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Abstract

We observe n possibly dependent random variables, the distribution of which is pre-
sumed to be stationary even though this might not be true, and we aim at estimating the
stationary distribution. We establish a non-asymptotic deviation bound for the Hellinger
distance between the target distribution and our estimator. If the dependence within the
observations is small, the estimator performs as good as if the data were independent
and identically distributed. In addition our estimator is robust to misspecification and
contamination. If the dependence is too high but the observed process is mixing, we can
select a subset of observations that is almost independent and retrieve results similar to
what we have in the i.i.d. case. We apply our procedure to the estimation of the invariant
distribution of a diffusion process and to finite state space hidden Markov models.

1 Introduction

We observe n random variables X1,...,X,, with common distribution P which is assumed to
belong, or at least to be close enough, to a given model .Z. Our aim is to estimate P with
an estimator P taking values in .#. These random variables are not necessarily independent
however we assume that for indices i # j with |i — j| large enough, the distribution of the
couple (X;,X;) is close to P ® P. We also want our estimator to be robust to contamination
and outliers.

When we actually dispose of an independent sample, this problem has already been inves-
tigated in Baraud et al. [2] and Baraud & Birgé [4]. They provide a non-asymptotic deviation
bound for the Hellinger distance A between P and their p-estimator. For two probability dis-
tributions P and @ on the same measurable space, the Hellinger distance h(P,Q) between P
and (@ is given by

W (P.Q) = 5 [ (VaPiu—Ja@lan) d

where p is any measure that dominates both P and @), the result being independent of u. It
is shown in those articles that the p-estimator is robust in the following sense. Even if the
variables X; do not have a common distribution P but marginals P; such that most of them
are relatively close to a distribution P € .#, then the p-estimator is almost as efficient as when
the data is i.i.d.with common distribution P. The obtained risk bounds are minimax, up to
a logarithmic factor, when the model is well-specified and are not significantly deteriorated as

n
long as the approximation term n=! 3> h%(P;,P) is relatively small in the misspecified case.
i=1
We want to obtain similar results when we do not satisfy the independence assumption but

the observations are almost independent. This can happen for processes with mixing properties.
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We only focus on the theoretical aspects and performances of our estimation method. We prove
a general result, Theorem [I, which gives a bound in expectation for the risk of our estimator
P with respect to an Hellinger-type loss. This result is free of any assumption on the data
and the risk bound is the sum of three terms: the approximation term mentioned above, a
dimension which measures the complexity of the model .#, and a dependence term which
measures how far the observations are from being independent. We quantify the dependence
within the sample using Kullback-Leibler divergence of the joint distribution from the product
of the marginal distributions. Our risk bound is as good as when the data is independent
as long as the dependence term is not bigger than the other terms. We have the following
approach for when the dependence term is too big. We split our data in order to get a subset
of the original observations for which the dependence term is small enough.

We apply this method for the estimation of an invariant distribution of a discretely observed
diffusion process. Under some condition the stationary solution of a Langevin equation is mixing
and its invariant distribution has a log-concave density with respect to the Lebesgue measure.
We can refer to the literature on the estimation of a log-concave density in the i.i.d. context
and adapt our procedure to this situation. We obtain convergence rates for our estimator in
any dimensions. Those rates are similar to the minimax rates for i.i.d. estimation, with a worse
logarithmic power.

Our main application is hidden Markov models (HMMs). These models are widely applied
to model state dependent processes where the state process is Markovian but is not observed.
We refer the interested reader to Mor, Garhwal and Kumar [18] for a review of applications of
HMMs. Let Yi,...,Yn,Hy, ... ,Hy be random variables. We say that (Y;,H;)1<i<n is a hidden
Markov model (HMM) if (H;), is a Markov chain and each variable Y; only depends on the
associated H;. In particular the variables Y;,...,Yy are independent conditionally on (H;),. It
is called a hidden Markov model as the Markov chain (H;), is typically not observed and (Y;),
is the only accessible data.

We focus on homogeneous finite state space HMMs. Such processes can be completely
described by the number K of hidden states hq,...,hg, the initial distribution w and the
transition matrix ) of the hidden Markov chain, and the set of emission distributions F' =
(F1,...,Fk), where Fj is the conditional distribution of Y; given H; = h;. In that case we
say that (Y;,H;); is a HMM with parameters (K,w,Q,F"). Because the hidden state space does
not have a particular importance, we will always assume it is of the form {1,2,... K}. For a
particular class of distributions .# there is a minimal value of K such that (Y;,H;); is a HMM
with parameters (K,w,Q,F) with Fy,... Fx € .%#. This value of K is called the order of the
HMM (with respect to .#). Typically one aims at estimating these parameters from stationary
observations (Y;)i1<;<n.

Numerous estimation methods have been developed to estimate some or all of the param-
eters. Cappé et al. [11] provide an overall survey of the different results in the literature.
Most theoretical guarantees are either asymptotic or restricted to specific parametric models.
Lehéricy [15] provided non-parametric and non-asymptotic results for a penalized least squares
estimator with the following approach. They first estimate the distribution P, = Py« g« g+ of
L consecutive observations Y;,Y;y1,...,Y; 1 of a stationary ergodic HMM with parameters
(K*,m*,Q* F*), where P, ¢ r is defined by

L
Poor= D>,  weQrks - Qupyr @ Fl- (1)
=1

1<ky, ..,k <K

They use model selection to consistently estimate the order K*. When the estimation of the
order is correct, it is possible to deduce the different parameters from P, for L large enough.
They show that L > 3 is enough for linearly independent emission densities. They lower bound



the L2-distance between densities by a distance on the parameters. Therefore a risk bound for
the estimation of Py, is enough to obtain risk bounds for the parameter estimators.

However their estimator is not robust to misspecification nor to contamination and there
is no estimator that tackles this problem for general finite state space HMMs. The estimation
method we propose aim at solving this problem. For the sake of simplicity we do not aim at
estimating the order K*. We do not look into this particular aspect in this paper however
model selection can be considered to choose automatically an order from the data. This is to
be treated in a subsequent paper.

We use the tools we develop in the first part with .# containing distributions of the form
P, o,r to obtain a robust estimator P of P;, hence p being of the form P = Pw,Q,F- We have

a general risk bound for P which is free of any assumption on the data from which we obtain
convergence rates when we assume that the observations come from an ergodic finite state space
HMM. In particular the stationarity of the observations is not necessary. We show that the
performance of our estimator is not significantly worsened when the model is misspecified as
long as the distance to the true distribution is small compared to the rate we have in the well-
specified case. Similarly the performance of our estimator is not deteriorated by contamination
as long as the contamination rate is not too big.

We can deduce risk bounds for the parameter estimators 12),@,]3 under some conditions on
the model .#Z. We need an inequality of the form

d(w,Q.F),@Q.F)) < C(w,Q.F) h* (Pugr, Psgs) VPugr € . (2)

We obtain convergence rates for the estimation of the parameters when the model is well
specified. If the model is misspecified but P = P 5% is the best approximation of P, within

our model our estimators u?,@,ﬁ should be close to w,Q,F when this approximation is relatively
good.

It is possible to use the results that already exist for the Ls-norm to obtain an inequality
like (2)) when the densities are bounded. For two probability distributions P, ) dominated by
a positive measure p, we have

1P = allz < 4(/Ipllw + llall)*(P.Q), (3)

where p = dP/dp and ¢ = dQ/dp. 1t is also possible to prove inequalities directly for the
Hellinger distance in some cases. We do so for models with emission densities that belong to
exponential families with some regularity. We also consider an example with classes of emission
densities that are unbounded and not even square integrable in some cases. For this example
we obtain rates that are faster than the parametric rate for one of the parameters. Classical
estimators such as the maximum likelihood or least-squares estimators do not apply as the
considered densities are unbounded.

Our estimation method requires that the statistician selects themself a subset of the obser-
vations that should be almost independent. This is not possible without any knowledge on the
distribution of the data. We propose to overcome this restriction and provide a way to automat-
ically select an almost independent subset of observations when we dispose of a second set of
observations independent from the first one. We obtain a general risk bound and show that for
ergodic HMMs we retrieve the same rate of convergence as when the optimal way of selecting
observations is known. This method is still robust to misspecification and contamination.

The paper is organized as follows. In Section |2, we present our estimation procedure and
our main result in a general framework. We consider the application to the estimation of the
invariant distribution of a diffusion process in Section [3] We dedicate Section [4] to finite state
space hidden Markov models. Finally, we propose a complete procedure for situations in which
we do not know the mixing regime in Section [5] The proofs of all the different results can be
found in the appendix.



Notation. For a set A, we denote by |A| its cardinal which can be infinite. For an integer
k, we denote by [k] the set {1,2,...,k}. We denote by R, the set of non-negative real numbers.
For a real number x, we denote by [z] (resp. |z]) the only integer k satisfying k — 1 <x <k
(resp. k <z < k+1). For a random variable X we denote by £(X) its probability distribution.
The notation C(6,«,3) means that C(6,«,3) is a constant that depends on the parameters 6, «
and (. It can change from one inequality to the other. On the other hand a constant written
C will be universal. For a real number x we denote by x its positive part given by x, =z V0.

2 Construction of the estimator and main result

Let Xi,...,X, be n possibly dependent random variables on the measurable space (2",X). Our
aim is to estimate their marginal distribution P* doing as if they were identically distributed,
even though this might not be exactly the case. We denote by &x the class of all probability
distribution on (£°,X) and for i € [n] by P, = L(X;) € Px the true marginal distribution
of X;. We also want our estimator of P* to be robust to misspecification, contamination and
outliers. The p-estimators developed by Baraud, Birgé and Sart in [2] and [4] are perfectly
adapted to this task when the observations are independent. We prove that their performances
remain almost as good when the observations are close to being independent.

2.1 Reminders of p-estimation

We denote by v the function given by

[0, + co] — [—1,1]

z—1
T — e

Lk (4)

Let .# be a countable subset of &x such that there is an associated set of density functions
M with respect to a o-finite measure u. For n > 1, we denote by T,, and Y,, the functions
given by
Z"x M x M — [-11]
Tl () = 3 ¢( q’“”.“) ©)
= q(:)

k3

with the convention 0/0 = 1, a/0 = +oc for all @ > 0, and

AT XM
" (x,q) = supyen T (%,6,9)
For x in 2™, we define the (nonvoid) set &,(x) by
&n(x) = {Q =q- u’q € M, X (x,g) < fnf Xy (x,4) + 11'36} : (7)
q

We denote by P (n,X,.#) any measurable element of the closure of &,(X) with respect to the
Hellinger distance and we call it a p-estimator on .#. The constant 11.36 is given by (7) and
(19) in [4] but can be replaced by any smaller positive number.

One of the main results of p-estimation is Theorem 1 in [4]. For independent random
variables X1, ...,X,, any p-estimator P = P (n,X,.#) satisfies an inequality of the form

C& A " D, (.« _
F(S o) < gut, i iR+ PS5 ®)

=1



where C' is a positive numeric constant and D,,(.#) > 1 is a dimension term that measures the
complexity of the model .#. This dimension term corresponds to a bound on the p-dimension.
It is an important feature of p-estimation as it determines the bound on the convergence rate
of the estimator. If we actually dispose of i.i.d. observations with common distribution P in

M, we get
P (ChQ(P,ﬁ) < W) >1—e*,

B n
which leads to the bound D,,(.#)/n on the convergence rate, up to a multiplicative constant.
The notion of p-dimension is formally introduced in the appendix (Section .

2.2 From independent to dependent data

To extend the previous result to non-independent samples, we use the following idea which is not
specific to our framework. We state this basic principle in a general context. Let § : 2" — ©
be an estimator of some quantity € ©. The next result is proven in Section [A.T]

Lemma 1. Let | : © x © — Ry be a loss function, P,Q two distributions on a measurable
space (¥, X) and € (0,1]. Assume that when Y has distribution P

B+¢°
n

Px.p (z (6x),0) > A+ ) <e Ve >0, (9)

then, when X has distribution Q

3 B
Exa|l (0X)6)] <A+ 7 2+ 2;{ Qlp)”

where K is the Kullback-Leibler divergence given by

d .
K(QIP) - {“"g (i#) 2 Q<P
+o00 otherwise.

Deviation inequalities for p-estimators 6 have been established under the assumption that
one observes independent random variables Xi,...,X,,, hence when the distribution of X =
(X1,..., Xn)is P=L(X;)® - ® L(X,). Our idea is to apply Lemma [I| with a distribution
Q < P, which is not a product probability, in order to establish a risk bound for the estimator
6 when the observations X, ..., X, are possibly dependent. The quantity K(Q||P) measures
thus a departure from independence. We consider subsets of the original data X1, ...,X,, when
this quantity is too big.

Let n be larger than 2. We build subsets of observations by taking them separated by blocks
of length s € N, as described in the diagram below.

X3 Xot2 Xosi3
o O e e & ©o o e 6 ©
X2 Xs+1 Xs+3 X25+2 X2s+4
« J C W
unused block of length s unused block of length s

Formally, for s € {0,1,... Smax},Smax := [(n — 2)/2] and b € [s + 1], we define

n(s,b) = V+S+ ! _bJ > 2,

1+ s
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for i € [n(s,b)]

XY= Xy oysen) € Vi € [n(s.)], (10)
and
X0 = (X i € [n(sb)]) .
We obtain s + 1 subsets X1 . X+ with sizes n(s,1),...,n(s,s + 1) respectively. For

each block b € [s + 1], we consider the probabilities P}, and Pfs,”gj which are defined by
‘ n(s,b)
P, =L (X"") and Py := ® £(x. (11)
We denote for short P* := P§, the distribution of X = (Xi,...,X,) and P™ .= P =
L(X))® - ®L(X,). Our estimator is obtained with the following the statistical procedure.

1. Let s be in {0,1, ... ,Smax}. For bin [s 4 1], we denote by P,, the estimators given by

A

Py:=P (n(s,b),X(s’b),%> :
where the p-estimator P ( (5,0), X0 a7 ) is defined in Section

2. We denote by P, = P, (X, ) any element of .# that satisfies

»
+
—
»

+
=

n(s0)h* (Pop,Q) +1, (12)

b=1

where ¢ is any fixed constant in (0,1273].

2.3 Main result

We assume that the p-dimension function (see Section |B]) is uniformly bounded by a function
m +— Dy, (.#) > 1 which is non-decreasing.

Theorem 1. For any random variables X1, ..., X, on (2 ,X), the estimator P, = P, (X,.#)
given by (@ satisfies

Ep- [nl >0 (P Py)

(s+1
n

g 2 inf Zh2 (P, Q) (13)

n Qe//l

~—

“+cC1 [17 + Dn(s,l)(%)] -+ % § < b| ’Pmd>
b=1

where ¢ = 602, ¢; = 20056/4.7 and ¢y = 30084.

The proof of this result is postponed to Section [B.I] One can check that we do not need
any assumption on the data to obtain this result. We only need a condition on the model .#
which is chosen by the statistician. However a posteriori assumptions are necessary to make
this bound meaningful. It follows from the triangle inequality and (a + b)? < 2a? + 2b* for all
non-negative numbers a and b that for any P € .#,

nh? (P.P,) <2Zh2 (P.P.) +22h2 (P.P).

=1



We derive from the following

CEp- |12 (P.£)] < U VPl ) iy (p, ) (14
=1
e SR (PP,
b=1

where C'is a universal positive constant. Up to the factor (s+1), the first term in the right-hand
side of this inequality corresponds to the bound we would get if the data were truly i.i.d. with
distribution P € .#. In this ideal situation, both the second and third term vanish. When
the data are not identically distributed, the second term is not zero but its size remains small
when most of the true marginal distributions P, . ..,P, lie close enough to an element P € .Z .
The third term accounts for the fact that the data are possibly dependent. We expect that for
a choice of s that is sufficiently large the observations

X(S’b) = (Xb;Xb+(s+1)7 . ,Xb+n(s7b)(s+1)) with b € [8 + 1]

s+1 .

be nearly independent and consequently that the quantity n=! > K (P’s‘ | |P§”lfl> be small com-
b:l 7 ’

pared to the first term.

2.4 Robust properties of our estimator

The robustness properties of p-estimators in the independent context are illustrated in Section
5 [4]. Let X = (X1,...,X,,) be the true process of interest such that £(X;) = P for all 7 in [n].

We actually observe a contaminated version of it. Let Z1,...,Z,, be random variables with any
distributions. Let E\,...,E, be Bernoulli random variables such that

The next result shows that the mixing regime is not altered by independent contamination/out-
liers. It is proven in Section [B.2]

Lemma 2. If Fy,... E,.Zy,...,Z, and X are mutually independent, we have
KL [ILM) @@ L(Y,)) SK(L(X)[[L(X1) @ -+ @ L(X,)).

We can deduce a corollary of Theorem (1| from this. We define p; by P(E; = 1) = p; for
i € [n].

Corollary 1. Let P, = P, (Y,.#) be the estimator given by . There is a positive universal
constant C' such that in the situation of Lemma |3, we have

CE 1 (P.2)] < 1 (Pos) 17 31 )

(S + 1)D'ﬂ s,1 (‘%) — = * in
+ (1) +n IZK<PS,b||PS,éi>J
b=1

n
where P%, and P are given by .

This result is proven in Section Inspired by Hiiber’s contamination model, we consider
the situation P € .# and p; = 1 — €.on for all ¢ € [n]. We get

CE 12 (P.R)] < copy+ SIS (pr o).
b=1



Our bound on the convergence rate is not deteriorated as long as the contamination rate €.,
is small compared to the other terms. Equally, we can consider the case where the F; are
deterministic, i.e. there is a subset I C [n] such that P(E; = 0) = 1,c;. We get

Il (s+ 1) Dy (A s :
b=1

As before, our bound on the convergence rate is not deteriorated as long as the proportion of
outliers |/|/n is small compared to the other terms on the right hand side.

CE [ (P.2)] <

n n

2.5 The particular case of Markov chains

Under the assumption that X, ..., X, is a Markov chain, the quantity K ( bHPmd ) can be
written in a form given in the lemma below.

Lemma 3. If X is a Markov chain,

K (£ (X) ||£(X)) ®- i;f (Xis1)),
where
I(0(X).0(Xin)) = K (£(X0 X [|£(X) ® £(Xirr)) (16)

In particular for all s in {0,1,... Smax} and all b in [s + 1],
n(s,b)

K (P;,[[P5Y)) = ZI( Do (X5D))

where the Xi(s’b) are given by (@)

This result is proven in Section B.4] It tells us that for Markov chains we only need to
consider the simpler quantities I(o(X;),0(X;1s11)) referred to as coefficient of information by
Bradley [§]. This result also extends to hidden Markov models.

Lemma 4. If (X;,H;), ., is a HMM, we have

K (£(X)[|IL(X)®- © L(X,)) < f;ﬂa(m_l),a(ﬂ»»

In particular for all s in {0,1,... Smax} and all b in [s + 1],

n(s,b)—
( b||Pmd) Z I( Hb+(z 1)(s+1)) (Hb+i(s+1)))-

The proof of this result is postponed to Section [B.5] This means that for HMMs we only
need to consider the coefficients of information of the hidden chain. In what follows we consider
different processes for which the coefficient of information has an exponential decay. In that
case there exist positive constants C' and r such that

s+1

n" YK (PrL/[PH) < Ce,
b=1

for all s in {0,1,...,Smax}. For s > r~'logn the quantity n~ Z K (P*b||Pmd) is small com-

pared to the first term on the right hand side in ([14)), as it Cannot be of order smaller than 1/n.
Such a constant r is usually not known in practice but taking s of order log® n ensures that for n
large enough the quantity we consider remains small compared to the term (s+1) D, s 1) (A ) /1.
We pay the price of not knowing the constant r with a worse logarithmic term in the latter
quantity.



3 Estimation of the invariant distribution of a diffusion
process

We consider some diffusion processes that have been investigated by Royer [19] and use the
same vocabulary that they introduced.

3.1 Langevin equation

Let d be a positive integer and U : R — R be a function of class C2. The Langevin equation
is the following stochastic differential equation

dY;, = dB, — VU(Y,)dt, (17)

where B = (B;)>0 is a d-dimensional Brownian motion. Its solution are called Kolmogorov
processes in Royer [19]. We assume that U satisfies the following.

