-to-end verifiability against a corrupt registrar as well as a corrupt
server, provided that they are not simultaneously corrupt. This version has introduced the
signature to the ballot structure, keeping the zero-knowledge proof for the vote to show that
it is within a valid range. However, in this way, it has inherited the vulnerability in Helios
that allows ballot copying attacks [19] against the privacy of the protocol. To prevent those
attacks, the zero-knowledge proof in Belenios has been improved [18] to include the public
key of the voter so that the ciphertext of the vote is linked to the voter who computes and sings
it. Thus, the adversary cannot copy the ciphertext and cast it on behalf of another voter since
it cannot generate the related zero-knowledge proof.

The computational model [20] of Belenios has been proved manually, focusing only on
verifiability. However, it did not account for revoting, which is a feature a�ecting verifiability.
Another machine-checked security analysis has been performed for the computational model
of Belenios in [21] with respect to both privacy and verifiability. The model considers the lat-
est version of Belenios [18] with an improved version of zero-knowledge proof, accounts for
revoting and updates the trust assumptions in [20] concerning privacy, i.e. Belenios provides
privacy only when the registrar is honest, as shown in [21]. The analysis has been assisted
by the tool EasyCrypt, which helped to improve the existing definitions of privacy and veri-
fiability since it allows to catch the details that cannot be seen easily with pen and paper. On
the other hand, the symbolic model of Belenios has been analysed in [4] with respect to pri-
vacy. However, there is no symbolic proof of verifiability for the general version of Belenios.
The symbolic analysis has been performed in [17] for a variant of Belenios, i.e. BeleniosVS,
which has several limitations as discussed in Chapter 4.

In this chapter, first, we perform a symbolic analysis for the verifiability of Belenios us-
ing the automated verification tool Tamarin and the framework introduced in Chapter 4. Our
analysis accounts for revoting and shows that Belenios is not secure even when both the regis-
trar and the server are honest. The adversary can mount an attack against honest voters, only
corrupting the communication network when revoting is allowed. In the case of a corrupt
registrar, the adversary exploits new versions of clash attacks. Thus, Belenios is not secure
against a corrupt registrar or a corrupt server as it is supposed to be.

Second, we propose fixes for the found attacks and improve the verifiability of Belenios
without a�ecting the usability of the protocol. Our solutions require changes in the ballot
structure, which will be implemented by the voting platforms and the voting server. We call
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Belenios+ the new variant of Belenios, and we prove that Belenios+ is secure with respect to
a corrupt registrar or a corrupt server, performing an automated verification with Tamarin.

Last, we perform a verifiability analysis for BeleniosRF [14], which is a variant of Be-
lenios aiming to provide receipt-freeness in addition to end-to-end verifiability. Receipt-
freeness and verifiability are often mentioned in the literature as two conflicting properties
of e-voting protocols. With this analysis, we aim to evaluate the trade-o� between those
properties, comparing our verification results with the one for Belenios. In our analysis, we
find new attacks against the verifiability of BeleniosRF due to the individual verification pro-
cedure being weakened by the receipt-freeness. In BeleniosRF, voters perform individual
verification by checking whether there is a ballot next to their credentials on BB since the
voting server randomises their ballots, which leads to ballot stu�ng and clash attacks. Thus,
we conclude that BeleniosRF provides weaker verifiability guarantees than Belenios while
providing stronger privacy guarantees with receipt-freeness.

Structure of the chapter. This chapter includes five sections, where the first three are dedi-
cated to Belenios, the fourth is to new variants of Belenios, and the last is to BeleniosRF. In
Section 6.1, we give the protocol structural details of Belenios. In Section 6.2, we present
its Tamarin specification, and then, in Section 6.3, we provide our verification results with
respect to several individual verification procedures and corruption scenarios. In Section 6.4,
we propose fixes for the attacks described in Section 6.3 as new variants of Belenios and
prove the variant Belenios+ is secure against all attacks. Finally, we present our verifiability
analysis for BeleniosRF in Section 6.5.

6.1 Belenios Protocol Structure

Belenios has the following parties described as follows:

– Administrator A is responsible for the election configuration, i.e. determines the can-
didates and voters eligible for the election and talliers to generate the election key pair.

– Talliers T generate an election key pair: a private key and its corresponding public key,
and decrypt the homomorphic tally of the ballots at the end of the election.

– Registrar VR generates a signing key pair for each voter, sends each key pair privately
to the corresponding voter, and registers the public keys of the voters as eligible public
credentials for the election, i.e. publishes them on the bulletin board.

– Voting server VS generates a login credential, i.e. a password, for each voter identity,
accepts ballots from voters if authenticated with the login credential, performs required
checks for the validity of the ballots, and then publishes them on the bulletin board. It
also manages a log file, denoted by Log, to ensure the consistency of the voter identity-
credential pairs, i.e. it does not allow a voter identity to be matched with several eligible
credentials and a credential with several identities.

– Voting platform VP allows voters to generate a ballot as a quadruple of a ciphertext
obtained encrypting their vote with the election public key, the signature for the cipher-
text, and two zero-knowledge proofs; one showing that the vote is within a valid range
and another showing that the ciphertext is computed by the voter who signs it. VP, then,
allows voters to cast their ballot on the voting server via a login operation.

– Voters V registered to the election as eligible may cast several ballots using their voting
platform during the election or abstain from voting.

– Election auditors EA audit the public information recorded on the bulletin board.
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Belenios relies on an append-only public bulletin board, denoted by BB, to display the
public election data, e.g. the election’s public key is displayed on BBkey. In the following,
we present the election procedures and the individual verification procedure of Belenios:

Setup phase. A determines the list of candidates v1,… , vk and voters id1,… , idn that are
eligible for the election, deploys T to generate the election key pair (skE, pkE), VR to generate
a signing key pair (skid, pkid) for each voter id and publish the public keys of the voters as
public credentials cr1,… , crn, where each cri = pkidi , and VS to generate a login credential
pwd for each voter id. The public information is published on the portions of BB as follows:

BBkey : pkE; BBcand : v1,… , vk; BBreg : cr1,… , crn

In this phase, each voter id obtains a signing key pair (skid, cr) from VR and a password pwd
from VS.

Voting phase. V interacts with VP to construct a ballot:

VP : downloads pkE À BBkey and v1,… , vk À BBcand,
V : selects v À BBcand,

VP : encrypts v with pkE and a randomness r : c = enc(v, pkE, r),
signs c with skid : s = sign(c, skid),
produces a proof of range : pR = prR(c, r, Ív1,… , vkÎ),
produces a proof of label : pL = prL(c, r, cr).

In the above computations, skid is provided by the voter. The proof of range pR denotes the
zero-knowledge proof showing that the vote v is valid within the range Ív1,… , vkÎ. The proof
of label pL represents the zero-knowledge proof showing that the ciphertext is computed by
the voter who signs it, i.e. it labels the ciphertext with the public key of the voter who knows
the encryption randomness. Thus, VP constructs the ballot as b = Íc, s, pR, pLÎ. IfV decides to
cast b, VP requests login credentials of V, i.e. id and pwd, which prompts a connection to VS.
If VS authenticates V, it receives the tuple Ícr, bÎ on behalf of id and then performs required
validity checks on id, cr, b, i.e. VS ensures that there is no id® or cr® such that (id, cr®) À Log or
(id®, cr) À Log for id ë id® and cr ë cr®, then validates cr À BBreg, and verifies the signature
s and proofs pR and pL. Then, it records (id, cr) in Log and publishes (cr, b) on BBcast.

Tally phase. At the end of the voting phase, VS selects the last ballot recorded on BBcast for
each credential and publishes it on BBtally. The final version of BBtally is:

BBtally : (cr1, b1),… , (crn, bn),

where b = Ú if no ballot was cast for cr. Then, the ciphertexts corresponding to non-empty
ballots on BBtally are combined homomorphically into the ciphertext c encoding the total
number of votes for each candidate, which is decrypted byT to obtain the result of the election.
T also produces a zero-knowledge proof of correct decryption.

Individual verification. In Belenios, V can verify that VS correctly captures and records
their ballot on BB, which is allowed anytime during the election. For the verification, V has
to match their ballot with the one present on BB next to their credential. Belenios allows
revoting; thus, each time a ballot is received for a credential, the old ballot is replaced with
the new one on BB. Thus, V cannot verify an older ballot on BB. If V verifies their last ballot
cast on BBtally, then V can ensure that their ballot will be tallied and their vote will be counted
on their behalf due to the verifiable tally procedure. The public data on BB allows anyone to
verify the produced zero-knowledge proof to ensure the result corresponds to the list of tallied
ballots.
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Additions with respect to Helios. Belenios extends the ballot structure to include a signature
s for the ciphertext and an additional zero-knowledge proof pL to ensure that the ciphertext
is computed by the voter who signs it. These two components in the ballot structure prevent
ballot stu�ng attacks and ballot copying attacks [19] in Helios. In addition, Belenios requires
VS to ensure consistency of the identity-credential pairs recorded in Log when it receives a
ballot from a voter identity for a public credential. This helps to prevent possible attacks re-
lated to the corrupt registration of voters with public credentials. These additions are detailed
in the following:

– Belenios uses digital signatures for the authenticity of the ballots, i.e. the signature in-
side the ballot attests that the voter who owns the signing key has generated the ballot.
Thus, it ensures that if a ballot is present on the BB next to a public credential, it should
have been cast by a voter who owns that credential. Since all the signing key pairs are
generated by the registrar and the public keys, i.e. public credentials, are considered el-
igible, the corrupt server cannot stu� ballots for non-eligible credentials. Furthermore,
the corrupt server cannot obtain the signing key of an honest voter since the registrar
privately shares it with the voter. In this way, ballot stu�ng is prevented for honest
voters or non-eligible credentials.

– Helios is vulnerable to ballot copying attacks [19]. In these attacks, the adversary copies
a voter’s ballot and casts it on behalf of a corrupt voter. This may lead the adversary
to learn the vote of an honest voter. Assume there are three voters, one of which is
corrupt. Then, the adversary can easily learn the copied vote since it will correspond
to the majority of the votes in the outcome. This attack results from the vulnerability
of the ballot structure. In Helios, the ballot structure consists of the encryption of the
vote and the proof of range, i.e. it does not include any particular information from
the voter. Therefore, the copy of the ballot will be valid to be cast by another voter. To
prevent such attacks, Belenios brings another zero-knowledge proof, i.e. proof of label,
to the ballot structure, which links the encryption, i.e. the ballot, to a public credential.
In this way, even if the adversary copies the ballot, it will not be accepted since the
public credential of the voter who cast it di�ers from the one inside the proof. Even if
the adversary tries to copy only the ciphertext, it cannot generate a valid proof of label
with another credential since it does not know the encryption randomness.

– Belenios requires the following consistency checks in Log by the server:

(id, cr) À Log · (id, cr®) À Log Ÿ cr = cr® and
(id, cr) À Log · (id®, cr) À Log Ÿ id = id®.

With these checks, the server does not allow a corrupt registrar to cheat on registering
voter identities with public credentials. For example, a corrupt registrar may attempt
to give the same credential to several voters and thus many credentials to a corrupt
voter. Due to the consistency checks, the corrupt voter would be able to cast ballots
only for a single credential, making other credentials wasted. In addition, the voters
who share the same credentials could complain since their ballots are rejected by the
server, which may result in the registrar being caught. Therefore, the registrar would
refrain from attempting to cheat due to the consistency checks.

6.2 Tamarin Specification of Belenios

In this section, we present the Tamarin specification S
B

of the Belenios protocol. To dis-
tinguish di�erent individual verification procedures and adversary models, we separate the
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specification S
B

into three components as we have done for Helios in Chapter 5, i.e. S
B
=

(P
B
,V ,A), where

- P
B

models the actions of the honest parties,

- V models individual verification procedures,

- A models adversarial capabilities.

Each component above has its own rules and restrictions that are intended for the execution
of its rules.

The protocol specification P
B

. We start to specify P
B

by defining the equation theory E
B

that
models the cryptographic primitives used in Belenios. Belenios uses the ElGamal encryption
algorithm to encrypt the votes, the Schnorr signature scheme to sign the encrypted votes, a
non-interactive zero-knowledge protocol to prove that the encrypted votes are in a valid range
of eligible candidates, and the ciphertexts are computed by the eligible credentials who sign
them. Thus, the specification requires the following equations defined for E

B
:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true,
(3) (≈i) verR(prR(enc(xi, y, z), z, Íx1,… , xkÎ), enc(xi, y, z), y, Íx1,… , xkÎ) = true,
(4) verL(prL(enc(x, y, z), z,l), enc(x, y, z),l) = true,

where l in (4) represents a label that will be equal to the public credential of the voter. Note
that equations (1) and (3) are the ones defined for E

H
in the Helios specification S

H
.

We have described the protocol parties of Belenios in Section 6.1, as abbreviated by A,
T, VR, VS, V, EA. Now, we model the actions of those parties with the rules in P

B
. We

denote any rule in P
B

by Ra
n, where a is the party’s abbreviation, and n is the name describing

the action in the rule. For simplicity, we remove the symbol ! from the facts, representing
persistent facts, since we consider all protocol facts except the special ones (In, Out, and Fr)
persistent. We model Belenios, considering the three phases of an election. In the phases, we
present the rules di�er from the ones described for Helios in Chapter 5.

Setup phase. The rules RT
key, R

A
cand, RA

id, RVS
pwd, and RVS

bb are similarly modelled to obtain the
election key pair, the candidates, the voter identities, the passwords and the entries for the
public credentials of the registered voter identities on BBcast. The specifications of those
rules are presented in the full specification of Belenios in Figure 6.5. Unlike Helios, the rule
RVR
reg models the generation of the signing key pairs for the voters as follows:

RVR
reg : let cr = pk(skid) in

[ Id(id), Fr(skid) ]**[ Reg(id, cr),BBreg(cr) ]ô[ Cred(id, cr, skid),BBreg(cr),Out(cr) ]

In the rule RVR
reg, VR generates a fresh signing key skid, computes a public key cr from the

signing key, and records it as an eligible public credential on BBreg. Thus, VR associates id
with the public credential cr, as recorded in the action fact Reg. In the case of a corrupt reg-
istrar, this association would be unreliable. Therefore, in that case, VS makes the association
whenever it receives a ballot from the voter id for a public credential.

Voting phase. The rule RVP
vote models the ballot generation and cast by VP, where the ballot

structure di�ers from the one in Helios, i.e. b = Íc, s, pR, pLÎ. Moreover, it adds cr next to b
in the authentication message a since VS does not know the association of public credentials
with the voter identities. Before VS accepts a ballot for a credential cr from a voter identity
id, as modelled in the rule RVS

cast, it ensures log consistency for the pair (id, cr) by recording the
fact Log and applying the restriction  VS

log. The action fact Log together with the restriction
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 VS
log restricts the rule RVS

cast to be executed only for a valid identity-credential pair, i.e. for the
respective (id, cr), there is no another pair (id, cr®) recorded before in Log for cr ë cr®, nor
(id®, cr) for id ë id®. We model the actions of VP and VS in the following two rules:

RVP
vote : let c = enc(v, pkE, r); s = sign(c, skid); pR = prR(c, r, vlist); pL = prL(c, r, cr);

b = Íc, s, pR, pLÎ; a = h(Íid, pwd, cr, bÎ) in

[ Cred(id, cr, skid), Pwd(id, pwd),BBcand(v),Vlist(vlist),BBkey(pkE), Fr(r), Fr(t) ]
**[ Vote(id, v),VoteB(id, cr, b),VoteTime(id, v, t) ]ô
[ Voted(id, cr, v, b, t),Out(Íid, cr, b, aÎ) ]

RVS
cast : let b = Íc, s, pR, pLÎ; a® = h(Íid, pwd, cr, bÎ) in

[ In(Íid, cr, b, aÎ),BBreg(cr), Pwd(id, pwd),BBkey(pkE),Vlist(vlist) ]
**[ a® í a, verify(s, c, cr) í true, verR(pR, c, pkE, vlist) í true, verL(pL, c, cr) í true,

Log(id, cr),Reg(id, cr),VScast(id, b),BBcast(cr, b) ]ô [ BBcast(cr, b) ]

 VS
log : Log(id, cr) Ÿ ¬(Log(id, cr®) · cr ë cr®) · ¬(Log(id®, cr) · id ë id®)

Unlike Helios, RVS
cast records the action fact Reg. In the case of a corrupt registrar, this will

allow us to ensure the reliable association of id with cr. However, it can record it only if the
voter id casts a ballot. As in Helios, the fact VoteTime is required for the revote policy. There
are also similar restrictions  VS

order and  VS_EA
cast to be used with the rule RVS

cast. They ensure that
VS processes the ballots cast by VP in the order they have been sent, any ballot published on
BBcast corresponds to a registered credential, and if the ballot is not Ú, the signature and the
proofs pR and pL inside the ballot are correctly verified.

Tally phase. The rule RVS
tally and the restriction  VS_EA

tally similarly model the tally phase of
Belenios. The full protocol specification P

B
is given in Figure 6.5.

Individual verification procedures V . Belenios has the same individual verification proce-
dure as Helios, i.e. it allows individual verification of the ballot cast anytime on BB until
another ballot is cast for the same credential. It corresponds to procedure V1 in Figure 5.1.
In addition to the regular procedure V1, we also use other procedures given in Figure 5.1 to
analyse their e�ects on verifiability. For the second procedure V2, we assume a di�erent BB
in which all cast ballots are displayed until the end of the election, and voters are instructed
to verify all the ballots presented on BB next to their credential when they verify their last
ballot cast. V3 allows to verify the ballot tallied for a credential at the end of the election,
and V4 allows to verify the abstention. The rules that specify them are similar to the ones in
Figure 5.1, except V4, for which we replace the fact Voter(id, cr) in the rule R2

ver with the new
fact Cred(id, cr, skid).

Adversary models A. For Belenios, Table 6.1 represents the adversary models, in which
corrupt parties are denoted by C, whereas honest parties are by H. In addition to corrupt
parties represented in Table 6.1, we consider the network corrupt, i.e. the communication is
held through a public channel. Moreover, in all cases, some voters are corrupt. The corruption
rules for talliers and server, i.e. CT

key and CVS
cast, are similar to Helios, whereas for the corruption

of voters and registrar, we use the following rules:

C
V
corr : corrupt voter to reveal credentials

[ Cred(id, cr, skid), Pwd(id, pwd) ]**[ Corr(id) ]ô[ Out(Íid, cr, skid, pwdÎ) ]

C
VR
reg : corrupt registrar to control credentials

let cr = pk(skid) in
[ In(skid), Id(id) ]**[ BBreg(cr) ]ô[ Cred(id, cr, skid),BBreg(cr) ]
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where C
V
corr leaks all the voter credentials, and C

VR
reg allows the adversary to determine the

signing key of the voter id. To model corrupt voting platforms, similarly, we replace Fr(r)
with In(r) in the rule RVP

vote.
Whenever a party is corrupt, we replace the rule modelling its honest behaviour in the

specification P
B

with the one modelling its corrupt behaviour. Moreover, when the server
is corrupt, we remove the restriction  VS

order from the specification since a corrupt server may
not process the ballots in the correct order. Additionally, the event Reg(id, cr) is required to
be recorded by an honest party. In A2 and A3, it is recorded by the registrar and the server,
respectively. However, in A4 and A5, we assume it is recorded by voters when they receive
their election credentials. This is similar to the case of registration by a corrupt registrar.
Therefore, we add the event Reg(id, cr) to the rule C

VR
reg in those cases. Note that the adver-

sary model A4 goes further than standard corruption scenarios assumed for Belenios, where
either server or registrar is honest. We show that we can obtain some end-to-end verifiability
guarantees (similar to Helios) also when this is not the case.

Adversary Models A1 A2 A3 A4 A5

Talliers C C C C C
Server H C H C C
Registrar H H C C C
Voting Platform H H H H C

TABLE 6.1: Adversary models for Belenios.

6.3 Verification Results and Analysis

In this section, we provide the verifiability analysis of Belenios with respect to 20 scenarios
that are formally defined as an e-voting specification (P

B
,Vi,Aj), where P

B
is the Belenios

specification, Vi is an individual verification procedure from Section 6.2, and Aj is an ad-
versary model from Table 6.1. For each scenario, we present the verification results of the
automated verification with Tamarin, where its specification is available online [52]. Then,
we analyse the verification results for the concerned adversary models. Our analysis shows
that Belenios is secure only when the voters verify their votes at the end of the election. It
is not secure if the voters verify their votes anytime during the election. Belenios aims to
be secure unless the registrar and the server are simultaneously corrupt. However, we cap-
ture attacks if either the registrar or the server is corrupt, even when both are honest. The
vulnerabilities that enable the attacks are as follows:

• The voting server can accept ballots from some voter id in a di�erent order, i.e. the
adversary controlling the communication network may reorder them.

• Since the voting server does not know the association between voter identities and pub-
lic credentials, it can accept ballots copied from other voters without the adversary
needing to change the credentials.

Thus, the adversary is able to reorder ballots, stu� ballots for the honest voters who did not
verify, as well as the ones who verified their last ballot cast. Moreover, new versions of clash
attacks can be exploited just with a corrupt registrar as we show in A3.

We present the verification results in Table 6.2, where [Vi,Aj] represents (P
B
,Vi,Aj),

the symbol 3 represents the successful verification, i.e. the security proof, whereas 7 does
the failure, i.e. an attack. The Tamarin execution for any scenario, where all formulas are
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checked together, typically takes less than a minute. Note that the formulas �÷cons and �˝
cons

in Table 6.2 represent the conjunctions of the formulas�reg1 ·�reg2 ·�one and�˝
reg2 ·�one,

respectively, and the formulas�÷
iv2 and�÷

iv3 represent both cases, where either÷ = ˝ or÷ = ÷.

[Vi,Aj]_�type �÷iv1 �˝
iv1 �÷

iv2 �÷
iv3 �eli �÷res �˝

res �÷cons �˝
cons

[Vi,A1], i À {1, 2} 7 7 3 3 3 3 3 3 3

[Vi,A1], i À {3, 4} 3 3 3 3 3 3 3 3 3

[Vi,A2], i À {1, 2} 7 7 3 3 3 3 3 3 3

[Vi,A2], i À {3, 4} 3 3 3 3 3 3 3 3 3

[V1,A3] 7 7 7 3 3 3 3 3 3

[V2,A3] 7 7 3 3 3 3 3 3 3

[V3,A3] 3 3 3 3 3 3 3 3 3

[V4,A3] 3 3 7 3 3 3 3 3 3

[V1,A4] 7 7 7 3 3 7 7 7 3

[V2,A4] 7 7 3 3 3 7 7 7 3

[V3,A4] 3 3 3 3 3 7 3 7 3

[V4,A4] 3 3 7 3 3 7 3 7 3

[V1,A5] 7 7 7 3 3 7 7 7 3

[V2,A5] 7 7 3 3 3 7 7 7 3

[Vi,A5], i À {3, 4} 3 3 7 3 3 7 3 7 3

TABLE 6.2: Verification results for Belenios.

Adversary A1. We have (P
B
,V1,A1) °Ù �˝

iv1, implying that the individual verifiability does
not hold for honest voters with V1, i.e. when voters verify their last ballot cast during the
voting phase. In this case, the adversary controlling the communication network exploits an
attack against an honest voter, as described in AS1

B
. Assume the voter id1 casts two ballots

b1 and b2 respectively, which are reordered and cast by the adversary using the credentials
of a corrupt voter id2. After the adversary casts b2 as first, the voter verifies it on BBcast,
considering it to be counted for them. However, the adversary casts b1 afterwards, making it
to be tallied. In Belenios, the server does not know the association between voter identities
and credentials. It associates them when it receives a ballot for a credential from a voter
identity. Therefore, it can associate the corrupt voter id2 with the public credential cr1 of
the honest voter id1. This attack is not possible in Helios since the registrar and the server
agree on the correspondence between identities and credentials. Thus, corrupt voters cannot
cast ballots for any credential other than theirs. We note that [18] also mentions a potential
alternative design for Belenios where the registrar communicates the association between the
voter identities and public credentials to the server before the election starts. That version
would not su�er from this attack. The version we analyse is preferred for deployment since
it promises everlasting privacy, yet it does pose new problems, as we show.

