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UNIVERSITY OF LUXEMBOURG

Abstract

Interdisciplinary Centre for Security, Reliability and Trust
Doctor of Computer Science

Formal Verification of Verifiability in E-Voting Protocols

by Sevdenur BALOGLU

Election verifiability is one of the main security properties of e-voting protocols, referring to
the ability of independent entities, such as voters or election observers, to validate the outcome
of the voting process. It can be ensured by means of formal verification that applies mathemat-
ical logic to verify the considered protocols under well-defined assumptions, specifications,
and corruption scenarios. Automated tools allow an efficient and accurate way to perform for-
mal verification, enabling comprehensive analysis of all execution scenarios and eliminating
the human errors in the manual verification. The existing formal verification frameworks that
are suitable for automation are not general enough to cover a broad class of e-voting proto-
cols. They do not cover revoting and cannot be tuned to weaker or stronger levels of security
that may be achievable in practice. We therefore propose a general formal framework that
allows automated verification of verifiability in e-voting protocols. Our framework is easily
applicable to many protocols and corruption scenarios. It also allows refined specifications
of election procedures, for example accounting for revote policies.

We apply our framework to the analysis of several real-world case studies, where we cap-
ture both known and new attacks, and provide new security guarantees. First, we consider
Helios, a prominent web-based e-voting protocol, which aims to provide end-to-end verifia-
bility. It is however vulnerable to ballot stuffing when the voting server is corrupt. Second,
we consider Belenios, which builds upon Helios and aims to achieve stronger verifiability,
preventing ballot stuffing by splitting the trust between a registrar and the server. Both of
these systems have been used in many real-world elections. Our third case study is Selene,
which aims to simplify the individual verification procedure for voters, providing them with
trackers for verifying their votes in the clear at the end of election. Finally, we consider the
Estonian e-voting protocol, that has been deployed for national elections since 2005. The
protocol has continuously evolved to offer better verifiability guarantees but has no formal
analysis. We apply our framework to realistic models of all these protocols, deriving the first
automated formal analysis in each case. As a result, we find several new attacks, improve the
corresponding protocols to address their weakness, and prove that verifiability holds for the
new versions.
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Chapter 1

Introduction

The verifiability of e-voting protocols plays a fundamental role in establishing the credibility
of election outcomes. Verifiability refers to the ability of independent entities, such as voters,
election observers, or auditors, to validate the correctness and accuracy of the voting process.
It allows stakeholders to gain confidence that the final results faithfully represent the will of
the voters. While verifiability is crucial, its implementation in e-voting protocols presents
complex technical and cryptographic challenges. Traditional paper-based voting systems of-
ten rely on physical security measures, such as sealed ballot boxes, to assure the verifiability
of the election process. In contrast, e-voting protocols must employ cryptographic primitives
and rigorous mathematical techniques to provide verifiability in a digital environment, where
threats such as tampering, coercion, and implementation errors pose significant risks.

Formal verification techniques are essential in assessing the correctness of security of
protocols in general, and e-voting protocols in particular. By leveraging mathematical logic,
formal verification allows us to reason rigorously about the behaviour of e-voting protocols
and of a potential adversary, detect potential vulnerabilities, and provide proofs of their se-
curity properties. This enhances the trustworthiness and reliability of e-voting systems by
subjecting them to rigorous analysis and validation. Considering the complexity of e-voting
protocols, i.e. the cryptographic primitives employed, the multiple parties, and the presence
of a strong adversary, automated verification offers advantages in terms of efficiency, com-
pleteness, and precision when applied to these protocols. Automated verification explores
all scenarios, and supports reproducibility, ensuring the correctness and security of e-voting
protocols against adversarial attacks.

