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Abstract

In modern software development practices, testing activities must be carried out
frequently and preferably after each code change to bring confidence in anticipated
system behaviour and, more importantly, to avoid introducing faults. When it comes
to software testing, it is not only about what we are expecting; it is equally about
what we are not expecting. Developers desire to test and assess the testing adequacy
of the delta of behaviours between stable and modified software versions.

Many test adequacy criteria have been proposed through the years, yet very few
have been placed for continuous development. Among all proposed, one has been
empirically verified to be the most effective in finding faults and evaluating test
adequacy. Mutation Testing has been widely studied, but its current traditional
form is impractical to keep up with the rapid pace of modern software development
standards and code evolution due to a large number of test requirements, i.e., mutants.

This dissertation proposes change-aware mutation testing, a novel approach
that points to relevant change-aware test requirements, allows reasoning to what
extent code modification is tested and captures behavioural relations of changed and
unchanged code from which faults often arise. In particular, this dissertation builds
contributions around challenges related to the code-mutants’ behavioural properties,
testing regular code modifications and mutants’ fault detection effectiveness.

First, this dissertation examines the ability of the mutants to capture the be-
haviour of regression faults and evaluates the relationship between the syntactic
and semantic distance metrics often used to capture mutant-real fault similarity.
Second, this dissertation proposes a commit-aware mutation testing approach that
focuses rather on change-aware mutants that bring significant values in capturing
regression faults. The approach shows 30% higher fault detection in comparison
with baselines and sheds light on the suitability of commit-aware mutation testing
in the context of evolving systems. Third, this dissertation proposes the usage of
high-order mutations to identify change-impacted mutants, resulting in the most
extensive dataset, to date, of commit-relevant mutants, which are further thoroughly
studied to provide the understanding and elicit properties of this particular novel
category. The studies led to the discovery of long-standing mutants, demonstrated
as suitable to maintain a high-quality test suite for a series of code releases. Fourth,
this dissertation proposes the usage of learning-based mutant selection strategies
when questioning how effective are the mutants of fundamentally different mutation
generation approaches in finding faults. The outcomes raise awareness of the risk
that the suitability of different kinds of mutants can be misinterpreted if not using
intelligent approaches to remove the noise of impractical mutants.

Overall, this dissertation proposes a novel change-aware testing approach and
provides insights for software testing gatekeepers towards more effective mutation
testing in the context of continuously evolving systems.
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It is nice to know the dictionary definition for the adjective "elegant", meaning
"simple and surprisingly effective". Simplicity is a great virtue but it requires hard

work to achieve it and education to appreciate it. And to make matters worse:
complexity sells better... If you deliver a lecture that is crystal clear from the

beginning to end, your audience feels cheated and mutters while leaving the lecture
hall "That was all rather trivial, wasn’t it?"... In short: Two cheers for Elegance!

prof. dr. Edsger W. Dijkstra (On the nature of Computing Science)

And for Logic as the melody of Reason!
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1
Introduction

This chapter starts the dissertation with the context of the area in which the
challenges are recognised and contributions offered. Foremost, it introduces software
testing, more specifically mutation testing, while discussing the state of the technique
in academia as in industry, where rapid incremental code-base evolution becomes
rather standard of software development practices carrying specific challenges. This
chapter clarifies the challenges identified and tackled by this dissertation. Afterwards,
the chapter provides an overview of the contributions, whose detailed descriptions
rest in further chapters. At the end of the chapter, the structure of the dissertation
organisation is presented, aiming to ease the navigation and reading.
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Chapter 1. Introduction

1.1 Introduction in Mutation Testing
On the doorway of software development stands a quality assurance gatekeeper that

carries out software testing to preserve software correctness.