Similarly, we have (P
B
,V2,A1) °Ù �˝

iv1 for the verification procedure V2. Considering the
attack scenario in AS1

B
, when the voter verifies their second ballot in step 4, there is a single

ballot on BBcast, i.e. b2 À BBcast. Therefore, there is no other ballot to be verified on BBcast
that it had been cast by them. In reality, the voter may complain that their first ballot is not
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Attack Scenario AS1
B

(ballot reordering by A1)

1. V(id1) casts a ballot b1 followed by another ballot b2.
2. A blocks b1 and b2, corrupts V(id2) and casts b2 for the credentials (id2, cr1).
3. VS accepts b2 coming from (id2, cr1) and publishes (cr1, b2) on BBcast.
4. V(id1) successfully verifies (cr1, b2) À BBcast.
5. A casts b1 for the credentials (id2, cr1).
6. VS accepts b1 and publishes (cr1, b1) on BBcast.
Outcome: b1 is tallied for cr1, even if b2 is the last ballot cast and verified by id1.

present on BBcast. However, since the voter’s last cast is present on BBcast, the voter may
feel confident that their ballot will be counted for them and may not complain.

Adversary A2. We obtain (P
B
,Vi,A2) Ù SE2E[iv÷, res↵] for i À {3, 4} and ÷, ↵ À {˝, ÷},

proving that Belenios indeed satisfies stronger end-to-end verifiability than Helios in this case.
We note, however, that the case with V1 corresponds to the currently recommended proce-
dure in Belenios [8, 18]. Thus, we should be able to prove (P

B
,V1,A2) Ù SE2E[iv˝, res÷],

but a variant of the ballot reordering attack presented for A1 prevents this, i.e. we have
(P

B
,V1,A2) °Ù �˝

iv. In this variant of ballot reordering attack, as described in AS2
B

, the ad-
versary can reorder and cast the ballots of an honest voter without using the credential of a
corrupt voter. Note that the server is corrupt; therefore, it does not process the ballots in the
correct order.

Attack Scenario AS2
B

(ballot reordering by A2)

1. V(id1) casts a ballot b1 followed by another ballot b2.
2. A blocks b1 and allows b2 to be cast.
3. VS accepts b2 for the credential cr1 and publishes (cr1, b2) on BBcast.
4. V(id1) successfully verifies (cr1, b2) À BBcast.
5. A casts b1 for the credential cr1.
6. VS accepts b1 and publishes (cr1, b1) on BBcast.
Outcome: b1 is tallied for cr1, even if b2 is the last ballot cast and verified by id1.

Adversary A3. We expect (P
B
,Vi,A3) Ù SE2E[iv˝, res÷] for any i, since Belenios is claimed

to be secure against a corrupt registrar. However, we find (P
B
,Vi,A3) °Ù SE2E[iv˝, res÷] for

i = 1, 2, 4. Only the scenario with the individual verification V3, i.e. voters verify their ballots
at the end of the election, satisfies strong end-to-end verifiability even for corrupt voters, i.e.
(P

B
,V3,A3) Ù SE2E[iv÷, res↵] for ÷, ↵ À {˝, ÷}.
One of the attacks we capture against individual verifiability of Belenios with the pro-

cedures V1 and V2, i.e. (P
B
,Vi,A3) °Ù �˝

iv1 for i À {1, 2}, is the ballot reordering attack
presented in AS1

B
. We also discover another attack against the individual verifiability of hon-

est voters, as presented inAS3
B

. In this attack, the adversary blocks the honest voter id1’s ballot
b and casts it using the login credentials, i.e. pwd2 of a corrupt voter id2. Subsequently, the
voter verifies their ballot on BBcast. However, the adversary casts another ballot b

A
for the

honest voter’s public credential cr1 before the voting phase ends. Then, the ballot b
A

from the
adversary is tallied for cr1 even if the ballot b from the honest voter is successfully verified.
This attack is more serious than ballot reordering attack, since the adversary can choose the
vote and generate its own ballot.
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Attack Scenario AS3
B

(individual verifiability attack by A3)

1. VR registers V(id1) and V(id2) with Cred(id1, cr1, skid1)
and Cred(id2, cr2, skid2) respectively.

2. A corrupts V(id2) and VR and obtains Ípwd2, skid1Î.
3. V(id1) casts a ballot b for the credentials (id1, cr1).
4. A blocks b, casts it for the credentials (id2, cr1).
5. VS accepts b and publishes (cr1, b) on BBcast.
6. V(id1) successfully verifies (cr1, b) À BBcast.
7. A casts another ballot b

A
for (id2, cr1).

8. VS accepts b
A

and publishes (cr1, bA) on BBcast.
Outcome: b

A
is tallied for cr1, even if b is the only ballot cast and verified by id1.

We also find the clash attack on empty ballots in this case, i.e. (P
B
,V4,A3) °Ù �÷

iv2 for
÷ À {˝, ÷}. In this attack, the corrupt registrar registers two or more voter identities with
the same election credentials. Assume the voters did not vote during the election but verified
BBtally to ensure nobody cast a ballot for their public credential. Thus, we capture the clash
on the credentials. Moreover, we find (P

B
,V1,A3) °Ù �÷

iv2 for ÷ À {˝, ÷}, which is also not
expected. It can be explained by the fact that the ballots from honest voters registered with
the same election credential are cast by the adversary using the login credential of a corrupt
voter. In this way, one of the verified ballots is excluded from the tally. We present this attack
in AS4

B
. Note that another version of this attack considering three voters: two are honest, and

the third is corrupt, is also possible, as presented in [6].

Attack Scenario AS4
B

(clash attack by A3)

1. VR registers V(id1) and V(id2) with the same credentials Ícr, skidÎ.
2. V(id1) casts a ballot b1 for the credentials (id1, cr).
3. A blocks b1, corrupts V(id3) and casts b1 for the credentials (id3, cr).
4. V(id1) successfully verifies (cr, b1) À BBcast.
5. V(id2) casts a ballot b2 for the credentials (id2, cr).
6. A blocks b2 and casts b2 for the credentials (id3, cr).
7. V(id2) successfully verifies (cr, b2) À BBcast.
Outcome: only one ballot is tallied for id1 and id2

even if both perform a successful verification.

We note that another ballot stu�ng attack is possible for an honest voter, which is de-
scribed as weak ballot stu�ng in [6]. Even though we do not capture it with the symbolic
definition in Figure 4.1, and it is not an attack on multiset-based election verifiability, we
present the attack in AS5

B
. This attack can only be observed by the voter while trying to cast a

ballot. In addition, the adversary does not have to control the communication network for this
attack. Thus, the consequence is that the honest voter id1 is not able to cast a vote, no matter
what infrastructure is used. This is related to a complementary property of accountability that
assigns responsibilities when verifiability fails [39].

Adversary A4. When both the server and the registrar are corrupt, we find, as expected, the
same results for Belenios as for Helios. Most notably, we have the positive result (P

B
,V3,A4)

Ù SWE2E[iv˝, res˝], implying that Belenios satisfies weak end-to-end verifiability withV3, i.e.
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Attack Scenario AS5
B

(weak ballot stu�ng by A3)

1. VR registers V(id1) and V(id2) with Cred(id1, cr1, skid1)
and Cred(id2, cr2, skid2) respectively.

2. A corrupts V(id2) and VR and obtains Ípwd2, skid1Î.
3. A casts a ballot b

A
for the credentials (id2, cr1).

4. VS accepts b
A

and publishes (cr1, bA) on BBcast.
5. V(id1) casts a ballot b for their credentials (id1, cr1).
6. VS rejects b since it sees inconsistency in logs: (id2, cr1) vs. (id1, cr1).
Outcome: id1 cannot vote, instead, b

A
is tallied for cr1.

voters verify their ballots at the end of the election, even if both the registrar and the server
are corrupt.

Adversary A5. In addition to described attacks above, we have (P
B
,Vi,A4) °Ù SE2E[iv÷, res˝]

for any i and ÷ À {˝, ÷}, since we recover the classic clash attacks as in Helios.

Conclusion. Our analysis shows that Belenios is secure against a corrupt registrar or a corrupt
server only when the voters verify their ballots at the end of the election, which corresponds
to the verification procedure V3. However, in the real deployment of Belenios, voters are
allowed to verify their last ballot cast anytime during the election, as in the procedure V1.
For this procedure, we capture attacks even when both the registrar and server are honest.
The attacks we have discovered are exploited against individual verifiability of Belenios with
revoting. In many cases, the adversary blocks the ballots of an honest voter and casts them
using the login credentials of a corrupt voter, i.e. the honest voter’s credential is associated
with the corrupt voter’s identity by the server. Then, the adversary is able to manipulate the
ballot to be tallied for that credential. Similar to Helios, we capture the new versions of clash
attacks with a corrupt registrar. The procedure V2, for which the voters verify their last ballot
cast as well as all ballots cast next to their credentials on BB, protects voters against clash
attacks, but not against other found attacks. Finally, we prove that Belenios satisfies weak
end-to-end verifiability with V3 when both the registrar and server are corrupt.

6.4 Towards Improved Election Verifiability

Belenios is aimed to be secure against a corrupt server, i.e. the adversary model A2, or a
corrupt registrar, i.e. A3. However, we have captured verifiability attacks even when both
are honest, i.e. A1. The attacks arise from the vulnerability of the voting server that it does
not know the association of the voter identities with public credentials; therefore, it accepts
ballots from some voter identity even if another voter identity generated the ballots. On the
other hand, the ballot structure b = Íc, s, pR, pLÎ protects against ballot stu�ng and copying
attacks since the components s, i.e. the signature, and pL, i.e. the proof of label, authenticates
b that it was generated by the voter who owns the corresponding credential. However, none
of those links b to the voter identity who casts it; thus, the ballot is copied and cast, or the
ballots are reordered and cast by another identity.

In this section, we propose solutions to improve the election verifiability of Belenios with
respect to adversary models A1, A2, or A3. Our solutions enrich the structure of the label
l inside the proof pL = prL(c, r,l) in order to prevent the attacks. The proof pL is a non-
interactive Chaum-Pedersen proof of knowledge, where the label l = cr is part of the input to
a hash function (SHA-256) that computes the challenge. We propose extending the label with
other components so that their concatenation will be the input to the hash function. Thus, our
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solutions require changes only on the implementation of the voting platform and the server,
making them feasible and transparent for voters. We present the new structure of the label
stepwise: first, a label structure that protects against ballot reordering attacks by A1,A2, or
A3; then, a label structure that protects against other attacks by A3; finally, combining the
two labels protects against all attacks by A1,A2, or A3.

6.4.1 Protection Against Ballot Reordering

The ballot reordering attack is based on reordering of the two ballots cast by a voter so that
the last ballot is cast as first by the adversary corrupting the network. The voter verifies their
last ballot cast, then the adversary casts the first ballot as last, which results in the first ballot
to be tallied for that voter. This attack is prevented if the ballot includes information from
the last ballot published on BBcast, i.e. starting from the first ballot, each ballot recursively
contains the information from the previous ballot. The solution is as follows.

We assume initially there are empty ballots next to eligible public credentials on BB.
Moreover, a specific portion of BB is reserved for displaying the last ballot cast for each
credential:

(Before voting) BBlast : (cr1,Ú),… , (crn,Ú)

(During voting) BBlast : (cr1, b1),… , (crn, bn)
When the voting platform VP constructs a new ballot for a public credential cr, it fetches from
BBlast the last ballot b® associated to cr. Then, in the construction of the proof pL, instead of
cr, VP uses the label h(cr, b®), where h is a collision-resistant hash function mapping the pair
(cr, b®) into the appropriate domain for labels:

l = h(cr, b®); pL = prL(c, r,l); b = Íc, s, pR, pL,lÎ.

BBcast records all ballots cast for cr, and their order cannot be changed on BB. The voting
server VS and the election auditors can look at any two consecutive ballots b® and b cast for a
credential cr, recompute l = h(cr, b®) and verify that

verL(pL, c,l) = true,

thereby ensuring that the party constructing b indeed expects it to follow b®. In particular, if an
honest voter casts b2 after b1, the adversary cannot cast b2 first, since it would have to generate
a proof linking b2 to an earlier ballot b0, i.e. Ú, which is impossible since the adversary does
not know the randomness r2 in the ciphertext corresponding to b2. Note that this also prevents
A from delaying both ballots: they would need to be both preceded by b0 and only one will be
accepted. This label structure ensures election verifiability in corruption scenarios when the
registrar is honest, i.e. A1 and A2, but it also prevents the ballot reordering attack exploited
with A3.

6.4.2 Protection Against a Corrupted Registrar

The main cause of the attacks, in the scenario with a corrupt registrar, i.e. A3, is that the
adversary can block a ballot b of an honest voter and cast it under the identity of a corrupt
voter, while maintaining the same public credential associated to b. Subsequently, after the
honest voter verified b, the adversary can override it with an own ballot b

A
. In order to prevent

this, we enrich the label structure with a commitment to the voter identity. More precisely,
during ballot casting for a voter id, the voting platform VP generates a fresh randomness u,
constructs the label Ícr, com(id, u)Î and sends u together with the ballot to the voting server
VS. Since the label cannot be reconstructed publicly by election auditors, we explicitly include
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it in the ballot. We have:

VP : l = Ícr, com(id, u)Î; pL = prL(c, r,l); b = Íc, s, pR, pL,lÎ,
VS : receives (cr, b, u) from VP for a given id; constructs l® = Ícr, com(id, u)Î,

accepts b if and only if l® = l and verL(pL, c,l) = true.

In the attack scenario described above, the adversary cannot construct a proof p®L so that b is
accepted by VS under the identity of a corrupt voter. Indeed, the ciphertext in b cannot be
detached from the identity of the honest voter. More generally, we prove that this structure
of the label is su�cient to ensure election verifiability in the corruption scenarios when the
server is honest, i.e. A1 and A3. Election auditors can still check the proof pL on BB, but
they will only be able to ensure the ballot is cast for the expected public credential cr and will
not have knowledge of the underlying id. Note that we cannot use the voter id directly in the
label, as this would reveal the link between id and cr.

6.4.3 Putting the Labels Together

We combine the labels proposed above to protect Belenios against all attacks exploited by
A1, A2 or A3 as follows:

l1 = h(cr, b®); l2 = com(id, u); l = Íl1,l2Î,

where b® is the last ballot present on BB, u is a fresh randomness. Then, we specify three
variants of Belenios with respect to their label structure:

Beleniostr : ltr = h(cr, b®);
Beleniosid : lid = Ícr, com(id, u)Î;
Belenios+ : l+ = Íh(cr, b®), com(id, u)Î

Note that ltr depends on cr. That is why it is not necessary to include cr in the tuple as in lid.
As we show in the following sections, we perform an automated verification of those variants
with Tamarin and obtain the following results for ↵ À {˝, ÷}:

( Beleniostr, A ) Ù SE2E[iv˝, res↵] for A À {A1,A2},
( Beleniosid, A ) Ù SE2E[iv˝, res↵] for A À {A1,A3},
( Belenios+, A ) Ù SE2E[iv˝, res↵] for A À {A1,A2,A3},

while we have ( Belenios, A ) °Ù SE2E[iv˝, res↵] for A À {A1,A2,A3}.

The property SE2E[iv˝, res÷] corresponds to the standard verifiability notion used in [21, 17].
In particular, this notion ensures that, if an honest voter successfully verified a ballot b for a
public credential cr, then b is counted in the final tally as the contribution of cr. However,
when revoting is allowed, this might not be the case. As we showed in the previous section,
even if the last ballot cast is verified by an honest voter, another ballot may be counted in the
final tally for the voter’s credential cr. Therefore, Belenios does not satisfy SE2E[iv˝, res÷].
However, the label l = Íh(cr, b®), com(id, u)Î used in Belenios+ protects the honest voter
against ballot reordering attack, since the adversary cannot manipulate h(cr, b®) inside the
ballot to reorder the ballots. Moreover, the adversary cannot cast the honest voter’s ballot
b under the identity of a corrupt voter, since the adversary cannot change the label of the
ballot, and thus the proof pL, which requires the knowledge of the encryption randomness.
Similarly, there is no way to cast two ballots from di�erent voters for the same credential
due to the commitment inside the ballot and log consistency checks performed by the voting
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server. Therefore, the adversary cannot mount clash attacks corrupting the registrar. That is
why SE2E[iv˝, res÷] holds for Belenios+.

6.4.4 Belenios+ Specification

In this section, we present the Tamarin specification of the Belenios+ protocol, for which we
consider the individual verification procedure V1 from Section 6.2 and adversaries A1, A2
and A3 from Table 6.1. The specification of Belenios+ di�ers from Belenios in the rules
RVS
bb , RVP

vote, and RVS
cast, where the first rule introduces linear (consumable) facts BBlast(cr,Ú)

and VPlast(cr,Ú) for tracking the last ballot cast by each credential on BB, and other two rules
update the state of those facts each time a ballot is generated or cast. Moreover, the rule RVP

vote
improves the ballot structure with respect to the label l = Íh(cr, b0), com(id, u)Î, and therefore
extends it with l and adds committed value u to the data sent to VS for ballot casting. On the
other hand, RVS

cast updates its procedure with respect to the new ballot structure and additional
check for the commitment. We provide the Belenios+ specification in Figure 6.6 and the
Tamarin codes for each variant of Belenios in [52] online.

In the specification of Belenios+, we use ! to denote persistent facts since we also use
linear facts. We highlight the di�erence between Belenios+ and Belenios in red as follows:

RVS
bb : [ !BBreg(cr) ]**[!BBcast(cr,Ú) ]ô[ !BBcast(cr,Ú),BBlast(cr,Ú),VPlast(cr,Ú) ]

For tracking the last ballot on BB, the fact BBlast(cr, b0) should be consumed each time a ballot
is received by VS. For example, for the first ballot b cast for cr, BBlast(cr,Ú) is consumed, and
a new fact BBlast(cr, b) is generated. This is recursively followed by new ballots cast. Since
BBlast is used on the voting server’s side, we need an additional fact VPlast for the voting
platform’s side that will be consumed each time a new ballot is generated and cast. For the
first ballot cast, VP consumes VPlast(cr,Ú) generated by VS in the setup phase. Then, as soon
as the server records a ballot b for cr to BBlast(cr, b), it also generates a fact VPlast(cr, b) which
will be consumed by VP if the voter intends to cast another ballot. The following rule models
the ballot casting procedure by VP:

RVP
vote : let c = enc(v, pkE, r); s = sign(c, skid); pR = prR(c, r, vlist);

l = Íh(cr, b0), com(id, u)Î; pL = prL(c, r,l);
b = Íc, s, pR, pL,lÎ; a = h(Íid, pwd, cr, b, uÎ) in

[ !Cred(id, cr, skid), !Pwd(id, pwd), !BBcand(v), !Vlist(vlist), !BBkey(pkE),
Fr(r), Fr(t), Fr(u),VPlast(cr, b0) ]**[ Vote(id, v),VoteB(id, cr, b),Last(id, t) ]ô

[ !Voted(id, cr, v, b),Out(Íid, cr, b, a, uÎ) ]

In the above rule, the ballot is generated according to the new label structure l = Íh(cr, b0),
com(id, u)Î, which requires a commitment to the voter id who generates the ballot, with a
randomness u. The commitment randomness u is included in the authentication message a
and sent directly to the public channel. Thus, the adversary learns about it but cannot change
it due to the zero-knowledge proof pL and the authentication message a generated with the
knowledge of the encryption randomness and the password, respectively. Moreover, the ad-
versary cannot copy the ballot and cast it on behalf of another voter id® since the voter identity
id inside the proof pL will not match with id®. In reality, the commitment randomness u should
be sent via a private channel not to violate the privacy of the voter who casts the respective
ballot. However, the secrecy of u is not important for verifiability properties; thus, we can
send it on the public channel. The rule RVP

vote consumes the linear fact VPlast(cr, b0), thus it
can be executed only once for any ballot posted on BB. This mechanism is complemented by
the ballot casting rule on the server side:
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RVS
cast : let l® = Íh(cr, b0), com(id, u)Î; b = Íc, s, pR, pL,lÎ;

a® = h(Íid, pwd, cr, b, uÎ) in

[ In(Íid, cr, b, a, uÎ), !BBreg(cr), !Pwd(id, pwd), !BBkey(pkE), !Vlist(vlist),
BBlast(cr, b0) ] **[ a® í a,l® í l, verify(s, c, cr) í true,
verR(pR, c, pkE, vlist) í true, verL(pL, c,l) í true,Log(id, cr),VScast(id, b),
!BBcast(cr, b) ]ô [ !BBcast(cr, b),BBlast(cr, b),VPlast(cr, b) ]

where we receive a ballot from the voter and perform the corresponding validation steps:
verifying the password, the signature and the zero-knowledge proofs. The fact containing the
last ballot cast is consumed, and new facts are produced for the new ballot: one to be consumed
by the voting platform, and one to be consumed by the server when the next ballot is cast. In
order to obtain termination, we have a restriction limiting the number of applications of this
rule to at most four for each voter.

Limiting the Number of Ballots in Tamarin

To obtain verification results in Tamarin regarding Belenios+ specification, we need to restrict
the number of ballots which can be cast by each voter, i.e. we need to limit the number of
revotes. Our current specification in Tamarin allows up to four cast ballots, i.e. three revotes.
The code does not terminate for a higher bound. We specify the number of ballots allowed to
be cast by restrictions in Tamarin. If the allowance is for two ballots, then we use a restriction
 two as follows:

 two : TwoTimes(x) @i · TwoTimes(x) @j · TwoTimes(x) @k
Ÿ i = j ‚ i = k ‚ j = k

This restriction refers to the action fact TwoTimes(Ícr,® cast®Î) used in the rule RVS
cast, which

leads to a limitation on the number of ballots on BBcast. Similarly, to specify an allowance
for three and four ballots, we use the following restrictions:

 three : ThreeTimes(x) @i · ThreeTimes(x) @j · ThreeTimes(x) @k ·
ThreeTimes(x) @l Ÿ i = j ‚ i = k ‚ i = l ‚ j = k ‚ j = l ‚ k = l

 four : FourTimes(x) @i · FourTimes(x) @j · FourTimes(x) @k ·
FourTimes(x) @l · FourTimes(x) @m Ÿ i = j ‚ i = k ‚ i = l ‚
i = m ‚ j = k ‚ j = l ‚ j = m ‚ k = l ‚ k = m ‚ l = m

For these restrictions, we call the respective action facts ThreeTimes(Ícr,® cast®Î) and
FourTimes(Ícr,® cast®Î) in the same server casting rule RVS

cast.

6.4.5 Verification Results for Beleniostr, Beleniosid and Belenios+

Table 6.3 contains the verification results for the corresponding specifications with Tamarin,
available online [52]. We can see the positive results for Belenios+ as the union of the positive
results for Beleniostr and Beleniosid in each of the corruption scenarios A1, A2, and A3. Note
that Beleniostr does not protect against a corrupt registrar, i.e. A3, and Beleniosid does not
protect against a corrupt server, i.e. A2. Therefore, we do not include those scenarios in the
table. In the specifications, we bound the number of ballots per voter since Tamarin does
not terminate without such a bound. The table Table 6.4 provides the execution times for the
verification of Belenios+ with respect to 2 ballots, 3 ballots, and 4 ballots per voter, which
corresponds to at most three revotes per voter.
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�_Aj
Belenios Beleniostr Beleniosid Belenios+

A1 A2 A3 A1 A2 A1 A3 A1 A2 A3

�˝
iv1 7 7 7 3 3 3 3 3 3 3

�÷
iv2 3 3 7 3 3 3 3 3 3 3

�÷
iv3 3 3 3 3 3 3 3 3 3 3

�eli 3 3 3 3 3 3 3 3 3 3

�↵
res 3 3 3 3 3 3 3 3 3 3

�cons 3 3 3 3 3 3 3 3 3 3

TABLE 6.3: Verification results for the variants of Belenios.