Assumption 1. The function U is convex on R? and there exists a positive constant \(U) such
that the smallest eigenvalue of the Hessian matriz U”(z) at © € R? is not smaller than \(U)
for all x in R?. Besides we have

inf {|IVU(@)[[; = Te (U"(2)} > —o0, (18)

where Tr(A) is the trace of the matriz A.

Under our assumption on the eigenvalues of U”, [zs e~*Y®)dx is finite for all a > 0 and we

may define the probability measure P with density p with respect to the Lebesgue measure on
R? given by
p(z) = Z ' exp(—2U (7)) with Z = ) e 2V @)y, (19)
R
The probability P is the invariant probability distribution with respect to the semi-group
associated to the Langevin equation (see Lemma 2.2.23 [19)]).

Lemma 5. Let (Y;)i>0 be a stationary solution of the Langevin equation associated to a convex
function U that satisfies Assumption . For all s > 0, there exists a positive constant C(U,sy)
such that for allt > 0 and s > sg, we have

I(o(Y2), 0(Yir)) < C(Usso) exp(—2A(U)s).

This result is proven in Section [C.2 We aim to estimate P from discrete observations of a
stationary Kolmogorov process.

3.2 The framework

We consider the following statistical model for the observations X;,X5,...,X,. For all i € [n],
X; =Y, where Y = (Y});>0 is a stationary solution of the Langevin equation for some
unknown convex function U that satisfies Assumption |l|and ¢;11 = t; + A, for all ¢ € [n — 1].
As a consequence of , the X; are distributed according to the invariant measure P which
has a log-concave density p : x — Z ! exp(—2U(x)) with respect to the Lebesgue measure. We
therefore consider the set of distributions that admit a log-concave density on R? with respect
to the Lebesgue measure. As usual, this describes our statistical model but we do not want to
assume that it perfectly describes reality. In the following section we recall some results about
the problem of estimating a log-concave density from i.i.d. observations.

9



3.3 log-concave densities

We refer to Kim & Samworth [12] for the problem of estimating of log-concave densities from
i.i.d. observations in low dimensions (d € [3]). Kur et al. [13] investigated the same problem
in higher dimensions (d > 4). We denote by F; the set of upper semi-continuous, log-concave
probability densities with respect to the Lebesgue measure, equipped with the o-algebra it
inherits as a subset of L;(R?). We denote by .%#, the associated set of probability distributions
on R¢. For f € F,, we define

Ty = /Rd rf(z)dr € R and ¥ := /Rd(:v —up)(x — pp)T f(x)de € R

For a symmetric, positive-definite d x d matrix 3, we denote by Apin(X) and Aax(2) the
smallest and largest eigenvalues respectively of ¥. For 0 < A_ < Ay < oo and M > 0, we define

Faooen = A{f € Fa|[zsl] < M, % € Sym(A_,Ay)},
where
Sym(A_,Ay) = {¥ covariance matrix, A_ < Apin(2) < Apax(X) < Ay}

We denote by .#,_ x, m the class of probability distributions associated to Fx_x, -

Given a subset o7 of a class & of probability distributions and ¢ > 0, we say that <7[e] is
an e-net of & if &/[¢] C &2 and for all ) in &/ there exists R in 7[¢] such that h (Q,R) < e.
The case € = 0 corresponds to <7 [e] being dense in 7. The following result is proven in Section

and based on the work of Kim & Samworth [|12] for d € [3] and Kur et al. [13] for d > 4.
Lemma 6. For all positive € there exists an e-net tgzL’,\J”M[e] such that
9 M()\-f— - A ) K1e

rd=1,
387w M? )\ = AP T 1100321/
[ mle]] < 3 ( N S AL o207 ford =2,
27327/2 303 )\ — )33 Ly
( =73 ) + K for d =3,
s A/

where ng and K4 are constants given in Theorem 4 [12] that only depend on d, and with
log, , (z) = max(1,logx). For d > 4 and all positive € there exists an e-net Fx_ . mle| such
that

)\4_(d71)/2Md<)\+ o )\,)d
\d@rD)/2

exp (Kde (d—1) log (d+1) (d+2)/2( )) :
where 1y and K4 are constants that only depend on d.

3.3.1 The case d € {1,2,3}
Let #x_ ., ml€]l be a e-net of .#,_ 5, that satisfies the bound given in Lemma @ for

exp (Fl (n/log n)1/5> for d =1,
A=A =M :={exp (fgnl/?’ log?/? n) for d = 2, (20)

exp (Fg (n/log n)1/2> for d = 3,
and
n"?"log?®n for d =1,
€:={n""log’%n for d = 2, (21)

1/410g n for d = 3.

The following result holds and its proof can be found in Section [C.I}

10



Theorem 2. Let n > 3 and X1,X,,...,X, be arbztmry random variables with marginal dis-
tributions Py, ...,P,. The p-estimator P gwen by (149) with A = Fx_ ., mle| satisfies for all
Pc gZX

CE[1 (P, B)] <12 (P, 5 sont) + 0" S 12 (P.P) (22)
=1
s+1

+nt bz K (P, I[PV
=1

n=4° (logﬁ‘/5 n+ slog™'/® n) ford=1,
+{n723 10g5/3 n+ 310g2/3 n) ford =2,
n~2 (logt? n + slog~'/? n) for d =3,

for positive constants C,Cs,Cs. In particular if the model described in Section s exact and
s > (2A(U)) ' logn, there exists a positive constant C(U,d,A;) such that for n large enough

n~4° (log4/5 n-+s logfl/5 n) ford=1,
C(U,d,A)E [h2 (?, ]38)} <{n7%3 (log5/ n + slog? n) for d =2,
n1/? (logl/ n+ slog™/? n) for d =3,

where P is the invariant distribution given by (@

Inequality is a consequence of Theorem |1/ and does not require any assumption on the
data. The last term comes from the control of the dimension of the net .#, ., (€] and the
choice of € given by . Ideally, most of the distributions F; lie in a small neighborhood of
a distribution P in % A_\.,m S0 that the first two terms in the bound remain small compared
to the last term. Those two terms vanish when the model is exact and a good choice of s

guarantees the term n~ Z K (P* 5| |P””d) is negligible with respect to the last one.

We can derive convergence rates for the optimal choice of s given A(U). One can check that
up to a logarithmic factor, we obtain the same rates as Theorem 5 [12] in the i.i.d. case. Our
power of logn is even better for d = 3. As mentioned in Section 2.5 the knowledge of A(U)
is not necessary to obtain convergence rates. We obtain slightly worse powers of logn in the
convergence rates for s of order logZn. We can also derive results for i.i.d. observations from

s+1
by taking the term n~! 3~ K ( ool |Pmd> down to 0 which provides a result for the robust
b=1

estimation of a log-concave density from i.i.d. observations.

In order to illustrate the robustness of our estimators we consider the situation of Section
2.4 Let Zi,...,Z, be random variables with any distributions and FEj,...,E, be Bernoulli
random variables such that for all i € [n],

Xi=EY 16-va, + (1 = E)Z;,

where (Y}); is a stationary solution of the Langevin equation for some unknown convex
function U that satisfies Assumption [I}

Corollary 2. Let P, be the estimator given by with # = Fx_x, mlel. IfEr, ... By 2y, ..., 2,
and X are mutually independent, there exists a positive constant C(U,d,A;) such that for
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s > (2A(U))tlogn we have
CUdA)E W (P,P)] <n 'Y (1-p) (23)
i=1
n=4/° (log4/5 n + slog™'/® n) ford=1,
+{n723 log5/3 n+ slog2/3 n) ford =2, ,
n~2 (logt? n + slog™Y/? n) ford =3,
where p; = P(E; = 1) for alli € [n].

One can see that our deviation bound is not significantly worse as long as the average

proportion of contamination n=! 3 (1 — p;) remains small compared to the last term on the
i=1
right hand side of .

3.3.2 The case d > 4

Let #5_ ., mle]l be an e-net of #,_ 5, a that satisfies the bound given in Lemma |5 with

~(d-1) 1 (1) (d+2)/2 1
_ € og €
A =21 =exp < 7 ( )> (24)
1) Jog(@+D(d+2)/2

M-exp( o8 ¥ (€ )>, (25)

Wlth 1 d+2
€ =n @ log##1 72 n. (26)

The following result holds and its proof can be found in Section [C.I}
Theorem 3. Let n > 3 and X{,Xs,..., X, be arbztmry random variables with marginal dis-

tributions Py, ...,P,. The p-estimator P, gwen by (19) with # = F5_x, mle| satisfies for all
P < QX
CoEp- (02 (P.B)] < h* (P, _a.i) + 10 ISR (P.P)
i=1
s+1

+n YK (P[P
b=1

_2 2 2
+n @ (logd+2+d+1 n + slog?t ! @i n) .

In particular if the model described in Section is exact and s > (2A(U)) " logn, there exists
a positive constant C(U,d,A;) such that for n large enough

C(U,d,A)E {hQ (ﬁ7 psﬂ < nw (10gd+2+ﬁ n+ slogd“*ﬁ n) ,

where P is the invariant distribution given by (@

This result is equivalent to Theorem [2] and the comments that applied to it also apply now.
Our estimator is also robust and tolerates a higher contamination rate as the convergence rate
is slower. One can check that up to a logarithmic factor, we have the same rate that Kur et al.
[13] obtain for the estimation of log-concave estimation from i.i.d. observations. We can derive
a result equivalent to Corollary [2| for d > 4. Our estimator can tolerate an average proportion
of contamination of order not larger than n~ rE logd+2+d+1 n without its performance being
significantly deteriorated.

12



4 Hidden Markov models

4.1 Stationary hidden Markov models

Let (Y;,H;), be a finite state space HMM with parameters (K*,w*,Q* . F*). If w* is invariant
with respect to Q*, then the process (Y;,H;), is stationary. As explained in the introduction,

(2

we aim at estimating the different parameters through the distribution of consecutive obser-
vations. For L > 2 we define P, = P« g+ p+ with Py« g« p~ defined by , and we have
L(Y:,Yi1,...,Yier—1) = Pp for all i. We have identically distributed but dependent random
variables from which we can estimate Pj. It is possible to relax the stationary assumption.

Assumption 2. Let (Y;,H;), be a finite state space HMM with parameters (K*,w*,Q*,F*) such
that Q* is irreducible and aperiodic.

In this case we do not have identically distributed observations anymore. However the
distribution £ (Y;,...,Y;11—1) converges exponentially fast to the distribution

P* — P7-|->1<7Q*7F'*7 (27)

where 7* is the only invariant distribution with respect to Q*.

4.2 The framework

Let Y1,Ys,...,Yy be random variables taking values in a measurable space (#/,)). Let L be
in {2,3,...,|N/2]} and n be the integer given by n = N + 1 — L. We define the new random
variables

X, = (Y,Yieq, ... Y1) i=1,....n, (28)

taking values in the measurable space (27,X) = (ZV L,y®L). We follow the notation established
in Section [21

We denote Py the class of all probability distributions on (#/,)). For K > 2 and subsets
Z1,...,.F g of Py, we denote by # (K,?l, . ,?K) the set of distributions defined by

— — VEk € [K],w € Wk,

% T e . s
H(KFy,.. F) = {PMQ,E OcTiF e, } C Px, (29)
where P, g r is given by (1)),
K
Tk =2Q €013 Qi =1,vie{l,... K} ¢, (30)
j=1
andWK:{wE[O,l]K;w1+-~-+wK:1}. (31)

We call emission models the sets %1, ..., Z k. Let .4 be anon-empty subset of J# (K,?l, e ,?K)

4.3 Estimation

Let v be a o-finite measure on (#,)) and we denote by p the associated o-finite measure on
(Z,X) given by u:= v®L. We consider emission models that satisfy the following.

Assumption 3. We dispose of countable sets F;,i = 1,...,K of probability density functions
(with respect to v) such that

13



1. for all k in [K], the set of distributions F; := {f - v; f € F;} is an e-net of F; with respect
to the Hellinger distance;

2. for any ki, ...,k € [K], the class of functions

.....

V = Z Vkl ,,,,, kr,- (32)

We refer to van der Vaart & Wellner |21] (Section 2.6.5) and Baraud et al. [2] (Section 8) as
an introduction to VC-subgraph classes of functions. We just mention the following example.
Any finite set F of real-valued functions is VC-subgraph with VC-index V' (F) that satisfies

V(F) < 1+ logy(| 7). (33)

Therefore we can consider finite e-nets as we did in Section [l We also show in Section [4.3.2)
that exponential families satisfy our assumption.
We consider countable approximations of Wy and Tk given by

Wik =Wk N ([6,1]NQ)" and Ts.x := Ti N ([6,1] N Q)X (34)
for 0 < 6 < 1/K. We define % by
= {Puo,riw € Wsk,Q € Tsx, fr € Fp,Vi € K|}, (35)

where the sets (Fy), < are given in Assumption . This lower bound ¢ is a technicality for
bounding the dimension of our model. We define the countable set of distributions

R (Qr,Q) S (K —1)8
My = Pw,Q,F € %; HPwI’QQFf S ,ﬂ, h (Fk,Fé) < E,V/{i € [K}, ,
h? (waw') < (K — 1),

(36)

which is a good approximation of .# for small values of § and e. We denote by 155,5 the estimator
]35,5 = ps (%&X), (37)
as defined by . The following theorem is proven in Section

Theorem 4. Let N > K+ L and Y1, ...,Yy be arbitrary random variables. Under Assumption
@ let Py = Py 5 be the estimator given by with
v 1
d=——— AN —. 38
n(s,1)(K—-1) K (38)

There exists a positive constant C' such that for all P € Px,

CE [n* (P,P.)| < h? (P, &) +n" 2”: W (P,P)+n"! f K (P;,|[P)
=1 b=1
+ L+ (s+ 1)Lv10i". (39)

In particular under Assumption@ there exist positive constants C(Q*) and c¢(Q*) such that for
s> c(Q*)logn Vv (L — 1) we have

CQE [12 (P, B)| < 1* (P 77) + Lé + pyilosn (40)

n
where P* is given by .
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Inequality is a consequence of Theorem |1/ and does not require any assumption on the
data. The last two terms come respectively from the approximation of .# by .# and the control
of the dimension of .# . Ideally, we can take P in .# such that most of the distributions P, lie
in a small neighborhood of P so that the first two terms in the bound remain small compared to
the last term. Under Assumption [2) I 2| the quantity > | h?(P*,P;) is bounded and a good choice
of s guarantees the term n~! Y5 K(P ol|[PYi) to be negligible with respect to the last one.
The optimal choice of s depends on a constant ¢(Q*) which relates to the spectral gap of Q*.
We distinguish two cases in order to obtain convergence rates over the class

H (K,?l, . ,?K) (41)

- - @ irreducible ,
= Puor € (K,ﬁl, e ,ﬁK) ;@ aperiodic,
and w = Quw

The first case is when we satisfy Assumption [3] with ¢ = 0. In that situation and for P* in
M = H (K Ty F K) the first two terms in 1) vanish. For the optimal choice of s

our estimator achleves the convergence rate n~!log”n with respect to the squared Hellinger
distance over 7 ( T, .. T K) This means that up to a logarithmic term we achieve the
optimal rate 1/n in the mdependent context (see Birgé [6]). As mentioned in Section 2.5 the
knowledge of ¢(Q*) is not necessary to obtain convergence rates. We only obtain slightly worse
powers of logn in the convergence rates for s = log® n.
The second case is when we cannot take e = 0. In that situation the term V depends on € and
we proceed as in Section [3] We obtain a convergence rate taking e that goes to 0 with n at a
rate that balances the last two terms in (40)). This happens when €2/V is of order n~! up to a
logarithmic term. We put it in application in Section

In order to illustrate the robustness of our estimators we consider the situation of Section
2.4 Let Zy,...,Zy be random variables with any distributions and Ei,...,Ey be Bernoulli
random variables such that for all ¢ € [N],

Y= EY + (1 - E;)Z;,
where Y’ satisfy Assumption [2 The following result is proven in Section [D.2]

Corollary 3. Let N > K + L and P, = ﬁ&(g be the estimator given by with & given by
@. If B, ... .Ex,Zy,....Zn and Y' are mutually independent, there exist positive constants
C(Q*) and c(Q*) such that for s > ¢(Q*)logn we have

C(QIE [n* (P, )| < 0* (P*.d) + szi(l —pi) (42)

1
tLe 4 Lyt

n
where p; = P(E; = 1) for alli € [N] and § is given by (38).

One can see that our deviation bound is not significantly worse as long as the average
proportion of contamination & Z (1 — p;) remains small compared to the last two terms. One

would typically look at the followmg situation. We assume that the model is well specified, i.e.
P* € /. For Hitber’s contamination model, i.e. p; = 1 — oy for all i € [N], we get

C@E[w (P P)| <L [a pe et (43)

n
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for s > ¢(Q*)logn. The bound on the convergence rate is not deteriorated as long as the
contamination rate aun: is small compared to €2 4 V‘gk’%. We can also consider the situation
where P (E; = 0) = 1;¢; for some subset I C [N]. We get

I —sl
U o peloan] (44)

C(QIE[n* (P", P)] <L v -

for s > ¢(Q*)logn. As before, our bound on the convergence rate is not deteriorated as long
as the proportion of outliers |I|/N is small compared to €* + VSIO%.

4.3.1 log-concave emission densities

We use results and notation given in Section Let d be a positive integer and ¢ € (0,1).
Et QA_,,\+7M[E] be an e-net of F,_\, n that satisfies the bound given in Lemma . We take
F = Fx_x,m for all k € [K] and satisfy Assumption |3 with

V = K" (14 Llog, (|7 a, mldl)) - (45)

We take A4 = A (K,ﬁz,\ﬂ,\%M, . ,33,\7,,\%]\4). We distinguish the two cases d € {1,2,3} and
d> 4.

For d € {1,2,3} we take A, ,A_,M as in (20)) and € as in . The following result holds and
its proof can be found in Section

Theorem 5. Let N > K + L and P, = p&g be the estimator given by with & given by
@. There exist positive constants Cy,Cy,C3 such that for all P € Py,

CiE [1* (P, P,)| < W* (P,.#f) +n "> h* (P,P) (46)
i=1
s+1 )
+n YK (P[P
b=1
n~4/° log4/5 n ford=1,
+ (s + )LPKY x {n™2Plog®n for d = 2,
n~2log"?n for d = 3.

In particular under Assumption@ there exist positive constants C(Q*) and c¢(Q*) such that for
s > ¢(Q*)logn we have

n~ 4 1log® n for d =1,
C(QE |W* (P, B)] < b? (P, ) + sLK" x { ™ log™ . for d = 2,
n"21og % n for d = 3,

where P* is given by .

Inequality is a consequence of Theorem 4| and does not require any assumption on the
data. We can deduce convergence rates over the class #7* (K, %, ..., %#4), where %, is the set
of distributions with log-concave densities defined in Section [3] For the optimal choice of s, we

have
n~4/° logg/5 n for d =1,

C(Q")E [hz (P*> ps>:| < LPKE x {n2P1log®3n for d = 2, (47)
n~?10g*?n for d = 3,
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for all P* in 5% (K, %y,...,%4). We see that we have a worse power of logn compared to
Theorem 2] It comes from an additional logarithmic factor in the dimension term for HMMs.
Corollary [3] tells us our estimator is also robust to contamination and outliers. Let us illustrate
it for d = 1. We can see from that our bound is not significantly worse as long as the
contamination rate oo is of order not larger than n=%/° logg/ S n. Similarly tells us that a
number |I| of outliers of order not larger than n'/® log”® n does not significantly deteriorate our
bound on the convergence rate of our estimator. We can follow the same train of thought for
d = 2 and d = 3 and deduce the level of contamination or outliers our estimator can tolerate
before its performance significantly worsens.

For d > 4 we take A\, ,A\"! as in , M as in and € as in . The following result
holds and its proof can be found in Section [D.3]

Theorem 6. Let N > K + L and P, = f’sﬁ be the estimator given by with & given by
@. There exist a positive constant Cyq such that for all P € Py,
CiE[1* (P, P.)| < W (P,.#t) +n "> h* (P.P)
i=1
s+1 )
+n YK (P[P
b=1
+ (s + 1)L2KLn_ﬁ log 2+ .