Among different software quality assurance activities, software testing is the
mostly practice one [1,2]. Software testing is performed by running/executing the
corresponding software code with inputs and observing/evaluating whether the
program, a.k.a system under test - SUT, behaves as expected. The aim is to uncover
faults, i.e., unexpected behaviour that often occurs, early since if discovered late, the
faults are often expensive to repair, e.g., resources invested in locating the fault or,
as an even more hazardous scenario, the propagation of the fault has a potential
to result in system failure leading to consequences for a human or nature [3, 4].
What sounds like a trivial process in practice is labour intensive task due to the
complexity and diverse behaviours of the SUT, resulting in a very large system input
space - if not infinite. To deal with the inability to perform exhaustive testing, the
practitioners turn to different test objectives that lead to measurable feedback about
the software’s reliability, w.r.t., the likelihood of the software being correct [1,2]. Test
objectives are often regarded as test adequacy criteria - TAC - and serve to guide the
design of test suites, where a test triggers the execution of the program under certain
test inputs and measures how well it covers/exercises code elements. Over the years,
many different testing criteria have been thoroughly studied and include different
forms of code coverage, building on the assumption that if the element of the code
is covered by the test, that part of the code has been evaluated, i.e., its impact on
the program output is taken into account. As mentioned, testing criteria are diverse,
while some of the well-known, and broadly applied for evaluating the testing quality
of the software measure exercised code statement coverage, branch coverage, i.e.,
leaving no code paths not executed, etc. The whole procedure is iterative, as it
allows developers to continuously quantify the thoroughness of testing, and guides
them to create new tests such as to lead to more coverage - evaluating diverse code
behaviour - thus better approximating the correctness of SUT.

Among many criteria, mutation testing refers to using mutations, or slight code
alteration, as TAC for test guidance and test quality evaluation [5]. These code
alterations - better known as mutants - are often referred to as seeded artificial faults
couple with real ones in a sense that test cases that reveal them also reveal real
faults [6]. Thus, the test objective is to distinguish between the original program
and a mutant. If a test is able to make this distinction, it is said to be valuable
and of relative quality; otherwise, a mutant that escapes tests - survives - defines an
objective that new tests should fulfil [7]. Therefore, test suites that distinguish more
mutants are considered stronger than those that distinguish less mutants.

Mutation testing as a technique has been long present and recognised by the
community [8]. The reason is that even being in its nature simple approach, which
checks to what extent the tests capture seeded faults, it is appropriate to evaluate
the adequacy of the test suites as mutations will result in numerous and various
program outputs requiring evaluation. Hence, the technique is often seen through the
lenses of a proverb, stating "if there is a fault in the system, there will be a mutant
corresponding to that fault". Indeed, over the years, many empirical evaluations
confirmed that mutation testing is the strongest fault-revealing testing technique,
leading to the strongest test suites [9]. The mutation testing is typically performed
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Figure 1.1: An example of three mutants (M0, M1, and M2) generated out of the program
P, with a test suite TS containing tests T0, T1 and T2 to assess P. The killing matrix
depicts the ability of tests to distinguish between mutants and the original program, while
the mutation report contains descriptive statistics of the analyses. Mutant M2 escapes
tests from TS and requires a new test T3: assertEquals(0, subtract(-1,-1) to be
distinguished and P adequately assessed.

systematically by altering simple language-grammar code elements since it is observed
those form a coupling effect [6]. In short, the coupling effect declares that the software
programs, in their nature, are "close to being correct", and test data that distinguishes
all program versions differing from a correct one by only simple faults will be so
sensitive that it also implicitly distinguishes more complex faults. Therefore, simple
mutants faults can create erroneous behaviour as complex as those of real faults [10].

Simple mutation faults are introduced in the program under test using mutant
operators, which serve as rules for how to transform an original program to a mutated
faulty version. Each mutated faulty program version is a distinct instance of the
original program whose behavioural difference needs to be identified by at least one
test. The test suite is preferably augmented until the difference between every pair -
original program, mutant - is recognised. For a developer to write a test that detects
such a difference in the program output, it needs to understand the test requirement
- the behaviour produced by the mutant - and the required test inputs to reach and
recognise it. Hence, the goal of mutation testing is to evaluate test thoroughness
by providing test adequacy criteria and guiding the generation of test cases against
mutants. The metric often used is called mutation score and represents the ratio of
mutants distinguished.