#b_Aj
Belenios+

A1 A2 A3

2 ballots per voter 18 sec 9 sec 43 sec
3 ballots per voter 1 min 37 sec 3 min 46 sec
4 ballots per voter 14 min 57 sec 15 min 28 sec 26 min 36 sec

TABLE 6.4: Execution times of the automated verification for Belenios+.

6.4.6 Details for the ZKP in Beleniostr, Beleniosid and Belenios+

The cryptography underlying Belenios [18, 29] makes use of a cyclic group G = ÍgÎ with
order q, which is a multiplicative subgroup of F<p. Proofs are generated using the Chaum-
Pedersen algorithm and made non-interactive by the Fiat-Shamir technique. The algorithm
generates a challenge ch and a response re to prove the knowledge of a secret sec correspond-
ing to a public value gsec, and sends (ch, re) as a proof to the verifier. The verifier recomputes
ch using the messages gsec and re, and accepts if the computed value matches the one previ-
ously received. To generate the proof (ch, re), w À Zq is randomly chosen. Then,

ch = h(gsec, gw) mod q and re = w* sec ù ch mod q

are computed. To verify the proof, given (ch, re) and gsec, A = gre(gsec)ch is computed and
checked that ch is equal to h(gsec,A).

In the implementation of zero-knowledge proofs in Belenios [29], h is specifically the
SHA-256 hash function [23], which can take an input up to 264 bits and generates a fixed size
output of 256 bits, and the proof prL = proofL(c, r, cr) is computed as follows:

ch = SHA256(cr  Ípk, cÎ  gw) mod q and re = w* r ù ch mod q,

where cr À G is the verification key of the corresponding voter, w À Zq, pk is the election
public key, c = (gr, pkrgv) is the ciphertext of the vote v. Here, the randomness r is the secret
to be proved as a knowledge for a valid encryption. Thus, A = gre(gr)ch is computed for the
verification of prL.

Our solutions require to replace cr in the proof prL with the following labels:

• h(cr, b®) for Beleniostr,

• Ícr, com(id, t)Î for Beleniosid, and
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• Íh(cr, b®), com(id, t)Î for Belenios+.

This means that cr in the generation of challenge chwill be replaced accordingly. For Beleniostr,
we propose to use a collision-resistant hash function h that takes as input cr and the former
cast ballot b® on the BB. The hash function h can be SHA-256 for the compatibility within the
system, i.e. h(cr, b®) í SHA256(cr  b®). Assume that the former ballot on BB is not empty,
i.e. b® ë Ú. Then, b® will be in the following form:

b® = (c, s, prR, prL,l®)
= ((gr, pkrgv), (ch1, re1), (ch2, re2), (ch3, re3), h(cr, b®®)).

Here, s corresponds to a Schnorr-like digital signature which is also a pair of challenge and
response in Zq. Therefore, we have c À G ùG and (chi, rei) À Zq ùZq. Note that every
element in G has the same size as p since G is a subgroup of F<p. In the specification [29],
the lengths of p and q are taken as 2048 bits and 256 bits, respectively. Together with cr À G

and l® À Zq, the input size for h makes 31 ù 256 ˘ 213 bits, which is definitely suitable for
SHA-256.

For Beleniosid, cr in the challenge ch is replaced with Ícr, com(id, t)Î. This new structure
requires a commitment to the voter’s identity id with a randomness t. Regarding the cryptog-
raphy used for Belenios, the commitment can be a Pedersen commitment. In this case, another
generator Ñg of G will be used for the commitment com(id, t) = gid Ñgt À G for t À Zq. Thus,
the input size of SHA-256 in ch will be increased by 2048 bits since we add a commitment in
addition to cr. In a similar fashion, when we enrich prL by applying Íh(cr, b®), com(id, t)Î as
a first argument in the challenge for Belenios+, the input size of SHA-256 will be increased
by the output size of h(cr, b®), which is 256 bits. Recall that com(id, t) has the same length
as cr and h(cr, b®) is SHA256(cr  b®) as shown above. Hence, our propositions to enrich the
structure of the proof prL fit well with the cryptographic primitives used in Belenios.

6.5 BeleniosRF

BeleniosRF [14] is a variant of Belenios, which aims for receipt-freeness in addition to end-to-
end verifiability. Receipt-freeness provides a voting scheme with stronger privacy guarantees
than ballot privacy, ensuring that the voter cannot provide the coercer with a receipt prov-
ing how they voted. Belenios is not receipt-free since any voter can record the encryption
randomness while generating a ballot and use this as a receipt to prove their vote to the co-
ercer. The coercer can then recompute the ciphertext inside the voter’s ballot, match it with
the one on BB, and ensure that the vote they desire is cast. On the other hand, the voter can-
not provide such a receipt in BeleniosRF since it requires a randomisation operation by the
server when it receives a ballot, i.e. the server randomises the ballot before recording it to
BB. Thus, the ballot recorded on BB di�ers from the one cast for a credential. Therefore, the
encryption randomness would not help the coercer to ensure the vote is cast, which protects
honest voters against a coercer. Besides honest voters, even corrupt voters cannot provide any
receipt when cooperating with the coercer. In this sense, BeleniosRF satisfies a strong notion
of receipt-freeness.

Privacy and verifiability are often mentioned in the literature as two conflicting properties
of e-voting protocols. Privacy requires the sensitive data in an election to be hidden, for exam-
ple, the link between a vote and the voter who casts it. On the other hand, verifiability requires
revealing su�cient data to verify all the election procedures. Thus, there is a trade-o� between
the data to be hidden and the data to be revealed, i.e. privacy and verifiability. Furthermore,
this tension is accentuated when we consider receipt-freeness, since the data allowing indi-
vidual verification could potentially be used as a receipt for the coercer. In this section, we
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perform a security analysis of BeleniosRF with respect to verifiability, aiming to evaluate
the trade-o� between receipt-freeness and verifiability. We use the tool ProVerif for the auto-
mated verification of BeleniosRF. According to our observation, ProVerif is better at handling
complex equational theories than Tamarin, i.e. the ProVerif codes terminate faster when the
cryptographic primitives require complex equations. Our verification results obtained with
ProVerif show that BeleniosRF provides weaker verifiability guarantees than Belenios (when
revoting is not allowed or voters verify their ballots in the tally phase). Thus, in particular to
Belenios, we confirm that receipt-freeness weakens verifiability while strengthening privacy.

6.5.1 BeleniosRF Protocol Structure

BeleniosRF deploys an additional randomisation server to randomise the ballots before record-
ing them on BB. It may also deploy a single server, as in Belenios, improving it to enable
randomisation operation. The randomisation relies on a cryptographic primitive called sig-
natures on randomisable ciphertexts [12], instantiated from Groth-Shai proofs [30]. Note that
in the previous sections we have defined the ballot structure of Belenios as b = Íc, s, pR, pLÎ.
For modelling BeleniosRF, we combine the two proofs pL and pR into one p = pr(c, v, r, cr),
as in the version of zero-knowledge proof presented in [18]. The setup and tally phases of
BeleniosRF are similar to Belenios. Thus, we focus on the voting phase and the individual
verification procedure of BeleniosRF.

In the voting phase, the voting platform of a voter id having the credentials (skid, cr) gen-
erates a ballot of the form b = Íc, s, pÎ, i.e.

c = enc(c, pkE, r) (encryption)
s = sign(s, pkE) (signature)
p = pr(c, v, r, cr) (zero-knowledge proof)

for a chosen vote v, using a fresh randomness r. When the voter decides to cast it, the ballot
is sent to the server after it authenticates the voter with a login operation. Then, the server
randomises the ballot b with a fresh randomness r® or forwards it to the randomisation server,
obtains the ballot b® = Íc®, s®, p®Î, where

c® = renc(c, pkE, r®) (re-encryption)
s® = resign(s, pkE, r®) (adaptation of signature)
p® = repr(p, pkE, r®, cr) (adaptation of proof)

and publishes it on BBcast. BeleniosRF does not allow revoting in order to protect against
a corrupt server. Assume the voter casts two ballots b1 and b2 for di�erent votes v1 and v2.
The server should randomise the first ballot as b®1 and the second ballot as b®2. However, for
the second ballot, instead of randomising b2, a corrupt server can re-randomise the ballot b®1
and obtains b®®1 . The voter will not realise that the ballot b®®1 published on BBcast encodes v1
instead of v2. Due to this weakness, revoting is not allowed in BeleniosRF. Therefore, all the
ballots recorded on BBcast are directly tallied in the tally phase.

The individual verification procedure for a voter with credential cr consists in verifying
that there is a ballot b® associated to cr on BBtally, and verifying that b® contains a valid
signature with respect to cr. Intuitively, this should be su�cient to ensure election verifiability
if either the registrar or the server is not corrupt. If the server is honest, it will log the identity
of voters together with their public credentials. Thus, even if a voter’s signing key is corrupt
due to a corrupt registrar, the adversary should not be able to cast a ballot for the credential
of an honest voter. Symmetrically, if the registrar is honest, the only party who can construct
valid ballots for a public credential is the corresponding voter - verifiability follows even for
a corrupt server since revoting is not allowed.
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6.5.2 BeleniosRF Specification

In this section, we present the ProVerif specification of the BeleniosRF protocol, for which
we consider the individual verification procedure V3 from Section 6.2, and the adversary
models A1, A2 and A3 from Table 6.1. The ProVerif specification of a protocol can be easily
obtained from its Tamarin specification. Therefore, we only present the equational theory, the
processes for ballot casting by a voting platform and then by the server, and the process for the
individual verification in BeleniosRF, where it di�ers from Belenios. The full specification
is given in Figure 6.7.

BeleniosRF uses the ElGamal encryption algorithm to encrypt the votes, the asymmet-
ric Waters signature scheme to sign the encrypted votes and then adapt signatures for the
randomised ciphertexts, and Groth-Shai proofs to prove the knowledge of encryption, asso-
ciating the ciphertext with the public credential of the voter who generates the ballot. Thus,
the specification requires the following equations:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true,
(3) ver(pr(enc(x, y, z), x, z,w), enc(x, y, z), y,w) = true,
(4) renc(enc(x, y, z1), y, z2) = enc(x, y, z2),
(5) resign(sign(enc(x, y, z1),w), y, z2) = sign(enc(x, y, z2),w),
(6) repr(pr(enc(x, y, z1), x, z1,w), y, z2,w)) = pr(enc(x, y, z2), x, z2,w),

where the equation (4) equates re-encryption of the ciphertext with an encryption so that it
can be decrypted with the equation (1). Similarly, the equations (5) and (6) adapt the signature
and the proof for the re-encryption so that they can be verified with the equations (2) and (3),
respectively.

The figure Figure 6.1 presents three processes representing the action of the voting plat-
form that generates a ballot for the voter’s choice and casts it, the action of the server that
validates the ballot, randomises it and records on BBcast, the action of the voter who per-
forms the individual verification for their ballot on BBtally. Specifically, the voting platform
receives the voter’s choice v, the election’s public key pkE, and the credentials of the voter
id recorded in the tables Cred and Pwd. Then, it generates a fresh randomness r, uses it to
encrypt the vote v, signs the encryption c, and generates a proof p for the knowledge of the
encryption. The ballot in the form of b = Íc, s, pÎ is authenticated with the help of a hash
function as we did for the Tamarin specification of Belenios and sent to the public channel.
The table Voted records the information of the vote to be used for the individual verification.

The voting server receives a ballot for a voter id and a credential cr with an authentication
message a from the public channel. It validates the voter id and their credential cr, i.e. checks
its log file to ensure the consistency of the pair (id, cr), which is modelled using a restriction
with respect to the event Log(id, cr). It validates the ballot, i.e. verifies the authentication with
respect to the pwd of the voter id, the credential on BBcast, the signature s and the proof p.
Then, it randomises the ballot with a fresh randomness r® and obtains b® = Íc®, s®, p®Î, which
is recorded in both the event and the table BBcast for the credential cr.

For the individual verification, the voter recalls the table Voted and gets the ballot infor-
mation recorded on BBtally. Since the ballot is randomised, it is di�erent than the one cast
by the voter. Thus, the voter can only perform validity checks on the signature and the proof
inside the ballot. The verification of both implies a successful verification of the voter. Be-
leniosRF does not allow revoting, and therefore one ballot for each credential is accepted by
the server. The individual verification is performed on the ballot cast by the server in the tally
phase. Note that since there is no revoting, we omit t from the event Verif ied(id, cr, v, t) and
simply specify Verif ied(id, cr, v).
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let VotingPlatformVote(v, pkE) =
get Cred(id, cr, skid) in
get Pwd(= id, pwd) in
new r;
let c = enc(v, pkE, r) in
let s = sign(c, skid) in
let p = pr(c, v, r, cr) in
let b = (c, s, p) in
let a = h(id, pwd, cr, b) in
event Vote(id, v);
insert Voted(id, cr, v);
out(pub, (id, cr, b, a)).

let VoterVer(id) =
get Voted(= id, cr, v) in
get BBkey(pkE) in
get BBtally(= cr, (c, s, p)) in
if verify(s, c, cr) = true then
if ver(p, c, pkE, cr) = true then
event Verif ied(id, cr, v).

let ServerCast(pkE) =
get BBcast(cr,= Ú) in
get Pwd(id, pwd) in
in(pub, (= id,= cr, (c, s, p), a);
event Log(id, cr);
let b = (c, s, p) in
if h(id, pwd, cr, b) = a then
if verify(s, c, cr) = true then
if ver(p, c, pkE, cr) = true then
new r®;
let c® = renc(c, pkE, r®) in
let s® = resign(s, pkE, r®) in
let p® = repr(p, pkE, r®, cr) in
let b® = (c®, s®, p®) in
event BBcast(cr, b®);
insert BBcast(cr, b®).

FIGURE 6.1: Processes specified for ballot casting and individual verification
procedures in BeleniosRF.

Adversary model A1. In this model, we consider corrupt talliers that allow adversary to con-
trol the election’s private key, corrupt voters who leak all their credentials to the adversary
anytime during the election. We assume both the registrar and the server are honest. There-
fore, the process modelling the talliers generating the election key pair receives the election’s
private key from the public channel, i.e. we replace the first line of the process of TallierKey
with the line in(pub, skE). We add a process VoterCorr, presented in Figure 6.2, to specify the
corruption of the voters which leaks the credentials recorded in the tables Cred and Pwd to
the public channel.

Adversary model A2. For A2, we assume the voting server is corrupt in addition to talliers
and voters. Therefore, the corrupt server accepts any valid ballot coming from the network,
without authenticating the sender. It still validates the ballots before recording them to BB
since all the ballots on BB are validated by the election auditors. InA2, the process ServerCast
is replaced with the process CorruptedServerCast described in Figure 6.2.

Adversary model A3. For A3, we consider a corrupt registrar in addition to talliers and
voters. The corrupt registrar allows adversary to control signing keys of the voters so that it
can register two or more voters with the same election credentials. At the same time, it allows
adversary to generate valid ballots since it has all the signing key pairs. We model the corrupt
registrar changing the first line of the process RegisterReg with the line in(pub, skid); as we did
for corrupt talliers.

6.5.3 BeleniosRF Verification Results and Analysis

Belenios satisfies all the notions of end-to-end election verifiability, i.e. SE2E[iv÷, res↵] for
÷, ↵ À {˝, ÷}, when revoting is not allowed or the individual verification is allowed in the
tally phase. Similar to Belenios, BeleniosRF is also expected to give the same verifiability
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let CorruptedServerCast(pkE) =
get BBcast(cr,= Ú) in
in(pub, (= cr, (c, s, p));
let b = (c, s, p) in
if verify(s, c, cr) = true then
if ver(p, c, pkE, cr) = true then
event BBcast(cr, b);
insert BBcast(cr, b).

let VoterCorr =
get Cred(id, cr, skid) in
get Pwd(= id, pwd) in
event Corr(id);
out(pub, (id, pwd, cr, skid)).

FIGURE 6.2: Corruption of voters and voting server in BeleniosRF.
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FIGURE 6.3: Attack on individual verifiability by a corrupt registrar in Bele-
niosRF.

guarantees with A1, A2 and A3, i.e. when both the registrar and server are not corrupt at the
same time. However, our verification results show that BeleniosRF is vulnerable to attacks for
honest voters with A3 and for corrupt voters with A1, A2 and A3. The verification results for
both Belenios and BeleniosRF obtained with ProVerif are presented in Table 6.5, for which
each corruption scenarios the execution of the codes ends within several seconds.

Attacks. We find an attack against individual verifiability in the case of a corrupt registrar,
i.e. the scenario A3. The weakness comes from the fact that individual verification does not
directly check the ballot cast by voter, but its randomisation. The properties �÷

iv1 and �÷
iv2

in SE2E[iv÷, res↵] are violated for ÷, ↵ À {˝, ÷}, because of ballot stu�ng and clash attacks
as illustrated in Figure 6.3 and Figure 6.4, respectively. Ballot stu�ng occurs for an honest
voter when the adversary drops the voter’s ballot, generates another ballot for its desired vote
using the signing credentials of the voter and casts it using the login credential of a corrupt
voter. The honest voter verifies their vote upon seeing a ballot with their signature. However,
the ballot on BB encodes the adversary’s vote instead of the voter’s vote. Therefore, �˝

iv1
is violated. Clash attack occurs when a corrupt registrar gives the same signing key pair
(cr, skid) to two honest voters id1 and id2. Assume the two voters cast their ballots separately
relying on their credential cr. A ballot b from one of the voters is accepted, randomised, and
published on BB. For the second voter, the adversary drops the ballot. In the tally phase, both
voters can verify that, for the tuple (cr, b®) on BB, b® is the randomisation of a ballot submitted
with their credential, verifying the attached signature and the proof since they share the same
credentials. However, only one vote will be counted for these two voters.

A similar individual verifiability attack is possible in the case of a corrupt voter, even
when both the registrar and server are honest as in A1. Assume the voter has leaked its
credentials unwittingly and become corrupt. The adversary corrupting the communication
network drops the voter’s ballot and cast another ballot for a di�erent vote. In this case,
the voter can perform a successful verification by verifying the signature inside the ballot.
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Adversary Models A1 A2 A3

Talliers C C C
Registrar H H C
Server H C H
Voting Platform H H H

Belenios<
SE2E[iv÷, res÷] 3 3 3
SE2E[iv˝, res÷] 3 3 3
SE2E[iv÷, res˝] 3 3 3
SE2E[iv˝, res˝] 3 3 3

BeleniosRF†

SE2E[iv÷, res÷] 7 7 7
SE2E[iv˝, res÷] 3 3 7
SE2E[iv÷, res˝] 7 7 7
SE2E[iv˝, res˝] 3 3 7

<: no revoting or voter verification in the tally
phase
†: no revoting

TABLE 6.5: Verification results for Belenios and BeleniosRF.
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FIGURE 6.4: Clash attack by a corrupt registrar in BeleniosRF.

However, the ballot belongs to the adversary, and the corresponding vote of the adversary
will be tallied for that voter. As a result, �÷iv1 is violated in the scenario A1 as well as A2 and
A3. In Belenios, the same scenario does not lead to an attack, but in BeleniosRF it does.

Related attacks. BeleniosVS [17] is a variant of Belenios that uses the same ballot randomisa-
tion feature as BeleniosRF, in order to achieve better privacy in the case of a dishonest voting
platform. In consequence, a similar clash attack as ours applies to BeleniosVS in the case of
a corrupt registrar, and the authors of [17] have already observed this. As a fix, they propose
that the voting server sends an acknowledgement to the voter when the ballot is successfully
cast. In an attack scenario similar to the one above (from Figure 6.4), this should counter the
dropping of the ballot b2 by the network, since the voter id2 would notice that no acknowl-
edgement was sent. A similar fix could also help in BeleniosRF if the channel between the
voting platform and the server that forwards the ballot and the acknowledgement, is assumed
to be secure. Otherwise, the adversary corrupting the channel, could also impersonate the
voting server and spoof the acknowledgement.

Proofs. BeleniosRF satisfies election verifiability for honest voters who verify their ballots,
i.e. SE2E[iv˝, res↵] for ↵ À {˝, ÷}, when the registrar is honest. In this case, the talliers and
the voting server can be fully corrupt as in the scenarios A1 and A2.
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Conclusion. Our findings show that BeleniosRF, the receipt-free variant of Belenios, provides
weaker verifiability guarantees than Belenios. There is indeed a tension between receipt-
freeness and verifiability of Belenios. The ways how to resolve it is an open question. Se-
lene [47] is another voting protocol that aims to provide both receipt-freeness and end-to-
end verifiability, applying di�erent methods than the randomisation of the ballots for receipt-
freeness. This motivates us to evaluate the tension between receipt-freeness and verifiability
in a di�erent protocol and see whether both receipt-freeness and verifiability can be achieved
or in which conditions.
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SETUP PHASE

RT
key : generate election key pair

[ Fr(skE) ]**[ BBkey(pk(skE)) ]ô[ SkE(skE),BBkey(pk(skE)),Out(pk(skE)) ]

RA
cand : determine candidates to be elected

let vlist = Ív1,… , vkÎ in

[ In(vlist) ]**[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]ô
[ BBcand(v1),… ,BBcand(vk),Vlist(vlist) ]

RA
id : determine identities eligible to vote

[ In(id) ]**[ ]ô[ Id(id) ]

RVR
reg : register voter with a signing key pair

let cr = pk(skid) in

[ Id(id), Fr(skid) ]**[ Reg(id, cr),BBreg(cr) ]ô[ Cred(id, cr, skid),BBreg(cr),Out(cr) ]

RVS
pwd : generate password for voter authentication

[ Id(id), Fr(pwd) ]**[ ]ô[ Pwd(id, pwd) ]

RVS
bb : setup initial BBcast for registered voters

[ BBreg(cr) ]**[ BBcast(cr,Ú) ]ô[ BBcast(cr,Ú) ]

VOTING PHASE

RVP
vote : construct a ballot, authenticate and send it to VS

let c = enc(v, pkE, r); s = sign(c, skid); pR = prR(c, r, vlist); pL = prL(c, r, cr);
b = Íc, s, pR, pLÎ; a = h(Íid, pwd, cr, bÎ) in

[ Cred(id, cr, skid), Pwd(id, pwd),BBcand(v),Vlist(vlist),BBkey(pkE), Fr(r), Fr(t) ]
**[ Vote(id, v),VoteB(id, cr, b),VoteTime(id, v, t) ]ô[ Voted(id, cr, v, b, t),Out(Íid, cr, b, aÎ) ]

RVS
cast : authenticate voter, verify and publish ballot

let b = Íc, s, pR, pLÎ; a® = h(Íid, pwd, cr, bÎ) in

[ In(Íid, cr, b, aÎ),BBreg(cr), Pwd(id, pwd),BBkey(pkE),Vlist(vlist) ]
**[ a® í a, verify(s, c, cr) í true, verR(pR, c, pkE, vlist) í true, verL(pL, c, cr) í true,

Log(id, cr),Reg(id, cr),VScast(id, b),BBcast(cr, b) ]ô [ BBcast(cr, b) ]

 VS
order : ensure correct order of ballots

VoteB(id, cr, b) @i · VoteB(id, cr, b®) @j ·
VScast(id, b) @k · VScast(id, b®) @l · i « j Ÿ k « l

 VS
log : ensure log consistency; can be audited by EA

Log(id, cr) Ÿ ¬(Log(id, cr®) · cr ë cr®) · ¬(Log(id®, cr) · id ë id®)