In particular under Assumption[d, there exist positive constants C(Q*) and ¢(Q*) such that for
s > ¢(Q*)logn we have

CQME[n? (P, P.)| < h? (P, 4) + SLAK b~ loght 2t p, (48)
where P* is given by .

Inequality does not require any assumption on the data. We can deduce convergence
rates over the class 7" (K, %, ..., %4). For the optimal choice of s, we have
C(QE [n? (P*.P,)] < LK n~ 7 log"* 71 n

for all P* € 7 (K, Zy,...,%4). As for d < 3, we have the same rate as in Section 3| with a
worse power of logn due to the higher complexity of HMMs. Our estimator is also robust to
contamination and outliers. We can see from that our bound is not significantly worse as

d—
4)) tells us that a number of outliers of order not larger than n @ 10gd+3+% n does not
significantly deteriorate our bound on the convergence rate of our estimator.

long as the contamination rate gy, is of order not larger than n_% logd+3+d%l n. Similarly
i

4.3.2 Exponential families as emission models

We introduce exponential families as follow. Let d be a positive integer and n : © — R< be a
function over a non-empty set ©. Let T : % — R? and B : % — R be measurable functions
such that

/@ eMOT@N+B@), (dr) < 00,8 € O,

we denote by & (@,n,T,d,B) the exponential family defined by

& (@,n,T,d,B) = {f@ c x> MO T@)+AOFB(). g @} , (49)

where
A(9) == —log </ e<”(9)’T(I)>+B(’“")V(da:)) )
74

It is a set of probability density functions with respect to v.
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Assumption 4. For all k € {1,... K},

1. F}, is of the form

2. ©y is a countable subset of Oy, such that

is a dense subset of F,.

The next result is proven in Section and shows that the last assumption is sufficient to
satisfy our main assumption.

Proposition 1. Under Assumption we satisfy Assumption @ with € = 0 and Vi, k, =

Yosttion 1. Under Assumption |f, we satisfy Assumption |3 with € = U ant V...
3+ > dy,. Therefore we have
k=1

V=3K'+ LK" (d, + - +dg). (51)

We can see that the constant V does not depend on 2° but on the dimensions d,...,dx
which is the actual measure of the complexity of the exponential families. To our knowledge,
the existence of a countable dense subset is satisfied for all the common exponential families.
We obtain the following result for .# C 37 (K T, ,?K)

Corollary 4. Let N > K + L and P, = ﬁ&(g be the estimator given by with & given by
@. There exists a positive constant C' such that for all P € Px, we have
CE [n* (P, Pos)| < h? (P, ) +n~ 'S h* (P.P)
i=1
s+1 ]
+n ' K (PP
b=1
+ (s +1)LK" Y (K + L(dy + - - - + dg)) log n.

In particular under Assumption[d, there exist positive constants C(Q*) and ¢(Q*) such that for
s > ¢(Q*)logn we have
C(QME [n* (P*.P.)| < n* (P*,.7) (52)

1
FLES Y (K 4 D(dy 4 -+ di)) (;gn,

where P* is given by .

This result is a direct consequence of Theorem [d] and Proposition [Il We can deduce a bound
on the convergence rate over J¢* (K F1, ..., F ). For the optimal choice of s, we have
2

C(QE[W? (P*,B)] < LE* ' (K + L(dy + - - + d)) loi “

for all P* in o7~ (K,?l, e ,§K>. We obtain the optimal 1/n rate with respect to the squared
Hellinger distance, up to a logarithmic factor. Corollary [3| shows that our estimator is also
robust to contamination and outliers. From (43]) we see that our bound is not significantly
worse as long as the contamination rate qione is of order not larger than n~!log®n. Similarly,
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we get from that the performance of our estimator is not altered as long as the number of
outliers |I| is of order not larger than log”n.

Let us illustrate how Corollary 4| applies with the following example. Let d be a positive
integer and Cov,.,(d) be the set of d x d symmetric and positive-definite matrices. For z € R4
and ¥ € Cov,,(d), we denote by g, the density function of the normal distribution N (z,X)
with respect to the Lebesgue measure given by

L emT e
9::2(7) (27)[3| p( 2 > (53)

where |X| denotes the determinant of 3. Let G, be the location-scale family of densities given
by Gi == {g.5;2 € RLY € Covy,(d)}. One can check it is an exponential family with

Ga=¢E (Rd x Covy,(d),n, T, 4L 0) where

2
( 1< <d’ $ij)1s1<jsd> and

—1 —1
Sy =5 (8 )19’31’_ (Eiﬂ' )1§z’<j§d> :
For a fixed 3 we denote by G,.(X) the associated location family given by G;o.(2) := {g.x; 2 €
R?}. Tt is also an exponential family with G..(3) = & (Rd X Covy(d),n,T,d, B), where
2Ty 1y
2

We denote by ¥, and ¥,.(2) respectively, the sets of probability distributions associated to G4
and Gj,.(X). The next result is a consequence of Corollary .

Theorem 7. Let N > K + L and Yy, ...,YN be arbitrary random variables.

o Let P, = ]3375 be the estimator given by with M = (K, 9y, ..., %) and § given by
@. There exists a positive constant C such that for all P € Py

n(z) =Y 'z, T(r) = x and B(x) = —

CE[n? (P, P)] < v* (P, ) + n' . * (P.P)
i=1
s+1

n LK (PIPY)
=1

1
+(s+ 1) L2KTd(d + 3)22",

(54)

In particular under Assumption [J there exist positive constants C(Q*) and ¢(Q*) such
that for s > ¢(Q*)logn we have

logn

CQME [1? (P* P.)] < W (P* ) + (s + LK d(d + 3)=>
where P* is given by .
o Let P, = P, be the estimator given by with M = (K,%Oc@), o G0e(2)) and §
given by . There exists a positive constant C' such that for all P € Px
CE[1* (P, )] < 1 (P, %) + n' S 0* (P.P)
i=1
st1

+n! bz K (P7,/[P)
=1

logn

+ (s + 1)L2KLdT, (55)
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for any ¥ in Covy.(d). In particular under Assumption @ there exist positive constants
C(Q*) and c(Q*) such that for s > c(Q*)logn we have

x . « —7 logn
CQIE[n* (P P)] < b* (P dl) + (s + YLK 4=,

where P* is given by .

Inequalities and are consequences of Corollary and do not require any assumption
on the data. We deduce bounds on the convergence rate of our estimator over 7* (K9, . ..,9,)
and S (K, %0e(X), ... %oe(X)). For the optimal choice of s we obtain the rate n~'log”n
with respect to the squared Hellinger distance both for P* € #* (K.9,,...,%,;) and P* €
I (K, Goe(X), ... ;% 0c(X)). This rate is optimal up to a logarithmic factor. We can see that
the dependence on the dimension d is linear for the model 7 (K,9,.(X), . .. ,%0c(2)) while its
quadratic for S (K9, ....9,).

We can obtain similar results for any exponential family. It is also possible to consider
hidden Markov models with different exponential families as emission models. The next section
investigates the estimation of the parameters.

Estimation of the parameters with emission exponential families

We say that #, Q and F are p-estimators of 7, Q" and F* if P, 5 p = ]5575 is an estimator of
P* given by . If we consider models of densities that are uniformly bounded, we can use (3)
and Theorem 9 of Lehéricy [15] to deduce risk bounds for the parameter estimators. It is also
possible to use the results of Ibragimov and Has'minskii [10] for regular parametric models.
We consider that Assumption 4] is satisfied with ©; C R for all k € [K]. For k € [K] we

denote by Fjp, the probability distribution given by the parameter 8, € Oy, i.e. Fy, = fp, -V

with fy given by . Let ® be an open convex subset of OX*! x ©; x --- x O, where
OK = {a S (O,l)K_l,al + - tag_1 < 1} .

For ¢ in @, we can define w € Wk, Q € Tx and § € O1 X+ -- x Ok by ¢ = (¢u,0Q.1, - - - ,00.1 Do)
with

(wl, e ,wK_l) = gbw c OK,
(Qka,- - Qr-11) = 0o € Ok,
(917--'79K>:¢9€@1 Xoee X@K.

We denote by .# the model given by
M = {Py=p(;0) - ;¢ € B} (56)

and

px;0) = > wiQkalkr) ... Q(krlkr1) ll:[ Jor, (1)

1<ky,....kp, <K

We need the following assumption to make sure we can deduce ¢ from P,.
Assumption 5. For all k in [K],
o the map 0y — Fy, is continuous on Oy with respect to the Hellinger distance;

o the functions n, and A, are of class C' on Oy;
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o for all Oy in O, we have [ ||Tx(x)|]fo, (x)v(dz) < 0o and

JUT@)2 | for (&) = foy (@)] v(d)

165 =05 1|—=0

The next result is proven in Section and shows that under some conditions we can
deduce the parameters from the distribution P;.

Proposition 2. Under Assumption[4 the information matriz I function given by

f1(dx)
p(x;9)

is well-defined and continuous on ®. We define the subset ®* C ® by

I 6= 10), = [ 95p(xi6)0s,p(x:0)

1 (5) is definite positive and
¢ :=16€d; _inf h?(P;P)>0,Ya >0, (57)
llg—¢l|>a
Pped
For all ¢* € ®*, there exists a positive constant C(¢*) such that

K
C(¢") |[lw* = wllz +11Q" = Qs + X1l — Oulls AL| < h? (Pye, Py), (58)
k=1

for all ¢ in ®.

The constant C(¢*) depends on the inverse of the smallest eigenvalue of I(¢*) and the
geometry of ® around ¢* induced by the Hellinger distance on .#. The next result is a
consequence of Proposition [2] and Corollary [

Theorem 8. Let N > K + L and Yy, ... YN be arbitrary random variables. Let Pq; = f’s,(g be
the estimator given by with & given by (@ Under Assumption@ for all ¢ € ®* there

exists a positive constant C'(¢) such that

K
¢ 3)E [l — ol + [@- O+ X2 [B— il 11
=1

" s+1
St (R ) ot LK (PP
= =1
1
(54 DIEYY (K 4+ L{dy 4+ - + dig)) Oi”. (59)

In particular under Assumption @ there exist positive constants C(¢,Q*) and c(Q*) such that
for s > ¢(Q*)logn we have

C(6.Q)E [Hw —al2+|[@ - Q| + kfj i — 6|} A 1] (60)
=1

1
< (P Ps) + LRV (K 4 Ly 4 i)

where P* is given by .
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Inequality is a consequence of Proposition [2[ and Corollary . It does not require any
assumption on the data and shows that the estimators of the parameters can be meaningful
even if the model is misspecified. Ideally there exists ¢ in ®* such that most of the distributions
F; lie in a small neighborhood of P; so that the first term of our bound is small compared to the

last term. In that case the estimators w, Q, él, . ,éK converge to a small neighborhood around
w,Q,01, ... 0k, where P should be seen as the best approximation of the true distribution in
the model. We can deduce bounds on the convergence rate of our parameter estimators in the
well-specified case from . For P* = Py € J~ (K,?l, e ,?K) with ¢* € ®* and for the
optimal choice of s, we refrieve the usual parametric rate for each parameter estimator, up to
a logarithmic factor. Let us illustrate this with the following example.
We consider exponential distributions for the emission models, i.e. we have .Z; = & for all
i in [K] with
&= {fo-vi fs € £(Oiide, —idy,1,0)} (61)

where © = (0,00), 2~ = [0,00), v is the Lebesgue measure on 2, and we can deduce A :
0 ~ logf. This means we have fp :  +— 0e 1,5, for any § > 0. One can easily check
that we satisfy Assumption [5] the last condition being a direct consequence of the dominated
convergence theorem. We define ® by

D=0k x {0080, > 0> >0}, (62)

and ./ as in (56). The condition on the parameters # ensures identifiability over ® and ® = .
The choice L = 3 is enough to obtain the result of Proposition 2, The next theorem is proven
in Section [D.6l

Theorem 9. Let N > K + 3 and Yy,...,YN be arbitrary random variables. Let Pq; = ]5375 be

the estimator given by with § given by (@ For any ¢ in ® there exists a positive constant
C(¢) such that we have

C (@) |lw ol + [@- A} + 3 (- )" n1]

B n B s+1 ) logn
<n 'Y (P P) + 0t YK (PLIPEY) 4 (s + 1)KP =

i=1 b—1 n

In particular under Assumption @ there exist positive constants C($,Q*) and c(Q*) such that
for s > ¢(Q*)logn we have

C(6,Q")E [Hw —al +][@-q| + 5 (8 —6:)" A 1] (63)
k=1

. logn
< h?(P*Bg) 4 sKP =,

where P* is given by .

Our different parameter estimators all reach the usual parametric rate up to a logarithmic
factor. One can notice that the ordering of the 6 in can be replaced by considering only
distinct values and taking the infimum over permutation of the hidden states.

It is possible to follow the same scheme to obtain similar results for other exponential
families, including HMMs with different exponential families as emission models. The difficulty
relies in determining the set ®* given by .
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4.3.3 Another example

In this section we consider a relatively simple example that does not fit any framework already
investigated but for which we can obtain risk bounds for the estimation of the parameters. Let
v be the Lebesgue measure on R and a be in (0,1). We denote by f, the probability density
function with respect to v defined by

L — o Ligjefo,
2z

fa iz eER—

with the convention 1/0 = +o00. For z in R, we denote by F, . the probability distribution
associated to the density z — f,(z — 2z). We fix L = 2 and consider the model .# defined by

] = {Pqu,z; w,q12,921 € [0,1], z € R} ,
where

Pw,q,z = wFa,O & [(1 - q12)Fa,0 + q12Fa,z]
+ (1 - w)Foc,z ® [QQIFa,O + (1 - QQI)Fa,z] .
The distributions P, , . correspond to translation hidden Markov models with one known lo-

cation parameter. The following result is proven in Section and shows that we can deduce
the parameters from the distribution P, , ..

Proposition 3. For z* # 0, w* < 1 and ¢35, < 1, there is a constant C(c,z*,w*,q*) such that
we have
Ol " ) (Puges Purge o) 2 (12 = 2 A D)+ (w)? (g2 — 41)°
F =0 (g — a)? 4 (0w
for all w,q12,q21 € [0,1] and all z € R.

We can deduce a deviation bound for the parameter estimators. The model M is a subset
of H(2,F ., F,), with F, = {F,.;z € R}. We satisty Assumption |3| with ¢ = 0, F, =
{fal- = 2);2 € Q} and V = 784. The next result is proven in Section [D.7|

Theorem 10. Let N > K +2 and Py 4 = AS,(; be the estimator given by with 6 given by
(38). For allz #0, w <1, gy, € [0,1] and gy < 1, there exists a positive constant C(o,z,w,q)
such that we have

Clazwg)E {(w 0)? + (@12 — Q12)* + (@12 — Gu2)* + (|7 = 2[ A 1)2}
1 & 158 « leain logn
= > 1 (Pogz Pi) + - > K (Ps,b||Ps,bd) s +1)—— (64)
i=1 b=1

In particular under Assumption @ there exist positive constants C(¢,Q*) and c(Q*) such that
for s > ¢(Q*)logn we have

C (6, Q)E[@— ) + (@o — G12)* + (@1 — @) + ([7— 2 A 1)

1
< h2(P*, Ppgz) + 2 (65)

where P* is given by .
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Inequality does not require any assumption on the data. It is a consequence of Proposi-
tion[3|and Theorem 4l We can deduce convergence rates for our parameter estimators from ((65))
for P* = Pr« 4= ,» with 2* # 0, w* < 1 and ¢3;, < 1. The estimators @ and ¢ achieve the usual
parametric rate up to a logarithmic factor. However the location estimator Z reaches the faster
rate (n~! log? n)Y/(=) " This rate is optimal up the logarithmic factor. It is a consequence of
Theorem 1.1 in [10] (Chapter VI), noticing that f, has a singularity of order —« in 0, and with
the fact that we cannot do better than 1/n for the Hellinger distance. One should notice that
fo is unbounded for all o € (0,1). Therefore the maximum likelihood and the least squares
estimators are undefined and those methods do not apply on .Z. In addition, we can see that
fo is not square integrable for o € [1/2,1).

5 Selection of the spacing parameter

Until now we gave results that required a good choice of the spacing parameter s, given some
bound on the dependence term K (P;bHP?fbd). This section propose a way to automatically
select a value of s from the data, assuming that we dispose of two independent sets of obser-
vations. We use the first set to produce an estimator P, for different values of s. We then use

the second set to produce an estimator § of the optimal value of s.

5.1 Framework and result

Let X{l), XD X1(2)7 . ,X}fj be n; + ny random variables on the measurable space (Z°,X).

“dng

We define Pi(j ) by Pi(j )= E(Xi(j )) for all j in [2] and all ¢ in [n,;]. We also write

n1(s,b)
* 1 in 1
s,b — L (Xlg )7 cee 7Xb+n1(s,b)(s+1)) and Ps,l;i - L (XIS—&-)(Z'—I)(S—&-I)) ’
=1
with ;
ny+s+1-—

Let S be a subset of {0,1,... Smax}; Smax = [(m1 —2)/2]. Let (.#,),.q be countable subsets
of Px such that the p-dimension function (see Section [B|) is uniformly bounded over .#; by a
non-decreasing function m +— D,,(#;) > 1 for all s € S. We follow the procedure below.

1. For sin S, let P, = P, (///S,X(l)) be the estimator given by . Conditionally on X,
we define the finite model

/Z/Ez]/E(X(l)) ::{ISS:SES}.

2. Let P be the p-estimator pP="p (ng,X@),/Zlg) given by 1} We denote by § the value of

s such that P = pg and we write

P =P (X1 X)) (67)

We make the following assumption.

Assumption 6. The random variables
X0 = (XY X)) and X o= (X7, X2)

are independent.
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The following result is proven in Section [E.1]

Theorem 11. Let ni,ny > 3 and P = ps (X(l),X@)) be the estimator given by (@/ Under
Assumption@ there ewists a positive constant C' > 0 such that for all P € Py

CE [1? (P, P, )}<n—1zh2( )+n212h2( P) (68)

+tg[if2 {n (14 1log([S])) + [na2/t]5: (X(2)> }
<S + 1)Dn1(s,1)(//8 s+1 }

-lzK( sl PT)

+ inf {h2 (P,..) +

ni

where the mizing coefficient [y (X(2)> is given by (1.2.5) in Dedecker et al. [9)].

One can check that we do not need any assumption other than Assumption [6]to obtain this
result. We need to make additional assumptions a posteriori to make this bound meaningful.
Let us interpret this inequality in simpler cases. We consider there is .# such that #, = .#
for all s € S. If the data were truly i.i.d. with distribution P € .#, we would get

ni no

CE [ (P, P)] <

The second term is the bound we get for i.i.d. estimation from a ny-sample over a finite model
of cardinal |S|. When the data are not identically distributed, the quantity

1Zh2< )+n112h2< P)

=1

is not zero but it remains small when most of the true marginal distributions Pl-(j) lie close

enough to some distribution P in .#. The terms n ' K ( b||Pmd) and [ny/t]5;(X?)

account for the yos&ble dependence within X and X® respectively. They vanish if the
observations Xl X sz) X (2) are all independent. Contrary to Theorem [4| we do

ny ?
not have to choose a good value of 5 as the method automatically select a reasonable s in S as

long as the R-(j ) can be well approximated by a distribution P € .Z.

5.2 Robustness
Let XY = (Xgl), . ,Xflll)) and X? = (X§2), . ,Xfi)) be the true processes of interest
such that PY) = P for all j € [2] and i € [N,]. We actually observe a contaminated ver-

sion of it. Let Z{l),.. Z}&B,Z@) "'721(\?2) be random variables with any distributions and

EW, .. Ej(vl) EP ...,EN2 be Bernoulli random variables such that for all j € [2] and all
i € [N; ]
X9 =ExXY +(1-EV)ZY. (69)
For s € {0,1,...,Smax} and b € [s + 1], we define the distributions
Hind m1(sh)

B* (1) (1) )
Ps,b =L (Xb R ’Xb+n1(s,b)(s+1 ) and Ps b = ® L (XbJr(z 1)(s+1)>

The next result is a complement of Lemma [2] and is proven in Section [E.2]
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Lemma 7. If EP,Z{U, e Eflll),Zfll),EEQ),Z{Q) Eg),qug,K(l) and X2 are mutually inde-
pendent, we have

K (P,|[P1Y) <K (PL,[[PLy) ¥s € {01, .. Smax} Vb € [s +1], (70)

and

B (X®) < 5, (X)) wt > 1.
We define p¥) by P (Ei(j) = 1) =p7 for j € [2] and i € [N].