1.1.1 Mutation Testing through Examples
As previously mentioned, mutants are instances of the program under analysis

containing simple syntactic modifications used to evaluate tests’ ability to distinguish
between what is original and what is altered [8].
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For more practical representation, let us observe Figure 1.1, which illustrates
mutants, M0, M1 and M2, respectively, and exemplifies the technique. These
mutants represent the instantiated version of the original program P . In this
particular case, mutant M0 performs addition instead of subtraction of parameters
x and y. Mutant M1 alters the return statement, line 5, such as that instead of
subtracting parameters x and y, it switches them and subtracts y and x, thus making
original behaviour faulty. Mutant M2 replaces parameter y with a constant 1, such
as to construct expression x - 1. The sole purpose of these particular mutants is
to provide visualisation support of how expected behaviour diverges and how they
serve to evaluate the adequateness of tests in identifying the inconsistency. In the
example, the adequacy is evaluated on the provided test suite TS, which counts three
tests, T0, T1 and T2, respectively. Each provided test asserts whether the program
expected output equals actual output - assertEquals(expected, actual). After
analysing provided mutants by running tests on each, we create a killing matrix
suggesting which tests distinguish, a.k.a., kill, which mutant. First, we observe
that mutant M0 does not escape any tests - all tests identify differences in actual
and expected behaviour. A similar scenario is observed when running tests on
mutant M1; however, in this case, the mutant escapes test T0, which does not see it
differently from the original program. The final observed mutant M2 is not identified
by any tests - escapes all tests from TS. Therefore, we report that among three
analysed mutants, TS kills two, while one mutant survives and escapes - making
a mutation score 66.66%. Hence, indicating the need for additional effort and the
creation of tests that will identify overlooked potentially faulty behaviour under
certain test inputs. From the example, we can conclude that one test case suitable
to identify the remaining mutant is assertEquals(0, subtract(-1,-1) as its test
input is suitable to distinguish between the mutant and original program. The
mutant behaviour under these test inputs is −2 while the original program output is
0. Overall, with this new test, test suite TS gains on straight, testing diversity and
thoroughness.

1.2 State of Mutation Testing in Academia
Mutation Testing has been extensively studied in the last decades with many

advances and tools being developed [8]. Since its origin in the 70s, all up until
today, the technique has attracted many practitioners and merged many communities
as they all recognised that its potential reaches even beyond the field of software
testing [8]. The ability of seeded faults to accurately characterise and mimic a set of
potential real faults motivated researchers to employ mutants’ versatile behaviours
for extensive scientific experimentation. Consequently, this led to a high number of
studies and contributions in domains such as test generation [11,12], reduction and
test case prioritisation [13, 14], test oracle creation [15], fault repair [16, 17], fault
localisation [18], and many more. The impact of the technique still grows, and its best
adaptable form is visible in the current well-studied area of machine learning, where
a considerable number of studies emerge that use some form of mutation testing to
evaluate artificial neural networks and the accuracy of their prediction [19,20].

However, the state of mutation testing in academic circles is still mainly grounded
in traditional software development. In traditional software development, the testing
phase is regarded as one of the last phases of the development cycle to be completed
before software release [21]. The whole testing phase is conducted with the assumption
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that enough time and resources are allocated. Another assumption is that the
development process will not suffer major disruption since software requirements
are already pre-defined. Traditional mutation testing, built for this purpose, helps
practitioners to evaluate the test adequacy of the entire code base in isolation utilising
the power of diverse software behaviours brought by mutants. For this purpose,
researchers proposed different mutation approaches, which further gave rise to the
development of many mutation testing tools [22]. Yet nowadays, this is where the
interest of academia and industry - the side that follows modern agile software
development practices - diverges. Modern agile development practices encourage
systems’ continuous integration through building blocks of small chunks of code,
highly dependent on user feedback and volatile market requirements [23]. Hence,
testing activities in such dynamic environments are performed on the fly, adjusting to
the user needs and optimising to minimise the lead time between opening a ticket for
product change and the change being integrated with the software product that runs
in production, providing its services. Therefore, in order to preserve the mutation
testing impact, help the industry make use of its fault detection capability and
bridge the gap between industry and academia interests, mutation testing needs to
be adjusted to the development shift leading to the Integrated Evolving Systems.