There are several works in the literature to evaluate the security of e-voting protocols
within formal verification frameworks. The majority of them target formal verification of
privacy. Compared to privacy, the state-of-the-art for formal verification of election verifia-
bility is somehow poorer. There is no general definition that can be applied to a wide range of
protocols and scenarios and allows automated verification simultaneously. Thus, challenges
remain in achieving comprehensive and accurate analyses to assess verifiability, considering
various aspects of existing protocols. This thesis addresses these challenges by proposing
a general formal verification framework that allows to specify different protocols, election
procedures, and revoting policies.

By providing a comprehensive verification framework, this thesis aims to contribute to the
advancement of secure and verifiable e-voting protocols. The research conducted in this thesis
bridges the gap between theoretical analysis and practical implementation by considering
real-world e-voting protocols, such as Helios, Belenios, Selene, and the Estonian e-voting
protocol, as case studies. The findings from the verifiability analyses of these protocols within
the proposed framework will contribute to the body of knowledge in the field and inform the
design and improvement of future e-voting systems.



4 Chapter 1. Introduction

1.1 State of the art of formal methods for verifiability

Verifiability [9, 10, 2, 37, 15] has emerged as one of the main requirements for the security of
the e-voting protocols. At first, this notion aimed to ensure the election outcome corresponds
to the votes cast by voters, and providing ballot casting assurance for voters, i.e. if the voters
verify their vote, then the vote should be counted for them. These two notions of verifiability
have been referred to as universal and individual verifiability, respectively. Subsequently,
more general end-to-end notions have been introduced. Another notion of verifiability was
introduced [38] to ensure the eligibility of the voters, i.e. votes to be counted in the result
should have been cast by eligible voters, and there should be at most one vote per voter. Those
three notions of verifiability entail end-to-end verifiability if the protocol enables voters to
verify their votes and anyone to verify the votes in the outcome corresponds to the votes cast
by eligible voters.

The first general symbolic definition [38] formalises individual, universal, and eligibility
verifiability as a triple of boolean tests. The definition was applied to the protocols Helios [1],
FOO [28], and Civitas [16], proving its generality. However, the definition requires all honest
voters to verify their votes, which is not realistic. Also, the boolean tests cannot be expressed
with the tools that allow automated verification, such as Tamarin and ProVerif. Another
approach is proposed by the type-based symbolic definition [22], which formalises individual,
universal, and end-to-end election verifiability as logical formulas to be checked by a type-
checker. It also defines a formula to ensure that there are no clash attacks on the protocol
and proves that these properties entail end-to-end verifiability. As a case study, Helios was
modelled and proved secure with respect to end-to-end verifiability. However, the definition
does not cover the notion of eligibility. It also does not capture revoting and is not suitable
for automated verification tools like Tamarin and ProVerif.

We focus on the two recent formal definitions of election verifiability aimed to guarantee
end-to-end verifiability: one from [20] is based on the classification of the multisets of votes
in the outcome, and the other from [17] is a symbolic definition based on logical formulas
(can be applied in Tamarin/ProVerif), and it implies the notion of multiset-based definition
in [20]. According to the multiset-based verifiability definition, an e-voting protocol is ver-
ifiable if the votes in the outcome corresponds to the union of three multisets of votes: 1)
the votes that have been cast and verified by honest voters; 2) a subset of votes that have
been cast by honest voters but have not been verified; and 3) a number of votes bounded by
the number of corrupt voters. On the other hand, the symbolic definition [17] is formulated
corresponding to the notions of recorded-as-intended, individual verifiability, and eligibility
and applied to BeleniosVS, a variant of Belenios. The definition in [17] varies according to
the trust assumptions of Belenios-like protocols. Thus, two definitions were proved to imply
end-to-end verifiability according to the multiset-based definition. These symbolic definitions
allow automated verification. However, the approach in [17] is not generic due to the defini-
tion varying according to the trust assumptions. It also does not allow revoting or dynamic
corruption of the voters. This means it cannot be directly applied to the protocols allowing
revoting or having a different architecture, parties, and infrastructure components, i.e. it is
not general.