 VS_EA
cast : ensure ballot validity; can be audited by EA

BBcast(cr, b) Ÿ BBreg(cr) · ( b ë Ú Ÿ BBkey(pkE) ·Vlist(vlist) · b = Íc, s, pR, pLÎ
· verify(s, c, cr) = true · verR(pR, c, pkE, vlist) = true · verL(pL, c, cr) = true )

TALLY PHASE

RVS
tally : select ballot to be tallied for a public credential

[ BBcast(cr, b) ]**[ BBtally(cr, b) ]ô[ BBtally(cr, b) ]

 VS_EA
tally : ensure the last ballot cast is tallied; can be audited by EA

BBcast(cr, b) @i · BBcast(cr, b®) @j · BBtally(cr, b) @k Ÿ j « i ‚ b = b®

FIGURE 6.5: Tamarin specification of Belenios.
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SETUP PHASE

RTkey : generate election key pair
[ Fr(skE) ]**[!BBkey(pk(skE)) ]ô[ !SkE(skE), !BBkey(pk(skE)),Out(pk(skE)) ]

RAcand : determine candidates to be elected
let vlist = Ív1,… , vkÎ in
[ In(vlist) ]**[!BBcand(v1),… , !BBcand(vk), !Vlist(vlist) ]ô
[ !BBcand(v1),… , !BBcand(vk), !Vlist(vlist) ]

RAid : determine identities eligible to vote
[ In(id) ]**[ ]ô[ !Id(id) ]

RVRreg : register voter with a signing key pair
let cr = pk(skid) in
[ !Id(id), Fr(skid) ]**[ Reg(id, cr), !BBreg(cr) ]ô[ !Cred(id, cr, skid), !BBreg(cr),Out(cr) ]

RVSpwd : generate password for voter authentication
[ !Id(id), Fr(pwd) ]**[ ]ô[ !Pwd(id, pwd) ]

RVSbb : setup initial BBcast for registered voters
[ !BBreg(cr) ]**[!BBcast(cr,Ú) ]ô[ !BBcast(cr,Ú),BBlast(cr,Ú),VPlast(cr,Ú) ]

VOTING PHASE

RVPvote : construct a ballot, authenticate and send it to VS

let c = enc(v, pkE, r); s = sign(c, skid); l = Íh(cr, b0), com(id, u)Î; pR = prR(c, r, vlist);
pL = prL(c, r,l); b = Íc, s, pR, pL,lÎ; a = h(Íid, pwd, cr, b, uÎ) in

[ !Cred(id, cr, skid), !Pwd(id, pwd), !BBcand(v), !Vlist(vlist), !BBkey(pkE),
Fr(r), Fr(t), Fr(u),VPlast(cr, b0) ]**[ Vote(id, v),VoteB(id, cr, b),VoteTime(id, v, t) ]ô

[ !Voted(id, cr, v, b, t),Out(Íid, cr, b, a, uÎ) ]
RVScast : authenticate voter, verify and publish ballot

let l® = Íh(cr, b0), com(id, u)Î; b = Íc, s, pR, pL,lÎ; a® = h(Íid, pwd, cr, b, uÎ) in

[ In(Íid, cr, b, a, uÎ), !BBreg(cr), !Pwd(id, pwd), !BBkey(pkE), !Vlist(vlist),BBlast(cr, b0) ]
**[ a® í a,l® í l, verify(s, c, cr) í true, verR(pR, c, pkE, vlist) í true, verL(pL, c,l) í true,

Log(id, cr),Reg(id, cr),VScast(id, b), !BBcast(cr, b) ]ô
[ !BBcast(cr, b),BBlast(cr, b),VPlast(cr, b) ]

 VS
order : ensure correct order of ballots

VoteB(id, cr, b) @i · VoteB(id, cr, b®) @j ·
VScast(id, b) @k · VScast(id, b®) @l · i « j Ÿ k « l

 VS
log : ensure log consistency; can be audited by EA

Log(id, cr) Ÿ ¬(Log(id, cr®) · cr ë cr®) · ¬(Log(id®, cr) · id ë id®)
 VS_EA
cast : ensure ballot validity; can be audited by EA

!BBcast(cr, b) Ÿ!BBreg(cr) · (b ë Ú Ÿ!BBkey(pkE) · !Vlist(vlist) · b = Íc, s, pR, pL,lÎ
· verify(s, c, cr) = true · verR(pR, c, pkE, vlist) = true · verL(pL, c,l) = true)

TALLY PHASE

RVStally : select ballot to be tallied for a public credential
[ !BBcast(cr, b) ]**[!BBtally(cr, b) ]ô[ !BBtally(cr, b) ]

 VS_EA
tally : ensure the last ballot cast is tallied; can be audited by EA

!BBcast(cr, b) @i · !BBcast(cr, b®) @j · !BBtally(cr, b) @k Ÿ j « i ‚ b = b®

FIGURE 6.6: Tamarin specification of Belenios+.
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let TallierKey =
new skE;
let pkE = pk(skE) in
insert SkE(skE);
event BBkey(pkE);
insert BBkey(pkE);
out(pub, pkE).

let RegistrarReg(id) =
new skid;
let cr = pk(skid) in
insert Cred(id, cr, skid);
event Reg(id, cr);
event BBreg(cr);
insert BBreg(cr);
out(pub, cr).

let VotingPlatformVote(v, pkE) =
get Cred(id, cr, skid) in
get Pwd(= id, pwd) in
new r;
let c = enc(v, pkE, r) in
let s = sign(c, skid) in
let p = pr(c, v, r, cr) in
let b = (c, s, p) in
let a = h(id, pwd, cr, b) in
event Vote(id, v);
insert Voted(id, cr, v);
out(pub, (id, cr, b, a)).

let VoterVer(id) =
get Voted(= id, cr, v) in
get BBkey(pkE) in
get BBtally(= cr, (c, s, p)) in
if verify(s, c, cr) = true then
if ver(p, c, pkE, cr) = true then
event Verif ied(id, cr, v).

let AdminCand =
in(pub, (v1, v2));
event BBcand(v1);
event BBcand(v2);
insert BBcand(v1);
insert BBcand(v2).

let AdminId =
in(pub, id);
insert Id(id).

let ServerPwd(id) =
new pwd;
insert Pwd(id, pwd).

let ServerBB =
get BBreg(cr) in
insert BBcast(cr,Ú).

let ServerCast(pkE) =
get BBcast(cr,= Ú) in
get Pwd(id, pwd) in
in(pub, (= id,= cr, (c, s, p), a);
event Log(id, cr);
let b = (c, s, p) in
if h(id, pwd, cr, b) = a then
if verify(s, c, cr) = true then
if ver(p, c, pkE, cr) = true then
new r®;
let c® = renc(c, pkE, r®) in
let s® = resign(s, pkE, r®) in
let p® = repr(p, pkE, r®, cr) in
let b® = (c®, s®, p®) in
event BBcast(cr, b®);
insert BBcast(cr, b®).

let ServerTally =
get BBcast(cr, b) in
event BBtally(cr, b);
insert BBtally(cr, b).

FIGURE 6.7: ProVerif specification of BeleniosRF.
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Chapter 7

Selene and Its Variants

Selene [47] is a recently proposed e-voting protocol that aims to provide end-to-end verifi-
ability, simplifying the individual verification procedure for voters so that they verify their
votes directly in the election result. This is achieved by providing each voter with a tracker
and publishing the result as tracker-vote pairs on the bulletin board. Thus, voters need to
find their tracker and match their vote for individual verification instead of matching their
complex cryptographic ballot with the one on the bulletin board. Selene gives assurance that
no two voters receive the same tracker due to the cryptographic primitives used by the pro-
tocol. The idea is that the trackers are held in encrypted and committed form next to the
public credentials of the voters. Using private trapdoor keys associated with each voter and
randomness obtained from talliers, voters can open the commitment and obtain their trackers.
The randomness is sent to the respective voter after the election result is published so that the
voter can generate a fake randomness in order to resist coercion. The fake randomness allows
the voter to obtain a tracker associated with the vote the coercer desires. Thus, Selene also
provides receipt-freeness.

Three analyses [36, 13, 26] have been performed for the privacy of Selene. In [36], it was
aimed to discover the limits of the protection of Selene against coercion, i.e. the exact limits of
the coercer’s ability with an analysis based on multi-agent logic. Thus, a simple multi-agent
model of Selene was checked with respect to the formulas obtained from Alternating-time
Temporal Logic (ATL) representing coercion. In [13], a symbolic analysis was performed for
the ballot privacy and receipt-freeness of Selene. The symbolic models with respect to those
properties were checked with Tamarin, and the first automated proofs of Selene were provided.
Moreover, the findings of the analysis [13] confirmed that Selene is receipt-free unless the
coercer is also a voter, and the fake randomness provided by the voter opens the commitment
to the coercer’s tracker, as also mentioned in [47]. The ballot privacy definition was refined
in [26] against a corrupt voting server manipulating the bulletin board. The computational
model of Selene was checked with EasyCrypt, and a machine-checked proof of ballot privacy
was provided. On the other hand, there is no proof of verifiability for Selene.

To improve the tracker management in Selene and prevent such tracker collision with
the coercer, the Hyperion e-voting protocol was proposed in [46] as a variant of Selene. In
Hyperion, trackers are directly computed from the public trapdoor keys of the voters. They
are randomised through exponentiation operations, where the exponentiation randomness is
kept secret by talliers and revealed at the end of the election. Tracker collision attacks are
defeated by the individual views of the bulletin board, i.e. each voter has their own view of
the bulletin board, where all the trackers in the outcome are re-randomised with additional
randomness generated for the respective voter. Thus, the voter is able to retrieve their tracker
with the information provided by talliers, verify their vote, and fake the tracker if coerced.
However, the coercer will not find their tracker from the voter’s view of the bulletin board.

Selene and Hyperion aim to provide both end-to-end-verifiability and receipt-freeness. In
this chapter, we perform a similar verifiability analysis of those protocols, as we did for Bele-
niosRF, in order to evaluate the tension between receipt-freeness and verifiability in di�erent
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protocols. Selene’s receipt-freeness is weaker than BeleniosRF since the voters can provide a
receipt, i.e. their encryption randomness, to the coercer, which allows them to verify the bal-
lot published on the bulletin board before the tally. In order to remove such weakness, Selene
can be modified to apply the same randomisation mechanism deployed by BeleniosRF, as
mentioned in [47]. We also perform a verifiability analysis for this variant, i.e. the so-called
SeleneRF. For the analysis, we consider the same adversary models for the three protocols
and assume any party is corrupt except the administrator. Moreover, we extend the adver-
sary’s abilities to corrupt voting platforms so that the adversary determines the whole ballot
cast by the voter, not only the encryption randomness used for the encryption of the vote.
Our findings show that Selene and its variants satisfy end-to-end verifiability for honest vot-
ers who verified their votes, even if the talliers and voting platforms are fully corrupt. From
a foundational perspective, the novelty of this chapter consists in using a non-trivial linking
event Link(cr, tr), where cr ë tr.

Structure of the chapter: This chapter includes three sections, where the first is dedicated to
Selene and SeleneRF, the second is to Hyperion, and the third is to the verifiability analysis of
those protocols. Specifically, in Section 7.1 and Section 7.2, we present the protocol structures
and the ProVerif specifications of Selene, SeleneRF, and Hyperion. Then, in Section 7.3, we
provide our verification results and verifiability analysis for those protocols.

7.1 Selene

In this section, we present the protocol details of Selene. First, we describe the protocol struc-
ture of Selene, introducing its protocol parties with their roles, the cryptographic primitives
used, and the election procedures followed by the parties according to the setup, voting, and
tally phases, the individual verification procedure followed by voters, and the procedure that
allows them to resist coercion. Then, we provide its ProVerif specification details with respect
to seven adversary models in which any party can be corrupt other than the administrator. We
also consider a stronger adversary for modelling a corrupt voting platform that allows the ad-
versary to determine the voter’s ballot, not only the encryption randomness, as considered in
the cases of Helios and Belenios. Finally, we describe the features of SeleneRF and give its
specification details that are di�erent from Selene.

7.1.1 Selene Protocol Structure

Selene has the following parties along with their roles:

– Administrator A is responsible for the election configuration, i.e. determines the can-
didates and voters eligible for the election, talliers to generate the election key pair, and
trackers to be assigned to the voters.

– Talliers T generate the election public key in a distributed way, where no tallier knows
the private part of the key generated by another tallier (unless they are not both cor-
rupt). Then, at least the threshold number of talliers, say k out of t, decrypt the set of
ciphertexts corresponding to the ballots cast by the voters. The decryption procedure
relies on mixnets, i.e. re-encryption, shu�ing, and decryption of the ciphertexts. Tal-
liers also contribute to the generation of encrypted trackers and trapdoor commitments
to the encrypted trackers. Trapdoor commitments ensure voters about their assigned
trackers.

– Registrar VR registers the public keys of the voters as public credentials for the elec-
tion. VR may also generate a signing key pair for each registered voter according to the
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deployment of the protocol. The authors in [47] do not explicitly mention a registrar
for registering the public keys. They assume that voters are registered with their public
keys before the start of the election. We consider that this registration is performed re-
lying on a registrar. The case when voters register themselves is equivalent to the case
of an honest registrar (if they use an honest device) or a corrupt registrar (if they use a
corrupt one).

– Voting server VS generates a login credential, i.e. a password, for each registered voter,
accepts ballots from the voters if they are authenticated with the login credential, and
then publishes them on the bulletin board.

– Voting platform VP allows voters to generate a ballot as a triple, i.e. an encryption
of their vote with the election public key, a signature for the ciphertext, and a zero-
knowledge proof of knowledge of the vote. VP, then, allows voters to cast their ballot
on the voting server via a login operation.

– Voters V who are registered for the election generate a trapdoor key pair: a private key
and its corresponding public key. The public keys are used to generate the trapdoor
commitments by talliers, and then the private keys allow voters to open the commit-
ments after the election. The voters may cast several ballots during the election using
their voting platform or abstain from voting.

Selene deploys an append-only secure public bulletin board, denoted by BB, that dis-
plays the public election data: the election’s public key, the eligible candidates, the public
credentials of registered voters, the encrypted trackers, the trapdoor commitments, the cast
ballots, the votes as the election result (recorded next to the trackers), and the produced zero-
knowledge proofs for the correctness of the operations done by the election authorities. BB
allows voters to verify their votes at the end of the election and anybody to verify the data
published on BB, e.g. the correct decryption of the ciphertexts. The data on BB is displayed
in portions; for example, the election’s public key is recorded and displayed in the portion of
BBkey.

Cryptographic primitives: Selene relies on ElGamal encryption algorithm, which is also
used for re-encryption, a digital signature scheme, Pedersen trapdoor commitments, and non-
interactive zero-knowledge proofs.

• Encryption: A message m is encrypted with the public key pk and fresh randomness r,
and a ciphertext c = enc(m, pk, r) is obtained.

• Re-encryption: The ciphertext c is re-encrypted with the public key pk and fresh ran-
domness r®, and a ciphertext c® = renc(enc(m, pk, r), pk, r®) is obtained.

• Decryption: Any ciphertext c that is encryption with the public key pk is decrypted
with the corresponding private key sk and the message m is revealed, i.e.

m = dec(enc(m, pk, r), sk).

• Signing: A message m is signed with a signing key sk and the signature s = sign(m, sk)
is obtained, which is verified with the corresponding public key pk as follows:

verify(sign(m, sk), pk) = true.

• Trapdoor commitment: A trapdoor commitment cm is made to a message m with the
public trapdoor key tpk of the party that will open the commitment, and the commitment
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randomness r, i.e.
cm = com(m, tpk, r).

Then, the party that will open the commitment cm receives the commitment random-
ness r from the respective party, and reveals the message using their private trapdoor
key tsk as follows:

m = open(com(m, tpk, r), tsk, r).

• Interaction between encryption and trapdoor commitment: The fact that Selene uses
the ElGamal encryption and Pedersen commitment allows the following computation
of a commitment to tracker:

1. Assume enc(tr, pk, r3) is an encryption of tr, and enc(tpkr, pk, r1) is an encryption
of tpk raised to some randomness r. Then, we can obtain an encryption of the
commitment as follows:

enc(tpkr, pk, r1) � enc(tr, pk, r3) = enc(com(tr, tpk, r), pk, r1 + r3).

2. The encryption of the commitment is decrypted with the private key sk, and the
commitment cm is revealed:

cm = dec(enc(com(tr, tpk, r), pk, r1 + r3), sk) = com(tr, tpk, r).

• Non-interactive zero-knowledge proofs: A proof can be produced to prove:

1. the knowledge of the message m for the encryption enc(m, pk, r), i.e.

⇡enc = prenc(enc(m, pk, r),m, r),

2. the knowledge of the encryption enc(m, pk, r1) for the re-encryption enc(m, pk, r2),
i.e.

⇡renc = prrenc(enc(m, pk, r2), enc(m, pk, r1), r2),

3. the correct decryption of enc(m, pk, r) with the private key sk, i.e.

⇡dec = prdec(enc(m, pk, r),m, sk),

4. that the terms enc(tpkr, pk, r1) and enc(r, pk, r2) that are computed for a trapdoor
commitment have the same randomness r, i.e.

⇡rand = prrand(enc(tpkr, pk, r1), enc(r, pk, r2), r, r1, r2),

5. the correct computation of the commitment com(tr, tpk, r) from enc(tpkr, pk, r1),
enc(r, pk, r2), and enc(tr, pk, r3), i.e.

⇡com = prcom(tpk, enc(tpkr, pk, r1), enc(r, pk, r2), enc(tr, pk, r3), com(tr, tpk, r), sk, r).

Main idea. In Selene, the following information is published on BB for a voter credential cr:

BB : cr, tpk, com(tr, tpk, r), enc(tr, pkE,*), enc(r, pkE,*), enc(v, pk,*),⇡

where tpk is the voter’s public trapdoor key, com(tr, tpk, r) is the commitment to their tracker,
enc(tr, pkE,*), enc(r, pkE,*), and enc(v, pk,*) are the encryptions of their tracker, commit-
ment randomness, and vote, respectively, and ⇡ is the combination of all the produced proofs.
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At the end of the election, talliers will obtain tr, r, and v by decryption. Then, they can identify
the corresponding voter and send them the randomness so that they can compute the tracker.
The voter opens their commitment com(tr, tpk, r) with the randomness r received from talliers
and their private trapdoor key, i.e. tr = open(cm, tsk, r), which allows them to find the pair
(tr, v) on BB and match their vote.

We describe the election procedures and the individual verification procedure of Selene
as follows:

Setup phase. A determines the list of candidates v1,… , vk and voters id1,… , idn that are
eligible for the election. It delegates T to generate the election key pair (skE, pkE), VR to
generate a signing key pair (skid, pkid), and VS to generate a login credential pwd for each
voter id. Thus, each voter id obtains a signing key pair (skid, pkid) from VR and a password
pwd from VS. VR publishes the public keys of the voters as public credentials cr1,… , crn,
where each cri = pkidi . At this stage, the information available on BB is as follows:

BBkey : pkE; BBcand : v1,… , vk; BBreg : cr1,… , crn

Voters generate their trapdoor key pairs, i.e. a pair of (tsk, tpk), and publish the public trapdoor
key tpk.

BBtpk : (cr1, tpk1),… , (crn, tpkn)

Moreover, A generates n-trackers, i.e. tr®1,… , tr®n, to be used for the verification of the votes
by voters and publishes trackers with their trivial encryptions, i.e. etr®1,… , etr®n. The triv-
ial encryptions are obtained using a fix randomness rf ix to encrypt each tracker tr® such that
etr® = enc(tr®, pkE, rf ix). T re-encrypts the set of (trivially) encrypted trackers through a mixnet
and obtains etr1,… , etrn:

tr®1,… , tr®n
trivial

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô
encryption

etr®1,… , etr®n
re-encryption
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô

mixing
etr1,… , etrn,⇡renc

where etr = renc(etr®, pkE, r®). T also produces a zero-knowledge proof ⇡renc for the correct
re-encryption. The following information is posted on BB:

BBtr : tr®1,… , tr®n; BBetr® : etr®1,… , etr®n; BBetr : etr1,… , etrn,⇡renc

Encrypted trackers are assigned to the voters, i.e. each etri is assigned to the trapdoor public
key tpki. Thus, we have:

BBatr : (cr1, tpk1, etr1),… , (crn, tpkn, etrn)

Then, T commits to the trackers with a fresh randomness r, i.e. it generates a trapdoor com-
mitment cm for each trapdoor public key tpk as follows:

(1) tpkr, r
encryption
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô enc(tpkr, pkE, r1), enc(r, pkE, r2),⇡rand

(2) enc(tpkr, pkE, r1), enc(tr, pkE, r3)
multiplication & decryption
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô com(tr, tpk, r),⇡com

In (1), T encrypts both tpkr and r and produces the zero-knowledge proof ⇡rand that the ran-
domness r is the same in both terms, i.e.

⇡rand = prrand(enc(tpkr, pkE, r1), enc(r, pkE, r2), r, r1, r2).
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In (2), T multiplies the encryption of tpkr with the encryption of tr, i.e. etr, then decrypts the
multiplication and obtains the commitment cm, i.e. it computes

decom(enc(tpkr, pkE, r1), enc(tr, pkE, r3), skE) = com(tr, tpk, r).

The correctness of this operation relies on homomorphic properties of the ElGamal encryp-
tion, and on its similarity with the Pedersen commitment, as explained above. To prove the
correctness of the computation, T produces the proof ⇡com, where

⇡com = prcom(tpk, enc(tpkr, pkE, r1), enc(r, pkE, r2), enc(tr, pkE, r3), com(tr, tpk, r), skE, r).

Thus, for each public credential cr, the following tuple is published on BBcast:

BBcast : (cr, tpk, etr, cm,Ú),

where etr = enc(tr, pkE, rtr) and cm = com(tr, tpk, r). The last part of the tuple will be filled
with the ballot of the voter.

Voting phase. V interacts with VP to construct a ballot:

VP : downloads pkE À BBkey and v1,… , vk À BBcand,
V : selects v À BBcand,

VP : encrypts v with pkE and a randomness rv : c = enc(v, pkE, rv),
signs c with skid : s = sign(c, skid),
produces a proof of knowledge of v : p = prenc(c, v, rv).

In the above computations, the voter provides skid for the signature. The proof p denotes the
non-interactive zero-knowledge proof of the knowledge of the vote v. Thus, VP constructs the
ballot as a triple, i.e. b = Íc, s, pÎ. If V decides to cast b, VP requests login credentials of V,
i.e. id and pwd, which will prompt a connection to VS. If VS authenticates V, it receives the
tuple Ícr, bÎ on behalf of id and then verifies the signature s and the proof p. Then, it records
b in the position < of the tuple (cr, tpk, etr, cm, <) on BBcast. In case of revoting, the existing
ballot is replaced with the new one.

Tally phase. At the end of the voting phase, VS retrieves the last ballot published on BBcast
for each credential and publishes it on BBtally, i.e. for the credential cr, the following tuple is
published:

BBtally : (cr, tpk, etr, cm, b),

where b = Ú if no ballot was cast. Then, the encrypted tracker etr and the ciphertext c from
the ballot b = Íc, s, pÎ are extracted for each such tuple on BBtally, and the pair (etr, c) is
sent to T for the decryption. T, first, re-encrypts and shu�es the list of such pairs and then
decrypts all, producing the zero-knowledge proof ⇡dec for the correct decryption. Thus, the
list of tracker-vote pairs, i.e. (tr, v), and the proof ⇡dec are published on BB as the election
result:

BBres : (tr1, v1),… , (trn, vn),⇡dec.

At this stage, voters do not know which tracker is theirs.