1.2.1 Development Shift towards Integrated Evolving Sys-
tems

The progress of the technology related to overall software infrastructure, cloud-
based and cloud-native software solutions made disruption of development software
practices and rapidly spread in the majority of industry sectors. From the development
of traditional monolithic and “functionally-complete“ applications, the software
engineering community is nowadays placed towards the development of software
through agile build cycles that are best described as continuous [21]. The paradigm
is to make and release a production-ready, minimally viable software product with
initial services benefiting users as early as possible [23]. Subsequently, the product
is revised through new features, integration, and testing; positioning its evolution
to a continuous attempt to incorporate new requirements through code changes. In
a remarkably short interval of time, this practice became a standard of software
development, followed by many software solutions that help developers identify new
change requests, develop required code faster, automate its integration and software
testing, and minimise the time and effort required for deployment and release [21].
These chained activities allow for quick user feedback, accumulating requests for
integration of new features, thus leading to advances in software scope and complexity;
ultimately resulting in a constant battle of trade-offs between code change integration
duration and code quality. Diverse existing solutions allow developers to track code
changes and perform continuous testing, which stands as a gatekeeper to distinguish
between stable code versions and error-prone versions impacted by the changes.
Developers often build with the assumption that if all tests from the previous stable
version successfully pass on to the newly altered version, the new code changes do
not impact the stable program behaviour. Yet, to help developers reason about code
change testing adequacy, continuous testing frequently incorporates test objectives
as statement coverage - indicating whether the tests cover the statement on which
code change occurs - accepting it as a means to prevent untested changes. However,
covering changed lines does not imply adequately testing their impact. If we only
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ask our test suite to validate what we want to test, i.e., what we are expecting, the
question arises of what kind of new information about the changed system we acquire
and what is the assurance of unexpected behaviour, i.e., developers desire confidence
that the performed changes do not cause breakage of the existing behaviour and not
to escape existing tests.

1.2.2 Mutation Testing Applications in Industry
Since almost the introduction of the technique, many studies have emerged

from the industry of safety-critical systems reporting on the power of the technique
to lead to the identification of real faults [24, 25]. Software development in this
particular domain requires rigour quality evaluation and, due to the safety impact
of the software, requires developers to spend additional time on activities such as
testing - reasoning their effort through the proverb “go slower, go better“. Although
using mutation testing to specify testing objectives has been proven effective and
unmatched, the reason its application has not been broadly recognised by the various
industries that cherish the development of continuously evolving systems can be
partly associated with the scope of mutations and their traditional untargeted nature.
Yet, recently several reports emerged revealing the usage of technology and the
potential benefits it brings in the incremental development practices, which often
unofficially motivate builds through the proverb “go faster, go better“. Moreover,
Google reported the use of the technique to provide developers with a code mutation
after each code change [26]. In this scenario, mutation locates on a changed code,
serving the purpose of understanding the code, raising awareness of the potential
faulty behaviour, and guiding it to generate tests that would identify the fault in
case it actually occurred [27]. Following this practice helps developers augment the
test suite and think in the direction of the impact of the change. On the other hand,
Facebook, as another key member in the software industry, reported usage of mutation
testing in the way of semi-automatically learning error-inducing patterns from their
own code-base, and thus generating mutants which do not seem change-oriented but
rather evaluating the strength of the entire test suite [28]. Moreover, they report
and argue that in order to consider applying the technique on an industrial scale
system, it is necessary to focus on small targeted deviations in the program, such
as providing actionable signals to developers, which in the context of the evolving
systems leads to the care of code change.

1.3 Challenges with Mutation Testing
Steadily and slowly, mutation testing is reaching its maturity. Although it

provides effectiveness in its current traditional untargeted form, its potential for
evolving systems must be surfaced since it has been long neglected due to challenging
and unoptimised parts of the technique. This dissertation identifies such challenges
and studies several specific characteristics intending to bring mutations one step
closer to broad adoption in continuous software development. Figure 1.2 provides a
visualisation of the challenges and serves as the dissertation storyline.