Next, we present the existing work on formal verifiability of our case studies. Helios [1],
the first web-based e-voting protocol providing end-to-end verifiability, has been extensively
analysed in the literature; thus, it is representative of the state-of-the-art. Among those anal-
yses, the three [38, 22, 40] focus on its verifiability in the symbolic model. The model in [22]
was proven to provide end-to-end verifiability with type-checkers. However, none of those
models enable revoting as a feature of Helios. Belenios [20, 18] has built upon Helios to
provide stronger end-to-end verifiability with weaker trust assumptions. There are two verifi-
ability analyses [20, 21] of Belenios in its computational model, i.e. the first provides a manual
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proof, and the second does a machine-checked proof with EasyCrypt. Also, the model in [21]
enables revoting. However, there is no verifiability analysis regarding its symbolic model.
Instead, another symbolic analysis was performed for BeleniosVS, a variant of Belenios, in
which BeleniosVS was proved to be secure with automated verification.

Selene [47] is an e-voting protocol that aims to provide both end-to-end verifiability and
receipt-freeness; thus, it aims to achieve the ultimate goal of the e-voting protocols, con-
tributing to the state-of-the-art. The analyses [36, 13] performed for Selene focus only on its
privacy. Finally, the Estonian e-voting protocol has been deployed for the national elections
since 2005. The first versions of the protocol did not enable individual verifiability for voters
or universal verifiability for external auditors. Individual verifiability [32] was introduced in
2013, whereas universal verifiability [33] was presented to data auditors with a system de-
sign change in 2016. In 2022, two attacks [44, 43] were proposed against its verifiability
and privacy. There is only one analysis [49] to the best of our knowledge, which evaluates
the protocol’s security in terms of practical aspects. However, the protocol has not yet been
formally or symbolically analysed, making it a good target for us to apply our framework.

Summary of limitations:

o The first general symbolic definition [38] formalises verifiability with the boolean tests
that cannot be expressed with the tools that allow automated verification, such as Tamarin
and ProVerif. Moreover, it assumes all honest voters verify their votes, which is not re-
alistic.

e The type-based symbolic definition [22] formalises verifiability as logical formulas
corresponding to individual, universal, and end-to-end election verifiability, where it
misses the notion of eligibility. It does not capture revoting and is not suitable for au-
tomated verification.

e The symbolic definition in [17] allows automated verification, but it is not general
enough: it varies under two different trust assumptions, it does not allow revoting and
dynamic corruption of the voters, and it is too specifically focusing on Belenios.

e There is no symbolic analysis of verifiability that allows revoting.

e There is no symbolic verifiability analyses for Belenios, Selene, and the Estonian e-
voting protocol.

e There is no formal analysis for the stronger corruption scenarios in Helios, when the
server is corrupt, or in Belenios when both the registrar and server are corrupt.

1.2 Contributions

In this thesis, our main contribution is providing a general formal verification framework for
election verifiability that allows automated verification, accounts for revoting, covers a strong
adversary with extended capabilities, captures verifiability attacks in the literature, e.g. clash
attacks or ballot stuffing, and any unknown potential attack, e.g. arising from revoting. Our
framework applies to a broad class of e-voting protocols, as we provide case studies from
real-world e-voting protocols, such as Helios, Belenios, Selene, and the Estonian e-voting
protocol. Thus, the second contribution is the verifiability analyses of those protocols with
the framework we provide. We elaborate on our contributions as follows:

1. We extend the multiset-based election verifiability proposed by Cortier et al. [20] to
obtain weaker or stronger notions of end-to-end verifiability according to what may be
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possible in various scenarios or protocols. Their definition covers individual verifiabil-
ity only for honest voters and limits the adversary to cast votes for only corrupt voters.
Some protocols may guarantee that the votes from corrupt voters are counted in the
tally if verified. For some protocols, the adversary may cast ballots also for the honest
voters who did not verify their votes. Thus, we define four notions of end-to-end veri-
fiability by combining two notions of weak or strong individual verifiability and result
integrity.