Corollary 5. Let ny,ny > 3 and P = P (X(I),X(Z)) be the estimator given by @) There

exists a positive constant C' such that in the situation of Lemma @ and for all P € Py,

CE [n? (P, P;)] gnfli(l—pﬁ’ ) +ny 12 1-p{)

i=1

t€[na]

rnfre (Proa) + D) S ()

sesS ny

+ inf {;(ng(\sm [na /616 (X) }

This result is a direct consequence of Theorem [I1] and Lemma [7] We illustrate the perfor-
mance of our estimator with hidden Markov models.
5.3 Application to hidden Markov models

Let Yl(l), e ,Y]\%),Yi(z), e ,Y]\%) be random variables taking values in the measurable space
(#.,Y). Let L be in {2,3,...,| (N1 A Ny)/2|} and nj = N; +1 — L for j € [2]. We define

the new random variables
X7 = (YOx, YY) e gl e [2),

taking values in the measurable space (2" ,X) = (@ L ,y®L). We adapt Assumption [2| to this
context.

Assumption 7. Let <Y 2 Hi(l)). and (Y 2) H(Q)) be finite state space HMM with parameters
(K*wi,Q* F*) and (K*,wh,Q*,F*) such that Q* is irreducible and aperiodic.

Under this assumption @Q* has only one invariant distribution 7* and we define the distri-
bution P* by (27). Let 7 > e and J = |log, (| (n1 —2)/2])]. Let S be the set given by

s={oyu{[7];iefor,....J}}. (71)

Let Z1,...,Z i be subsets of &y such that Assumptlon I is satisfied. Let .# be a non-empty

subset of the model 57 (K e K) defined by (29). For s in S, we take .#; = /55 with
v 1
5(s) = il
O = enE-n N i

where .#; is given by and ny(s,1) given by . The following result is proven in Section
[E.3
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Theorem 12. Let Ny,Ny > K + L and P = P; (X(l),X(z)) be the estimator given by @)
Under Assumption@ there is a numeric constant C > 0 such that for all P € Py

CE |1 (P, By)| < * (PAl) +ny S (PV.P) +ny! N (P P)
i=1 i=1

tlogl
rrete e fUOBO80 s (x) ) (72)
t€(na] No
. (S + 1>LV1Og ny -1 - * ind
i Rt S e (R |

In particular under Assumptz'on@ there exists a positive constant C(Q*) such that

—log*n, . log ny log log ny

C(QIE [n* (P*, By)| < h? (P ) + Lé* + 7LV (73)

s o
where P* is given by .

Inequality is a consequence of Theorem and only requires Assumption @ Under
Assumption [7| we can control the different terms and obtain . If € = 0, the ideal situation
is to have the same number of observations in each set, i.e. n; = ny = n. In this case we have

C(QE[n (P P)] < n?(P") + LTVIO%? n

and the first vanishes when the model is well specified which gives the rate n~'log?n with
respect to the squared Hellinger distance over JZ* (K Fly o F K). When € > 0 the quantity

V depends on € and we need to balance the second and third term in (73)), i.e. €2/V is of order

ny' up to a logarithmic term. Then the ideal situation only requires n, to be of order €2 up to

logarithmic term and the bound on the convergence rate is of order €2. For example, we would
2

have e 2 = n{*! logfﬁf(d”) ny in the situation of Theorem B In both cases, it shows that we

recover a value of s that allows to obtain the same rate as when the optimal value is known.
This is especially interesting for the robustness aspect of our estimator.
Let us consider a situation similar to Section . Let Zp, e ,Z](\}B,Zfz), e ,Z](\i) be random

variables with any distributions and E%l), e ,E](\}l ,EF), e ,E](é) be Bernoulli random variables

such that for all j € [2] and all i € [IV}],

The following result is proven in Section [E.4]
Corollary 6. Let P, = P; (X(l),X(2)> be the estimator given by @) IfEW 70 ED ZD),
oS4 ,Eﬁlz),Zle),K(l) and X? are mutually independent, and if YV and Y? satisfy

Assumptz’on@ there exists a positive constant C(Q*) such that

~ L ! ) L N2 )
C(QME [n* (P, Py)] < N2 — )+ wx( — )

L LE s m | logmzloglogm;

ni no

where P* is given by and p¥) =P (Ei(j) = 1) for all j € [2] and i € [N;].

27



One can see that our deviation bound is not significantly worse as long as the average
proportions of contamination Ny ' SN (1 — pgl)) and Ny 'S (1 — pl(?)) are small compared
to € + TV% and Ww respectively. We interpret this result further for ¢ and

(7)

ny = ny = n. Let us consider Hiiber’s contamination model with p;”’ = 1 — qopn for all j € [2]

and ¢ € [N]. In this situation we get
. V log?
CQIE[1? (P 2)] < L faume+ T2E2).

n

Our bound on the convergence rate is not deteriorated as long as the contamination rate ccons
%. We can also consider the situation IP’(E-U) = 0) = Ly, for

is small compared to € + i

some subsets I; C [N] and I, C [N]. We get

c@ e[ (2] <o | L, T,

N n

Our bound on the convergence rate is not deteriorated as long as the proportions of outliers
|I1]/N,|I5| /N are small compared to the other terms.
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A Auxiliary results
We denote by C(Z") the set given by

o) ={n} x 2.

n>1

Let d: & x o/ — R Dbe a loss function where &/ C &y denotes a set of admissible probability
distributions. Let .# be a subset of &7. Let P : C (Z") — .# be an estimation method.

Assumption 8. There exist constants Cy > 0,3 € (0,1] and non decreasing functions f,g such
that for all independent random variables X1, ..., X, with distributions P, ...,P, € &/ and for
all £ >0

P (Zd (PP (nX)) < Cy inl > d(P.@) + f(n) + g(n)56> >1- ¢
i=1 4=

Many estimators satisfy such an assumption, see for instance mean discrepancy estimators
[1], T-estimators 7] or l-estimators [3]. We can get rid of the independence assumption with
the following result.

Proposition 4. Under Assumption[§, for all random variables X, ..., X, with distributions
Py, ...,P, € & we have

B[S0 a(RP (00)] < ot SR + sl
, B
+g(n) [2 + gK (P*HPmd)} ,

where .
P =L(Xy,....X,) and P™ =L(X))®...® L(X,).

This result is obtained by applying Lemma (1| that we prove hereafter, with P = P"¢ and
Q=P

A.1 Proof of Lemma [

We use Lemma 48 in [2]. For A € (0,a=/?), we have

Eq |\ (nl (6(%).6) — na - B)|

B+ (&/N)°

n

< log (1 + /0+°° P (z (6(x),0) > A+ ) d§> +K(Q||P)

< tog (1+ /Om e ) + K (QIIP) = log <1_1A) +K(Q|P).

We have

Eq [(nl (8(%).0) — nA - B)lﬂ <) {bg (1_1A> +K (QHP)} |

Assuming K(Q||P) < oo, minimization over A demands

log(l—)\)—K(QHP)+1i>\ =0.
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Let A\* be such a number. In that case

) [log (1 —1/\> K (QHP)} 1 —1)\*'

We set a(z) = x —log(1 + z) for z in (0, 4+ o0). Following the proof of Proposition 5 2], a is
increasing and

Vo > 0,a " (z) < x4+ V2.
Since 2 = o' (K (Q||P)), we get

T
1 A*
— <
o A clik@p) - 2K @)
3
< 2+§K(QHP)'

Finally, with Jensen’s inequality we get

B+ (243K (PQ))

n

Eq [l (6(X).0)] < A+

B Main results

This section gathers the proofs of Theorem [1], Corollary [I] and Lemmas [2] [3] 4] We first give a
formal definition of the p-dimension function that is originally introduced in Baraud & Birgé
[4]. We slightly modify some notation to adapt it to our context. The function v defined by
satisfies Assumption 2 [4] with ag = 4, a; = 3/8 and a2 = 3v/2 (see Proposition 3 [4]). Let n be
a positive integer and .# be a countable subset of Px. For y > 0, P = Q7 Pird ¢ 2Y"
and P € ./ we write

24 (Pmd’p’y) — {Q cM; Zn:h2 (Piind7p> + B2 (Pf”d,Q) < yz}.
i=1

If M is a countable set of probability density functions with respect to a o-finite measure v
such that # = {Q = q - v;q € M}, we write

w (I/,M,%,Pindypay) = Ex.pina [ sup Z, (X,p,q)|] ;
Qe'@%(Plnd7P7y)

where
Zn(X7Q7q/) = Tn(X7Q7qI) - EPdeTL(X7Q7q/)7

and T, is given by . We define w# (Pi”d,P,y> = inf, pg) w (V,M,,///,Pmd,P,y), where the
infimum is taken over all couples (v,,M) such that M is the class of density functions associated
to .# with respect to a o-finite measure v. We define the p-dimension function by

M (pind n 3 2. M (pind 3y
D (P P® ) = [Wsup{y TW (P ,P,y) > 64” \/1.

As mentioned at the beginning of Section 2| we consider cases for which we have a uniform
bound over the p-dimension function. More precisely we assume there is a non-increasing
function m — D,,(.#) such that

DY (P PE™) < Dy (M), VP € DY VP € M.
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B.1 Proof of Theorem

From Theorem 1 of Baraud & Birgé [4], we have that for all independent random variables
X1,...,X, with respective distributions Py, ... ,P,, for all Q) € .# and for all £ > 0, we have

S0 (P P X)) S730R (PQ)+ (DZ(?/!)

i=1 i=1 a1

+ 1.49+§> :

with probability at least 1 — e~%, where v and k are given in [4] and satisfy v < 150 and
i—’f < 5014 (see proof of Theorem 1 [5], page 32). We can take the infimum for @) over .#Z and

it shows we satisfy Assumption [8 with Cy = 150, f(n) = 5014 (%{Z)) + 1.49), g(n) = 5014
and = 1. From Proposition [4, we have

n(s,b) . n(s,b)
E ; h2 (Pb+(i—1)(8+1)7ps) < 150 érelfz ZZ; h (Pb+ (i—1)(s+1) 7@)

Do) (M 3
+ 5014 (%)+349+ 2K(P b||Pmd)>

for all b € [s + 1]. From ([12)), we have

1

> (P R) =3

n(s,b)
Z h2<Pb+z 1)(s+1)> 15)

b=1 =1

s+1n(s,b) ot )
S22;22h2(Pb+(ifl)(s+1,Psb)—i-Qz: sth( PS)

b=1 i=1

Hr 2 A ) s+1 R
< 2; ; B (Powtimny(ern, Pup) +2 fnf bz::ln(s,b)h (P Q) +2

s+1 n(s,b) R N
< 42 Z h? (Pb+(i—1)(s+1); Ps,b) + 2 inf Z h2 (P, Q) + 2.

b=1 i=1 Qe =

Combining the inequalities above, we obtain

s+1 n(s,b)

= 600252&[ Z h Pb"‘ (i—=1)(s+1)> Q) + 2@122/;[(37@)

=1

E [znj h2 <P,~, 135)

i=1

n(s M 3
+200562 <<4b)7() +3.49 + 7K (P*b||P;”bd)> +
b=1 :

Dn(s,l) (%>
4

< i 2(p
< 602 ngf%; h2(P;,Q) + 20056(s + 1) ( + 3.49)

s+1
+30084 > K (Py,|[PUy) + 2.

b=1

Since ¢ < 2546 < 20056 x %597 we get

4.7
E f:hQ (P, P.)| <602 inf znjif(P- Q)+20056( + 1) [Dugoy () +17]
pP* pt iy L s = Qlél//{i:1 i) 4.7 S n(s,1)
s+1
+30084 > K (P7,||PTy) .
b=1
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B.2 Proof of Lemma

For e € {0,1}", we denote by I(e) the set given by I(e) = {i € [n];e; = 1}. From the convexity
property of the Kullback-Leibler divergence, we have

K(LY)|ILM)® - @ L(Y,))
P

> K (L(YE =) [L0GIF = 1) © - © L(Y| By = )
ec{0,1}"

- 5 e o (£ ()8 @ £ @ £x) 6 @ £i2)
ec{0,1}" i¢l(e i€l(e) i¢1(e)

= 2
ec{0,1

bl }

nP(E—e>K<c( Diero) || @ L(X )

1€l(e)
We need an auxiliary result before ending the proof.
Lemma 8. For random variables A,B,C such that L(A) < L(B), we have
K (L(AIL(B)) < K(L(AO)[IL(B) ® L(C)). (74)
With this result we have
K (ﬁ (Xero) I @ £ ) K (£ (X) [I£(X1) ®- - © £(X,.)).
i€l(e

which allows to conclude.

B.2.1 Proof of Lemma
Let p1 and ps be measures dominating £(B) and L£(C') respectively. We write
dL(B,C) _dL(AC) _dL(A) o = dL(B) e = dc(C)

bre= du1®u2’p’4’ dpn@ps T dpn TP dm T dps
We have
K (L)L) & £C) = [ pacloion (LAY i (doptaz)
= /pA,C(x,z) log <Zm> 1 (dz) po(dz)
+ / pac(z,z)log (i;‘g;) p1(d) po(dz)
= K (L(A0)||L(A) ® L(C)) + K (L(A)[IL(B)).

The non-negativity of the Kullback-Leibler divergence concludes the proof.

B.3 Proof of Corollary

One can check that we have

n? (P.P,) < 2n” 1Zh2( Yi),P) + 2n° 1Zh2< Yi),P.)

=1

<2n~ IZ (1—p) +2n_12h2( Y),AS),

i=1 =1
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and for Q) in A

n

i (c00.P) +250 (P)

=1

znj (1-pi) +2nh* (P,Q) .

]
“\‘m
IA

We can conclude with Theorem [I] and Lemma

B.4 Proof of Lemma [3
We have

K(LX)L(X1) @+ @ L(Xn)) = E[K(L(Xn| Xy, ... . Xn1) [[£(Xn))]
+K(L(X, X ) [IE(X) @ @ LX),

and with the Markov property

EK (L (Xn] Xy, Xa) ||£(X0))] = B [K (L (X0 Xoa) ||1£(X0))]
= K (L (X1, X0) [|I£(Xn1) @ L(X2)) -

Therefore

K(LX)[[L(X1) @@ L(Xy)) = K(L(Xy,... . Xy [[L(X1) @ @ L(Xpa))
+ K (L (Xn1,X0) [[£(Xn1) ® L (X)),

and we can conclude by induction.

B.5 Proof of Lemma 4
If (X,H) a hidden Markov chain, with Lemma [3| we have

K(LX)[L(X1)® - @ L(Xn))
S i K <£ (Xi_l,Hi_l,Xi,Hi) ||£ (Xi—laHi—l) ® L (leHl)) :

We need the following result. For random variables Ay,As,By,Bs, we have

K (£ (A1,B1,A2,B5) ||L (A1,B1) @ L (A2,Bs))
= K(£(A1,4) ||£ (A1) ® L(A2))
+E [K (£ (By1,Bs|A1,As) || £ (Bi] A1) ® L (Ba| Ap))] -

With the non-negativity of the Kullback-Leibler divergence we get

NgE

K(LX)[IL(X1) @@ L(X,)) < ) K(L(Him1,Hi) [|£(Him1) ® L(H)) .

||
N

7

C Kolmogorov processes

This section gathers the proofs of Theorems and Lemmas [5] [6]
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C.1 Proof of Theorems 2] and [3

From Proposition 6 [4], we can take D, (% _, mle]) = 910g(2|.Fa_a, mle]|). From Theorem
there exists a positive constant C' such that

CEp- [h* (P, P.)| < h? (P, s 1) +E+n 'S 0* (P,P)
i=1
+n 1K (P*bHPznd)

s+1
+

[1+ log(21Fa_a, alel])] -

Given the bounds on log(2|F_ , i[€]]) given by Lemma [6 we obtain the following inequalities.

e For d =1 we have €2 = n=%%log** n and
7 _
log(21 5, me]]) < log(9/m) + 5 log M + Kye /2

9__
= log(9/m) + §K1nl/5 log™ /% n

2

« For d = 2 we have €2 = n=2/3 log5/3 n and

8

772

387 28
< log ( ) + = Kon'?log 213,
s 3

3
log(21F_x, wlell) < log ( ”) §9log M + Koe log2(1/0)

1/4

« For d = 3 we have €2 = n=/*log"*n and

27327/2 3 33 L
log(2[Fx_ ., m[0]]) < log <7767T t3 log M + Kse
3

27 27/2,..3
— log (367T + 323K n1/2 log—l/Qn

13

This proves the bound (| . Lemma I allows to conclude the proof of Theorem [2 I
For d > 4 we have €2 = n~ e logd+2+d+1 n and

1 1
108(1 P, rlel]) < log Ca+ (Fa+2+ - 4+ = ) €01 log /2 ()
1 1 1 - 2
S 10ng+ ﬁ (Kd+2+ p + d2> n% 1Ogﬁ+d+1n

Lemma [5] allows to conclude the proof of Theorem [3|

C.2 Proof of Lemma [5

We have
1 (0(Y) 0(Yias)) = K (£ (YaYias) |1£(Y) © £ (Yiga)) = E [K (£ (YoralVi) 1€ (Vis))]
Since (Y;)>0 is stationary we have £(Y;y,) = P. For z € R? fixed, we write
Au(s) =K (L(YD)|[P),
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where Y;” is the solution of satisfying Y7 = x. We follow the proof of Theorem 3.2.7 [19]
with their notation. From (44) therein we have

A,(s) <E Klog(Z) +U() + UW,) — 20(W,) — ;/OS[|VU|2 _ AU](Wt)dt) F] o (75)

where
o W is the Brownian motion starting from =,

« Fis the density of the distribution of X* over C([0, s]) with respect to the distribution P
of W given by

1

F =exp (U(x) —U(Wy) — 3

(vl - avivar).

o v is such that exp(—2v) is the Gaussian density of £(W) with respect to the Lebesgue
measure, i.e.

_ —d/2 (z — y)2 d
exp(—2v(y)) = (27t)~Y* exp o ,Vy € R% (76)
s
Let us check that the right-hand side of 1) is finite. From 1} we have —2v(y) < g log(27s).

Also

1 s 9 Cs
= IVU? = AU (Wodt < ==,

where C' is given by . Since EF = 1, we get
d Cs
A (s) <log(Z) +U(z) — 5 log(27s) — - T E[U(W,)F].
We only need to consider the last term E [U(W,)F]. We have

E[U(W,)F] = E [U(Ws) exp (U(:U) —Uw,) - ;/ VU - AU](Wt)dtﬂ

) [U(Ws) exp (—U(Ws) / (VU2 — AUJ(W,)dt ]

1
2
< VOFE[U(W,) exp (~U(W,))]

< V@)= 2E[U*(W)6Xp( U(Ws))}

S eU(l’)—T

(o))

where ¢ is defined on RT by g(z) = xexp(—z). We end up with
d C
A,(s) < log(Z) + Us) — Slog(2ms) — = + ¢~ F|g]
d C ;
<log(Z) — B log(27s) — 73 +e"@|g]|0o (1 + 6_%> . (77)

Therefore, A,(s) is finite for all s > 0 and all z € R%. From Theorem 3.1.29 and Theorem 3.2.5
of Royer [19], for all s5 > 0, we have

A(s) < Au(so) exp (—2m(s — sp)), Vs > so. (78)
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Therefore with and , we have

[(0(Yy),0(Yiss)) = E[Ay,(s)]
< exp (—2m(s — s9)) E [Ay, (50)]

d O Cs
< e72m(s=s0) [log(Z) ~3 log(2msg) — % +E [eU(Yt)] 19][oc(1 4+ €~ 20)]

= ¢~ 2mls—s0) [log(Z) - ;llog(Qﬂso) — 0280 +|g]]o0 (1 + e_%)Z_1 /d e_U(‘”)dx]
R
=: C(sg)e 2™,

for s > s9 > 0 with O(sg) < oo since [ga e Y@ dr < oo for all a.