1.3.1 Mutants Behavioural Properties
At its core, mutation testing has been built on the premise of fault coupling, which

states that small syntactic deviations lead to sensitive tests that identify complex
real faults. Although popular, it has been criticised for producing unrealistic faults,
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Figure 1.2: Opened questions, the storyline followed and challenges targeted in this
dissertation. Icon credits: Flaticon.com

i.e., faults that are significantly different from real ones in terms of syntax, and as a
result, numerous propositions have been made claiming to produce seeded faults that
are syntactically similar to real ones. These propositions resulted in techniques that
promise to form some sort of realistic faults and to improve fault seeding realism by
defining and evaluating mutants with respect to non-semantic metrics, i.e., mainly
syntactic-based metrics. Although these techniques are promising, they still treat
mutants as points in the program under test instead of considering their behavioural
properties - semantics - as defined in the RIPR model of fault-based test assessment
techniques (see Section 2.2.2). Some mutation testing practitioners would agree
and find it quite apparent that seeding syntactically close faults do not necessarily
result in being semantically close to the real regression faults; yet a lack of evidence
on the topic makes many practitioners diverge from the obvious, form and build
around an assumption that seeding faults with frequent syntactic fault patterns that
have similarities with a real fault will result in faults that are subtle or semantically
similar to real ones. Therefore, the question of mutant behavioural properties and
real fault representation requires significant improvement in understanding, and
clarification of the role of the faults’ syntactic nature with respect to program
semantics and mutation assessment, raising awareness on the use of semantic and
syntactic evaluation metrics in fault seeding studies and the usage of the semantic-
based metrics in capturing mutants behaviour in the context of fault-based test
assessment.

1.3.2 Testing Regular Code Modifications
Modern incremental software development practices produce software systems

through regular modifications during the software life cycle. Modifications are usually
made in order to maintain and improve the software - fixing bugs, refactoring, or
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Chapter 1. Introduction

improving code quality - or to make it evolve by including new features. In either
case, automated testing is used as gate-keeping, i.e., to establish confidence that the
modifications did not break any of the previously developed program functionalities.
In such scenarios, developers often assume that the previous - operational - version
of the system was stable and correct. Therefore, they are interested in testing only
the behaviour of the changes they perform. This implies they want to assess the
delta of behaviours between their pre- and post-commit system versions. For such
cases, developers need metrics quantifying the extent to which they have tested
the error-prone program behaviours affected by their changes. Unfortunately, little
research has been devoted to forming such change-aware test criteria. Change-aware
test criteria would offer a viable, from a performance perspective, way of dealing
with the continuous software modifications, as one would only focus on the particular
program changes or commits. To devise such criteria forms a challenge for mutation
testing, which has the unfortunate effect of blindly using all possible mutations
without considering their relevance to the most recent changes as the task in question.
Analysing all mutations under test is impractical due to narrow time intervals between
builds; plus, it is even uncertain how aware of the change is traditional mutation
score. In short, the question emerges whether performing traditional mutation
testing with the entire set of mutants or with mutants located on the changed code
is sufficient to assess how well subtle program changes have been tested despite
being recognised as the most effective fault-revealing technique. This aspect is also
missing in the software testing literature since it mainly focuses on using mutants
as a proxy of faulty program versions independently of the program changes under
test. Thus, by recognising and targeting this challenge, this dissertation strives to
modernise mutation testing such as to capture behavioural differences caused by a
code modification, since of particular importance in evolving systems is to utilise its
fault-detection ability and early identify problematic regression issues arising from
neglected change-aware test assessment.

1.3.3 Mutants Fault Detection Effectiveness
In the context of evolving systems, particularly in the phase of automated

testing, the quantification metrics are viewed through the lenses of application
effectiveness and cost-effectiveness. With the pace at which software evolves, the
traditional way of mutant generation has been questioned. The grammar-based
mutants generation is regarded to often put noise/cost in the fault detection activities
due to low-quality mutants - a.k.a, trivial or equivalent mutants [29]. Recently,
researchers and practitioners started arguing against solely relying on grammar
transformations and see their use as challenging and questionable for fault detection
of modern development practices. Consequently, several novel and fundamentally
different mutation testing approaches have emerged. Building on top of standard
predefined syntactic transformation rules, new approaches aim at seeding mutants
by either learning from recurrent fault instances occurring in versioning history
or by employing pre-trained code deep-learning language models to maximise the
probability of employing the right mutant operator. Being fundamentally different
from standards, the question emerges of how different and whether significantly more
effective is the fault revelation potential of these techniques compared with traditional
grammar-based mutation testing. In parallel, deep-learning language models have
been suggested for mutant selection. These learning-based selection strategies aim to
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reduce the cost by discarding redundant mutants and providing testers with mutants
that will bring value to the testing process. Overall, proposed selection strategies
have not been utilised with respect to the recently proposed mutation approaches,
and the challenge that occurs regards whether the fault-detection effectiveness of
different mutation techniques/tools when using mutation selection to reduce the
application cost of the technique still holds; where application cost is modelled as
such to detect faults as early as possible and deal with requirements of evolving
systems.