2. We improve the symbolic election verifiability presented in [17] by Cortier et al. and
propose a symbolic definition that is independent of trust assumptions, i.e. it does not
vary according to the corruption scenarios as in [17], accounts for revoting, captures
verifiability attacks, and allows automated verification. Thus, it is generic, general,
and applicable to many protocols. It also allows verifying stronger and weaker notions
of end-to-end verifiability. We prove that this definition is sound, i.e. it entails the
multiset-based end-to-end verifiability definition.

3. We provide realistic symbolic models for case studies in which:

(a) We consider a bulletin board that publishes the verifiable election data, as in many
real-world protocols. We model the individual verification procedure of the voters
using the information published on the bulletin board and any additional informa-
tion they may receive from election parties.

(b) We specify each election procedure according to the setup, voting, and tally phases,
as described in the considered protocols, or in the variants that we propose.

(c) We consider a stronger adversary capable of corrupting the communication net-
work and any party in the protocol, i.e. voters, talliers, registrar, voting server,
and voting platforms. We model corrupt voters as they can be corrupted anytime
in the protocol, not at the beginning of the election, i.e. we allow dynamic corrup-
tion of voters. We allow other parties to be fully corrupt unless the information
they provide is subjected to public verification. For example, we allow a corrupt
server to accept and record any ballot on the bulletin board. However, since the
validity of the ballot can be verified on the bulletin board, we ensure the ballots
recorded on the bulletin board are valid with some restrictions.

(d) If revoting is allowed by the protocol, we model it without any bound on the
number of ballots. Typically, the last ballot cast is tallied, but more complex
policies could also be expressed in our framework.

4. We perform a verifiability analysis for each case study considering a realistic model
with the extended abilities of the adversary. Our analysis is based on the verification
results obtained with Tamarin/ProVerif. Our findings for each case are as follows:

(a) For Helios and Belenios, we consider four individual verification procedures, such
as an individual verification procedure that allows voters to verify during the vot-
ing phase or another that allows it in the tally phase. We evaluate the verifiability
of those protocols with respect to different individual verification procedures. We
find that while they are secure if verification is allowed in the tally phase, they
do not provide verifiability with the procedure allowing verification at any time
during the voting phase, even if this is the procedure allowed by the protocol in
practice.

(b) In Helios and Belenios, when revoting is allowed, we capture new versions of
clash attacks that are exploited only by the corrupt registrar. In the original sce-
nario of clash attacks, the voting server and voting platforms should be corrupt in
addition to the registrar.
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For Helios and Belenios, we provide the first automated proofs of verifiability
when both the registrar and server are corrupt and individual verification is al-
lowed in the tally phase. The proof is produced with respect to our notion of
weak result integrity, i.e. the adversary is limited to casting ballots for corrupt
voters and also for honest voters that did not verify their votes.

Even assuming its prescribed trust assumptions, we find new attacks in Belenios
when revoting is allowed and individual verification is performed during the vot-
ing phase. More precisely, our attacks exploit the corrupt network and/or the
corrupt registrar while the server is honest. We propose solutions for Belenios
in order to resist found attacks, and we introduce new variants of Belenios corre-
sponding to those solutions. We prove that the variant so-called Belenios+ pro-
vides end-to-end verifiability with respect to the trust assumptions of Belenios.

We analyse the verifiability of BeleniosRF, a receipt-free variant of Belenios, to
evaluate the trade-off between receipt-freeness and verifiability. We find new veri-
fiability attacks against BeleniosRF, implying that even if BeleniosRF strengthens
the privacy of Belenios, it weakens its verifiability.