C.3 Proof of Lemma

We divide the proof in two parts, first the case d < 3 and the case d > 4 in a second time.
Case d € {1,2,3}. For £ > 0 and v € (0,1), let

P = {F € Fas |yl < € and 1= v < Aun(57) < huan(57) S 140

We first state the classic bound

wW)i (79)

N(By(M), || - ||2,€) < (

€
where By(M) is the ball of radius M in R? with respect to the Euclidean distance || - ||
Let By(M) [\/)\_} be a \/A_-net of By(M) with respect to the Euclidean distance || - |2, with
‘Bg { ” < (BM /X)L Let Sym(A_,\y)[naA_] be a ngA_-net of Sym(A_,\,) with respect

to the operator norm || - ||op, with [Sym(A_ A ) [naA_]| < Ns(Ap,A_,dmgh_). Let E;"[e] be an
e-net of F "1 with respect to the Hellinger distance. We define

T € By(M) [VA|,
Frononld = { (det )72 (£ (- — 7)) 5 € Sym(A_ A+ e,
g€ Fm"e

and we show it is an e-net of Fy_ x, s with respect to the Hellinger distance. For f € F\_ x, m,
there is ¥ in Sym(A_,\;)[ngA-] and T in Bo(M)[v/A_] such that

7y — 7l < A~ and [S) — £l < Ao

We write f = (det X)Y/2f <21/2 . +T). Let us check that f belongs to F;’"d. We have

sl = =2y — )l < 17Tl <
and
— _ . E .
Hzf—[Hop:HE 1/22f2 1/2_[H0p: HE 1/2(Zf_z) 1/2H H f/\i || D < ng

Therefore f € F;™ and there is g € F;"*[€] such that h ( 1, g) < e. Since the Hellinger distance
is invariant by translation and scaling, we have

h(f. (et D)2 (720 =) =k (Frg) <e.
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which proves that Fy_ x, ale] is an e-net of Fy_ x, as. Therefore

3M
VA

We need to bound the different entropy numbers now. For a metric space (&7,d) and € > 0, we
denote by N(€,47,d) the minimal number of balls of radius €, with respect to d, to cover 7.

The next result provides a bound on the entropy for the class of covariance matrices we are
considering. Let || -||,, denote the operator norm on square matrices induced by the Euclidean
distance. For matrices with real-valued eigenvalues, it is equivalent to the largest absolute value
of its eigenvalues.

d
| Fa g, mlel] < ( ) X Nx(Ap, Ao dngA_) x ‘Fdlmdk”-

Lemma 9. We have

Mfordzl,
o3

N (€, SymOA_ i), || - [lop) < (E) (At — AT ];07“ d=2, (80)
) (2.35/4m) ford =3.

€

In higher dimensions, we have

3\d  pdld—1)/2 a2 .
N (e SymO- AU -1lo) < € (5) iz (@A) = A)

x (d + 1)4d+D/2g(@d=D(@+2)/2(g _ 1)(d-1)/2~d(d+1)/2

9
i el/2

Theorem 4 [12] gives a bound on |E;"[€]| which allows to conclude the proof of Theorem

2
Case d > 4. We use Theorem 3 of Kur et al. [13]. We follow some of their notation. Let
d > 4. There exist positive constants &; and K, such that

log N(e,ﬁdj,h) < Ky @D 10g++(671>(d+1)(d+2)/2’
where .7, ; is the set of distributions associated to
‘Fd,f = {f < JT"d . HT]EHQ S gd and 1/2 < )\mirI(Ef) S )\max(zf) S 2} .

Let F, ;le] be a set of probability densities with respect to the Lebesgue measure such that
Failel = {f(x)dx; f € Fy;} is an enet of .F, ; with respect to the Hellinger distance and

log |.Z, ;le]] < K ge @1 10g++(671)(d+1)(d+2)/2.

Let By(M) [fd\/)\_} be a &4/ A_-net of By(M) with respect to the Euclidean distance || - ||2,
with | Bo(M) [€ay/A~|| < (3M/&v/A7)% Let Sym(A_ A )[A-/3] be a A_/3-net of Sym(A_\)
with respect to the operator norm || - ||op, with [Sym(A_,A;)[A-/3]] < Nxu(Ay,A-). We define

T € By(M) {gd\/X} ,
Froaemld = (det X)71/%g (Eil/Q (-— T)) ;3 e Sym(A_ AL )[A_/3],
9 € Fyilel
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and we show that Z_, mle] = {f(x)dx; f € Fa_ ., ,mlel} is an enet of Fy_ \, p with re-
spect to the Hellinger distance. For f € Fx_ ., a, there is ¥ in Sym(A_,A;)[A_/3] and T in
By(M)[€av/A-] such that

7y —ll2 < €ay/A— and [|Z; = Slop < A_/3.

We write f = (det 2)Y/2f <21/2 : +T). Let us check that f belongs to JF, ;. We have

_ - - T — T
7l = 1525 — B < 1T Tl g,

A
and

125 = |
A

157 — 11 = [£728,5 7 — 1] = |27 2(8; - D)2 < <1/3,

Hence
)\mm(Ef) >2/3>1/2and )\maX(EJ;) <4/3 < 2.

Therefore we have f € Fu 7 and there is g € F, j[e] such that h (f(x)dx, gx)dx) < e. Since the
Hellinger distance is invariant by translation and scaling, we have

h (f(:v)da:, (det 2)~1/2¢ (2_1/2(:1: - T)) dx) =h (f(a:)da:, g(:z:)d:c) <€,

which proves that .#,_ . ale] is an e-net of #y_ \, . Therefore

s \¢
| Pa_ e mle]] < (M) x Ns(Ap,A_,d) x [F, fle]].
With Lemma 9] we get

d
IM 3 d 7l_cl(dfl)/Q . J
[P ule]| <C (M) (4> m(”\ﬁd(d D2y —AD)
\ )2
% (d+ 1)d(d+1)/2d(d71)(d+2)/2(d . 1)(d71)/2 <_>

3
X exp (Fde—(d—n log(€—1)(d+1)(d+2)/2)

d(d-1)/2 3 rd . d
<Cd)\+ MeAy —X2)

= N exp (K gD og ™) (HD(H2)/2)

C.3.1 Proof of Lemma

For d = 1, we have Sym(A_,A;) = [A_,A;]. The result follows from classical entropy bounds.
Otherwise, every real valued symmetric matrix ¥ can be written as ¥ = UDUT where D is
the diagonal matrix containing the real eigenvalues of ¥ and U is an orthonormal matrix. For
¥y = Urdiag(A 1, - - -, Ag1)UT and Xy = Usdiag(Ar 2, - . . ,Aa2)U7 we have

121 = o] < ||UL(D1 — D)UY || + [|(Uy = Us) DU || + ||Us Do (Uy — Us) ™|
<||D1 = Da| + 224 ||Uy — Uy||
= 121?;3’)\@',1 — Nia| + 224 ||Uy — Uy].

Therefore

N (SymA-_ Al - [l€) < N (B((Ar = A-)/2),]] - [loosex) x N (ON(d), [[ - [,€2)
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with € = €1 + 2X\;e5. We have the classic bound

A+——A_>d

N (B((Ar = 22)/2),]] - [|oose1) < (3 %€,

e For d = 2, the orthonormal matrices are of the form

_ [cos(f) —asin(B)
Unp = <Sin(¢9) o cos(8) ) 0 € [027],a0 € {—1,1}.

We have

[Uno = Ui |12 = 211 — cos(6 — 8)] < (6 — )%,
and therefore
3T
.
where the factor 2 comes from the presence of € for positively and negatively oriented
basis. We obtain the final result for e; = 2¢/3 and €2 = €/6) .

N (ON(2),]] - |],€) < 2— = 67/¢,

o We proceed similarly for d = 3. Every orthonormal basis in dimension 3 can be written
in the form

cos 6 cos ysin @ —esinysinf
Uecppr = |sinfcos —cosycosfcosf +sinysinf e(sinycosfcosf + cosysinfj) |,
sinfsin 5 —cos~ycosfsin S —sinycos S €(sin~y cosfsin f — cosycos )

0 € [0,27],8 € [0,27],y € [0,27],e € {—1,1}. As before, one can check that we have

Ueo,8 — Ueor prl| <10 —0'

Uet,py — Ueopnl| < 18— B
||Ue,97/3,7 - Ue,é’ﬁﬂ’” < |9 - 0/|2~

Therefore we have

(81)

€

N (ONG). |1 116) < (N (j0.2n)] - 1.¢/VB)) <2 (3“5”) ,

where the factor 2 comes from the presence of € for positively and negatively oriented
basis. We obtain the final result for €; = ¢/2 and €3 = €/4\ .
o For higher dimensions, we have the following lemma.

Lemma 10. For d > 3, we can build an e-net ON(d)[e] of ON(d) with respect to the
operator norm such that

d(d—1)/2
|ON(d) [6” < Cmd(d_l)(d+2)/2(d _ 1)(d—1)(cl—&-l)/2€—al(d—1)/27 vd > 1
e
with C = 5.
We obtain the final bound with ¢ = 2% and e, = & 4=1.

d+1 2Xy d+1
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C.3.2 Proof of Lemma [10

el/2

We prove this by induction. From 1} we have the desired inequality for d = 3 with C3 = 3f553.
Let € be in (0,1] and d > 3. Let us now assume that for \; > 0 we have a A\j-net ON(d)[\]
with

d(d—1)/2

eld—1)(d—2)/4

Let U € R be a unitary vector, i.e. Uf +---+ U7, = 1. There is 6 € [0,27]* such that
U = f(0) with

ION(d)[M\]] < C d@-D@2)/2 (g 1)(d—l)(d+1)/2/\1—d(d—1)/2‘

U; = fi(0) := cosb; Hsinej,

J<i
with the convention 6., = 0 and that a product over an empty set of indices is equal to 1. We
define applications aq, ... ,aq,a4+1 by a; = id and

a:(0) = (91 B+ S ,ed> Vie {2, d+1).

One can check that the set of vectors A;(#),...,Ags1(0) € R given by A;(6) = f(as(0)) for

i in {1,2,...,d + 1}, is an orthonormal basis of R?. We take n; = { Y d;\;l_j—‘ Vi e{12,....d}

and we take

%4_1[)\2] = {A(d}“ 7777 Zd)? 'ij S {1,2, ce ,TLj},j S {1,2, e ,d}} C ON(d + 1),

m(2i; — 1)
1/%'1 ..... iq — ( ’TJL ) .
J 1<j<d

with

Lemma 11. The set
1 0
O[)\l,)\z] = {A (O B> ,A S %4_1[)\2], B e ON(d)[)\l]} s
is a \ + Vdmy-net of ON(d + 1) with respect to the operator norm.
One can easily check that we have the following bound

| Ty 1[Aa]] < (f)d V..

2

Therefore, we have

|O[A1,Aa]| = [ON(d)[M]] x |z [Aa]

< qld=1)/2 d(d—l)(d+2)/2(d B 1)(d_1)(d+1)/2>\—d(d—1)/2 y <2>d@
=Y (d-1)(d-2)/4 1 Ay "
For A\ = e% and Ay = em, we get
|C)LX1,X2H
qd(d—1)/2 d+1 d(d+1)/2
T T d=1)(d+2)/2( 7 q\(d=1)(d+1)/2 (AT L —d(d—1)/2
< Coaaand (d=1) d—1 ‘

x Vd! (\/;Zﬂ(d + 1)>de*d

— O(d — 1)~ @D/2g=1/gleld=1)/2 rdd+1)/2 d 4 1)4(d+3)/2 gd(d+2)/2 —d(d+1)/2
= Cld=1) e i@ @t ) € '
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We use the bound n! < orn"Tie e and we get

|O[>‘1>)‘2]|
d(d+1
< C(d B 1)—(d+1)/2d—1/2 (d _ 1)!€(d1)/2£()(d)2/2(d+ ) d+3)/2dd(d+2)/2€—d(d+1)/2
- e
qd(d+1)/2

<C(d— 1)_3/4d_1/2(%)1/4624(;_1) (d + 1)U+3)/2qdld+2)/2 ~d(d+1)/2

o(d—1)(d—2)/2

We have )
(d —1)=34q~V2 (o) 4em—n < 1

for all d > 3. Therefore, we satisfy the desired property for d + 1 with ON[e] = O[A;,\o].

C.3.3 Proof of Lemma [11]

Let C = (Cy...C4;1) be in ON(d + 1). There is € in [0,27]¢ such that C; = A;(). Let B be
the matrix in ON(d) given by
0 (10
sare=(19).

For 0 € [0,27]? there exists 1/;, _;, such that

.....

0; < < —V 1,.
e e (RS =y B AR UL
Lemma 12. We have
d—1
[A(6) — A0 + 2)llop < \|D_(d = K)RF,,.
k=0

Therefore we have
|AO) — AWy i)llop < d*/*Te.
There exists B’ in ON(d)[\,] such that ||B — B'||,, < A\;. We define " € ON(d + 1) by

' 1 0
C' = A1) (0 B’) € ON[A1,)\q).
Then we have

1€ = Clop <

A®) (8 B - B)

<||B = B'llop + [|A(0) — A(¥iy,..i,) |l
< A\ 4 dYPm .

C.3.4 Proof of Lemma [12
For § € R? and h € RY, we define Uy = f(6) and

U, = f(91 + hy,....0; + hiﬁi-{-l; ce ,Qd),i c {1, e ,d}
Similarly, we write A® = A(9"9)) with

Q(h’i) = (91 + hl, c. ,‘91' + hi79i+17 Ce ,6d>,
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for i € {0,1,...,d} and j € {1,...,d+ 1}. It implies A§°) = Uy and Agd) = U,. We have

= fi(a;(0"M)) = cos (aj (G(h’k))) [[sin (aj(ﬁ(h’k)))

1<i

= COS <0 + ]lz<] 5 + ILKZ Z) HSIH <91 + ]ll<] 9 + ﬂlgkﬁl) s

1<i
and therefore
0ifi <k
ll;[k sin (91 + ]11<j§ -+ hl)
A g )X [cos (ek+1 F Loyt + th) — cos (9,,3+1 + ﬂk+1<jg)] ifi=Fk+1

H sin (01 + ]11<jg + ﬂlgk) X COS8 (01 + ]1’L'<jg)
1<

I£k+1

X {sin (0k+1 + ]lk+1<jg -+ hk:—H) — sin <0k+1 + ﬂk+1<jg)} ifi >k+ 1,

h
= 2sin ( kH) H sin (91 + ILKJ + hl)
2 )ik 2

0ifi <k
—sin (Ope1 + Tepres g + M52 ) ifi =k +1

T h : iy
COS (0k+1 —+ ]lk+1<j5 + k2+1) k+1H<l<i Sin (el + ]ll<j§)

x cos (0 + Lie;3) if i >k + 1.

We have (k+1<d, k> 0)

HA(k+l) _ A(k)H% _ Z (A(k+1) A(’?)>2

ij ij
V)

h h
= 4sin? <k:2+1> >, [Isw? (9l + ILl<g 5 + hl) [Sin2 <0k+1 + ﬂk+1<jg + k;l)

1<j<d+11<k

) T hk+1 d+1 T
+cos” | Okp1 + Ligici= 2 Z H sin <9; + lll<j2) cos («9 + 1, 2)

i=k+2 k+1<I<3

h
— 4sin? ( ’“2“> 3> [[sin? (61 + ILKJE + hz)

1<j<d+1 1<k
. Pg1
= 4 sin? +
2

[(d +1-— H sin ((9[ + ﬂl<] 5 + hl)

<k

+ Z Hsin2 91+1l<jg+hl)‘|

1<j<ki<k

1<k 1<k

(d— k) I] cos® (6, + hy)

)
(

< 4sin? <h’“+1> [(d+ 1— k) [ cos® (6 + hy) + 1 — ] cos® (6, + hz)]
)

43



Finally, with || - ||op < || - ||F We get

d—1
A = Aoy < 3 I(ATHY — AT,
k=0

d—1

< Z(d - k)h’i-&-l'
k=0

D Hidden Markov models

This section gathers the proof of Theorems [ [} [6] [0} [L0} Corollary [3] and Proposition [I], [2]

D.1 Proof of Theorem (4

The next result is proven in Section [D.I.1] and gives a bound on the p-dimension function.

Proposition 5. Under Assumption@ and with 6(s) given by (@ we can take

Dy(a) (o)) = CLV [1+1 g<m>]

with C' = 3930.

With Theorem [I] we have

CE[1? (P, P.)] < * (P t5) + ' S h? (P, P)

i=1

s+1 1
+ 17 YK (P[P + (s + DLV,
b=1

for some positive constant C'. The following result is proven in Proposition and tells us
how well .#; approximates . .

Proposition 6. For K > 2, w,v in Wy, Q,R in Ty and probability distributions Fy, ... Fx,G1,...,Gk
on (%)), we have

h2 (Pw,Q,Fapv,R,G') < h2(w7v) + (L - 1) 11612[8}?(] h2 (Qk’a Rk‘)

+ Lmax h* (Fy,,Gy) .
ke[K]

With Proposition [6] and inequality (B.5) in Lecestre [14] we have
h* (P.#s) < (K —1)L§ + L, VP € A . (82)

With the choice of § given in we get

s+1

CE |1* (P, R)| < h* (P..at) +n~ thQ(PwP)M PSK (PP
b=1
+ I +(s+1>Lv10fL”

for some positive constant C. We now turn to the second bound in Theorem 4] The next result

is proven later in Section [D.1.3]
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Lemma 13. Under Assumption [3, there are positive constants C(Q*) and r(Q*) that only

depend on Q* such that

s+1
n" YK (PLLI[PH) < C(Q)e @ s > L— 1 € [s + 1],
b=1

and h? (P*,P;) < C(Q*)e @) for all i € [n].

In this situation, for P = P* and s > L — 1 we have

—_— A ) OQ*
CE {h2 (P,Ps)} < h? (P,///) + n(er(é*))—l)
—|—L€2 + (s—|— 1)Lvloin7

+O(Q7)e @)

for some positive constant. The condition on s leads to the desired inequality.

D.1.1 Proof of Proposition

From Proposition A.1. [14], we have

n(s,b) B KL 12
Do (® P, Q®”<va>) < 545.3V [5.82 +log <(5(+)L)> +log, (”(‘S/b)ﬂ '
i=1 S

o IfV <n(s,1)(K —1)/K, we have

log (W) +log, (n(S,b)> < log <(KL +1)2n(s,1)E(K — 1)E n(s,1)>

v* 1%

~ Jog ((KL + 1)%(K — 1)L> o <KL+1n<S,1>L+1

KL+1

1o <(K;;}Z§lf 1_)L1)L> +(L+1)log <

—L+1
V

)

Kn(s,1)

).

One can check that for L > 2, we have (KZA2(K2-1)E < K?=! for all K > 1. Therefore,

KITI(K+1)L

log (U(LH)Q) +log, (”(“?b)> < (2L—-1)logK + (L + 1)log <K”‘(/31>

3(s)L

KN KN
< 3Llog < > = 3Llog <> )
% VAN

o Otherwise V > n(s,1)(K —1)/K and log (

Kn(s,1)
VAn(s,1)

log (W) +1log, (n(“?m) < log <<KL + 1)2VKLH(S,1)>

) = log K. We have

)

Kn(s,1
:10g< "‘(/S )>+(L—1)logK+2log(1+KL)

) +2log(1+ KF)

Kn(s,1) )
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D.1.2 Proof of Proposition [6]
With Lemma B.3 [14], we have

L L
]’L (Pw,Q,F; Pv,R,G) S h (wQOL, UROL> —+ max ]’L <® Fk” ® le) s

with

ZUQOL(kl, .. ,k’L) = wlekhkz .. QkL—hkL ,Vk‘l, R ,kIL € [K] (83)
Let p denote the Hellinger affinity defined by p = 1 — h? For p_ = mingepx] p (Qx,..Ri..), we
have

h? (wQO", UROL> =1 p (wQO", uROY)
Z \/wklvlﬁQ’ﬁ k’sz’l ko« - QkL—lykLRkL_hkL

.....

=1- Z \/wklthkl,szkth s Qk’L—Q,kL—1RkL—27k’L—1p (QkL—17'7RkL—17‘>

ki,....kr—1
<1- P- Z \/wklvkl Qk‘l,/% Rk17k2 s QkL72sz71RkL72vkL71'
k1, kp—1

By induction we get

? (wQOM wROY) < 1= plp (we) < (o) + (L~ 1) max Qe Fi)
€

We also have
L L L L
h2 (@Fkl,®le> p<®Fk1,®le>
=1 =1 =1

L L
=1—]]p(Fk.Gr) gz (Fy,, Gr,)
=1 =1
which allows to conclude the proof.