Figure 1.3: Organisation and outline of the dissertation.

1.4 Contributions of the Dissertation
This section describes the contributions presented in this dissertation to address

the before-mentioned challenges, and it follows the organisation of the chapters
presented in Figure 1.3.
Empirical Evaluation of Syntactic versus Semantic Similarity of Mutants
and Real Faults (Chapter 4)

This chapter performs an empirical study aiming to evaluate whether seeding
faults with frequent fault patterns have behavioural similarities with real faults and
whether syntactic metrics can be used to capture the similarity between mutants
and real faults. The present assumption is that fault patterns syntactically close
to real ones are also semantically similar; indicating that mutants are the points
in the program and rather neglect their RIPR model, which suggests that even
slight changes have broad propagation and reachability. The study is conducted
on Defects4J, which is, at the time, the most extended benchmark of real faults
available to research. The results show a lack of evidence that syntactic similarity
does reflect semantic similarity, indicating that syntactic distance cannot be used
as an evaluation metric to capture mutants’ behaviour in the context of mutation
testing. This chapter further provides a view and insights into real faults-mutants
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behavioural differences and the usage of semantic similarity measurement to represent
and capture the similarity of mutants with real faults. After this first step which
addresses the challenges related to mutant-fault behavioural properties, the next step
is to study the mutation behaviour in relation to rapid regular code modification.

Commit-Aware Mutation Testing (Chapter 5)

This chapter presents, at the time, the first approach to allow change-aware
mutation testing. Until this point, mutation testing had the unfortunate effect of
blindly using all possible mutants without considering their relevance to the task or
to the most recent changes in question. To allow such modification-focused testing,
this dissertation introduces commit-relevant mutants, i.e., mutants able to capture
unforeseen behavioural interaction between changed and unchanged code on which
regression faults often occur. The study is conducted on both C and Java languages
with the purpose of alleviating concerns of generalisation to a specific language
and specific granularity level of a test suite. The study shows that this category of
mutants, in terms of testing, represents change-relevant requirements and can be
used to judge whether test suites are adequate in testing code commits and, if not,
to provide guidance in improving them. Overall, the change-aware mutation testing
shows 30% higher fault detection in comparison with baselines. After introducing
the notation of commit-relevant mutants, the next step is to ease the constraints
regarding their designation.

Commit-Relevant Mutants via High-Order Mutations (Chapter 6)

This chapter presents the first experimental approach for identifying commit-
relevant mutants using the notion of observational slicing of a single program version.
Naturally, the relevance of an instruction to a program point of interest, such as
a program state or variable(s), can be determined by mutating instructions and
observing their impact on the point of interest (changes in the target program state
or variable). Since the aim is to identify mutants relevant to changed instructions,
this chapter checks the impact of mutants located in the changed code on mutants
located in unchanged code. In essence, the approach measures the impact of second-
order mutants on the first-order ones, which captures the existence of implicit
interactions between the changed and unchanged code parts. This formulation
addresses the challenges of state-of-the-art and makes commit-aware mutation testing
more general in evolving systems, resulting in the most extensive dataset of commit-
relevant mutants up to date. The study shows that the commit-relevant mutants
are prevalent; one in three is relevant and indicates the need for additional study to
provide scientific insights into the nature and properties of commit-relevant mutants
and their utility over time. Thus, as the next step, the next chapter studies the
relevance of mutants to code evolution, investigates the predictability of commit-
relevant mutants properties and, in line with the program evolving nature, proposes
how to keep the mutation test suite consistent and relevant over software releases
instead of different sequential versions.