We perform verifiability analysis for Selene, which is another voting protocol that
provides both end-to-end verifiability and receipt-freeness. We prove that Selene
provides end-to-end verifiability for honest voters if they verify their votes. On
the other hand, we observe that Selene’s receipt-freeness is not as strong as Bele-
niosRF; however, it can be modified to provide the same level of receipt-freeness
with BeleniosRF in a variant so-called SeleneRF. We prove that SeleneRF pro-
vides the same verifiability guarantees as Selene. Thus, in the case of SeleneRF,
receipt-freeness does not weaken end-to-end verifiability. However, we should
note that usability of the receipt-freeness of Selene and SeleneRF is weaker, es-
pecially in presence of a vote buyer: while SeleneRF requires the voter to actively
construct a fake receipt, this is not needed in BeleniosRF.

Hyperion is a variant of Selene that simplifies some procedures, employing differ-
ent cryptographic primitives. We prove that Hyperion provides similar end-to-end
verifiability guarantees as Selene.

In the analysis of the Estonian e-voting protocol, we capture the individual verifi-
ability attack proposed by Pereira in [44] and new attacks. We also discover that
the protocol is vulnerable to ballot copying attacks by checking standard notion
of privacy in our model. Thus, we propose two solutions that prevent verifiability
and ballot copying attacks. Our solutions require different procedures by the vot-
ers when they perform their individual verification. One of our solutions is more
usable, and the other is more secure with respect to verifiability. Therefore, we
show that there is a trade-off between usability and verifiability.

We note that even though there are security analyses in the literature for Helios and Be-
lenios in the computational model, we present the first symbolic verifiability analysis of Be-
lenios. Similarly, we provide the first formal symbolic analysis for BeleniosRF, Selene, Hy-
perion, and Estonian e-voting protocol.

Thesis structure: This thesis includes two parts, in which the first is dedicated to preliminaries
and foundations for formal verification of election verifiability, and the second is to the case
studies, i.e. Helios, Belenios, Selene, and the Estonian e-voting protocols. The first part has
four chapters, including the introduction, whereas the second has the remaining five, including
the conclusion. We summarise the chapters as follows:

e Chapter 1: First, we have introduced the general concept of e-voting protocols and the
formal verification of election verifiability as one of the main security goals. Then, we
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discussed the existing verifiability definitions and verifiability analyses in the literature.
Finally, we have summarised our contributions provided in this thesis.

Chapter 2: We delve into the verifiable e-voting protocols, i.e. we present their com-
ponents in terms of cryptographic primitives used, the election parties and their roles,
the election procedures and individual verification procedures followed in the proto-
col. Then, we discuss their security properties and present an example of a verifiable
e-voting protocol.

Chapter 3: We provide the formal verification preliminaries with respect to Tamarin
and ProVerif. We also give the Tamarin and ProVerif specifications of the verifiable
e-voting example presented in Chapter 2.

Chapter 4: We discuss the informal notions and existing definitions of election verifi-
ability, and their weaknesses. Then, we introduce formal and generic e-voting events,
and use them to improve the existing definitions. The main result of this chapter is our
symbolic definition of election verifiability. We also provide proof of soundness for our
definition and illustrate its application to the verifiable e-voting example presented in
Chapter 2. The results of this chapter are based on our two papers [6, 5].

Case studies are given in Chapter 5, Chapter 6, Chapter 7, and Chapter 8.

Chapter 5: We present the protocol structure, parties, and election procedures of He-
lios, including its individual verification procedure. Then, we provide its Tamarin spec-
ification, verification and our verifiability analysis, including security proofs and attacks
found. Our analysis is present in [6].

Chapter 6: We present the Belenios protocol, its Tamarin specification, verification,
and analysis, as described for Helios above. Then, we improve Belenios with respect
to the found attacks and propose a variant of Belenios that we call Belenios+. We
prove that Belenios+ is resistant to all such attacks, and more generally we derive that
it satisfies end-to-end verifiability, by combining the positive results of Tamarin with
our soundness theorem. However, we should note that we performed an abstraction in
order to make Tamarin terminate for Belenios+: we accept at most four ballots cast
per voter. The main difficulty for Tamarin comes from the fact that Belenios+ sub-
sequently links the ballots from the same voter to each other to protect against ballot
reordering. Finally, we analyse the verifiability of BeleniosRF, a variant of Belenios
providing receipt-freeness, and evaluate the trade-off between receipt-freeness and ver-
ifiability. The analyses that we performed regarding Belenios are published in [6, 7,
5]

Chapter 7: We present the Selene, SeleneRF, and Hyperion protocols, their ProVerif
specifications, verifications, and analyses. Then, we discuss their verification results,
comparing their security and features. Our analyses are present in [5].