Individual verification. Selene allows individual verification of the votes directly in the elec-
tion result. Therefore, votes are published next to trackers as additional credentials for vote
verification. The trackers are generated and assigned to the voters after a couple of operations
performed by T at the beginning of the election. However, neither T nor voters know which
trackers were assigned to them due to the verifiable mixnets. T cannot change the assigned
trackers due to the commitments and produced zero-knowledge proofs.
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To verify their vote, voters obtain the commitment randomness r from T via a secure
channel. Then, they open the commitment cm using their private trapdoor key tsk as follows:

open(cm, tsk, r) = open(com(tr, tpk, r), tsk, r) = tr,

which allows them to verify the vote next to tr on BBres.

Receipt-freeness. The coercer may force a voter to cast a particular vote, say v®. Then, at
the end of the election, the coercer could ask for the commitment randomness sent by T,
compute the corresponding tracker, and check whether the vote next to it is v®. To prevent
such coercion, the cryptographic primitives used in Selene allow voters to generate a fake
commitment randomness r® that opens the commitment to a di�erent tracker tr® on the bulletin
board, for which the vote is v®. Thus, the commitment randomness is sent after the result
is published on the bulletin board, i.e. to allow voters to generate their fake commitment
randomness if coerced. Selene provides some level of receipt-freeness since the voter can give
the fake randomness to the coercer. However, there is a risk for the voter that the coercer could
itself be a voter, and the randomness generated by the voter could open their commitment to
the coercer’s tracker, i.e. trackers may collude.

7.1.2 ProVerif Specification of Selene

In this section, we present the ProVerif specification of the Selene protocol, focusing on the
details specific to Selene. These are its equational theory, the extraction of trackers and the
linking events, and its individual verification procedure for voters. At the end of the section,
we provide the full specification of Selene in Figure 7.6 and Figure 7.7.

Equational theory. Selene relies on ElGamal encryption, a digital signature scheme, Peder-
sen trapdoor commitments, and non-interactive zero-knowledge proofs, as described in Sec-
tion 7.1.1. Mixnets are used for anonymising trackers and ciphertexts corresponding to the
votes before decryption. However, we do not explicitly model mixnets in the specification,
but only the re-encryption operation they perform. This is su�cient for verifiability purposes
since we do not attempt to hide the permutation of the ballots when computing the outcome.
Thus, cryptography requires the following equations:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true,
(3) verenc(prenc(enc(x, y, z), x, z), enc(x, y, z), y) = true,
(4) verdec(prdec(enc(x, pk(y), z), x, y), enc(x, pk(y), z), x, pk(y)) = true,

(5) renc(enc(x, y, z1), y, z2) = enc(x, y, z2),
(6) verrenc(prrenc(enc(x, y, z2), enc(x, y, z1), z2), enc(x, y, z2), enc(x, y, z1), y) = true,

(7) verrand(prrand(enc(xr, y, z1), enc(r, y, z2), r, z1, z2), enc(xr, y, z1), enc(r, y, z2), y) = true,
(8) decom(enc(xr, pk(y), z1), enc(w, pk(y), z3), y) = com(w, x, r),
(9) vercom(prcom(x, enc(xr, pk(y), z1), enc(r, pk(y), z2), enc(w, pk(y), z3), com(w, x, r), y, r),

x, enc(xr, pk(y), z1), enc(r, pk(y), z2), enc(w, pk(y), z3), com(w, x, r), pk(y)) = true,

(10) open(com(x, pk(y), z), y, z) = x,
(11) com(x2, pk(y), fake(x1, x2, y, z)) = com(x1, pk(y), z),
(12) open(com(x1, pk(y), z), y, fake(x1, x2, y, z)) = x2,
(13) fake(x2, x3, y, fake(x1, x2, y, z)) = fake(x1, x3, y, z).

The equations (1-4) represent the cryptography required for the ballot generation, validation,
and decryption of the votes, which are common in many e-voting protocols. Specifically, they
model (1) asymmetric encryption/decryption, (2) signing/verification, (3) zero-knowledge for
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the knowledge of the vote/verification, and (4) zero-knowledge proof for correct decryption,
respectively. The equations (5) and (6) are added to model re-encryption and the related zero-
knowledge proof for correct re-encryption. The equation (8) is used for the generation of
the trapdoor commitments, i.e. it allows talliers to compute a commitment to a tracker from
encryption of that tracker without decrypting it. The zero-knowledge proofs ⇡rand and ⇡com
generated for the commitment randomness and the correct computation of the commitment
are verified using the equations (7) and (9), respectively.

We use a previously considered theory in [24, 13] to model trapdoor commitments and
verify privacy-type properties. The main property is that a commitment can be opened with
the corresponding private trapdoor key, as in equation (10). Furthermore, equation (11) mod-
els that a private trapdoor key and the commitment randomness can be used to generate an-
other randomness that opens the commitment to any desired value. As shown in [13], equa-
tions (12) and (13) are added to make this theory convergent in ProVerif.

Extraction of trackers and the Link events: The trackers are generated by A at the beginning
of the election and recorded on BB with their trivial encryptions. Then, they are re-encrypted
byT through a re-encryption mixnet and assigned to the voter public credentials. IfT correctly
re-encrypts and shu�es the trackers, then each re-encrypted tracker should have been uniquely
assigned to a voter credential. Therefore, if the zero-knowledge proof produced by T for the
correct re-encryption is verified, we can ensure that each credential is linked to a tracker onBB.
In our specification, we formally link each credential to a tracker that can be extracted from
public information and proofs associated to it on BB to ensure the existence of the link and the
consistency between public credentials and trackers. Therefore, we assume the pre-tracking
information is recorded on BBptr(cr, etr,⇡renc), which allows us to extract the tracker tr from
its encryption etr, if the proof ⇡renc produced for the re-encryption is verified. Specifically,
the extraction requires the following equation:

extract(enc(x, y, z), y) = x,

i.e. the function extract retrieves the term x from its encryption enc(x, y, z). Note that etr is
associated with a public credential cr on BBptr. Thus, we can link tr to cr after its extraction
from etr. The following information flow on the BB describes how the trackers are extracted
from BBptr and then linked to the credentials:

BBreg : cr1 … crn

BBtr : tr®1 … tr®n

BBetr® : etr®1 … etr®n

BBetr : etr1 … etrn ⇡renc = ⇡1˝… ˝⇡n

BBptr : (cr1, etr1,⇡1) … (crn, etrn,⇡n)

⇡1 : verified … ⇡n : verified
tr1 = extract(etr1,⇡1) … trn = extract(etrn,⇡n)

Link(cr1, tr1) … Link(crn, trn)

BBres : (tr1, v1) … (trn, vn) ⇡res

Individual verification: Selene allows individual verification of the votes at the end of the
election on BBres. The voters verify their votes after they obtain their associated trackers and
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then find them on BBres. To obtain their tracker tr, voters receive their commitment random-
ness r from T, and using it and their private trapdoor key tsk, they open their commitment cm,
i.e. tr = open(cm, tsk, r). If the tracker tr matches one of the trackers on BBres, then the voter
can verify the vote v next to it. We assume that the commitment associated with the voter’s
public trapdoor key is recorded on BBvtr(cr, tpk, cm). Thus, we similarly describe the flow on
BB that allows voters to obtain their commitments from BBvtr, open them, and obtain their
trackers:

BBreg : cr1 … crn

BBtpk : (cr1, tpk1) … (crn, tpkn)

BBvtr : (cr1, tpk1, cm1) … (crn, tpkn, cmn)
tr1 = open(cm1, tsk1, r1) … trn = open(cmn, tskn, rn)

BBres : (tr1, v1) … (trn, vn) ⇡res

We model the voter’s trapdoor key generation, ballot cast using their voting platform, and
individual verification as specified in Figure 7.1. The voter’s vote v is recorded in the table
Voted when the voting platform generates the ballot for the vote and casts it on behalf of
the voter. Then, the voter verifies the vote v, first receiving the commitment randomness r
from the table Com, then opening their commitment cm recorded in the table BBvtr, and last
matching the tracker tr and the vote v on BBres. Note that the talliers record the commitment
randomness in the table Com for each credential. Then, the voters with those credentials
get the commitment randomness from Com, which models the private communication of the
commitment randomness to the voter.

let VoterTpk(id) =
get Cred(= id, cr, skid) in
new tsk;
let tpk = pk(tsk) in
insert Td(id, tpk, tsk);
insert BBtpk(cr, tpk).

let VoterVer(id) =
get Td(= id, tpk, tsk) in
get Voted(= id, cr, v) in
get BBvtr(= cr,= tpk, cm) in
get BBres(tr,= v) in
get Com(= cr, r) in
if open(cm, tsk, r) = tr then
event Verif ied(id, cr, v).

let VotingPlatformVote(v, pkE) =
get Cred(id, cr, skid) in
get Pwd(= id, pwd) in
new r;
let c = enc(v, pkE, r) in
let s = sign(c, skid) in
let p = prenc(c, v, r) in
let b = (c, s, p) in
let a = h(id, pwd, cr, b) in
event Vote(id, v);
insert Voted(id, cr, v);
out(pub, (id, cr, b, a)).

FIGURE 7.1: Processes specified for the voters and voting platforms in Se-
lene.

Some details about our ProVerif specification of Selene are as follows:

1. The re-encrypted trackers are assigned to the voters if the proof of re-encryption at-
tached is verified in the process AdminAssign. Note that this process gets one random
entry from table Etr and another from table BBtpk; therefore, it models the shu�ing
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of the re-encrypted trackers before being assigned to the voters. We ensure any re-
encrypted tracker is assigned to at most one voter with a restriction that we do not
present in Figure 7.6 but in the ProVerif code [52] provided online.

2. The table Compair in the process TallierCom records the encryptions of tpkr and r as a
and b, together with the proof ⇡rand. Similarly, the table Cm records the commitment
cm and the proof ⇡com. The entries of these two tables are used by the voting server to
verify the related proofs. Then, it records the commitment cm next to etr on BBcast.

3. Like Belenios, we model the server as it checks the consistency between voter identities
and public credentials, recording each identity-credential pair on the table Log.

let VoterCorr =
get Cred(id, cr, skid) in
get Td(= id, tpk, tsk) in
get Pwd(= id, pwd) in
event Corr(id);
out(pub, (id, pwd, cr, skid, tpk, tsk)).

let CorruptedVotingPlatformVote(v, pkE) =
get Cred(id, cr, skid) in
get Pwd(= id, pwd) in
out(pub, (id, pwd, cr, skid, v));
in(pub, (= id,= cr, b, a);
event Vote(id, v);
insert Voted(id, cr, v);
out(pub, (id, cr, b, a)).

FIGURE 7.2: Processes specified for the corrupt voters and corrupt voting
platforms in Selene.

Adversary models A. For Selene, we assume other than the administrator, any party can be
corrupt, allowing A to manipulate the election data:

– Corrupt talliers allow A to determine the private key of the election and any other
data they need to provide on BB, e.g. etr and prenc. However, since the data on BB
can be audited by anybody, e.g. the zero-knowledge proofs can be verified, talliers
first verify the correctness of the data received from A and then provide them on BB.
In the specifications that A corrupts the talliers, we model the processes TallierKey,
TallierEtr, TallierCom, and TallierDec as receiving the data they need to provide from
the public channel, i.e. from A. Note that in addition to verifiable public data, talliers
receive the commitment randomness from A in the process TallierCom, which allows
A to manipulate the tracker assigned to a voter if A has already obtained the private
trapdoor key tsk of the voter.

– A corrupt registrar allows A to determine the signing key pair for each voter. In the
specifications that A corrupts the registrar, we model the process for registration of the
credentials, i.e. RegistrarReg, as receiving (cr, skid) from A.

– A corrupt server accepts any ballot for any credential without authentication, but it
still verifies the signature and the proof inside the ballot as they can be verified publicly
on BB. We model a corrupt server with the process CorruptServerCast as specified in
Figure 7.4.

– Corrupt voting platforms allow A to construct a ballot on behalf of the voter and com-
pute its corresponding authentication, revealing the voter credentials to A except for
the trapdoor key pair, i.e. A obtains (id, pwd, cr, skid, v) from the voting platform and
constructs a ballot b and its authentication a instead of the platform. Here, we extend
the adversary’s abilities to construct any ballot compared to the one considered for
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Helios and Belenios in the previous chapters, where it is allowed only to choose the
encryption randomness. Thus, we model the corrupt voting platforms with the process
CorruptedVotingPlatformVote in Figure 7.2 as they communicate with A during the
ballot generation through the public channel.

– Corrupt voters leak all their credentials to A, i.e. (id, pwd, cr, skid, tpk, tsk), which is
modelled in all specifications with the process VoterCorr described in Figure 7.2.

Voting Platform

! = ($, &, ')

Voter()*)Voting Platform

! = ($, &, ')

Voter()*)

+, ',*, &-!"

!
Server

',*, &-!", .&-
+, ',*, &-!"

!
Server

FIGURE 7.3: Corrupt voter (left) vs corrupt voting platform (right).

Figure 7.3 illustrates the di�erence between a corrupt voter and a corrupt voting platform.
In the latter, we let the adversary construct the ballot as it wishes, providing A with the
required credentials. Yet, contrary to a corrupt voter, we assume the voter’s private trapdoor
key is secret. The reason is that voters generate trapdoor key pairs at the beginning of the
election. Thus, the procedure of trapdoor key generation is independent of the procedure of
ballot casting. In practice, the private trapdoor key can be stored on special trusted hardware
after generated. Therefore, it protects the key during ballot casting. Even if there is no such
hardware, the voters should use a separate device to verify their votes other than the one used
for ballot casting in case the corrupt device can trick the voter about the verification. In this
case, the tracker key should be generated in the verification device, making it secret during
ballot casting.

The adversary models we consider for our analysis are defined by the subsets of the corrupt
talliers, registrar, server, and voting platform described above. Other than them, we assume
the communication network and some voters are corrupt in all scenarios. Specifically, we
define seven scenarios from A1 to A7, as presented in Table 7.1.

Adversary Models A1 A2 A3 A4 A5 A6 A7

Talliers H C C C C C C
Registrar H H C H H C H
Server H H H C H H C
Voting Platform H H H H C C C

TABLE 7.1: Adversary models for Selene, SeleneRF, and Hyperion.

7.1.3 SeleneRF and Its ProVerif Specification

Selene relies on a public bulletin board that displays all the public election data, including the
cast ballots. Even though it provides an easy verification procedure for the voters to verify
their votes in the clear at the end of the election, any voter can still verify that their ballot
is captured by the voting server and thus published on BB. Therefore, coercion is possible
if the voter records the encryption randomness while generating a ballot and then gives it to
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the coercer as a receipt. If the coercer knows the voter’s public credential or public trapdoor
key, they can verify that the ballot contains their desired vote. To prevent such attacks, the
method used for BeleniosRF can be deployed by the protocol, as discussed in [47]. This
method is based on the randomisation of the ballots by the server after it receives from voters
and validates them. In this way, even if the coercer obtains the encryption randomness, they
cannot verify the ballot on BB that it contains their desired vote.

In our analysis, we aim to experiment with the e�ect of randomisation of the ballots on the
server’s side on the verifiability of Selene. Therefore, we model SeleneRF, a variant of Selene
that provides receipt-freeness. The specification of SeleneRF is slightly di�erent from Selene,
where the cryptography is extended to adapt signature and zero-knowledge proofs according
to the re-encryption of the ciphertext inside the ballot. Therefore, we add the following two
equations to the equational theory of Selene:

(14) resign(sign(enc(x, y, z1),w), y, z2) = sign(enc(x, y, z2),w),
(15) repr(pr(enc(x, y, z1), x, z1), y, z2)) = pr(enc(x, y, z2), x, z2).

In addition to the equational theory, the process of the server for casting the voter’s ballot to
BB is extended with the randomisation abilities of the server, as specified in Figure 7.4. Thus,
the server generates a randomness r® after it validates the ballot b = Íc, s, pÎ, re-encrypts the
ciphertext c and adapts the signature s and the proof p of knowledge of the vote with respect
to the re-encryption of the vote. Thanks to the cryptography deployed, the server does not
require the signing key of the voter to adapt the signature. The server records the randomised
ballot b = Íc®, s®, p®Î on BBcast. Therefore, the ciphertext c computed with the encryption
randomness r generated by the voter di�ers from the randomised ciphertext c® on BBcast,
which means that the voters cannot provide a receipt to the adversary.

let ServerCast(pkE) =
get BBcast(cr, tpk, etr, cm,= Ú) in
get Pwd(id, pwd) in
in(pub, (= id,= cr, (c, s, p), a);
event Log(id, cr);
let b = (c, s, p) in
if h(id, pwd, cr, b) = a then
if verify(s, c, cr) = true then
if verenc(p, c, pkE) = true then
new r®;
let c® = renc(c, pkE, r®) in
let s® = resign(s, pkE, r®) in
let p® = repr(p, pkE, r®) in
let b® = (c®, s®, p®) in
insert BBcast(cr, tpk, etr, cm, b®).

let CorruptedServerCast(pkE) =
get BBcast(cr, tpk, etr, cm,= Ú) in
in(pub, (= cr, (c, s, p));
let b = (c, s, p) in
if verify(s, c, cr) = true then
if verenc(p, c, pkE) = true then
insert BBcast(cr, tpk, etr, cm, b).

FIGURE 7.4: The processes for an honest and corrupt server in SeleneRF.

The adversary models we consider for SeleneRF are the same as those for Selene, includ-
ing the processes that describe them. The process modelling the corrupt server in both Selene
and SeleneRF is provided in Figure 7.4.



7.2. Hyperion 117

7.2 Hyperion

In this section, we present the protocol details of Hyperion as done for Selene. First, we
describe its protocol structure, including its protocol parties with their di�erent roles than Se-
lene, the cryptographic primitives used, and the election procedures followed by the parties.
Then, we provide its ProVerif specification details with respect to the seven adversary models
described for Selene. Hyperion prevents tracker collision, providing each voter with an indi-
vidual view of the bulletin board. This feature is required for receipt-freeness of the protocol.
Since we focus on verifiability, we do not consider this option and exclude the related details.

7.2.1 Hyperion Protocol Structure

Hyperion has similar parties to the ones in Selene but the role of talliers and voters are mod-
ified as follows:

– Talliers T generate the election public key in a distributed way, and at least the threshold
number of talliers, say k out of t, decrypt the set of ciphertexts corresponding to the bal-
lots cast by the voters. The decryption procedure relies on a mixnet, i.e. re-encryption
and shu�ing, and then decryption of the ciphertexts. Talliers also contribute to the dis-
tributed generation of the trackers from the public trapdoor keys: they raise each trap-
door public key to a fresh secret randomness to obtain a term that we call a pre-tracker;
then, they raise all the pre-trackers to a common randomness using an exponentiation
mix and obtain trackers that allow voters to verify their votes in the election outcome.

– Voters V registered for the election generate a trapdoor key pair: a private key and its
corresponding public key. They sign the public key and produce proof of knowledge of
their private key. They register the public trapdoor key next to their public credential.
The voters cast their ballots using their voting platform during the election.

Cryptographic primitives: Hyperion relies on ElGamal encryption algorithm, which is also
used for re-encryption, a digital signature scheme, exponentiation mixes, and non-interactive
zero-knowledge proofs. The encryption, re-encryption, decryption, and signing are as in de-
scribed for Selene. Assume g is the generator of the cyclic multiplicative group of the order
q, which is used for the cryptographic operations of Hyperion.

• Trapdoor key generation: A trapdoor key pair (tpk, tsk) is generated by selecting a
random element tsk between 1 and q and computing tpk = gtsk.

• Exponentiation mixes: The exponentiation mix M mixes a set of input messages, i.e.
Min, raising each message in Min to the power of s and mixing the set, and obtains the set
of output messages, i.e. Mout. In Hyperion, they mix the set of exponentiated trapdoor
keys in the form tpkr, where r is randomness used for the exponentiation and obtain the
terms in the form tpkrs.
Assume there are n public trapdoor keys, where each tpki is raised to the power of ri
such that the pre-trackers are tpkr11 ,… , tpkrnn . Then, they are put through M as follows:

(tpkr11 ,… , tpkrnn )
M

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô (tpkr11
s,… , tpkrnn

s)

• Non-interactive zero-knowledge proofs: The proofs ⇡enc, ⇡renc, and ⇡dec are similar to
the ones in Selene. In addition, a proof is produced to prove the correct exponentiation
gx from g and secret x as follows:

⇡exp = prexp(g, x, gx).
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Hyperion also relies on an append-only public bulletin board, denoted by BB, to display
the public election data. In the following, we present the election procedures of Hyperion,
where it di�ers from Selene, and its individual verification procedure:

Setup phase. Voters generate their trapdoor key pairs, i.e. a pair of (tsk, tpk), where tpk = gtsk

(g is the generator of the cyclic group), sign their public trapdoor key tpk with skid, i.e.
std = sign(tpk, skid), and produce proof of knowledge of tsk, i.e. ptd = prexp(g, tsk, tpk). Then,
they post the tuple td = (tpk, std, ptd) next to their public credential cr on BB:

BBtd : (cr1, td1),… , (crn, tdn)

The trapdoor public key tpk allows T to compute a tracker, i.e. a verification credential, for
the voter in the tally phase, and the others std and ptd justify that tpk is generated by the voter
registered with cr and valid. In [46], td is sent together with the ballot during the voting phase.
We assume they are published at the beginning of the election to allow revoting. VS verifies
all the signatures and proofs inside the trapdoor tuples and prepares BBcast for the voting
phase. For each credential cr, the following tuple is published on BBcast:

BBcast : (cr, tpk,Ú)

where the last entry will be filled with the ballot of the voter if they cast one.

Tally phase. At the end of the voting phase, VS retrieves the last ballot published on BBcast
for each credential and publishes it on BBtally, i.e. for the credential cr, the following tuple is
published:

BBtally : (cr, tpk, b),

where b = Ú if no ballot was cast. Then, T raises each public trapdoor key tpk and g to a fresh
randomness r, and publishes tpkr next to the ballot on BBexp:

BBexp : (cr, tpk, b, tpkr),

while keeping gr secret. We call each tpkr onBBexp a pre-tracker. Recall that each ballot b is of
the form b = Íc, s, pÎ. Thus, from each tuple recorded on BBexp, T retrieves the pair (tpkr, c),
i.e. the pair of pre-tracker and ciphertext. All such pairs are put through a mixnet, where
T raises each pre-tracker tpkr to common randomness s, i.e. obtains the tracker tr = tpkrs,
and re-encrypts each ciphertext c, i.e. obtains c®, producing proofs of exponentiation and
re-encryption, i.e.

⇡renc = prrenc(c®, c, r®); ⇡exp = prexp(tpkr, s, tr).

In this way, each pre-tracker is anonymised, and its corresponding ciphertext is randomised.
In the meantime, T also raises gr to common randomness s and obtains the secret, i.e. grs,
to be shared with the corresponding voter to reveal their tracker. For verifiability, we assume
that gs is also published on BB. Then, T decrypts each such randomised ciphertext, producing
proof of correct decryption, i.e. pdec. These two steps taken by T can be summarised in the
following:

(1) (tpkr, c)
exponentiation & re-encryption
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô

mixing
(tr, c®),⇡exp,⇡renc

(2) (tr, c®)
decryption
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,ô (tr, v),⇡dec

Thus, the list of tracker-vote pairs, i.e. (tr, v), is published as the election result:

BBres : (tr1, v1),… , (trn, vn),
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At this stage, voters do not know which tracker is theirs.

Individual verification. Like Selene, Hyperion allows voters to verify their votes directly
in the election result. They receive the secret grs from T via a secure channel. Then, they
compute their tracker using their private trapdoor key tsk as follows:

tr = grstsk(= gtsk
rs),

which allows them to verify their vote v next to the tracker tr on BBres.