D.1.3 Proof of Lemma 13

Let s not be smaller than L — 1 and b be in [s + 1]. Since (Y;,H;),.,.y is a hidden Markov
model, we have that o
(X(S7b) H(Lvs’b)

v )1§i§n

is also a hidden Markov model, with

Xi(s’b) = Xpt(i-1)(s+1) and H; ) = (Hb+(z—1)(s+1) va+(i—1)(5+1)+L—1) :
From Lemma [ we have

n(s,b)—1
K (P,|[PLy) < Z K (¢ (" =) e (57) © £ ().

We can use the following result to bound the terms in the sum on the right-hand side of the
inequality.
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Lemma 14. Let A and B be random wvariables taking values in the finite sets </ and A
respectively. We have

K (L(AB)||L(A)® L(B)) <2 Y dpy (L(B|A = a), L(B)).
acd

For ki, ... kop € [K*], we have
P (HE = (kpors. . hon) [HE = (hy, . k)
- QZQL—hkzL e QkL+1,kL+2 (Q*)it?k:il

Therefore, we have

n(s,b)—1
( bHPznd) <9 ; ke[zK dTV( ser L VZQerQ L)’

where v; = w*(Q*)+=V(+D+L=2 ig the distribution of Hyy (;_1)(s11)+2-1. Since @* is irreducible
and aperiodic, there exists a unique invariant probability 7* and there are positive constants
C(Q*) and r(Q*) such that

dry ((Q")}..7%) < C(Q")e™ @) Wk € [K*] ¥t > 1.
Combining the different inequalities we get
K (P2, [P} < 4K*(n(s,b) — 1)C(Q)e @)+,

We have | |
K2 (P*P) < dpy (P*,P) = dry (", 0" (@)1) < C(Q7)e @),

D.1.4 Proof of Lemma [14]
We denote by (& x B)T the set {(a,b) € o x B;P(A=a,B="0) >0} We have

K(L(AB)|L(A) @ LB)= Y IMA—mB—mmg<

(a,b)E (A x B)+

P(A=a,B=0)
< > Pm:m3=m< : —Q
(a,b)€(f x B) T P(A=a)P(B=0)

(P(A=a,B=b)—P(A=a)P(B=10))"
P(A=a)P(B=0)

P(A=a,B=0)
]P’(Aza)IP’(sz))

- ¥

(a,b)E (o x B)+

For (a,b) € (& x AB)",

(P(A=a,B=0)—P(A=0a)P(B=0))

P(A=a)P(B=0)
—P(A=alB=b)—P(A=a)| x|P(B=blA=a)—P(B=10)|
<|P(B=0blA=a)-P(B=0)

Finally, we get

K (L(A,B)||L(A) @ £L(B)) < Y. 2dry (C(B|A=a),L(B)).

a€df
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D.2 Proof of Corollary
We have
P (Xi = (Y- yeee 7Yz/+L 1)) > ]P(Ei == Litn-1 = 1) PiDi+1 - - - Pit L1,

and with the convexity of the squared Hellinger distance

h? (Pz', P*) < PiDit1 - - ~pi+L71h2 (P{,P*) + (1 — DiDi+1 - - -pi+L71)
<K (PLP)+(1—pi)+-+ (1= pirra),

where P/ = L(Y/,....Y/ ;_1). One can check that n > 14 N/2 with our conditions on L. With
Theorem [4, Lemma [2] and Lemma [I3] we have

* * C * L
CJE[M(P,PS)]gh?(P,///H (er(é)z + = Zl—pz
1
4@ 4 L 4 (s + 1)LV 2",
n

for some positive constant C' and s > L — 1.

D.3 Proof of Theorems [5 and
With and Theorem , we have

CE[1 (P, )] < i (P,tt) + n' S 0* (P, P)
i=1
YK (P2, I
b=1

1
L 4 (s + 1) LK log (2|, al[e]) 0.

We can simply follow the proof of Theorems [2| and [3] to conclude.

D.4 Proof of Proposition

The proof relies on the following lemma.

Lemma 15. The set A of probability density functions, defined by
A= {(ml, - ,SL’L) — ql(xl) . qL(xL); q; € E (@Z,nl,ﬂ,dl,Bz) ,\V/Z c {1, ... ,L}} ,
is VC-subgraph with VC-index 3+ dy + -+ - + dy,.

As L > 2 and max d; > 2, Assumption [3|is met with
1<k<K

V_ 3K KLY dy < K° <3+L max dk>
k=1
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D.4.1 Proof of Lemma
We have

A = {(.’L’l, Ce ,Q?L) — f@l(Il) Ce f@L(IEL);ei € @Z,VZ € {1, e ,L}}

— expo {(xl, A i(ni(ei),ﬂ-(mi» + Ai(6;) + Bi(z;),Vi e {1,... ,L}}
Cexpo (V + B) -
with B : (x1,...,21) — Bi(x1) + -+ + B;(xr) and
K
V= {(ml, oowp) = A ;W,Ti(xm;m eRYVie{l,... L},Ac R} .

The set V' is a vector space of dimension 1+ d; + - - - 4+ d, and exp is monotone, therefore, from
Proposition 42-(i,ii) [2] and Lemma 2.6.15 [21] and Lemma 2.6.18-(v) [21], the class of functions
A is VC-subgraph with VC-index V(A) <3+d; +---+dy.

D.5 Proof of Proposition

We first need the following lemma to apply results of regular parametric models.
Lemma 16. Under Assumption[d, our model is regular, i.e.

o ¢+ p(x;9) is continuous for all x,

o it is differentiable for all x,

o and the information matriz function

I:¢wI(¢) = /J Dop(x; ) (Dpp(x: 0))" p

is well-defined and continuous.

We can now apply results of Ibragimov and Has'minskii [10], in particular (7.20) which is
a consequence of Theorem 7.6. Let k be a compact subset of ® such that ® belongs to the
interior of k. There is a positive constants a(x) such that

o -3l _ ax)
THl6—alF = T+0(x)

V6 € k,h* (Py,Pg) > alk) e —3lI2,

with b(k) = max ||¢ — ¢||?. We know that c(k) := inf h? (P¢,P$> is positive. Therefore, there
PekR HED\k

exist a positive constant C(¢) such that

V0 € B (PocF5) 2 Lo sl = 1 + Lo oel)

_ o 2 e 2 g 2
> C(9) [Hw—wl\ +[le-q| +,§1H€_9H M]'
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D.5.1 Proof of Lemma [16l
For ki, ...,k € [K] we have

L
P(X;0) > Wiy Qra s - -+ Q1 ey, I for, (22)- (84)
=1
« Since 7 and Ay are continuous for all k in [K], then the applications 0, — fp, () are
continuous for all z € 2" and so is ¢ — p(x; ¢) for all x € #'L.

e The function u — p(x;u) is differentiable at the point u = ¢ for all x € #* since A, and
i, are differentiable for all k € [K]. For all k € [K] and j € [ex],

L
O p(x;0) = Z Wiy Qo - -~ iy by O Lk (H Jor, (%‘)) 0oy for(21)
..... =1 il
L
= > Wi Qriky - Qupyky 1] for, ()
=1

X3 Uy (Do mp(0), Ti()) + 9o, Ag(05)] (85)

=1

For k € [K — 1] and ¥’ € [K] we have

L
Oug Z Qi ks - QkL—l,kaeg(xl) H Joy, (21)
,,,,, 1=2
L
Z QK kg -« Qkahka@K (1‘1) H fﬂkl (wl) (86)
1=2

.....

and

L
9q,, p(x;0) = > Wik 0Q,, 7 [le,kzz e QkL_l,kL} Hf% ;)

k1,ka,e kL,
L
= Z 'lUkll_[fk ek 'I"L Z|: k’k) (ky_ lkl)_l].(k/ =(ki— 1kl] H Qk‘J 1,k;
k1,ka,..., kr, = =2 2<5<L,
J#l
(87)
Since A, and 7, are C!, we just need to check that the functions
L
p(dx)
R ” T5 ()T l;lf% z fek, $l)p(X, %)’ (88)
p(dx)
¢'—>/ T% (i Hfak xy fek/($z)p( L)’ (89)
p(dx)
¢ erk, z fek/ (21) P d) (90)

are well-defined and continuous for all ki,ki, ... kp.k} .kk € [K],j € [dg].j" € [de],iyi" € [L],
where

Tk(l’) = (Tkyl(I), ... 7Tk,dk (l’)) S de ,VI cY.
We deal with integrability in the first time and then look at continuity, using repeatedly.
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e We have

L
0< /]Lerkl 1) fo,, (1)

7
=1

p
(wk’1Qk1,k2 s Qk’L—l kL)
( )

,_.

Wi, Qk1,k2 B Qkal kg,

and is well defined. Similarly

0< [, IF b0 9
S(wk'Qk’k'---Qkalk' /‘Tk] i)

< (0 Qu g - Qe \//\

and is well defined. Finally

371

H for, (x0) fo,, (21) =

(:)v(dw:)

xz) (dz;) < o0,

pi(dx)
p(x; ¢)

—-1/2

0<

Ty (@) Ty (i

)

) ll:[ For, (21) fo,, (1)

@L

S (wklwkllelyk‘Zlel,k‘é e QkL—lvkLQk2717k2)
L

x lyL $ II Jo, (xl)f(’k; (@) p(dx)
=1

~1/2
< (wk1wk’ Qk1 szk' Efo-e- QkL LRL Qki 1K )

\// ‘Tk] xl d:cl\// ‘T ()

and is well defined. The Fisher information matrix I(¢) is well-defined for all ¢. We

now turn to continuity.

Ty (i) Ty (o)

f9k/ (xl) (dwz ) 00,
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« We have
[T foy, (1) fo, () [T fuey, (#1) iy, (1)

p(x;9) - p(x;¢')
I~ 1f0k, ) L
o) lHl ol = L, @
L 1 1
*er’ W LIy | oS ™ v )
H fo, (1) | L L
= Exegb’ l:Hl 0 (1) er;gg(fﬂz)

|Hl | fag (@) — TIE, fay ()
Wiy Qwy k- Qk/L Lk

p(x; 0) — p(x; &)

w k Wkt Qﬁcl kQQk/ Kb - QZL ) kLQk’L_l,k:’L

‘Hz 1f9k, (1) — Hz 1f0’ (1)

/
wkl ki,kg « kL 1,kL

Therefore,

I/ fa, (xl)feki (1) I fo, (xz)fe;2 (1)
o ™M= [ gy )

L L
2dry <®l:1 F9k, » @it F%)
<
Wiy Qry ke - Qi ke
2dry (Py, Py)
/ ! !
wk1wk/1Qk1,k’2Qk/1’k/2 T Qk’lﬁhkL leL—l’k/L

2dTV (®lL:1 Fekza ®lL=1 FQ;,)
!

Ve /
Wiy Loy kg + ++ Chp_y,kp

_I_

Since convergence with respect to the total variation distance and to the Hellinger distance
are equivalent, we get continuity of with Proposition [6] Similarly, we have

TE,j (.7}2) Hlel f@kl (.fl)fgkz (l’l) TE,]' (xz) Hlel f@;ﬂ (xl)fG;CZ (wl>
/OJL p(x;9) uldx) = lﬂ p(x; ¢') )

S Tyl T f 20) = TIE fog (a0
wngk’l,k; e Qk’L_l,k’L
N fglyL T ()| Ip(x; ¢) — p(x; ¢')| p(dx)
W, Wiy Qg oy Qb -+ Qe ok @i, 1,

1 Tian)| |12 fo, () = TIE, Sigy, (o0)
l

/
wkl Qkhk’z o kp_1,kr

p(dx)

pi(dx)
_I_ .
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We have

/@L T ()] [p(x; @) — p(x; ¢)| pu(dx)

/yL‘ k]

)

(z1) — 1:[ fop, (@) | pldx

 1<kio kL<K

and
L L
[, 1T @l T for, (1) =TT oy, ()| ()
=1 =1
< . T ()] ‘fek,. (i) = fo ()| v(ds)
+2 [ T @l fop, (wa)vida) x Y doy (Fy,,, Fiy
/@|kg(33')|f9 (zi)v(dx ;TV(B 9)
+2 [ T ()| for (xw(das) x S dpy (Fo,, . Fiy
i ol o) = S o (Fa s Py ).
As

/@ T, (@)] ‘fek(ﬂi) — Jo, (a:)‘ v(dz)
< \/Ay [T (2)1?| for (x) = fo (x)| w(dz) x \/2dTV (Fo. Foy) — 0.

02%9]@

for all £ € [K] and 6, € O, we get continuity of . Similarly, we only need

A/ |TE,j($)|2 ‘f@k (z) = fo, (x)’ v(dz) —— 0

aéﬁek

to obtain the continuity of .

D.6 Proof of Theorem
We start the proof with two lemmas that ensure we fit into the framework of Proposition [2]

Lemma 17. The information matriz I(¢) is definite positive for all ¢ in ®.

Lemma 18. Let (¢,)nen be a sequence in . [fnli_g)lo h (P¢n>P$) =0, then we have nh_}r{)lo bn = .

One can see that Lemma [18implies that inf A2 (P¢,P ) > 0 for all @ > 0. Therefore we
llg—gl|>a
ped

can apply Proposition . From Proposition , we get V < (3+ L)KL =5K3.

D.6.1 Proof of Lemma

For k = (ki,...,kr) € [K]*, the notation wQO" (k) is defined by (83)). Following Theorem 1 of
Meijer & Ypma [17], we have

det(I(¢)) =0 < IXN#0,D> XD, p(x; ¢) = 0 for p-almost all x.
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We can use , and to get
L €k

0= > wQ(k Hf% ) D0 Moy, [(os, 1 (Or,), T (20)) + Do, , A (0]

ke[K)E I=1 =1 j=1

K-1 w OL L
3 N [ (00) = f)] 30 S [T fo (=)

k1=1 ko,... kL,
L K-1 wQOL(k) [

+ Z Z Z )\leflvkl Q

1=2 ky=1k1,....k1—1,k141,-- kL

Fou, (1) = fore (20)| T] for (=

i1,k il

for almost all z. If we apply it to exponential distributions, we get

L
0=~ 3 wQOM()f, .. By e s (Z “7> (91)
ke[K]L =1
K-1 OL k
w
+ Z >\wk1 Z Mekl o @kLefeklfBl*"'*ekLIL
k1=1 ko,....kr, W,
K-1 OL k
w
- Z Wy, Z 762 ( )HKHkQ A GkLe’QK“*'"*QkL’CL
k1=1 ko,..., L wkl
L K-1 OL (k
w
+ Z )\Q’“z 1.k Q ( >9k1 - .ekLe—lem—m—@klxl
1=2 ky=1 k;;i#l Q ki—1,k
L K-1 OL(k
w
- Z Z )\le—lvkl 762 ( >9k1 o le_leKﬁle - QkLe_gklzl_"'_eKil_"'_ekza?l,
1=2 ky=1 kil ka Ky
As 0y > --- > 0, we can identify the coefficients for each = e @m0 7L For k €

[K —1]F, we get
L w@QOL (k
0= —wQOL(k)le ce QkL (Z )\gkll’l> + )\wh ng(>9k1 c. ekL
=1

k1

- wQO" (k)
+> Qo m@;ﬂ ... 0, for almost all x
1=2 1—1,k1

- . o o wkl lelkl
:O_)‘%_"'_)‘@h_ +ZQk k
1 1—1,r71

This implies \g, = 0 for all £ € [K — 1] and there are quantities A}, and A, such that /\kak =\
for all k € [ — 1] and 5545 = Xy for ku ks € [K — 1] and A, + (L — 1)} = 0. Therefore,

becomes

0=\ Z 3 wQOE(K)y, .. Oy, e T T O (92)
k1=1ka,....kr
A X Z wQOH(k) | Oxbh, - .. O e 0o T O
ko,..., kr, ki1=1
L K-1 OL(k
w
+ Z Aleil’kl Q ( )ekl . ekLe_eklml_'”_eklwl
1=2 ky=1 k;:i#l le—lvkl
L K-1 OL
w k
- Aoy Q= >9k1 OOy, e OO
1=2 ky=1 k;:il le—l ky
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For ky, ...,k € [K — 1]F71) we write k' = (K ks, ... ,kz) and with identification with respect
to x — e IxT T2 =0k TL we have

W OL Kk’
0= —/\Z} (Z wQOL ) 9K0k2 . .GkL + )\QK!kzczQ()eKekQ . GkL
kl 1 K,k2
K-1 )\
:>)\Z) Z wlekl,kQ = L wKQK,kg-
ki=1 QK,kQ
For k € [K — 1],

Ao Z Wi Qe i
Sk — \* B, with = 93
QKk Bk Br = wKQKk ( )

Finally becomes

0=, Z o wQOFK)y, .. O e T

feim1 ko kL
K-1
— )\*w Z (Z wQOL(k)) 9}(0]@ C lgkLe_erl_m_HkLmL
koo \k1=1

L
MY S S wQONK)G, . Oy e Tk

1=2ky_1,k€[K-1] ki€[K];
Z¢{Z_17l}

L
+ )\Z) Z Z Z 6kleOL(k)9k1 L 916172(9[(9@ c (gkLe_eklxl_“'_Gle_l_eklrl_'“_ekaL

1=2 k;€[K—1] k;€[K];
il

L
* Oy, w1 ——0 1Oz ——0
-2, D>, ST wQO (k) ... Ok Oxbh,,, ... O e "™ ki1 PO kL

=2 k;_1,kie[K-1] k;€[K];

ig{l—1,1}
L K-1
— )\;kv Z Z Z ﬁkleOL(k)Hkl .. le_ZHKHKleH .. QkLe_ekl331_"'_eKml—l_GK:CZ_"'_GkaL.
=2 kl:1 k‘iE[K];

il

Identification with respect to x + e 9x%1=0xTK giyes

“1K-— K—1
= -\, (Z wm) Z Z wKQ%(,_}%'QkZ,KQK,kZ) - > BkLwKQ%(,_]?'QK,kL
—2 k=1 kr—1
I K-1
=0=A, [(1 - wK)Q%{,K + (L —2) WK By Qg k Qi ey + Qi K Z Wi By QK ks
I k=1 k=1
I K—1 - K-1K-1
=0=A, |(1- wK)Q%{,K +(L—-2) > Z Wiy Qg s | Qe + Qe D D Wiy Qe ks |
L ko=1 k1 ko=1ki=1

where the last inequality comes from the definition of ;. One can notice the quantity between
the brackets is positive as a consequence of the definition of Ok . Therefore, we necessarily have
Ay, = 0 and consequently )\22 = AK,1 =--- = Ag g1 = 0 which means A\ = 0 and therefore the
information matrix is definite positive.
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D.6.2 Proof of Lemma [18

The parameters wy, and Q) are bounded so we can assume the sequences wy, and Qg
are converging, with respective limits wy, and @, ;,, even if it means extracting a subsequence.
For other parameters, it is always possible to extract a subsequence ¢y,) such that for all
k in [K], we have Opym) —— 0; € [0,00]. We can deduce from the definition of ® that

07 > 05 > --- > 0%. Let us consider the following cases, dropping the dependency on v in the
notation.
o If 0; = 400, we have Oy e %" . dz —> Dirac(0). Since lim, o h (P¢,n,Pg), we get
that wy, Qf, 1, -+ @k, =01f k appears in ki,ks, ... kL.

o If 6; = 0. We have B
P5 ([Biny + 00)") < (e7/Pm)E 0,

n—o0

and
P, ([ka, + 00) ) > wy, Qp e "

Since lim h (P%,PE) = 0, we must have wj(Qj )" = 0.

This proves that Py, converges to

L
Po(dx)= Y wiQip - Qhy n0n L B day .. dar,

koo €[K] T -1
with [K]* = {k € [K];0; € (0,00)}, and necessarily P, = P;. We can easily identify the
different parameters which implies that (w*,Q*,0*) and (w,Q,0) are equal up to a permutation
o on [K]. The ordering of the 8, and the 6 ensures that this equality is true, not even up to
a permutation.