Chapter 8: We present the Estonian e-voting protocol, its Tamarin specification, verifi-
cation, and analysis. Then, we improve both the verifiability and privacy of the protocol
with respect to the presented attacks, and we propose two variants of the Estonian e-
voting protocol, where they differ in usability and practicality of the protocol.

Chapter 9: We summarise our contributions and interpret our findings with respect to
the case studies. Then, we pose open questions related to the future of e-voting and the
practicality of the proposed solutions in the thesis.



Chapter 2

Verifiable E-Voting Protocols

E-voting protocols are complex security protocols based on several cryptographic primitives,
including several protocol parties instead of two or three. Usually, the parties are categorised
into two: the election authorities that organise and maintain the election, such as adminis-
trator, registrar, server and talliers, and the election attendees that are voters and their voting
platforms. Also, the communication between those parties in the e-voting protocols can con-
tinue throughout the election, which may last from hours to a few days.

E-voting protocols are aimed to be used in real-world governmental elections because of
their efficiency in collecting and tallying the votes, their availability to remote voters, and their
numerous other advantages. However, achieving their security in an environment harbouring
an adversary that intrudes on the communication or corrupts the protocol parties is really
hard. Therefore, many countries, such as Germany and Norway, have given up using e-voting
protocols for their governmental elections, while only a few countries, such as Estonia and
Switzerland, still deploy and continuously improve them. On the other hand, e-voting proto-
cols are widely deployed in low-stake elections, such as organisational elections to elect the
organisation’s president and vice president since those elections raise fewer security concerns
than governmental elections about the outcome.

To extend the deployment of e-voting protocols widely for any election, they should be us-
able by people independent of their age and abilities, and their security should be theoretically
and practically proved. Regarding e-voting, there is a consensus on two main security prop-
erties: privacy and verifiability. Privacy refers to the secrecy of the vote, i.e. no one knows
how a voter voted in a particular way. On the other hand, verifiability refers to the ability of
independent entities, such as voters, election observers, or auditors, to validate the election
outcome. Throughout the chapter, the verifiable e-voting protocols will be detailed regarding
their underlying cryptographic primitives, protocol parties, phases, and security properties.

Structure of the chapter. This chapter includes five sections. In Section 2.1, we present the
cryptographic primitives employed by the e-voting protocols. In Section 2.2 and Section 2.3,
we describe typical parties in an e-voting protocols along with their roles, and the election
phases that separates the communication into three parts. In Section 2.4, we present the main
security properties of the e-voting protocols. Finally, in Section 4.6, we provide examples for
verifiable e-voting protocols.

2.1 Cryptographic Primitives

The way of communication between two distant parties has left its place from postal services
to the internet, and thus, from envelopes carrying a message with sender-receiver information
to encryptions and digital signatures. Similarly, the paper ballots being put in the envelopes
in traditional voting have been replaced with digital ballots in e-voting that include the en-
cryption of the vote and the digital signature of the voter who cast it. Other primitives like
zero-knowledge proofs and commitments are used to ensure that the digital ballot has not
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been altered until it is recorded on behalf of the voter. For the tally, sometimes, mixnets
are deployed to anonymise the ballots against privacy violations. In this section, we briefly
summarise the cryptographic primitives used in e-voting protocols.