Receipt-freeness. Similar to Selene, if the voter is coerced to vote for v®, they can generate
a fake secret that allows them to compute a tracker tr® on the bulletin board, for which the
vote is v®. However, as in Selene, the tracker tr® could be the coercer’s tracker and lead the
coercer to detect the voter’s disobedience. To prevent tracker collision, Hyperion provides an
individual view of the bulletin board for each voter, raising all the trackers in the result with
another fresh randomness ri specific to that voter. The secret is also modified with respect
to the randomness, i.e. it is raised to ri. Thus, the voter verifies their vote, computing their
tracker with the modified secret. In case of coercion, the voter can generate a fake secret to
compute any other tracker on the bulletin board. However, this time, the coercer cannot detect
the voter’s cheating since, on this particular view of the bulletin board, the coercer does not
know which tracker is theirs.

7.2.2 ProVerif Specification of Hyperion

In this section, we present the ProVerif specification of the Hyperion protocol, focusing on
the details specific to Hyperion. These are its equational theory, the extraction of trackers
and the linking events, and its individual verification procedure for voters. At the end of the
section, we provide the full specification of Hyperion in Figure 7.8.

Equational theory. As a variant of Selene, Hyperion has similar cryptographic primitives,
i.e. an encryption algorithm, a digital signature scheme, and a non-interactive zero-knowledge
proof protocol. In addition to them, Hyperion uses a re-encryption and exponentiation mixes.
Thus, we model the cryptography used by Hyperion with the following equations:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true,
(3) verenc(prenc(enc(x, y, z), x, z), enc(x, y, z), y) = true,
(4) verdec(prdec(enc(x, pk(y), z), x, y), enc(x, pk(y), z), x, pk(y)) = true,

(5) renc(enc(x, y, z1), y, z2) = enc(x, y, z2),
(6) verrenc(prrenc(enc(x, y, z2), enc(x, y, z1), z2), enc(x, y, z2), enc(x, y, z1), y) = true,

(7) (gx)y = (gy)x,
(8) ((gx)y)z = ((gy)z)x,
(9) verexp(prexp(x, y, xy), x, xy) = true.

The equations (1-4) are similar to the ones in Selene that are required for the ballot genera-
tion, validation, and decryption of the votes. We use the equations (5) and (6) to model the
operations of the re-encryption mix, i.e. re-encryption and the verification of the proof pro-
duced for correct encryption. For the exponentiation mix, we need to consider a model of
exponentiation that is more general than the usual model used in ProVerif, which only allows
capturing Di�e-Hellman-like interactions with two exponentiations. We need three expo-
nentiations since trackers are generated through three exponentiations, i.e. tr = ((gtsk)r)s. For
this, we consider the equations (7) and (8). We note that this theory is still incomplete, as in
general, one needs to cover any number of exponentiations in order to reason about security
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and not only to be able to execute the protocol. Finally, we use equation (9) to model the
verification of the proof produced for correct exponentiation.

Extraction of trackers and the Link events: As in Selene, due to the public information on
BBptr(cr, tpkr,⇡exp) and the zero-knowledge proof ⇡exp, we can extract the tracker tr from
its pre-tracker tpkr and link it to the corresponding credential. Specifically, the extraction
requires the following equation:

extract(x, prexp(x, y, z)) = z,

i.e. the function extract retrieves the term z from the proof ⇡exp. Note that pre-tracker tpkr is
associated with a public credential cr on BBptr. Thus, we can link tr to cr after its extraction
from tpkr and ⇡exp.

BBreg : cr1 … crn

BBtally : (cr1, tpk1, b1) … (crn, tpkn, bn)

BBexp : (cr1, tpk1, b1, tpk
r1
1 ) … (crn, tpkn, bn, tpk

rn
n )

b1 = (c1, s1, p1) … bn = (cn, sn, pn)

BBmix : (tr1, c®1) … (trn, c®n) ⇡exp = (⇡1˝… ˝⇡n),⇡renc

BBptr : (cr1, tpk
r1
1 ,⇡1) … (crn, tpkr

n

n ,⇡n)

⇡1 : verified … ⇡n : verified
tr1 = extract(tpkr11 ,⇡1) … trn = extract(tpkrnn ,⇡n)

Link(cr1, tr1) … Link(crn, trn)

BBres : (tr1, v1) … (trn, vn) ⇡res

Individual verification procedure. In Hyperion, voters compute the tracker tr with the secret
t received from the talliers, raising it to their private trapdoor key tsk, i.e. tr = ttsk. If the
tracker tr matches one of the trackers on BBres, then the voter can verify the vote v next to it.
The secret should be in the form t = grs to allow voter to compute the corresponding tracker
tr = tpkrs computed from their pre-tracker. We assume that the voter’s public trapdoor key is
recorded on BBvtr(cr, tpk). Thus, we similarly describe the flow on BB that allows voters to
compute their trackers:

BBreg : cr1 … crn

BBvtr : (cr1, tpk1) … (crn, tpkn)
tr1 = t1

tsk1 … trn = tn
tskn

BBres : (tr1, v1) … (trn, vn) ⇡res

We model the voter’s trapdoor key generation and individual verification as specified in
Figure 7.5.The process VoterVer models the individual verification of the voter id. The voter
id, first, gets their private trapdoor key from the table Td and receives the secret t from T,
i.e. the voter gets the entry t recorded for their credential cr from table Exp2. Then, the voter
computes their tracker with tsk, i.e. they compute tr = ttsk. The tracker tr allows the voter to
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check the vote v next to it on BBres. If v matches the one recorded in table Voted, the voter
successfully ends the individual verification.

let VoterTpk(id) =
get Cred(= id, cr, skid) in
new tsk;
let tpk = gtsk in
let std = sign(tpk, skid) in
let ptd = prexp(g, tsk, tpk) in
let td = (tpk, std, ptd) in
insert Td(id, tpk, tsk);
insert BBtd(cr, td).

let VoterVer(id) =
get Td(= id, tpk, tsk) in
get Voted(= id, cr,= tpk, v) in
get BBres(tr,= v) in
get Exp2(= cr, t) in
if tr = ttsk then
event Verif ied(id, cr, v).

FIGURE 7.5: The processes specified for the voters in Hyperion.

Adversary models A. We consider the same adversary models as Selene, referring to Ta-
ble 7.1. The specifications of a corrupt registrar, server, voting platforms and voters are sim-
ilar to the ones in Selene. In the specifications that A corrupts the talliers, we model the
processes TallierKey, TallierExp, TallierMix, and TallierDec, as receiving the data they need to
provide from the public channel, i.e. from A.

7.3 Verification Results and Analysis

In this section, we present the verifiability analysis of Selene, SeleneRF, and Hyperion with
respect to 7 corruption scenarios. For each scenario, we give the verification results of the
automated verification with ProVerif, where its specification is available online [52]. As pre-
sented in Table 7.2, we have obtained the same verification results for each of those proto-
cols. In Table 7.2, the symbol 3 represents the successful verification, i.e. the security proof,
whereas 7 does the failure, i.e. an attack. We explain them in the following.

Adversary Models A1 A2 A3 A4 A5 A6 A7

Talliers H C C C C C C
Registrar H H C H H C H
Server H H H C H H C
Voting Platform H H H H C C C

SE2E[iv÷, res÷] 3 7 7 7 7 7 7
SE2E[iv˝, res÷] 3 3 3 3 7 7 7
SE2E[iv÷, res˝] 3 7 7 7 7 7 7
SE2E[iv˝, res˝] 3 3 3 3 3 3 3

TABLE 7.2: Verification results for Selene, SeleneRF and Hyperion.

Attacks. A trust assumption in Selene is that the voters performing verification are honest.
On the other hand, the talliers can be fully corrupt. If both the verifying voter and the talliers
are corrupt, there is a trivial attack against election verifiability. The main idea is that talliers
can use the private trapdoor key of the voter to compute fake randomness that opens their
commitment to a di�erent tracker. If that tracker points to the same vote as chosen by the
voter, this results in a clash on trackers, i.e. two voters open the same tracker. This scenario
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is formally represented by the properties iv÷ (corrupt voters) and adversary models A2 *A7
(corrupt talliers) in Table 7.2.

Another notable attack is ballot stu�ng (i.e. attack against res÷) when the voting platform
is corrupt. Indeed, in that case, the adversary can replace the vote of the voter with any other
vote, as soon as the voter does not verify their vote. This shows that the tracking mechanism
in Selene protects voters against corrupt platforms only if they verify their votes, as expected.

Proofs. Notable cases are the positive results in corruption scenarios A3,A4 and A6,A7. As-
suming that the voting platform is honest, in the scenarios A3,A4, the (standard) verifiability
property, i.e. SE2E[iv˝, res÷], is proved if either the registrar or the voting server is honest,
like in Belenios. Note that the registrar is an abstraction we introduce for Selene to represent
the credential generation mechanism. It does not exist as an independent party in Selene.
Furthermore, if the voting platform is corrupt, the results for A6,A7 show that the weaker
notion of end-to-end verifiability, i.e. SE2E[iv˝, res˝], holds, meaning that ballot stu�ng is
possible for honest voters only if they did not verify their votes.

Conclusion. Our analysis confirms that Selene provides end-to-end verifiability for honest
voters who verify their votes in the election outcome, even if all the talliers and voting plat-
forms are fully corrupt. We obtain the same verification results in all scenarios for Selene,
SeleneRF, and Hyperion, implying that they provide the same end-to-end verifiability guar-
antees. Thus, SeleneRF is much more secure than Selene since it provides stronger receipt-
freeness and the same level of end-to-end verifiability. On the other hand, Hyperion can be
preferred over Selene due to the its e�cient computation of trackers and similar verifiability
guarantees. It also improves the receipt-freeness of Selene, preventing tracker collisions with
the individual views of the bulletin board. However, the individual view of the bulletin board
may not be practical considering the number of voters, e.g. in a large-scale election.
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let AdminCand =
in(pub, (v1, v2));
event BBcand(v1);
event BBcand(v2);
insert BBcand(v1);
insert BBcand(v2).

let AdminId =
in(pub, id);
insert Id(id).

let TallierKey =
new skE;
let pkE = pk(skE) in
insert SkE(skE);
event BBkey(pkE);
insert BBkey(pkE);
out(pub, pkE).

let RegistrarReg(id) =
new skid;
let cr = pk(skid) in
insert Cred(id, cr, skid);
event Reg(id, cr);
event BBreg(cr);
insert BBreg(cr);
out(pub, cr).

let ServerPwd(id) =
new pwd;
insert Pwd(id, pwd).

let VoterTpk(id) =
get Cred(= id, cr, skid) in
new tsk;
let tpk = pk(tsk) in
insert Td(id, tpk, tsk);
insert BBtpk(cr, tpk).

let AdminTr(pkE) =
new tr®;
let etr® = enc(tr®, pkE, rf ix) in
insert BBtr(tr®, etr®).

let TallierEtr(pkE) =
get BBtr(tr®, etr®) in
new r;
let etr = renc(etr®, pkE, r) in
let prenc = prrenc(etr, tr®, r) in
insert Etr(etr, prenc).

let AdminAssign(pkE) =
get BBtpk(cr, tpk) in
get BBtr(tr®, etr®) in
get Etr(etr, prenc) in
if verrenc(prenc, etr, tr®, pkE) = true then
insert BBetr(cr, tpk, etr),
insert BBptr(cr, tpk, etr, prenc, pkE).

let TallierCom(pkE, skE) =
get BBetr(cr, tpk, etr) in
get Etr(= etr, prenc) in
new r, r1, r2;
insert Com(cr, r);
let a = enc(tpkr, pkE, r1) in
let b = enc(r, pkE, r2) in
let prand = prrand(a, b, r, r1, r2) in
insert Compair(cr, tpk, a, b, prand);
let cm = decom(a, etr, skE) in
let pcom = prcom(tpk, a, b, etr, cm, skE, r) in
insert Cm(cr, tpk, etr, cm, pcom).

let ServerBB =
get BBetr(cr, tpk, etr) in
get Compair(= cr,= tpk, a, b, prand) in
get Cm(= cr,= tpk,= etr, cm, pcom) in
if verrand(prand, a, b, pkE) = true then
if vercom(pcom, tpk, a, b, etr, cm, pkE) = true then
insert BBvtr(cr, tpk, cm),
insert BBcast(cr, tpk, etr, cm,Ú).

FIGURE 7.6: ProVerif specification for the setup procedure in Selene.
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let VotingPlatformVote(v, pkE) =
get Cred(id, cr, skid) in
get Pwd(= id, pwd) in
new r;
let c = enc(v, pkE, r) in
let s = sign(c, skid) in
let p = prenc(c, v, r) in
let b = (c, s, p) in
let a = h(id, pwd, cr, b) in
event Vote(id, v);
insert Voted(id, cr, v);
out(pub, (id, cr, b, a)).

let Extraction =
get BBptr(cr, tpk, etr, prenc, pkE) in
get BBtr(tr®, etr®) in
if verrenc(prenc, etr, etr®, pkE) = true then
let tr = extract(etr, pkE) in
event Link(cr, tr);
insert Linked(cr).

let VoterVer(id) =
get Td(= id, tpk, tsk) in
get Voted(= id, cr, v) in
get BBvtr(= cr,= tpk, cm) in
get BBres(tr,= v) in
get Com(= cr, r) in
if open(cm, tsk, r) = tr then
event Verif ied(id, cr, v).

let ServerCast(pkE) =
get BBcast(cr, tpk, etr, cm,= Ú) in
get Pwd(id, pwd) in
in(pub, (= id,= cr, (c, s, p), a);
event Log(id, cr);
let b = (c, s, p) in
if h(id, pwd, cr, b) = a then
if verify(s, c, cr) = true then
if verenc(p, c, pkE) = true then
insert BBcast(cr, tpk, etr, cm, b).

let ServerTally =
get BBcast(cr, tpk, etr, cm, b) in
insert BBtally(cr, tpk, etr, cm, b).

let TallierDec(skE) =
get BBtally(cr, tpk, etr, cm, (c, s, p)) in
let tr = dec(etr, skE) in
let v = dec(c, skE) in
let pdec1 = prdec(etr, tr, skE) in
let pdec2 = prdec(c, v, skE) in
insert Dec(etr, tr, pdec1, c, v, pdec2).

let ServerRes(pkE) =
get Linked(cr) in
get BBtally(= cr, tpk, etr, cm, (c, s, p)) in
get Dec(= etr, tr, pdec1,= c, v, pdec2) in
if verdec(pdec1, etr, tr, pkE) = true then
if verdec(pdec2, c, v, pkE) = true then
event BBres(tr, v);
insert BBres(tr, v);
out(pub, (tr, v)).

FIGURE 7.7: ProVerif specification for ballot casting and tally procedures in
Selene.
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let AdminCand =
in(pub, (v1, v2));
insert BBcand(v1); BBcand(v2).

let AdminId =
in(pub, id); insert Id(id).

let TallierKey =
new skE; insert SkE(skE);
event BBkey(pk(skE));
insert BBkey(pk(skE)); out(pub, pk(skE)).

let RegistrarReg(id) =
new skid; let cr = pk(skid) in
insert Cred(id, cr, skid);
event Reg(id, cr); BBreg(cr);
insert BBreg(cr); out(pub, cr).

let ServerPwd(id) =
new pwd; insert Pwd(id, pwd).

let VoterTpk(id, cr, skid) =
new tsk; let tpk = gtsk in
let std = sign(tpk, skid) in
let ptd = prexp(g, tsk, tpk) in
insert Td(id, tpk, tsk); BBtd(cr, (tpk, std, ptd)).

let ServerBB(cr) =
get BBtd(= cr, (tpk, std, ptd)) in
if verify(std, tpk, cr) = true then
if verexp(ptd, g, tpk) = true then
insert BBcast(cr, tpk,Ú).

let VotingPlatformVote(v, pkE) =
get Cred(id, cr, skid) in
get Td(= id, tpk, tsk) in
get Pwd(= id, pwd) in
new r; let c = enc(v, pkE, r) in
let s = sign(c, skid) in
let p = prenc(c, v, r) in
let a = h(id, pwd, cr, tpk, (c, s, p)) in
event Vote(id, v); insert Voted(id, cr, tpk, v);
out(pub, (id, cr, tpk, (c, s, p), a)).

let ServerCast(pkE) =
get BBcast(cr, tpk,= Ú) in
get Pwd(id, pwd) in
in(pub, (= id,= cr,= tpk, (c, s, p), a);
event Log(id, cr);
if h(id, pwd, cr, tpk, (c, s, p)) = a then
if verify(s, c, cr) = true then
if verenc(p, c, pkE) = true then
insert BBcast(cr, tpk, (c, s, p)).

let ServerTally =
get BBcast(cr, tpk, b) in
insert BBtally(cr, tpk, b).

let TallierExp =
get BBtally(cr, tpk, b) in new r;
insert Exp1(cr, gr); BBexp(cr, tpk, b, tpkr).

let TallierMix(s, pkE) =
get BBexp(cr, tpk, (c, s, p), tpkr) in
get Exp1(= cr, gr) in
insert Exp2(cr, grs);
let tr = tpkrs in
let pexp = prexp(tpkr, s, tr) in
new r®; let c® = renc(c, pkE, r®) in
let prenc = prrenc(c®, c, r®) in
insert BBmix(tr, pexp, c®, prenc);
insert BBptr(cr, tpkr, tr, pexp).

let TallierDec(skE) =
get BBmix(tr, pexp, c®, prenc) in
let pdec = prdec(c®, dec(c®, skE), skE) in
insert BBdec(tr, c®, dec(c®, skE), pdec).

let Extraction =
get BBptr(cr, tpkr, tr, pexp) in
if verexp(pexp, tpkr, tr) = true then
let tr = extract(tpkr, pexp) in
event Link(cr, tr);
insert Linked(cr).

let ServerRes(pkE) =
get Linked(cr) in
get BBtally(= cr, tpk, b) in
get BBexp(= cr,= tpk,= b, tpkr) in
get BBmix(tr, pexp, c®, prenc) in
get BBdec(= tr,= c®, v, pdec) in
if verexp(pexp, tpkr, tr) = true then
if verrenc(prenc, c®, c, pkE) = true then
if verdec(pdec, c, v, pkE) = true then
event BBres(tr, v);
insert BBres(tr, v);
out(pub, (tr, v)).

let VoterVer(id) =
get Td(= id, tpk, tsk) in
get Voted(= id, cr,= tpk, v) in
get BBres(tr,= v) in
get Exp2(= cr, grs) in
if tr = grstsk then
event Verif ied(id, cr, v).

FIGURE 7.8: ProVerif specification of Hyperion.
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Chapter 8

The Estonian E-Voting Protocol

Estonia has started to deploy internet voting for national elections in 2005. In the parliamen-
tary elections of 2011, the rate of internet voters increased to 24,3% [50] among participating
voters. With this high rate, the security of the adopted e-voting protocol has been under
scrutiny, and an early paper [31] has shown that ballot manipulating attacks are possible by
a corrupt voting device. Following this, the protocol was improved [32] to allow individual
verifiability, allowing voters to verify their votes within a specified timeframe. The improved
protocol was used in the local elections of 2013. In those elections, a group of researchers
observed the election procedures, conducted some experiments, and prepared a technical re-
port [49] on the security of the Estonian e-voting protocol. This report pointed out some
implementation vulnerabilities and ghost-clicking attacks against the newly introduced indi-
vidual verifiability mechanisms. The protocol has then been further improved [33] to have
better verifiability, i.e. individual and universal verifiability, for the parliamentary elections
of 2015. However, a recent attack [44] on individual verifiability shows that the e�orts to
make a more secure protocol are still not su�cient.

The Estonian e-voting protocol allows revoting to protect voters against coercion from its
first deployment. Due to the first attack exploited by a corrupt voting device, the protocol
has been improved to provide an individual verification mechanism [32], allowing voters to
verify their last ballot cast only for a limited time after they cast. This mechanism is safe to
protect the voters against coercion, i.e. it provides receipt-freeness since the receipt used for
the verification becomes invalid after the verification time expires. In the recent version [33]
of the protocol, the individual verification procedure has been modified to allow voters to
verify any ballot within its specified verification timeframe, i.e. if the voter casts two ballots
subsequently, they can verify the first within its verification timeframe even if the second
ballot is the last in the voting server. This seems like to provide stronger receipt-freeness
compared to the previous version since the voter does not have to wait for revoting if coerced.
However, it brings some drawbacks since a corrupt voting device now can manipulate the
receipts obtained from revoting and mislead the voter, as shown in [44].

In this chapter, we perform a security analysis for the recent version [33] of the Esto-
nian e-voting protocol, applying our verification framework to evaluate its verifiability, and
the standard privacy definition [24] to evaluate its privacy. Our analysis confirms the indi-
vidual verifiability attack [44] when the voting device is corrupt. In addition, we discover
ballot reordering and ballot copying attacks [19] when the network is corrupt. To prevent
all mentioned attacks, we propose two protocol variants that improve its security. Our solu-
tions achieve both ballot privacy and end-to-end verifiability, as we proved with ProVerif and
Tamarin.

Structure of the chapter. This chapter includes five sections. In Section 8.1 and Section 8.2,
we present the protocol structure and the Tamarin specification details of the Estonian e-voting
protocol. In Section 8.3 and Section 8.4, we present the attacks we capture in our analysis and
the solutions that improve the security of the protocol. Finally, in Section 8.5, we provide our
verification results and verifiability analysis.
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8.1 EEV Protocol Structure

There have been several iterations of the Estonian e-voting (EEV) protocol, for which several
security analyses have been performed [31, 32, 49, 33]. We present an overview of the most
recent version of the protocol, IVXV, from [33], which aims to fill the security gaps in previous
versions and enable homomorphic tallying based on ElGamal encryption.

Smartcards and PKI. A Public Key Infrastructure (PKI) provides voters and protocol parties
with signature key pairs certified by a Certification Authority (CA). All the materials sent
between parties are signed with the sender’s signing key and verified with the verification key
inside the certificate. For eligible voters, the signing key is stored within a personal electronic
identity card (EID) that allows them to sign messages of their choice securely.

Protocol parties. The EEV protocol is deployed by a central voting system that is maintained
by multiple election parties, which are responsible for organising the election and comput-
ing the final result. Furthermore, several external parties provide additional functionalities,
like ballot time-stamping, registration, and audit of election data. Altogether, we have the
following parties:

Election parties: EO,VC, IBBP. External parties: CA,RS,TMS,DA,V.

EO : Election Organiser; CA : Certification Authority;
VC : Vote Vollector; RS : Registration Service;

IBBP : I-Ballot Box Processor; TMS : Time Marking Service;
DA : Data Auditors;
V : Voters.

– EO is responsible for the election configuration, i.e. it determines the list of candidates
and the list of eligible voters holding an EID card, which stores a signature key pair
(pkid, skid) certified by the CA for the voter id. EO is also responsible for the tally:
it generates an election key pair (pkE, skE), makes pkE available to any party in the
protocol, and decrypts the final ballots to be tallied.

– VC collects ballots from voters via their voting applications during the voting phase. It
interacts with the TMS and RS to timestamp and acquire registration confirmation for
each ballot. It stores all the received information and sends a receipt confirmation to
the voter.

– IBBP starts the tally procedure by verifying all the ballots and registration confirmations
in the lists received from VC and RS and determines the list of ballots to be tallied. It
extracts the ciphertext from each ballot, determining the final list of ciphertexts to be
decrypted (after anonymisation via a mixnet or homomorphic combination).

– TMS signs the ballot information received from VC to which it adds the time of request
(if the corresponding voter certificate is still valid) and sends the signature back to VC.

– RS validates the ballot registration request from VC and signs it to generate the regis-
tration confirmation sent back to VC. Furthermore, RS stores the record in its list of
records.

– DA audits all parties by: (1) verifying the list of ballots provided by VC for well-
formedness and eligibility, i.e. the eligibility of voters who cast the ballots and the
correctness of their signatures; (2) verifying the registration confirmations stored by
RS and the consistency between the list from RS and the one from VC; (3) verifying the
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correct processing of ballots by IBBP leading to final ballots to be tallied; this involves
redoing the same procedure and performing consistency checks for the data obtained
from VC and RS; and (4) verifying the proofs generated in the tally phase, e.g. the
proofs of correct decryption or mixing.