D.7 Proof of Theorem [10l

We just need to check that we satisfy Assumption [3] Then we can combine Proposition [3] and
77, We use Definition 41 [2] that allows to consider functions taking values in (—oo, 4+ oo.
From Lemma 2.6.15 [21], we have that

{x+ (r1 — 2z1)(2g — 22); 21,20 € R} C {x > axy + bxy + 2129 + ¢;a,b,c € R}

is VC-subgraph with VC-dimension smaller than or equal to 4. With Proposition 42-(v) [2],
we get that {x — |z — 21| - |22 — 22]; 21,22 € R} is VC-subgraph with VC-dimension not larger
than 37.608. We now need the following result.

Lemma 19. If & C P(Z") is a VC-class with dimension V', then Fo 4 = {paa; A € '} is
VC-subgraph with dimension V' for any a in R where

paa(z) = { aif x € A,

+00 otherwise.
Since € :={C,, ., = [21 £ 1] X [22 £ 1]; 21,22 € R} is VC with VC-dimension 4, we get that
F o is VC-subgraph with VC-dimension 4. We can apply Proposition 42-(v) [2] one more time
which implies that ¥4 = {x — ¢., .,(X); 21,22 € R} is VC-subgraph with dimension at most
4.701(37.608 + 4) < 196, with

gzlyzZ(X) = pczl,.2270 \/ ’1:1 - Zl‘ ! |x2 - 22’
= 2| fre — 2] if €[5 £ 1) X [20 £ 11,
~ | +oo otherwise.
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We need another lemma before we have a bound on the VC-dimension of

1-a)? 1
ya,Z = {X — fa(wl — Zl)fa(l’g — 2'2) = ( 1 ) g%’ZQ(X);Zl,ZQ € R} .

Lemma 20. Let ¥ be a set of functions & — [0,00|. If 4 is VC-subgraph with VC-dimension
at most V, then 41 = {é;g € %} is VC-subgraph with VC-dimension at most V, with the
convention 1/0 = 400 and 1/ + oo = 0.

Combining this lemma with Proposition 42-(ii) [2], we get that .7, 5 is VC-subgraph with
VC-dimension at most 196. This proves that we satisfy Assumption [3| with

V =4 x196 = 784.

D.7.1 Proof of Lemma [19

Assume that .7, has VC-dimension larger than V. Therefore, there is (x;,u;)icjv41) € (2 X R)[VH]
such that for each I C [V +1] we can find A; in o/ such that i € I < f4,(z;) > u;. Necessarily,

we have u; > a for all i € [V + 1] and therefore i € I < x; ¢ A;. Therefore, &7 can shatter
(44)i;nv+1] Which contradicts the fact that its VC-dimension is at most V.

D.7.2 Proof of Lemma

We adapt the proof of Lemma 2.6.18 [21]. Let (z;,u;)icn) € (2 x R)" be such that for each
I C [n], we have g; € ¢4 such that

. 1
el —— > ;.
91(x;)
For all i € [n], we necessarily have u; > 0 and we define a; := max{g;(z;); —~ > u;}. One

TED)
can check that we have

(@) > 0o o <
gr\x; a; — S U
g1(z;)

Therefore & shatters (;,a:);¢p, € (2 x R)" which implies n < V.

D.8 Proof of Proposition

For m = (7'('11,7'('12,71'21,71'22) S W4 and z € R we write

Pr,z = 71-llfoz & fa + 7T12fo¢ ® fa(' - Z) + 7T21f0c(' - Z) ® fot + 7T22fa(' - Z) ® fa(' - Z)
We define 7* € Wy by 7j; = w*(1 — ¢fy), 75y = w ¢y and 75, = (1 — w*)gs;. We also define
g: Wy xR —=Rby
g(m,2) = 2h? (Prs 2, Pr2) = / afrz(xl,xg)dx,
R2
with a, . : R? — R defined by a,.(21,22) = |\/Prz — \/Prr.o+|- We will drop the dependence on

7 and z, and just write a = a, . Without loss of generality we can assume z* > 0 as we have
h*(Py 5, Prr —p+) = h?(Pr ., Pr .+). We define the set of parameters

v {memxmsc (Sus g}
where * € (0,1] is set in the proof of Lemma [21| which proves the desired inequality on %'
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Lemma 21. There is a positive constant C'(a,z*,m*) such that
g(m,2) > Clanz™,m) [(mhy — m1)* + (wf — m2)” + (w3, — 7m1)” + |2 — 2770 |
for all (m,z) in ¥
We also get that g is lower bounded out of ¢ with the following lemma.

Lemma 22. There is a positive constant C(a,z*,75,) such that
g(m2) = Clon2"m3),V(m,2) ¢ ¥

One can check that we have |z — 2*|'"® = (Jz — z*| A1) for (m,2) € #. And since
(5, — 1) + (7hy — m2) + (7 — 1) 4 (|2 — 2*] A1)}~ < 3 for all 7 and all 2, there is a
positive constant C'(a,z*,7*) such that

g(m,2) > Clonz"7") [(mh, — m)? + (w5, — mi2)” + (w5, — m0)” + (|2 — 27 A D)0

for all 7,z. We now relate the distance to 7* to the distance to (w*,q*) with the following result.

Lemma 23. For w,q12,q21 € [0,1] we have
(m1 = m71)? + (M2 — 7)? + (121 — 75)?

1 * 1 - w* 2 * * *
> max <2(w —w )2, (3) (g3 — Q21)2 (w )2 (q12 — %2)2) :

This last result allows to conclude the proof of Proposition

D.8.1 Proof of Lemma 21]
We will repeatedly use the following inequality

yl_y‘ S A=Ale—yl

Voy >0, |zt —
Y (z Vy)

(94)

Let (m,2) be in &. Our goal is to lower bound a on subsets of % in a way that makes appearing

the difference between some parameters. Inequalities , , and will be proved
later.

o For I;; = [-1,b)? with b= (2* Az A1) — 1, we have
/IH a(wy,xa) dayday > 1~o0) (11(;\ =1/2)° (w5 —m). (95)
« For
(2%, 2 4+ 1) x (z*,z* + (1 — @) ¥ (1) /%2 — z*|) if 2* > 2,
Iz = (% V(z*—=1), z*) X (z*, z* 4+ (101()1(_2((17222512/);1)% |z — z*|) otherwise,
we have

2 2 1-a
9 o' 3—a> (1—a> « \1/a ¥ l1-a x| 1—a
> — 1 2 — .
/Ima (x1,29)dx > B (2 — F o, (759) /(LA |27]/2) 7% |2 — 27| (96)

28



o Let g € (0,1]. For
Ly =(—1,—(1—zAz2") ) x(z2Vz"+b_z2Vz"+by),
Ly =(zVz'+b_zVzZ+by)x (=1, —(1—2Az2")4),
with

2V z5(1—p)
B

= (IA]/8) (1 =5)

by = Loyesp(l — |2 = 2%|) + Lovarcp

Z(1-p)

> 12*25(1 - B) + ILz*<6 6

and b_ = b,0, d € (0,1). We have

(1= a)? (1A [2"]/2)

| aaran)de > (x}, = ma) (b4)'™ (1= 0) Lo,

82
1—a)?(1A]z*]/2 o
[ aerande > (ry — mn) TS EAEVE e o gy,
21
with
alz — z*
L = { |y — 2| = 2 gﬂﬂn—ﬂﬂ(l—ﬁ)a :
5b,
alz — 27|

121 = {|7T;1 — 7T21| Z 2

o, + [ — 7 |(1 —5)a]}-

Combining , , and , we have

2 (1—a)* (LA [2")/2)°
16

* _aCYQ 3—« 2 e o * « * —a
He-2 G (5o0) (5o5s) () (1AL)2)

o 5 — 3«
1—a)?(1A]z5]/2 ,a
bty — o L LU e gy,

2 (1 —a) (1A[2"]/2)

]2 (b-i-)lia (1 - 6)1921a

+ (751 — Ta1)

for (m,z) € #". Then we can apply the following lemma.

Lemma 24. Let g,A1,A3,A3,B be functions © — R and Dy,Ds3,Dp,C4,Cp be positive con-

stants such that
W0 € ©,9(0) > DiAY(0) + Das (A3(0) 10, + A3(0)1g,) + Dp(0) B,
where Qy and Q3 are subsets of © given by
Q;:={0€0;4,(0) > Ca4s(0) + CpB(0)} .
Then we have

Dg D, 2 2 2 1-a
T Hwﬁ,DQ,g) [AY(0) + A3(0) + A3(0) + B'=(0)] ,

g(0) > min (
for all 6 in ©.
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In our situation, we get
2 * ok * 2 * 2 * 2 %|l—a
/a (x1,29)dx > C(a,2",m") [(WH — )"+ (7 — m2)” + (15 — 721)” + |2 — 27 }

with

% () (25) ™ () e (LAl Gy
1+42% "1 +4(1 - B)2’
A=A AZ/2) - 1
]2 (b—i—)l (1—9)

> min ( (2)" (=) @) WAL 1/27 (1= a1 A )22

C(a,z",m™) = min

L+ 4 s ar A=A

B @CA 2 ) p =20 - gy —5)) 0

We can optimize this bound with respect to 5 and ¢, which gives 8* depending only z*, a and
7*. This concludes the proof of Lemma [2I We now prove the different inequalities.
Proof of (95)). For x1,z5 € [~1,0)%, we have

11—«

a($1,$2) = 2|x1|o¢/2|x2|a/2

Lz, —2eo]]T1|*

1 zo—2z*|€(0,1 2 1 z1—2%|€(0,1 1 xo—2*|€(0,1 1 2

- P e T
- \lml +7r1211|x2_z|e(0,1]|x2|0‘ Ty L=, o l
|ze — z|@ |z — 2|z — 2| |z — z]@
We set b = min(z*, z,1) — 1. For z1,75 € [—1,b)%, we have
" - ()] 2
/[—l,b)Q a(xy,m0)?dr dry > — \/ﬁT‘l —/m
Finally, with we always have
1—(1—-2zA2%"
/[—1,17)2 a(z1,22) dz dzy > { ( ] (\/; ﬁ)
, i-a) 2A EIII——
Proof of @ We need to consider two different cases.
o First case z* > z. For x € Iy = (252" +1) x (2%, 2"+ V |z — 2*|) we have

| Y

] <y, ‘$22|<V |m12‘<1—]z—z|<1andmz‘<

|J?2 z 2| ’ |$1 Z‘ | — 142z*
x € Iy, we have

11—«
* 04/2
a(ry,r) > 20wy — 2*|°/2|xy — 2*[0f? (\/ T —V >
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For V = (1 — a)¥*(n},)"* < —L -, we have

|z—z*|?

(Vi - ver),

/ a*(z1,29)dx = E(V]z =2 A1)
I22 4
(7?;2)1/(1@2(1 _ &)Q(I—Q)/alz _ Z*’l—a
= 1 .

e Second case z* < z. For x € (% V(z* — 1),2*) X (2*,2" +a|lz — 2*|), b < 1/2 we have

( ) > 1 -« " b\
a(zy,x Ty — | ——
D=0l — 2rfe|ay — 2] 22 1—b

For b = (3,)"* ¥ we have

_l’_

a/2 2
¥ b
(viz - (&)") .
/ a2 (1,10 dz > ; (LA 2]/2) 000 — 2l
Ia2

2

% «@ * —« $|1—a a/2
G R AN 1 S E il v S
- 4 1 —(m) /e

2 +

2
* « * - *|l—a _ * 1/«
L (m3) AL/ e e (L0 (L ) )
= 4 4 1—V(m3y) /e '

: _ l1—«
With b/ = m we have

2 + 1/« 1A 2% /2 1—a _ all-a
/ a®(xy,z9)dx > o’ (m59) " (LA ]2 |2/ )Yz — 2
Iz2 4

¥ ( 2+ (1— a)(mp)"V )( I —a )
21 (1—a)(1+ () ) \O—a)@rt1)+2
> ) TN e -

* (2 +32(_1Oi a)>2 (51—_30;)1_a

2B —a)? f1—a\'"" | 1/ . . e
T e2-a) (575=) @) (Al e =

Finally, we always have have

2

9 (0% 3—&)2<1—Oé)1_a * \1/a * l1—a *|1—a
> — 1 2 — .

Proof of . We prove it for Iy, assuming z* < z. The proof is similar for I5; and for z < 2*.
Forb=0A(z"—1)and 0 <c_ <cy <1—|z—2%, weset [15=(—1,b) X (z+c_,2*+1). For
T1,T2 € [12, we have

2|21 |2 |zy — 2|/ (mly — m12) + 7y ( wa—zl® 1) 4 (=) 2 s

|wg—z*| |za]e

I—a a(xy,22) = | | | 1 | o1
- * xro—z|% % |T2—Z2 z9<1 * xr2—=2 z9<1

\/7“2 e e T \/7“2 T e
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We also have

c+ if z4+c¢, <1,
|zg — 2| zey
<U(zeoyeq) =9 1—2 ifz+c. <1<z+cg,

0 ifl1<z+c_.

For ¢y = Losp: (1 — |2 — 2]) 4 Loe g 2220 we have U(z,c_,cy) < 1 — 5%, We also have

/B*
Tk W - )
|wg — 2*|* — c— + |z — 2*|

|z—z*| * a

< c_+|z—z*] o |Z —Z | C_

=Y T c_ + |z — z*|

(=== ) )
alz — 2|
J— Ci .

Therefore, with ¢ = ¢, 4§, § € (0,1), on I;5 we have

2|1y — 2|2 [y = mo| = 25 — (i —ma) (1= 57)°)

T —a a(x1,x2) > 5
If [}y = mio| = 2{[7]; — 71| (1 = 8)* + afz — 27| /c_] then
2 /2 _ a2 *
|21 1|f2a z| a(z1,12) > T35 v 12|

and

/112 a’(xy,20)dx > W {1 —(1—=2A z*)}:‘"] (e )™ {1 — (51"“}

2 (1= @) (LA 2| A2]) ()" (1= 0)
82 ‘

> (mjy — T12)
Otherwise we have |75y — mia| < 2|7}y — m1|(1 — ) + |z — 2*|/b_].

D.8.2 Proof of Lemma 22|

We need to go through numerous cases and subcases. Let 5* be given in Lemma Without
loss of generality we are going to assume that z* > 0.
Case 1: z > 0 and |z — z*| > B*. Let ¢ be a positive constant.

o Subcase 1.1: 2* > z or (z* < z and moy > ?7h,y). Forx € [ = (2 V 2* + %2V 2" + 1)
we have

- (1 — a) (1z>z*7r22 + 1z*>z7T;2)
CL(JZ1,J72) - 2|£L‘1 V. Z*|O‘/2|CE2 —2zV Z*|O¢/27

and therefore

*
1z>z* 22 + 12’*>Z7T22

/Iag(:vl,xg)dx = 1 (1 - (5*)1_°‘>2
(-8

Ay (1 — «)
- 4
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o Subcase 1.2: 1 < z* < z and Ty < Amhy. For x € (2%,2° + 1 A (|2 — 2*]/2))?,

|1 — 2%

we have

LAz —2%/2 <1

|71 — 2|

We have

Tz —1A|z—2%/2

l—«

a(xy,xs)

2|.I'1 _ Z*|a/2’$2 _ Z*loz/Q (\/ T2 — v/ 7T22>
(1 —a)vms,

— 2|.171 _ Z*|a/2|3§'2 _ Z*la/?

and therefore

/aQ(xl,xg)d:v >
I

(1_6)7

T3 2 |z — 2* 21ma)
1-— 1A
B (1n BT

Ty (1 — 0)2

¥\2(1—a)
(=9 (2o,

e Subcase 1.3: z* € (0,1 — §*] and 2* < z. Let b be in (0,1). For z € I = (2* — bz*,2*)” we

have
|21 — 27| bz _ b
|z T 2 —bz* 1-b
o1 — 7] b W b
lxy — 2| T z—2 bz T BB T 1—b
It implies
1l -« b \*
> * -
&(.1‘1,.’172) = 2‘1.1 - Z*|a/2’$2 . Z*'a/2 <\/7T722 (1 _ b) >+7

and for b= b (m3,)"** we get

a)/a a\ 2
(Z*)Q(l—a) (n3 )(1 )/ b/ (1—-a)
/IaQ(xl,xg)dx > 22 1 V22 — /a2 T 1/2%,
Jr
* — * @ 2
L 0 ) V) L
. : = ()0 ),
For v/ = I , we have

1+2(wg2)

11—«

()21 (m3,)"/" o

/aQ(:Ul,xg)dx >
I

e Subcase 1.4: z* < z and z* € [1 — 3%,

TR

2
1)‘
l—«a

1]. Let b be in (0,1). For = € I = (2*,2* + bj3*)*

1
1 —
(-

-«

)2(1—04)

have
|x1 — 27| bg* < b |
vy — 2| — 22—z =0~ 1—0
|z — 2% bg < b < b'
|z T o248 T 14+b 7 1-0
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It implies

-« b \"
> * PR
a(ry,r) > o|wy — 2|02 xy — 2|02 (\/722 (1 — b) >+7

and for b = b (m3,)"* we get

#)2(1=0) (7% )(1—a)/a (b')20-) b ay 2
2 > (8%) 22 1—
/Ia (1,x9)dx > 1 T3 1— V()20

* —« * [ 2
> (8 )2(1 : (722)1/ a’ (b/)2(l—a) 1— v
- 4 L—b(m5)t/2 )

For b/ = - I — we have
1+2(“’22) R

(87207 (m3,) " 0? L

/ag(:vl,:vg)dx >
I

22 l—«

1 —
4 (142 ()2 + ) ( L+ (m3) /2 +

2
1)‘
l—«a

+

We can optimize the subcases 1.1 and 1.2 with ¢ = ( (8 /2)07) . Gathering the dif-

B*/2)21 7%+ (1—a) (1-4%)

ferent results, there is a positive constant C(z*,73,,c0) such that [ge a(xy,x9)dz > C)(75y,2%,a)

for all z satisfying z > 0 and |z — z*| > 1 — *.
Case 2: z < 0.

|1 —2"]|

o Subcase 2.1: z* < 1. Let b be in (0,1). For x € (2*,2* + b)?* we have 1 —2*|

[z—2|
and therefore

1 -« b\"
> 2~ | = :
a<x17x2> = 2|x1 _ Z*|C¥/2|x2 — Z*|a/2 [\/?ﬂ <2*> ]+

b2(1—a) [ — L* @2
We get [ o ypp a°(21,22)dz > | T )L For b = 2*(m3,)'**(1 — a

we have , 21— 21 y
1 — —a)/a( % —« * a
/ a2 (1,20 dz > a’(l — o) (%) (735) .
(z*,2*+b)2 4
o Subcase 2.2: z* > 1. For x € (2*,2* + 1)* we have
1—a¢ T
a(z1,x2) =
|z1 — 2%|¥|zy — 2¥|@
Therefore we get [, «\1y2 a*(21,22)d2 >

Finally, we have

@2(1 _ a)?(l—a)/a(l A Z*)Q(l—a)(ﬂ.>2k2>1/oc
1 .

/ a?(x1,29)dx >
RQ

|1

)1/@

183
*

Case 3: |z — 2*| < B* and z < 2*/2. Let b be in (0,1/|z — 2*|). For x € (2*,2* + blz — 2*|)? we

have
|z — 27| blz — z*|
|| T 2 +blz—2¥| T
|z — 2*| blz — z¥|
|21 — 2| T blz— 2|+ |z*— 2| T
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Therefore we get

11—«
2y) > J —ba] .
a(ry,a2) 2 20wy — 2*[0/2|wy — 2*[o/2 { 722 .
We get

—a *2(1—a /% a2
/ a*(z1,22)dx > G el S i
(z*,2*+b|z—2z*])2 7 o 4

and for b = (73,)"/?*(1 — a)'/* < 1/|z — 2*| we have

*|2(1—a —a)/a (—x \(1-a)/a
2 |2 = 2P (1 = )P0/ (ng,) x 2
dx >
/(z* 2*+blz—2*|)2 “ (xl’x2> v= 4 22
* 2(1—« —a)/a + \1)/a
o? (|2*]/2)*" 7 (1 — @)1=/ (m5,) Y
—_— 4 .