2.1.1 Encryption Algorithms

For democratic elections, the voters should be able to vote with their will for their preferred
choices, and this vote should be secret against vote buying and other types of coercion. Se-
crecy is directly provided for voters in traditional voting by preparing a ballot, i.e. covering
the vote with an envelope, in a private voting booth, and then leaving the ballot into a ballot
box, which anonymises the ballot among all other kinds and leaves no way to prove the con-
tent of the ballot. However, in e-voting, voters cast a digital ballot containing the vote that is
digitally collected in a ballot box.

Digital environments are vulnerable to intrusions by the adversary, which may leave lit-
tle evidence and be hard to discover. To provide security in digital environments, technical
methods have been developed and deployed. The method being used for confidentiality is
encryption. Encryptions hide data with a key and allow only those with the key to retrieve it.
Thus, even if the adversary obtains the encrypted data with an intrusion, they cannot reveal
the data without the key. In e-voting, the data being forwarded to the digital environment is
the vote, which is only intended for the election authorities who count it, and thus, it requires
confidentiality.

Encryptions have been used historically to hide a message content from unintended peo-
ple. Ancient methods were using ciphers based on alphabet manipulations, yet modern meth-
ods use encryption algorithms based on complex mathematical operations on bits. The en-
cryption algorithms are divided into two categories: symmetric and asymmetric encryption
algorithms. Symmetric encryption requires to encrypt and decrypt data with one singular se-
cret key. On the other hand, asymmetric encryption requires two keys: a private key is used
for the decryption, and a public key used for the encryption.

Symmetric encryption: Let m be a message to be encrypted and k be the key provided for the
encryption. A symmetric encryption algorithm generates a ciphertext c as an output, given
the input of the message m and the key k. Assume the symmetric encryption algorithm utilises
the function enc, then the ciphertext will be generated as:

c = enc(m, k).

In symmetric encryption, the same key, i.e. the encryption key k, is also used for the decryp-
tion. Assume the decryption algorithm uses the function dec, then the decryption will extract
the original message as follows:

m = dec(c, k) = dec(enc(m, k), k).

Asymmetric encryption: Let m be a message to be encrypted and (k, pk(k)) be the key pair,
where k is the private key and pk(k) is the public key generated from k. Then, any asymmetric
encryption algorithm uses the public key pk(k) to generate a ciphertext ¢ that encrypts the
message m. Assume the algorithm utilises the function aenc for the encryption, then the
ciphertext will be generated as:

¢ = aenc(m, pk(k)).

For the decryption of the message, the private key k is used. Assume the algorithm utilises
the function adec with the key k. Then, the decryption will extract the original message as
follows:

m = adec(c, k) = adec(aenc(m, pk(k)), k).
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The Figure 2.1 depicts the symmetric encryption/decryption on the left side whereas the
asymmetric encryption/decryption on the right side. In both figures, the encryption is per-
formed by Alice and Charlie, and Bob, upon receiving their encrypted messages, performs
the decryption of the messages. In Figure 2.1a, Bob shares a secret key k, with Alice and
another k- with Charlie. Then, Alice encrypts her message m, with the secret key k,, ob-
taining the ciphertext c,. Similarly, Charlie uses k¢ to encrypt her message me and obtains
cc. They both send their ciphertexts to Bob. After receiving, Bob decrypts them using the
secret keys kept on the keychain. On the other hand, Bob generates a key pair (pkg, skg), pkg
of which is published to be used for encryption in Figure 2.1b. Alice and Charlie adds pkg to
their keychains and use it to encrypt their messages m, and mq. Then, they send the obtained
ciphertexts c, and c. to Bob so that he decrypts them using his private key skg to extract the
original messages.

Decryption
with the secret key

Decryption
with the secret key

Encryption
with the secret key

Encryption
with the secret key

Decryption
with Bob’s private key

Decryption
with Bob’s private key

Encryption
with Bob’s public key

Encryption
with Bob’s public key

(B) Asymmetric Encryption/Decryption.

FIGURE 2.1: Symmetric Encryption vs. Asymmetric Encryption.