– V uses a voting application to start a voting session with VC. In the session, VC au-
thenticates V via their EID card and provides a list of candidates from which V selects
their vote. The voting application generates a ballot for V’s choice, sends it to VC,
and receives a registration confirmation in return, which allows it to form a QR code.
V uses a verification application installed on another device to verify their vote with
the QR code provided by the voting application. The QR code allows the verification
application to interact with VS, gets the corresponding ballot, and opens it to v for the
individual verification of V. Against a corrupt voting application or a corrupt voting
device, the voters are recommended to use a separate device to verify their votes. Indi-
vidual verification with the QR is allowed only for a limited time after the ballot is cast,
e.g. 30 minutes, and voters can revote during the election. In the rest of the chapter, we
denote the voting and verification applications by VoteApp and VerApp, respectively.

Unlike other protocols, EEV does not rely on a public bulletin board. For simplicity of
presentation, we assume a private bulletin board BB containing all the information that should
be available to all parties in the election and in particular to data auditors. After the setup,
BB includes the election’s public key and eligibility information. We describe the election
procedures and the individual verification procedure of EEV as follows:

Setup phase. EO generates the election key pair (pkE, skE) and determines the list of candi-
dates v1,… , vk and voters id1,… , idn that are eligible for the election. The election public
key pkE is shared with any party in the election, and the list of voters is made available to
any authority. Each voter id holds an EID card which has the tuple Íid, pkid, skid, certidÎ in-
side, where certid is certified by CA as follows: certid = sign(Íid, pkidÎ, skCA). Similarly, the
services TMS, RS and VC hold certificates certTMS, certRS, and certVC for their key pairs.

Voting phase. In Figure 8.1, we give an illustration of the voting phase. V uses their VoteApp
to create a ballot b = Íc, sÎ, where c = enc(v, pkE, r) is the encryption of their chosen candidate
v with fresh randomness r, and s = sign(c, skid) is their corresponding signature. The EID
card is first used to authenticate the voter to VC and then for signing the ciphertext containing
their vote. The VoteApp sends the voter identity and the ballot to VC, which verifies the
eligibility of the voter and the validity of the signature, acquires a timestamp on the ballot
from the TMS, creates a fresh identifier vid for b, and registers vid, b with RS. If all checks
and registration are successful, it stores the record in its database and sends the tuple Ívid, regÎ
back to the VoteApp, where reg is a signature on Ívid, bÎ by RS. The tuple Ívid, regÎ represents
confirmation of the receipt of the ballot by VC and registration confirmation of that ballot
by RS. The identifier vid, together with the encryption randomness r generated before, is
used by VoteApp to display a QR code that can be used for verifying the ballot on a separate
verification device.

Tally phase. During the voting phase, VC records the ballots received for the voter id in
Storedid, whereas RS records their registration confirmations in Reg. In the tally phase, IBBP
collects Reg and Storedid for each voter id, then validates each ballot in Storedid and verifies
that it is recorded inReg. Conversely, it also checks that no registered ballot has been removed.
If no problem is detected, IBBP retrieves the last ballot bl recorded in Storedid for each voter
and extracts its ciphertext cl. The list of resulting ciphertexts c1, ..., cn is anonymised by re-
encryption or homomorphic combination, and the resulting combined ciphertext (or list of
ciphertexts) is sent to EO for decryption. EO uses the election private key skE to decrypt the
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Voter(id, v) VoteApp VC TMS

BBkey : pkE; BBreg : id1, ..., idn; CertID : (id1, pk1), ..., (idn, pkn)
id, v

c = enc(v, pkE, r)
EID(skid) : s = sign(c, skid)

Íid, b = Íc, sÎÎ

id
?
À BBreg, (id, pkid)

?
À CertID

verify(s, c, pkid)
?= true

Íid, bÎ

(id, pkid)
?
À CertID

t = CurrentTime()
tm = sign(Íid, b, tÎ, skTM)

Ít, tmÎ

vid = FreshNonce()
req = sign(Ívid, bÎ, skVC) RS

Ívid, b, reqÎ

verify(req, Ívid, bÎ, pkVC)
?= true

reg = sign(Ívid, bÎ, skRS)
Reg := Reg ‰ (req, reg)
reg

Storedid := Storedid ‰ (vid, b, t, tm, reg)

Ívid, regÎ

verify(reg, Ívid, bÎ, pkRS)
?= true

QR := (vid, r)
QR

VerApp
QR

vid

(vid, b, t, tm, reg)
?
À StoredidV

CurrentTime()* t
?
< TOK

ÍidV, b = Íc, sÎ, regÎ

verify(reg, Ívid, bÎ, pkRS)
?= true

verify(s, c, pkidV)
?= true

enc(v®, pkE, r)
?= c

idV, v®

(id, v) ?= (idV, v®)
Verif ication(id, v) = OK

FIGURE 8.1: Illustration of EEV protocol.



8.2. Tamarin Specification of the EEV protocol 131

ciphertext(s), publishing the outcome and the proof of correct decryption. All these operations
can be audited by DA, who can request the necessary data from VC, RS, IBBP, or read it from
a jointly maintained bulletin board.
Individual verification. During the voting phase, voters can verify that their ballots reached
the VC and that they encode their desired votes. For this, they scan the QR = (vid, r) code
displayed on their VoteApp (after they submit their ballot) with their VerApp, which sends vid
to VC to request the ballot recorded for that vid. The VC retrieves the tuple Íid, b = Íc, sÎ, regÎ
corresponding to vid from its database and sends the tuple back. The VerApp first verifies s
and reg. Second, using the randomness r from the QR code, it can determine whether the
ciphertext c recorded by VC encodes a valid vote v®, by simply recomputing the encryption
algorithm for eligible candidates. In this case, v® is displayed to the voter, who concludes
successful verification if v® matches the expected vote v. Note that VC allows verification
of any vote cast within a timeframe, and not only of the last vote. This will be exploited by
Pereira’s attack discussed later.
Receipt-freeness. The EEV allows individual verification only within a timeframe specified
by the protocol, usually 30 minutes. This feature together with revoting helps to achieve
receipt-freeness. Indeed, after the timeframe expires, the QR code becomes useless to learn
which vote was cast, and the voter can undetectably revote. Thus, the QR code cannot e�ec-
tively function as a receipt. Another feature that somehow complements this one is that, even
if the QR code corresponds to a ballot that is not the last one cast, the individual verification
will be successful as long as we are within the prescribed timeframe. Thus, the coercer will
not know whether the vote they desire will be counted.

8.2 Tamarin Specification of the EEV protocol

In this section, we present the Tamarin specification of the EEV protocol, focusing on the
details specific to EEV . These are its equational theory, the extraction of trackers and the
linking events, and its individual verification procedure for voters. At the end of the section,
we provide the full specification of the EEV protocol in Figure 7.6 and Figure 7.7.
Equational theory. The EEV protocol relies on ElGamal encryption and digital signature
scheme. Thus, cryptography requires the following two equations:

(1) dec(enc(x, pk(y), z), y) = x,
(2) verify(sign(x, y), x, pk(y)) = true,

where they are used for the encryption/decryption and signing/verification, respectively.
EID cards and certificates: In this specification, we do not model the revocation of the cer-
tificates during the election. We assume that each voter is registered to the election with their
valid certificates, and they remain valid during the election. Since CA is assumed to be hon-
est, we model the generation of EID cards and certification of the public keys stored in EID
cards with a single rule as follows:

Reid : let pkid = pk(skid) in

[ In(id), Fr(skid) ]**[ ]ô[ !CertID(id, pkid), !EID(id, pkid, skid),Out(pkid) ]

Similarly, we specify a single rule for the signing key pair generation of the election parties
and the certification of their public key.
Voting and QR codes: In e-voting protocols, typically, the ballot casting procedure consists
of just submitting the generated ballot to the voting server. In the EEV protocol, the commu-
nication is two-way, i.e. after the ballot is submitted, a registration confirmation is received
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from VC, where it is used to form a QR code for the verification of the vote encoded in the
respective ballot. Thus, we model two rules for the actions of the VoteApp instead of one as
we done in the previous chapters.

Rvote : let c = enc(v, pkE, r); s = sign(c, skid); b = Íc, sÎ in

[ !Voter(id), !EID(id, pkid, skid), !BBcand(v), !BBkey(pkE), Fr(r), Fr(tv) ]
**[ Vote(id, v, tv),VoteB(id, b),VoteTime(id, v, tv) ]ô[ St(id, v, b, r, tv),Out(Íid, bÎ) ]

Rvid : [ In(Ívid, regÎ), St(id, v, b, r, tv), !CertRS(pkRS) ]
**[ verify(reg, h(Ívid, h(b)Î), pkRS) í true ]ô[ !Voted(id, v, tv, vid, r) ]

In the rule Rvote, the ballot b is generated for the voter id, signed with skid stored in EID,
and sent to VC. The vote information to be used in the second rule is recorded in St. After
receiving the ballot, VC processes it and sends its registration confirmation reg with a vote
identifier vid. VoteApp receives the tuple Ívid, regÎ, verifies the registration confirmation with
the public key of RS and records the vote information in Voted. The terms vid, r represent the
QR code formed by the VoteApp. The randomness r inside the code allows VerApp to encrypt
all the candidates and find the one matching with the ciphertext.

Timeframes and individual verification. EEV allows individual verification only within a
specific timeframe after the ballot is cast. To model a timeframe, we have two rules that
determine its start, its end and its public label $t, to which the protocol parties can refer for
determining its status:

Rstart : [ ]**[ ]ô[ !StartTime($t) ]
Rend : [ !StartTime($t) ]**[ EndTime($t) ]ô[ ]

The notation $t in Tamarin means that the first rule can create an unbounded number of time-
frames with di�erent public labels $t. WhenVC processes a ballot, it determines its timeframe
$t, consuming the fact StartTime, and stores the corresponding label in a fact Ver(vid, $t) that
will be used to prohibit the verification of the corresponding ballot if its timeframe has ex-
pired. The rule modelling the individual verification procedure is the following:

Rver : let b = Íc, sÎ; c® = enc(v, pkE, r) in

[ !Voted(id, v, tv, vid, r), !Stored(id, pkid, b, vid, ts, tm, reg),
!Ver(vid, t), !BBkey(pkE), !CertID(id, pkid), !CertRS(pkRS) ]

**[ verify(s, c, pkid) í true, verify(reg, h(Ívid, h(b)Î), pkRS) í true,
c í c®,CheckTime(t),Verif ied(id, v, tv) ]ô [ ]

The verification of the timeframe in this rule is modelled by the action fact CheckTime(t) in
conjunction with a restriction. The following restriction on the action fact CheckTime ensures
that individual verification cannot be performed after the timeframe has expired:

 ver : CheckTime(x) Ÿ ¬EndTime(x)

In addition to the timeframe, the rule verifies the signature on ballot b and registration con-
firmation reg. Then, it computes a ciphertext c® using the randomness r in the QR code, as
recorded in Voted. If c® matches with the ciphertext on the ballot, verification is completed
recording an action fact Ver(id, v, tv).

Adversary models A. We consider the adversary A with the abilities to corrupt underlying
infrastructure, i.e. the communication network, voters, voting applications, and the election
parties: RS and VC. At least one of the election parties, VC or RS, should be honest since
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they could collude without being noticed by DA. They could, for example, send a registration
confirmation to the voter, even though they do not store the ballot for the final tally. The
verification application is also assumed honest. We assume a set of corrupt voters, whose
credentials are leaked to the attacker. In most models we assume a corrupt communication
network, but sometimes we assume an honest network to test whether attacks are also possible
in that case. We also assumeCA andTMS are honest, but IBBP can be corrupt since its actions
can be audited DA. Specifically, we define seven scenarios from A1 to A6, as presented in
Table 8.1.

Adversary Models A1 A2 A3 A4 A5 A6

Network H C H C C C
VoteApp H H C C C C
RS H H H H C H
VC H H H H H C

TABLE 8.1: Adversary models for the EEV protocol.

- An honest network allows the communication between VoteApp and VC to be through
a private channel. Thus, VC processes the multiple ballots received in the order of they
have been cast.

- A corrupt network allows A to remove, insert, and reorder ballots between VoteApp
and VC.

– A corrupt VoteApp allows A to determine the ciphertext that will be used in the cast
ballot. In this case, the EID card is assumed to be secure, i.e. it is not compromised
and keeps the signing key secret. Thus, VoteApp uses the EID card to sign the bal-
lot. VoteApp may also manipulate the registration confirmation received by the voter,
allowing QR code to be manipulated by A.

- A corrupt RS leaks its signing key to A, allowing it to sign any ballot information from
VC.

- A corrupt VC leaks its signing key to A, reveals the vote identifier vid that is generated
to store a ballot, and does not perform any check on the stored ballots. It may also allow
individual verification even if the timeframe for that vid was expired.

– Corrupt voters leak all their credentials to A, including the signing key pairs stored in
their EID cards.

8.3 Attacks against the EEV Protocol

In this section, we present three attacks against the EEV protocol, for which two are against
its verifiability, and one is against its privacy. The first verifiability attack proposed in [44]
by Pereira is based on vote manipulation by a corrupt voting application or device without
being detected by the voter. The second verifiability attack is ballot reordering, in which the
adversary reorders the ballots cast by a voter corrupting the communication network. The
third attack is a ballot copying attack against the privacy of the protocol, where the adversary
copies the ballot of the targeted voter and learns the vote inside, just looking at the outcome.
In our analysis, we capture the verifiability attacks with our framework, and the privacy attack
using the standard definition of [24] on our ProVerif models.
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Pereira’s attack [44] against verifiability. This attack assumes a corrupt voting applica-
tion/device that manipulates the session started by the voter and does not require a corrupt
network. As in Figure 8.2a, the voter id starts a session with VC and submits a ballot b1 for
the desired vote v1. The VC processes b1 and sends its confirmation Ívid1, reg1Î back. Instead
of displaying the QR = (vid1, r1) for the verification of v1, the corrupt VoteApp displays crash
on the screen. Thus, the voter attempts to generate another ballot for v1; however, the corrupt
VoteApp encrypts v2 instead and submits the corresponding b2 (here v2 is the vote desired
by the adversary). After receiving confirmation for b2, VoteApp displays the first ballot’s
QR = (vid1, r1) for verification. Then, the voter verifies v1 with QR code using an honest
VerApp, and since all the verification checks pass, the voter expects v1 to be tallied. How-
ever, b2 corresponding v2 is selected for id in the tally phase. This attack targets the individual
verifiability of the voter, exploiting the verification procedure allowing any vote’s verification
if its timeframe has not expired. It also violates the result integrity since the corrupt voting
application/device stu�s a ballot that the adversary desires.

Ballot reordering attack against verifiability. We discover a ballot reordering attack with
the corrupt network, similar to the one found for Belenios in Chapter 6. Here it is notable
that the voting application can be honest. In this attack, the adversary manipulates the order
of the ballots when the voter revotes successively. As in Figure 8.2b, the voter id casts two
successive ballots b1 and b2, corresponding to v1 and v2. The adversary A in the network
blocks the first ballot b1, and submits the second ballot b2, as the first. The VC processes
b2 and sends its confirmation to the voter. Before the session ends, A achieves to submit b1
and blocks its confirmation. The voter verifies v2 as the last vote cast; however, the ballot b1
corresponding to v1 is tallied as last stored, which violates individual verifiability.

Ballot copying attack against privacy. We capture a ballot copying attack against privacy,
which belongs to a class first described in [19] against Helios. In its simplest version, the
attack consists in copying the ballot cast by one honest voter and recasting it in the name
of a dishonest voter. This is su�cient to violate privacy in simple scenarios: assume two
honest voters A and B and one corrupt voter C that cast ballots bA = ÍcA, sAÎ, bB = ÍcB, sBÎ,
and bC = ÍcA, sCÎ, respectively, where the adversary copies the ciphertext cA in A’s ballot to
generate a ballot for C. If the result comes out, e.g. as two a’s and one b, the attacker infers
that A voted for a. As shown in [42], this type of attack also leads to privacy violations in
more general scenarios as well. If revoting is disallowed, this attack can be countered by
ballot weeding by auditors. However, if revoting is allowed, the adversary can use one of the
two ciphertexts and submit it for a malicious voter, which would not be detected by weeding.

In the case of EEV, the ballot copying attack is possible as soon as the voting network is
corrupt and revoting is performed. In practice, one may consider that the connection to VC
happens over a secure channel. Since there is no public bulletin board, the attack is then not as
simple to perform as in Helios. However, stronger security is desirable, as the adversary may
compromise the secure channel as well. Another attack on privacy was recently described
in [43]. This attack is outside the scope of our model as it uses the homomorphic properties
of the encryption scheme in order to modify the vote inside the ballot and make it equal to a
value that, when published in the outcome, will be an outlier that will give a hint about the
original value of the vote or will leak the votes of other voters. Both attacks can be prevented
by adding a zero-knowledge proof to the ballot. In order to counter our attack, in addition
to the non-malleability of the ballot (that is su�cient to counter the attack in [43]), the zero-
knowledge proof will need to make sure that the ciphertext cannot be detached from the public
key of the voter.
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(A) Pereira’s attack.

Corrupt VoteApp(id, v1) VC,TMS,RS

c1 = enc(v1, pkE, r1)
EID(skid) :
s1 = sign(c1, skid)

Íid, b1 = Íc1, s1ÎÎ

generate:
vid1, t1, tm1, reg1
Storedid := Storedid‰
(vid1, b1, t1, tm1, reg1)

Ívid1, reg1Î

display: crash
c2 = enc(v2, pkE, r2)
EID(skid) :
s2 = sign(c2, skid)

Íid, b2 = Íc2, s2ÎÎ

generate:
vid2, t2, tm2, reg2
Storedid := Storedid‰
(vid2, b2, t2, tm2, reg2)

Ívid2, reg2Î

display: QR = (vid1, r1)

VerApp(id, v1,QR = (vid1, r1))
vid1

(vid1, b1, t1, tm1, reg1)
?
À Storedid

CurrentTime()* t1
?
< TOK

Íid, b1, reg1Î

verify: b1, reg1
Verif ication(v1,QR) = OK
Vote v2 is counted
(as last stored)

(B) Ballot reordering attack.

VoteApp(id, v1, v2) A VC,TMS,RS

c1 = enc(v1, pkE, r1)
EID(skid) :

s1 = sign(c1, skid)

Íid, b1 = Íc1, s1ÎÎ

c2 = enc(v2, pkE, r2)
EID(id, skid) :

s2 = sign(c2, skid)

Íid, b2 = Íc2, s2ÎÎ Íid, b2 = Íc2, s2ÎÎ

generate:
vid2, t2, tm2, reg2
Storedid := Storedid‰
(vid2, b2, t2, tm2, reg2)

Ívid2, reg2ÎÍvid2, reg2Î

display: QR = (vid2, r2)
Íid, b1 = Íc1, s1ÎÎ

generate:
vid1, t1, tm1, reg1
Storedid := Storedid‰
(vid1, b1, t1, tm1, reg1)

Ívid1, reg1Î

VerApp(id, v2,QR = (vid2, r2))
vid2

(vid2, b2, t2, tm2, reg2)
?
À Storedid

CurrentTime()* t2
?
< TOK

Íid, b2, reg2Î

verify: b2, reg2
Verif ication(v2,QR) = OK
Vote v1 is counted
(as last stored)

FIGURE 8.2: Illustration of the verifiability attacks against EEV protocol.

8.4 Solutions to Attacks

We consider the problem of strengthening the EEV protocol to counter the privacy and in-
dividual verifiability attacks presented in Section 8.3 and prove the resulting protocol secure
considering the adversary models from Table 8.1. Our attacks are related to the verifiability
attacks in [44] and the privacy attacks in [43]. These papers have discussed possible solutions
and informally argued why they should help. However, Pereira [44] cautioned that some of
the suggested improvements may not protect in all corruption scenarios and may also a�ect
receipt-freeness. In our attempts at formal verification, we could confirm that the improve-
ments suggested in [44] are not su�cient to obtain security in general. However, we show that
one of the proposed solutions can be proved secure (for verifiability) in a stronger corruption
model than suggested in [44] by making a small change to the communication infrastructure
and asking the voter to perform additional verification steps. All variants proposed in [44] are
still subject to the privacy attack, and furthermore, the addition of the zero-knowledge proof
proposed in [43] is not su�cient to protect against the ballot copying attack. We propose two
distinct improved variants of EEV that build upon the ideas from [44, 43] and we prove them
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to be secure with respect to verifiability and receipt-freeness. The di�erence between the two
variants is in the usability of the verification procedure: improved usability comes at the price
of decreased security, both for the verifiability and the receipt-freeness properties.

8.4.1 Insu�ciency of Current Solutions

Four approaches are proposed in [44] to mitigate Pereira’s attack. Two of them are clearly
in conflict with receipt-freeness in EEV, i.e. providing a public bulletin board or accepting
at most one ballot per voter, and thus we do not consider them. Two further variants are as
follows:

1. EEVNtfy í EEV+Ntfy(id, vid) 2. EEVLast í EEV+ Last(id, b).

The variant EEVNtfy uses a feedback channel that informs the voter each time a ballot is cast
for their respective id; this feedback should contain the identifier vid of the ballot. We repre-
sent this feature using the notation Ntfy(id, vid). The variant EEVLast allows voters to verify
only the last ballot stored in their name. We represent this feature by Last(id, b). Intuitively,
EEVNtfy should prevent Pereira’s attack because the corrupt VoteApp cannot hide anymore
from the voter that their first ballot has been correctly cast. One problem with this approach
mentioned in [44] is that the corrupt VoteApp may attempt to alter the vid in confirmations.
However, suppose the feedback channel is implemented on a di�erent device, e.g. a mobile
phone that also acts as a verification device. In that case, we can distribute trust by asking the
voter to confirm that the identifier vid is the same on both devices. This is the main addition
to EEVNtfy that we perform in one of our improved EEV variants. Another question left open
by [44] is who should be responsible for the notification. The most obvious party is VC, but
if the attacker also corrupts this party in addition to VoteApp, then the security breaks down.

Concerning EEVLast, if VC is honest, Pereira’s attack should not be possible: the voter
is not able to verify the ballot corresponding to vid1 after the ballot corresponding to vid2
is cast. If VC is malicious, it could, for example, delay the registration and storage of the
second ballot until after the voter verifies their first ballot. Furthermore, in our adversary
model, where we assume a corrupt network, the adversary could delay the second ballot even
without corrupting the VC. The ballot reordering attack is also possible in this case. We will
solve these problems by adding a simple notification on a feedback channel every time a new
ballot is cast for the voter. The notification is simplified with respect to EEVNtfy, since it does
not have to include the vid, only to notify voters that a ballot is cast in their name.