D.8.3 Proof of Lemma [24.
e For 6 in 2, N 3, we have
9(0) > Dy A} + Dos (A3 + A3) + DB~
Z min (Dl, D273, DB) [A% + A% + Ag + Bl_a} .

e For 0 in 5, N Qf, we have
9(9) 2 DlA% + D273A% —+ DBBlia

and
A2 < (C4A; 4+ CB)? < 202 A + 203 B,

For b = 1+202 > (0 we have

1+202 A
9(0) > Dy 3 A3 + (Dl - 520,%) A+ Dys A3+ (Dp — b2CE) B + bA3

. DB Dl 2 2 2 -«
me(l—i—ZC%’l—i—ZC’i’Dz’S) {A1+A2+A3+B ]

e For 0 in QF N QF, we have
g(@) Z DlA% + DBBl_a

and
A2+ A2 < 2(CuA; + CpB)? < 4C% A% + 4C3 B,

For b = > 0 we have

1+4C2 A 1+4C2
9(0) > Doz A3 + (Dy — bAC3) A} + (D — bACE)B' ™ + b (A3 + A3)

Dy D
> mi Al + A3+ A+ B
—mm<1+402’1+402>{ t A A B

Finally, we always have

g(0) > min ( Ds Dy

Dy | [A2 4+ A2 4+ A2+ B,
1+4C% 1 +4C%° 2’3>[ D+ A+ A3+ B
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D.8.4 Proof of Lemma 23|

We assume there is w,w*,q12,q%,q21,¢5; in [0,1] such that
™1 = w(l - Q12),7T12 = Wqi2,T21 = (1 - w)QZl

and
* _ * * * _ Xk * _ * *
T =W (1 - Q12)77T12 = W {19, T = (1 —w )QQ1~

e We have

. . 1\?2 1
(7‘(‘11 — 7'(‘11)2 -+ (7‘(12 — 7r12)2 — u]2 |? <q12 — 2> + 2]

o) -2
r w2 (-3) +3)

1 *\ 2 1 * * 1 2
=gl —w P2 (w(a - 5) v (s 3))

1

2

> —(w —w*)? (100)

Therefore, we also have

(m1 — m11)% + (M2 — 7,)° + (721 — 75y)?

> ;(w —w)? 4+ (1 — w)gar — (1 — w*)g3y)?

= (w5 +dh] + -0 [+ (@]
— (1= w)(1 —w") [1 4 2¢21¢3]

~ ) (0w - e i)

2 1+ 2¢3
+ (1 —w)? B + (qé‘l)?} - B + 951} (1= w)? <11+f%2q1§qfl>2
= M {(1 + 2(‘];1)2)(1 + 2931) —(1+ 2Q21q;1>2}
= (i;;uq?j (431 — )"
> (1_;)*)2 (451 — g21)° (101)
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o Similarly, we have

(m1 = 711)% + (m2 = 71,)° = w? gy + (1= qi2)?] + (") |(g,)* + (1 — g},)?]
— 2ww” [qr2qiy + (1 — q12) (1 — ¢i)]
= [9%2 +(1— Chz)ﬂ (w —w” quqﬁq—%z (_: (_1 (22;1(21)2_ qﬁ))
(12475 + (L — qr2)(1 — QTz))Q]
4ty + (1 — qi2)?
zqﬁﬁﬁlqwzKmm2+u—qm%(mm?+u—mgﬂ

— (126> + (1= q12) (1 — )]

— (w*)? (qu12 — QT2>2

= () ais + (1 — q12)?

> () (12 — 4a)” - (102)

Hwﬂ@ﬁ+uwmt

Finally, with (100]),(101)) and (102)), we get

(m11 — 751)° + (T2 — 7o) + (721 — 7hy)?

1 * 1 - w* 2 * * *
> max <2(w —w )2, (3) (431 — 6121)2 (w )2 (q12 — 912)2> :

E Selection of the spacing parameter

This section gathers the proofs of Theorem [11] [12], Lemma [7] and Corollary [6]

E.1 Proof of Theorem [11]

We first need the following result.

Lemma 25. Let 4 be a finite set of probability distributions associated to the set of probability
density functions M, with respect to the o-finite measure p. Let P = P(n,X,M) be the p-
estimator given by (7). Fort € [n], there is an event Q* such that P(Q*) > 1 — [n/t|5; (X) and
for all € > 0, with probability at least 1 — 2| M|e~¢, we have

n 2 ' N 4@0 . n 2 '
10307 (PP) < (0 41) ot 30 (PQ)
16.48

8
+ 5. (€+147) [1 +y/1+ 18ta§a0(t)} e

32x1.175¢ta2 L8
a% a1’

with ap(t) = ap = 4,a; = 3/8 and a2 = 3/2.

Consequently, we have
E LG:l h? (H,P)] <nP ((Q*)C) + /OOO[P (]lQ* izn:th (P,-,P) > u) Ju

< n[n/t): (X) + (4‘“ + 1) inf S B2 (P + 048
aq Qe i—

ay

+ ?)i (2.47 + log (2| M) {1 +/1+ 18ta§a0(t)} .
1
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We apply this with M = Mg (X ( (1) ) and conditionally on X™. One can check that we have
1+ 18tadag(t) < 1+ 2412 /T175. We get

72 (p@ B
IELZIh (R ,PS)

(M

< 66 12£§ h2 (1)7‘(2)7 ﬁ)s (X(U))

559 =1
+ ¢ (247 + log(2|S)) [1 + 96v/2.35¢]
+ ¢ + na[ng/t] By (X(2)> ;

dng 131 s _ 2x8 _ 128 _ 1648 _ 131.84 :
with ¢f = 2 +1= 57, ¢) = 357 = 5 and ¢ = =% = =55, As t can be any number in [ny]

we can take the infimum with respect no ¢ in the upper bound. Let P be in Zx. We get

— 2 8 @ p 2 B
E [hZ (P, PS)} < n2E Lz;;ﬁ (pz )] th (P )
< éifﬂ (P.P) +2nzgele [ZhQ (P?, P)]

+ inf {n/l (2.47 + log(2]5])) [1+96\/ﬁt} +2[n2/ﬂﬁt< )}

t€[na]
2c)
Ny
From , for s in S, we have
— (2)
E[Se(rnn)] < 255 (p0P) 1 LSS (0.7)
4 M
+E [;hZ (P, P)]
3 (2) (1)
< nzghﬁ (R 7P> + o ;hQ (‘Pz ,P)
+ iclo Qlen/f// Z h? (p(l) Q) + 4c1(3:11) {17 + Dn(s,l)(%s)]
4 - * in
nC2 bZ:lK ( s,bHPs,bd) .
We get
- D 2+ 4ch 22 86/ n1
B[ (P.2)] < =05 wt (FOP) + 05w (PV.P)

+ inf {n; (247 + log(2|S])) |1+ 96v2.35¢| + 2[ny/t] B, (X@))}

/
+ 2o + 8% inf {CO me Zh2 ( rY, Q)

o nq seS

s+1
+c(s+1) [Dn(&l)(r///) + 17} +eY K ( b||Pmd) }
b=1
We also have

L P 4z 2SN 2 (pp
inf Z h2 ( ) ,Q) < 20*(P,.M,) + . ; h2 (R ,P) .

Ny QEMs *
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E.1.1 Proof of Lemma
For P, = L(X;),i =1,...,n, we write

Hoq =2 1* (PQ) +1° (PQ).

Lemma 26. Let 6§ > 1 and v > 0 be such that

eV + Ze_5j” < 1.

Jj=1

Fort in {1,...,n}, there is an event Q* satisfying P(2*) > 1 — [n/t|p; such that for all p in
M and all £ > 0, we have

2
P (sup {|Zn(X,p,q)] Toe — C;H%Q} > <U;€) {1 +4/1+ 18ta§aD < 2[Mle”¢,

qEM

with P* = L(X) and o > ap(t) = 32m%5 + =

3a1 ”

We take § = 1.175 and v = 1.47 as in [4] Section A.1. Let £ > 0 and p € M. On the event
0* defined by Lemma [26{and with Proposition 3 [4], we have for all ¢ € M,

T, (X,p,q) <ET, (X,p,q) +|Z (X,p,q) |
< Z [a0h2 PZ,P) a1h2 (PMQ)}
+ ﬂHng + (5; v) {1 + \/1 + 18ta§a0(t)]

n

O

(€ +v) [1 +/1+ 18ta%a0(t)] .
Then,

Y, (X,p) =sup T, (X,p,q)
qEM

< (ag + > Z h? (Pmd P)

s 2
2 ng/fffzh (7.Q)

+ 5(5 +v) [1 + \/1 + 18ta§040(t)} ;
and

T, (X,q) = sup T, (X,q,p)
q eM

> T, (X,q,p) = T, (X,p,q)
Z—<a0+ 2)2h2 P, P) +“1Zh2 (P,Q)

_ 3(5 +v) [1 +y/1+ 18m§ao(t)} :
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Since YT, (X,p) < Y, (X,p) + 8.24, we have

a1 o~ 2 A a1\ = ;2 GNP
3 om (B P) <2 a0+ G ) SR (PP) = il S0 (Pt

=1

4
+ g(fJF'U)

1+ /1 + 18m§a0(t)] +8.24.

Given that . is finite we can take P such that

inf E” h? P.Q) = En h? (P, P).
QIE.///i_l ( ) i1 ( )
Hence we have

S (P P) < ( +1) 2t S0 (P.Q)

i=1 ax

8 16.48
+ 371(5 + ) {1 + \/1 + 18ta§a0(t)} + —

E.1.2 Proof of Lemma [26]
Lemma 27. Fort in [n], there is an event Q* such that P(2*) > 1 — [n/t]5:(X) and

18ta2H2 ’
X

2
Vg, € MNz > 0P (]Zn (X,q,¢)| 1o+ > g

) <27 (103)

Let £ > 0 and a > 0. We define o = v + £ and for j > 0,
%2‘+1 = (5y]2- = dox;. (104)
Let ¢,¢' be in M. We apply Lemma, [27] according to the value of H%,Q"

o If there is 7 > 0 such that yjz < Hé’Q, < yJZ-H, with probability at least 1 —2e™%i, we have

!
’Zn(X7Q7q/)‘ILQ* - EH(?)’QI S

[\
|8
<

o 18ta2H2 ,,
14,14+ 270 Q’Q] il
Lj

2 | 18ta3y? a,
< 2 14 2y 2
- 3 + + Cl?j 2yj
oy
<Y [1 /1 + 18ta2da — Sala}
3 4
<0,
for 512
320ta; 8
> t) := — 105
0z aglt) = 28, 8 (109

o If H3 o <3, with probability at least 1 — 2™, we have
a1
1Z,(X,q.¢')| Lo+ — 5H§37Q/ <1Z.(X,q.4")| Lo

21‘0
< —|1+4/1 18t2}.
=3 {4— + Istasa
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Let p be in M. Finally, we have

a 2x
P (sup {|Zn(X,p,q)] Tg- — ;Hiq} > ?0 {1 + 1+ 18ta%aD

geEM
_ aq 21’0
< zj\; P <|Zn(X,p,q)|:ﬂ_Q* — EHI%Q > 3 [1 +4/1+ 18ta§ozD
S :
H%Q<y§
_ 3]
+Y Y P(1ZuXpa)| e - G, > 0)
7>0 qeEM:
yJQ'SH%,q<yJ2'+1
< Z 2¢ 0 + Z Z 2e~%i
qEM.: 720 qeEM:
Hg,q<y8 yJZSH%q<yJ2'+1
<AM| e + 3 e | = M| | e T 1 3 e H0)
j=1 j=>1

Jj=1

< 2[Mle¢ (e_“ + Ze_5j“) < 2[Mle”t.

E.1.3 Proof of Lemma

We follow the proof of Sart [20] (Proposition B.1). Let ¢ be a positive integer in [n]. Let [ be
the smallest integer larger than n/2t. We derive from Berbee’s lemma and more precisely from
Viennet [36] (page 484) that there exist By, ...,Bs, such that

e Fori=1,...,[, the random vectors
Biy = (X2(i—1)t+17 s vX(2i—1)t) and Bi*,l = ( ;(zel)tﬂa e 7X(*2i71)t) (106)
have the same distribution, and so have the random vectors

Bis = (X(%_l)tH, . ,X%) and B}, = (X(*Mm, . ,X;‘it) . (107)

e The random vectors Bf,...,Bx;; are independent. The random vectors Bj,,...,B*;2
are also independent.

e The event

0= () {Bi= B} {Bia= B}

1<5<i
satisfies IP ((Q*)C) < 216 (X).
Let ¢,¢' be in M. For simplicity, we write Z, , = Z(B,q,q’') and we define

l t / !
Z;,q’,l = Z Z {1/’ <\/(2 (Xg(il)tJrj)) —E lw (\/Cf] (Xék(il)tJrj))] } 12(i—1)t+jén

i=1j=1

l t

= Z Z degfl)ﬂrj]l?(i—l)t-f'jﬁn

i=1j=1
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and

It q/ ,
Zyyo = 2; Z:1 {@D (\/q (X(*2i—1)t+j)> —E [1# (\/q (XE;Z 1)t+1)>] } Lgi-1yt+j<n
1=1j=
- ‘ ZZEIQ’;] 1)t+j]1(2z 1)t+j<n-

Let &€ be a positive real number. Since
| Zgo Lo > &= |2y o 1|Tax > &/2 01 | Z] o]l > £/2, (108)
we have
P (|Zgq| Lo- > &) <P (|Z;4.l10 > €/2) +P (|25 4 2lT0 > €/2)
<P (12,4l > &/2) +P (12540l > €/2) .

One can notice that Z; ,, and Z; , , are sums of [ independent variables. Therefore, we can

use classic concentratlon inequalities. First, we can see that

2
t
z 1
Vi _ZE (Z “q.q )t+]]12(l 1)t+j)

j=1

< ZZﬂE {( G=1) HJ) Togi—1)t+j

i=1j5=1

Stii:l\/ar <¢< fj’(&*)))

< tznj a3 [hz(Pi,Q) + h2(Pi,Q’)} = tazH}) -

i=1

The last inequality comes from Proposition 3 in Baraud & Birgé [4] and a? = 3v/2. Similarly
we have Vg o2 < ta3Lg . Therefore, Bennett’s inequality (see Proposition 2.8 and inequality
(2.16) in Massart [16]) guarantees that for all £ > 0 we have

(£/2)” )
2(ta3HZ , +£/6) )

]P)(’Z%q/“lg* > f) < 2€Xp (—

T

8ta2H? _, . .
For 2 > 0, we take { = 2 [1 +1/1 4+ —2-22 | and with probability less than or equal to 2™,

we have

2 18ta2H2 ’
| Zy.q| Lox > i 1+\/1+QQ‘ (109)

3 T

E.2 Proof of Lemma [T

We have

ﬂt (Y) = Supﬁ (0'<}/17 s 7}/;)7 O'(Y;+t7 cee 7Yn))
:SupdTV(‘C<Y17"'7 )®£( l+t7"'7Yn)7£(K7"'7)/;7)/i+t7"'7yn))'
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We use the notation X° = (X,,...,X;) and similarly for E, Y and Z. The triangle inequality
implies

dry (£ (YD) @ £ (¥ik), £ ()

< Z P(E =e)dry (ﬁ(YﬂEi = eil) ® ‘C(Y;Z-t|Ei]Y|—t = 6?—1—15)’ ﬁ(Yf,Y;’iAE} = eli,EZ-”th = e?—i—t))

ec{0,1}"
S P(Ezew(a<<Xj>m,>,o((Xj>j2i+k,>).
eE{O,l}n 6]':1 8]':1

We now need the following result to conclude.

Lemma 28. For any random variables Ay,As,B1,Bs, we have

B (0(Ar1),0(As)) < B (0(A1,Br),0(A2,Bs)) .

Combining the different inequalities above, we get

BiY) < sup 3 (o)) 0(V))

= sup Z P(E=e)p <0((Xj)jgi, ), U((Xj)jZH—t,))

v ec{0,1}n e;=1 e=1
<sup Y P(E=e)B(0((X;)j<), 0((X);5i10)) = B (X) .
v eef{0,1}"

E.2.1 Proof of Lemma 28

Let p1, pe, v1 and vy be measures dominating respectively L£(A;), £(As), £(B;) and L(Bs).
We have

B(o(A)),0(Ap))
= ;/‘pA(al,GQ) — pa, (a1)pa, (az)|p (day) pe(das)
— ;/‘/(pA,B(Gl,bl,az,bZ) — pi(a1,b1)pa(az,bz)) vi(dby)va(dbs)| i1 (day ) iz (das)

1
< 5 / ‘pA,B(alablaa%bQ) _pl(alabl)pQ(a2>b2)|V1(dbl)VQ(db2),ul(dal)NQ(dGQ
= 5 (O-(AlvBl)a U(A27B2)) )

. _ dL(A1,A9) _dL(A) _dL(Ag) _ dL(A1,B1,A2,B9) _ dL(A1,By)
with pa = dpi®pz ba, = dpr ba, = dpz bPAB = dp1 @01 Qua @z p1 = dui &y and
_ dL(A2,B2)
b2 = dpo®@ua -

E.3 Proof of Theorem 12|
From (82) we have

h? (P.a.) < 2L +2L(K — 1)d(s) + 21* (P, .7

— v
<2Le? + 212 (P, M) +2(s+ DL
1

From Proposition |5 we have D, (s1) (#;) < CLV logny, for a constant C. For S defined by
, we have

51 = 2.+ l1og, (L — 2)/20)] <2+ 122

< C'logny,
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for some positive constant C'. Theorem |11] allows to obtain ([72)).
The following result is proven in Section [E.3.1]

Lemma 29. Under Assumption [T, there exist positive constants r(Q*),C(Q*) > 0 such that

o forall j € [2] and alli € [n;], we have

W (P2P) < C@)e @, (110)

o forallt € [ny], we have

By (X(2)) < C(Q*)G*T(Q*)t/{ (111)
o foralls>L—1, allb in[s+1],

K (P, |[PT) < n(s,b)C(Q")e @, (112)
From (|110)) we have

ni i} ni § CQ*
;hz (P,P") 7;h2 (PP < e(Q()_>1

For t = ny A [4r(Q*) "' logn,y |, with (111)) we have

(/113 (X(z)) - 1 for ny < r(Q*) "4 logna,
' | C(Q*)ny! otherwise,

<ny' (C(Q) vV r(QY) logns) .

We have the following

loglogn; — logr(Q*) - log VIQQJ N loglogn; — logr(Q*) - log VITQJ _1
log T log 7 log T log T
-2
= 7r(Q*) 'logn, > {nl J
N 22 +77r(Q*) " log ny 51
ny
For s = [17] with j = Poglognllozfg’"@*w A rogltogli_ JJ, we have
oglogny—logr(Q™*)
s < N +1=1+7r(Q*) 'logny,
and inequality (112)) gives
s+1 ) .
> K (Pr,/[PT) < C(Q7)me @
b=1
2 +77r(Q*) tlogn 1
< C(Q)m (2 g (Qn> gy n) —20(Q")(2+ 7r(Q) M logny).
1 1

These last inequalities give .
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E.3.1 Proof of Lemma [29

We just have to follow the proof of Lemma[13] We already have (110]) and (112)). The inequality
(111)) can be deduced from the inequality

drv (Q},.7) < Ce™,

and from the definition of j;.

E.4 Proof of Corollary [6]
We have

_ —0) —0) A ) N :
P(X0 = (V0 VL)) 2 (BY = = By = 1) =P,
and with the convexity of the squared Hellinger distance
1 (P, < 30 a2 (PP 4 (1 900l s )

< 1 (Pﬁj), P*) +(1=pP) -+ (1= ),

where ng) =L ng), . ,YE?L_1>. One can check that n > 14 N/2 with our conditions on L.
With Theorem [I2] Lemma [7] and Lemma 29 we have

c@) @)
nl(eT(Q*) — 1) n2<eT(Q*) — 1)

CE |n* (P, P)| < h*(P*,.4) +

Ny

12 L L § )
+ €+FZ<1—M)+EZ<1—I%>

log1 .
inf {tognogm+ /11 C(Q )@ )t/2}
2

te[na]

—1 .
+ inf {(s + 1)LV 08T +eT(@ )S} ,
seS nq

for some positive constant C' and s > L — 1. We can control the last terms with reasonable
choices of ¢ and s following the proof of Theorem [12]
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