As can be realised, the receiver has to manage a key for each sender in symmetric en-
cryption, which is not efficient to be used in communication. Therefore, the first asymmetric
encryption algorithm RSA was proposed in 1977 by Rivest, Shamir and Adleman, enabling an
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efficient encryption algorithm for secure communication. The symmetric encryption, instead,
is being used for encryption of large data, for which it is faster than asymmetric encryption
algorithms, making it preferable. In e-voting, the encrypted data is transferred between vot-
ers and the election authorities. In this case, asymmetric encryption is much more convenient
since one key pair can be used securely for all encryption and decryption operations. The most
popular asymmetric encryption algorithms are ElGamal and Pallier, following RSA. In many
e-voting protocols, ElIGamal cryptosystem is preferred since it randomises the ciphertext with
arandomness and allows homomorphic encryption, in which the ciphertexts generated by the
voters are combined and transformed into one ciphertext, helping voters with their privacy in
the protocol.

ElGamal encryption [27]: Let m be a message to be encrypted and (k, pk(k)) be the key
pair, where k is the private key and pk(k) is the public key generated from k. Then, the
ElGamal encryption algorithm uses the public key pk(k) with a freshly generated randomness
r to generate a ciphertext c for the input of the message m. Assume the function aenc denotes
the encryption algorithm. Then, the ciphertext is obtained as follows:

¢ = aenc(m, pk(k), r).

Assume the function adec decrypts the ciphertext ¢ with the private key k. Then, the message
is revealed as follows:

m = adec(c, k) = adec(aenc(m, pk(k), r), k).

Mathematically, the algorithm uses a generator g of a group of prime order gq. The private
key k is randomly chosen from Z,, and the public key corresponds to pk(k) = gk. For a
randomness r € Z, the message m is encrypted as follows:

aenc(m, pk(k). 1) = (g".m - (g)").
Given the ciphertext ¢ = (a, b), the message m is revealed with the key k by computing b/a¥,
ie.
_m- (g9
e)r

ElGamal homomorphic encryption in e-voting: Let a vote v be encoded as an element in a
small subset of Z,. Then, the encryption of the vote v will be

¢ = aenc(v, pk(k),r) = (g', g" - (gk)r)v

for some randomness r € Z. The ciphertext ¢ is decrypted using the private key k as ex-
plained above, and the term g* is revealed. To retrieve the vote v from g¥, the discrete loga-
rithm algorithm is used in the small subset of Z,. Thus, we have:

v = adec(c, k) = adec(aenc(v, pk(k),r)).
Assume ¢, and ¢, are the two ciphertexts obtained encrypting the votes v, and vy, i.e.

c; = aenc(vq, pk(k),ry) = (g7, g"1 - (g)"),
c, = aenc(v,, pk(k),ry) = (g2, g"2 - (g")2),
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for some randomness r; and r,. The ciphertexts c; and ¢, can be homomorphically multiplied
to obtain a ciphertext c:

C=¢Ci:Cy aenc(v,, pk(k), ry) - aenc(v,, pk(k), rp)
(g".g" - (89 - (g7.8"2 - (g9))
(ng +r2’ gv1+v2 A (gk)r1+r2)

= aenc(vy + vy, pk(k),ry +15),

corresponding to the sum of votes v; + vy:

v; + v, = adec(c, k) = adec(aenc(vq + v,, pk(k), r{ +r5), k).

2.1.2 Digital Signatures

In traditional voting, the authorities in the polling stations lead voters to the voting booth
after checking their eligibility and follow them until they cast their ballot. In this way, they
can ensure that the ballot was cast by an eligible voter, and thus all the ballots in a ballot box.
However, in e-voting, a digital ballot box collects the ballots from voters through the digital
environment, e.g. through the internet, which gives rise to adversarial involvement. In this
case, the ballot to be counted should be ensured that it comes from an eligible voter, and the
integrity of the ballot should be sa