The privacy attacks from [43] are based on corrupting the ballot of an honest voter so
that the vote encoded inside can reveal information about the initial vote cast. The solution
proposed in [43] to mitigate this attack is to add a zero-knowledge proof that ensures the
ballot cannot be modified without detection. Formally, these zero-knowledge proofs can be
expressed by the equation ver(⇡, enc(v, pkE, r), pkE) = true where ⇡ = zkp(enc(v, pkE, r), v, r)
is a non-malleable zero-knowledge proof that will be invalid for any ciphertext c® di�erent
from enc(v, pkE, r). This prevents the vote v inside the ciphertext constructed by an honest
voter from being modified without detection. However, this does not prevent our ballot copy-
ing attack, since the adversary can take a ballot, extract the ciphertext and the zero-knowledge
proof, and reuse them without modification to cast a vote on behalf of a malicious voter. To
prevent this from happening, we will use an enhanced version of the zero-knowledge proof
that allows attaching a label to the ciphertext. Similarly to the solution used in Belenios [18],
we can then use the voter’s public key as a label, which will prevent ballots from being copied
from one voter to another.
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8.4.2 Our Solutions: EEV< and EEV+

We propose two variants of EEV, where we improve the solutions from [44] to achieve secure
individual verifiability. We note that ballot stu�ng is still possible for voters that do not
verify their ballots if their voting applications are corrupt. We also use an enhanced version
of the zero-knowledge proof to counter the privacy attacks. We obtain two protocol variants
as follows:

1. EEV< í EEV+Ntfy(id, vid) + (voter checks) + (EO BB) + (labeled ZKP),

2. EEV+ í EEV+ Last(id, b) +Ntfy(id) + (EO BB) + (labeled ZKP).

In Figure 8.3, we highlight the additions of EEV+ and EEV< to EEV in red.
EEV< augments EEVNtfy with explicit voter checks to counter a corruptVoteApp, and with

a private bulletin board BB that will be observed by EO and audited by DA to monitor the state
of registered and stored ballots. Recall that one problem with EEVNtfy as proposed in [44]
is that a corrupt VC could manipulate the notifications on the feedback channel. Instead, we
propose this common bulletin board for the election parties to monitor each other and to allow
the EO (or the DA) to notify voters that a ballot is recorded in their name. The notification on
the feedback channel is (id, vid) for every ballot processed by EO. Then, we require the voter
to check that the identifier vid from the latest notification matches the identifier vid® from the
QR = (vid®, r) code displayed by the VoteApp for the ballot to be verified.

EEV+ augments EEVLast with a notification on a feedback channel, but which does not
require sophisticated voter checks, e.g. comparing two distinct vid’s like in EEV<. The notifi-
cation contains only the information that a ballot was cast in the name of that voter. Then, we
require the voter to consider verification failed if a notification arrives after they perform the
verifiability check. This makes EEVLast more usable and more intuitive, since it is natural to
expect that only the last ballot should count. However, we find with Tamarin that this is not
su�cient to obtain individual verifiability when the VC is corrupt, so only the ballot reorder-
ing attack is countered, and not Pereira’s. The property of receipt-freeness is also weakened,
as we explain below.

In both EEV< and EEV+, the EO_DA monitor the private bulletin board to detect ballots
registered by RS and stored by VC. Recall that we assume that either the VC or the RS is
trusted, thus the state of the bulletin board will reflect the final state agreed between parties.
Thus, EO can ensure that a ballot is stored, registered and will not be removed. Whenever EO
notices a ballot reaching the agreed upon store, it sends a notification through the feedback
channel to the voter who cast the ballot.

Labeled zero-knowledge proofs. To prevent ballot copy attacks, the VC must ensure that no
ciphertext in any ballot is accepted twice. For that, we adopt the solution provided for Bele-
nios [18], i.e. we improve ballot structure by adding zero-knowledge proof labeled with the
public key pkid of the voter that proves the public key owner created the ciphertext know-
ing the encryption randomness r. Implementing zero-knowledge proofs in this way will not
raise di�culties in the EEV protocol since every eligible voter id holds an EID card keeping
the signature pair (pkid, skid). Formallly, the ballot structure will be improved as b = Íc, s, pÎ,
where c = enc(v, pkE, r), s = sign(c, skid), and p = zkp(enc(v, pkE, r), v, r, pkid)), and p is veri-
fied through the equation:

ver(zkp(enc(v, pkE, r), v, r, pkid), enc(v, pkE, r), pkE, pkid) = true.

Verifiability vs Receipt-freeness vs Usability. Comparing the two variants, Tamarin shows
that EEV< provides stronger verifiability since we obtain a security proof even with a corrupt
VC, which is not the case for EEV+. Indeed, the notifications in Pereira’s attack could both
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Aj_�
EEV EEV+ EEV <

�iv �÷E2E �˝
E2E �iv �÷E2E �˝

E2E �iv �÷E2E �˝
E2E

A1 3 3 3 3 3 3 3 3 3

A2 7 7 7 3 3 3 3 3 3

A3 7 7 7 3 7 3 3 7 3

A4 7 7 7 3 7 3 3 7 3

A5 7 7 7 3 7 3 3 7 3

A6 7 7 7 7 7 7 3 7 3

TABLE 8.2: Verification results for the EEV protocol.

happen before the voter performs verification. EEV< also provides stronger receipt-freeness
since allowing to verify the last ballot, like in EEV+, opens a window where the coercer can
detect a misbehaving voter - if the voter revotes while the coercer’s ballot is still within its
validity timeframe. However, EEV+ is more usable. The voter does not need to perform
any check related to the notification as it is in EEV<, except for ensuring that no additional
notification is received. In EEV<, the voter should know for which vid they get a notification
and which vid they use to verify their ballot. Thus, they should handle vid correctly to ensure
individual verifiability and be careful about the order of vid in case of revoting.

8.5 Verification Results and Analysis

In this section, we present the verifiability analysis of the EEV protocol with respect to six cor-
ruption scenarios described in Table 8.1. For each scenario, we give the verification results of
the automated verification with Tamarin, where its specification is available online [52]. As
presented in Table 8.2, we have improved the individual verifiability and end-to-end verifia-
bility of the EEV protocol. In Table 8.2, the symbol 3 represents the successful verification,
i.e. the security proof, whereas 7 does the failure, i.e. an attack. We explain them in the
following.

Note that we apply Definition 5 to the EEV protocol, where tr = cr = id and ÷ = ˝. In
this case, �˝

iv2 is trivial. Thus, we check the following property on the Tamarin models of the
EEV protocol:

SE2E[iv˝, res↵] = �˝
iv1 ·�

˝
iv3 ·�eli ·�↵

res ·�one,

where ↵ = {÷, ˝}. For simplicity, we denote �˝
iv1, SE2E[iv˝, res÷], and SE2E[iv˝, res˝] by �iv,

�÷E2E, and �˝
E2E, respectively.

With the adversary model A2, we capture the ballot reordering attack against verifiability
and the ballot copy attack against privacy in EEV. We prevent ballot reordering attack in both
EEV+ and EEV<. With the model A3 where the voting device is corrupt, we capture Pereira’s
attack in EEV. On the other hand, the variants EEV+ and EEV< provide a security proof for
�iv. With A4 and A5 where we extend the model with a corrupt network and a corrupt RS,
we still have security proof for �iv in the variants. However, with A6 where VC is corrupt
in addition to corrupt voting device and network, just EEV< is proved to be secure for �iv.
With the models Ai for i = 3, 4, 5, no variant satisfies �÷E2E since there is ballot stu�ng by a
corrupt voting device if the voters did not verify their votes. Thus, we prove the weak notion
of end-to-end verifiability, i.e. �˝

E2E, for those cases, guaranteeing that the adversary can only
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cast ballots for corrupt voters and for honest voters if they did not verify their votes. As we
proved security for �iv in EEV< with the model A6, we also obtain a security proof for �˝

E2E
in EEV<.

Conclusion. Our analysis confirms Pereira’s attack against individual verifiability of the
EEV protocol. It also allowed us to capture new attacks against security of the protocol, i.e.
ballot reordering and ballot copying attacks. An interesting open question is how to deploy
the solutions that we discussed and proved in practice, and how to achieve the best trade-o�
between verifiability, receipt-freeness and usability.
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Voter(id, v) VoteApp VC TMS

BBkey : pkE; BBreg : id1, ..., idn; CertID : (id1, pk1), ..., (idn, pkn)
id, v

c = enc(v, pkE, r)
EID(skid) : s = sign(c, skid)

p = zkp(c, v, r, pkid)
Íid, b = Íc, s, pÎÎ

id
?
À BBreg, (id, pkid)

?
À CertID

verify(s, c, pkid)
?= true

ver(p, c, pkE, pkid)
?= true

Íid, bÎ

(id, pkid)
?
À CertID

t = CurrentTime()
tm = sign(Íid, b, tÎ, skTM)

Ít, tmÎ

vid = FreshNonce()
req = sign(Ívid, bÎ, skVC) RS

Ívid, b, reqÎ

verify(req, Ívid, bÎ, pkVC)
?= true

reg = sign(Ívid, bÎ, skRS)
Reg := Reg ‰ (req, reg)
reg

Storedid := Storedid ‰ (vid, b, t, tm, reg)

N EEV+ : N = Ntfy(id); EEV< : N = Ntfy(id, vid)

EO

Ívid, regÎ

verify(reg, Ívid, bÎ, pkRS)
?= true

QR := (vid, r)
QR

VerAppQR
vid

(vid, b, t, tm, reg)
?
À StoredidV

CurrentTime()* t
?
< TOK

EEV+ : IsLast(idV, b)
?= OK

ÍidV, b = Íc, s, pÎ, regÎ

verify(reg, Ívid, bÎ, pkRS)
?= true

verify(s, c, pkidV)
?= true

enc(v®, pkE, r)
?= c

idV, v®

(id, v) ?= (idV, v®)
EEV+ : N

?= id and no N after CurrentTime()
EEV< : N

?= (id, vid)
Verif ication(id, v) = OK

FIGURE 8.3: Illustration of EEV protocols. In red are EEV+ and EEV< addi-
tions.
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SETUP PHASE
Reid : generate an EID card for identities

[ In(id), Fr(skid) ]**[ ]ô[ !CertID(id, pk(skid)), !EID(id, pk(skid), skid),Out(pk(skid)) ]
RTMcert : generate a key pair and get certified

[ Fr(skTM) ]**[ ]ô[ !CertTM(pk(skTM)), !SkTM(skTM),Out(pk(skTM)) ]
RRScert : generate a key pair and get certified

[ Fr(skRS) ]**[ ]ô[ !CertRS(pk(skRS)), !SkRS(skRS),Out(pk(skRS)) ]
RVCcert : generate a key pair and get certified

[ Fr(skVC) ]**[ ]ô[ !CertVC(pk(skVC)), !SkVC(skVC),Out(pk(skVC)) ]
REOkey : generate election key pair

[ Fr(skE) ]**[ BBkey(pk(skE)) ]ô[ !BBkey(pk(skE)), !SkE(skE),Out(pk(skE)) ]
REOcand : determine candidates to be elected

[ In(v) ]**[ ]ô[ !BBcand(v) ]
REOvoter : determine identities eligible to vote

[ In(id), !CertID(id, pkid) ]**[ BBreg(id) ]ô[ !Voter(id) ]

VOTING PHASE
Rstart : start verification time frame

[ ]**[ ]ô[ !StartTime($t) ]
Rend : end verification time frame

[ !StartTime($t) ]**[ !EndTime($t) ]ô[ ]
RVvote : construct a ballot and send it to VC

let c = enc(v, pkE, r); s = sign(c, skid); b = Íc, sÎ in

[ !Voter(id), !EID(id, pkid, skid), !BBcand(v), !BBkey(pkE), Fr(r), Fr(tv) ]
**[ Vote(id, v),VoteB(id, b),VoteTime(id, v, tv) ]ô[ St(id, v, b, r, tv),Out(Íid, bÎ) ]

RVCaccept : verify and accept ballot, and send h(c) to TM
[ In(Íid, Íc, sÎÎ), !Voter(id), !CertID(id, pkid), Fr(vid) ]

**[ verify(s, c, pkid) í true ]ô[ Vid(id, pkid, b, vid),Out(Ípkid, h(c)Î) ]
RTMtime : stamps time to h(c) and sends it back to VC

let tm = sign(Ípkid, hash, tsÎ, skTM) in

[ In(Ípkid, hashÎ), !CertID(id, pkid), !SkTM(skTM), Fr(ts) ]**[ ]ô[ Out(Íts, tmÎ) ]
RVCreq : verify time mark, generate req and send it to RS

let req = sign(Ívid, h(b)Î, skVC) in

[ In(Íts, tmÎ),Vid(id, pkid, b, vid), !SkVC(skVC), !CertTM(pkTM) ]
**[ verify(tm, Ípkid, h(c), tsÎ, pkTM) í true ]ô
[ Tm(id, pkid, b, vid, ts, tm),Out(Ívid, h(b), reqÎ) ]

RRSreg : register Ívid, h(b)Î and send confirmation to VC
let reg = sign(h(Ívid, hashÎ), skRS) in
[ In(Ívid, hash, reqÎ), !SkRS(skRS), !CertVC(pkVC) ]
**[ verify(req, Ívid, hashÎ, pkVC) í true ]ô[ !Reg(req, reg),Out(reg) ]

RVCstore : verify registration confirmation and store ballot
[ In(reg),Tm(id, pkid, b, vid, ts, tm), !CertRS(pkRS), !StartTime(t) ]

**[ Eq(verify(reg, h(Ívid, h(b)Î), pkRS), true), StoreB(id, b) ]ô
[ !Stored(id, pkid, b, vid, ts, tm, reg), !Ver(vid, t),Out(Ívid, regÎ) ]

 VC
order : store ballots in the correct order

VoteB(id, b1) @i · VoteB(id, b2) @j ·
StoreB(id, b1) @k · StoreB(id, b2) @l · i « j Ÿ k « l

RVvid : verify registration confirmation and capture QR code
[ In(Ívid, regÎ), St(id, v, b, r, tv), !CertRS(pkRS) ]

**[ verify(reg, h(Ívid, h(b)Î), pkRS) í true ]ô[ !Voted(id, v, tv, vid, r) ]

FIGURE 8.4: Setup and voting phase of the EEV protocol specification.
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TALLY PHASE

RIBBPverify : verify the ballot stored by VC and check whether it was registered
[ !Voter(id), !Stored(id, pkid, b, vid, ts, tm, reg), !Reg(req, reg), !CertID(id, pkid),
!CertRS(pkRS), !CertVC(pkVC) ] **[ verify(s, c, pkid) í true,
verify(req, Ívid, hashÎ, pkVC) í true, verify(reg, h(Ívid, h(b)Î), pkRS) í true ]ô

[ !IBBPVerif ied(id, pkid, b, vid, ts, tm, reg) ]

RIBBPtally : select the last ballot stored by VC for the tally
[ !IBBPVerif ied(id, pkid, b, vid, ts, tm, reg) ]**[ BBtally(id, b) ]ô[ ]

 IBBP
tally : select the last ballot stored by VC

StoreB(id, b) @i · StoreB(id, b®) @j · BBtally(id, b) @k Ÿ j « i ‚ b = b®

INDIVIDUAL VERIFICATION

RVver : voter verifies the ballot within verification timeframe
let b = Íc, sÎ; c® = enc(v, pkE, r) in
[ !Voted(id, v, tv, vid, r), !Stored(id, pkid, b, vid, ts, tm, reg), !Ver(vid, t), !BBkey(pkE),
!CertID(id, pkid), !CertRS(pkRS) ]

**[ verify(s, c, pkid) í true, verify(reg, h(Ívid, h(b)Î), pkRS) í true, c í c®

CheckTime(t),Verif ied(id, v, tv) ]ô [ ]

 V
ver : check whether time frame has expired

CheckTime(t) Ÿ ¬EndTime(t)

FIGURE 8.5: Tally phase and individual verification procedure of the EEV
protocol specification.
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Chapter 9

Conclusion

In this thesis, we provide a general formal verification framework to evaluate the verifiability
of e-voting protocols bridging the gap between theoretical analysis and practical implemen-
tation by considering real-world e-voting protocols, such as Helios, Belenios, Selene, and the
Estonian e-voting protocol, as case studies. Our framework allows automated verification,
accounts for revoting, and captures both existing and new verifiability attacks. Our analyses
highlight the importance of the correct and realistic modelling of the protocols and their au-
tomated verification. To identify vulnerabilities of the protocols under di�erent corruption
scenarios, they should be modelled with their features a�ecting the security. For example,
revoting is a feature that many e-voting protocols provide to protect against coercion or as
a general usability feature. However, this feature has not been modelled in the verifiability
analyses of e-voting protocols, except for the computational model of Belenios. Thus, the
attacks we discovered are lacking in the analyses of Helios or the literature. Moreover, the
automated verification of the protocols allowed us to capture those attacks, emphasising the
advantages of the comprehensive analysis provided by automated verification over manual
verification.

9.1 Our Findings and Open Questions

• In particular to our definition:

– Our definition can evaluate the verifiability of the protocols according to the dif-
ferent levels of end-to-end verifiability.

– It can be applied to di�erent types of protocols that publish the election result as
a set of votes or a set of tracker-vote pairs.

– It can be instantiated for di�erent revoting policies, i.e. a trivial policy modelling
no revote or the policy selecting the last vote cast.

– It can be checked through for both specifications of Tamarin and ProVerif, without
making any change in the formulas.

• In particular to revoting, attacks, and individual verification procedures:

– There are new attacks arising from revoting. So far, two main attacks have been
described in the literature against the verifiability of e-voting protocols: ballot
stu�ng and clash attacks. We captured ballot reordering attacks exploited by
the adversary corrupting the communication network and new versions of clash
attacks requiring only the registrar to be corrupt. In the original scenario of clash
attacks, the registrar, server, and voting platforms are all required to be corrupt to
exploit the attacks.

– Individual verification procedures allowed by the protocols could be insu�cient
to ensure individual verifiability. If the voters are allowed to verify their ballots
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at any time during the election, as in the real deployments of the protocols that
allow revoting, the voters could be subjected to the attacks mentioned above. The
most secure procedure requires verifying the ballots after the voting period has
ended. However, e-voting protocols, in general, provide long periods for ballot
casting. If the voter casts a ballot at the very beginning of the election, waiting
for the verification until the end of the voting period could make them abandon
the procedure.

– The deployment of the bulletin board that displays all the ballots cast for a voter
credential without replacing them with the new ones is e�cient in capturing the
new versions of clash attacks if a di�erent individual verification procedure is
provided. We assumed the voters verify their last ballot cast and also the previ-
ous ballots cast by them. Thus, they perform a successful verification if all the
existing ballots for their credential are theirs. This individual verification proce-
dure protects voters against clash attacks but does not protect against other found
attacks.

• In particular to case studies:

– Helios is vulnerable to known attacks as well as new attacks found with revoting.
However, we prove the weaker notion of end-to-end verifiability against a partially
or fully corrupt server if the voters verify their ballots after the voting phase ends.
In this notion of verifiability, ballot stu�ng is allowed for honest voters who did
not verify their ballots. We mean by a fully corrupt server that it is also responsible
for registering voters, i.e. it plays the roles of both server and registrar.

– Belenios is vulnerable to newly found attacks, i.e. ballot reordering attacks and
new versions of clash attacks in the cases of a corrupt network, a corrupt voting
server, or a corrupt registrar. Thus, it is not secure as it is supposed to be against a
corrupt registrar or a corrupt server. We find ballot reordering attacks even when
both are honest, and the adversary corrupts the network. The attacks are exploited
against the vulnerability of the voting server that it does not know the order of the
ballots, if the network is corrupt, and the correspondence between voter identities
and their credentials. Thus, the adversary can block the ballots from honest voters
and cast them under the identities of corrupt voters. However, similar to Helios,
we prove the weaker notion of end-to-end verifiability against all these three cases
if the voters verify their ballots after the voting phase ends. Note that both Helios
and Belenios allow individual verification at any time in their real deployments.

– BeleniosRF is vulnerable to individual verifiability attacks and also new versions
of clash attacks. BeleniosRF aims to provide receipt-freeness in addition to end-
to-end verifiability, using an additional randomisation server that randomises each
received ballot before publishing it on the bulletin board. Therefore, the voters
only verify that there exists a ballot next to their credentials. In this way, even
if receipt-freeness is achieved, the individual verification procedure is weakened
and does not fully protect voters against ballot alteration or clash attacks.

– Selene satisfies end-to-end verifiability if honest voters verify their votes, even
if all other parties are corrupt. Thus, we provide the first automated proof of
verifiability of Selene.

– SeleneRF, the variant of Selene that provides a stronger receipt-freeness due to
the randomisation of the ballots, as in BeleniosRF, achieves the same level of
end-to-end verifiability as Selene.



9.1. Our Findings and Open Questions 145

– Hyperion, another variant of Selene that improves tracker management due to the
di�erent cryptographic primitives employed, achieves the same level of end-to-
end verifiability as Selene.

– The Estonian e-voting protocol is susceptible to individual verifiability attacks.
We capture the known attack proposed by Pereira and new ballot reordering at-
tacks. Thus, it does not satisfy end-to-end verifiability unless all parties and the
underlying infrastructure are honest.

• In particular to end-to-end verifiability vs. receipt-freeness:

– In the case of Belenios, its receipt-free variant, i.e. BeleniosRF, weakens the
verifiability guarantees provided by Belenios. We observe the tension between
receipt-freeness and end-to-end verifiability in this case. The tension can be re-
duced with an improvement of BeleniosRF concerning its individual verification
procedure. The ways and the methods that achieve stronger end-to-end verifiabil-
ity are open questions.

– In the case of Selene, its variant, SeleneRF, preserves the verifiability guarantees
provided by Selene. Thus, without sacrificing verifiability, a stronger receipt-
freeness can be achieved by SeleneRF.

• In particular to improvements of Belenios and the Estonian e-voting protocols:

– We handled the attack scenarios of Belenios when the network, server, or regis-
trar is corrupt. The attacks exploited the voting server’s vulnerability in that it
knows the order of the ballots, if the network is corrupt, and the correspondence
between voter identities and their credentials. Identifying this, we provided so-
lutions to remove these vulnerabilities and prevent those attacks. Our solutions
require changes in the implementation of the voting platform and the ballot struc-
ture. Thus, they do not a�ect the usability of the protocol. We proved that the
solution modelled in the variant Belenios+ guarantees end-to-end verifiability in
all attack scenarios.

– We provided two solutions to prevent individual verifiability attacks in the Es-
tonian e-voting protocol that are exploited by a corrupt voting application. Our
solutions improve the individual verifiability and end-to-end verifiability of the
protocol, but they require additional checks performed by the voters when they
verify their votes. Even though we proved that deploying the solutions provides
better security, their feasibility and practicality are open questions.

• In particular to automated verification tools Tamarin and ProVerif:

– Tamarin allows to use timepoints in both restrictions and lemmas, which makes
it more expressive than ProVerif to specify the correct and realistic model of the
protocol. For example, we can specify a restriction in Tamarin to select the last
ballot cast ordering the time of the events representing the ballots recorded by
the voting server. On the other hand, in ProVerif, timepoints are only allowed in
lemmas, on the right side of the implications, which limits to express what we
want to formulate.

– ProVerif is better at handling equational theory. In our first attempt to model
Selene in Tamarin, we encountered termination problems in Tamarin. We ob-
served that Tamarin could not handle complicated equations together with a real-
istic model of Selene, such as the ones modelling the commitments, where they
are allowed to open with fake randomness. On the other hand, we could obtain
our verification results with the attempt in ProVerif.
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– Both tools were insu�cient to model the abstraction of the exponentiation, which
is needed to model Hyperion. Therefore, we had to skip modelling the individual
view of bulletin boards as suggested in the protocol since it requires quadruple
exponentiation. For the triple exponentiation, we could model the two equations
in ProVerif required for the specification of Hyperion. For completeness, we tried
to add complementary equations. However, these resulted in failure, i.e. they
left the execution non-terminated. It was worse in Tamarin since even these two
equations did not work.

– To model Belenios+ in Tamarin, we needed to model a rule that will be exe-
cuted recursively since it represents a ballot-casting procedure, where each ballot
is generated with the information from the previous ballot. We could not achieve
to execute this rule infinitely many times, and we had to restrict its execution to
four times in order to make Tamarin terminate.

Thus, the tools should be improved with respect to those aspects to be used more for
the automated verification of various cryptographic protocols.

In conclusion, we achieved to provide a general verifiability framework that can also be ap-
plied to other protocols not presented in this thesis to evaluate their verifiability. Our frame-
work can also be used for the identification of vulnerabilities, i.e. the formulas falsified in the
definition may give a hint about the vulnerabilities. The ultimate goal of e-voting protocols is
to satisfy both strong end-to-end verifiability and receipt-freeness and provide them even if all
the parties are corrupt. Towards this, our framework can contribute by providing a systematic
and automated way to formally verify election verifiability.
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