Mutant Relevance to Code Evolution and Long Standing-Mutants to Keep
Mutation Test Suites Consistent (Chapter 7)

The main objective of this chapter is to examine the properties, predictability, and
utility of commit-relevant mutants, as well as subsuming commit-relevant mutants
such as to quantify further the potential benefits of selecting relevant mutants during
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project evolution. Furthermore, this study provides scientific insights concerning the
cost and effectiveness of mutation analysis in testing evolving software systems. The
study shows that a large proportion of commit-relevant mutants are located outside
of the program changes and that selection of subsuming commit-relevant mutants
reduces even further the number of mutants, by about 93%, on average. This chapter
further argues that there is a remaining barrier to uptake: mutant consistency. A
consistent set of mutants for a project is desirable so that test effectiveness can be
consistently tracked against a common baseline over a series of project releases. The
results show that identifying a high-quality suite of long-standing mutants allows the
maintenance of mutant relevance over a series of releases. In light of the mutants’
effectiveness in the presence of emerging diverse mutation approaches, the next
chapter studies the suitability of learning-based strategies to select and compare the
effectiveness of different kinds of mutants.
Learning-Based Mutant Selections for Comparison of Mutants Effective-
ness (Chapter 8)

This chapter shows that mutants of different mutation testing approach lead
to different conclusions on fault detection due to noise introduced by the high
number of mutants with low quality. Therefore there is an inherited risk that their
suitability can be misinterpreted, which brings the need to use learning-based selection
strategies to alleviate the noise and focus only on the effective mutants produced
by a mutation approach. The study is conducted such as to model the application
cost that different mutation testing techniques entail and perform a controlled cost-
effectiveness comparison under different cost models, which reflect the main efforts
spent in mutation testing campaigns. We show that mutation testing techniques
significantly improve their performance under the machine learning-based selection
strategy. Additionally, this chapter shows that when comparing the effectiveness of
mutants from different approaches or tools, it is imperative to account for a mutant
selection technique suitable for this purpose.
Supported Datasets and Tools (Chapter 9)

This chapter describes three distinctive mutants datasets generated to support
the studies in this dissertation. The chapter provides open-access links for each of the
datasets to serve the benefit of the community since the generation of the mutants
requires significant computational resources. The datasets follow the evolving context
of the system under tests and contain mutants with clean test contracts, w.r.t., no
change between the versions touches the test suite, a dataset of mutants generated
from different mutation approaches and a dataset of high-order mutants. The dataset
of high-order mutants is a by-product of the most extensive empirical study of
commit-relevant mutants at the time, described in chapters 6 and 7. Specifically, the
datasets contain 10,071,875 mutants and 288 commits extracted from five (5) mature
open-source software repositories. The experiments took over 68,213 CPU days of
computation. Each of the generated datasets used throughout this dissertation is
described in detail in this chapter following step by step manner, holding information
on the dataset metadata. Besides the datasets, this chapter described the tools
used and frameworks built for the purpose of experimental evaluation. This chapter
describes PiTestAssert, an extension tool built on top of PiTest with the purpose
of studying mutants on and around a code change, their interaction and test suite
instrumentation.
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1.5 Organisation of the Dissertation
Figure 1.3 depicts the organisation and outline of this dissertation. The disserta-

tion is organised to first familiarise the reader with the background, terminologies
and definitions - in Chapter 2 - used throughout the chapters. Next, Chapter 3
offers insights on the solid grounds of related work on which this dissertation builds.
Chapter 4 tackles the challenge of mutants’ behavioural properties and provides
a study on the Empirical Evaluation of Syntactic versus Semantic Similarity of
Mutants and Real Faults. The following chapters deal with the challenges regard-
ing Testing Regular Code Modifications. Moreover, Chapter 5 introduces novel
Commit-Aware Mutation Testing approach. Chapter 6 describes and studies an
approach to identify Commit-Relevant Mutants via High-Order Mutations. Chapter 7
studies Mutant Relevance to Code Evolution and Long-Standing Mutants to Keep
Mutation Test Suites Consistent. The third identified challenge regarding Mutants
Fault Detection Effectiveness is further described in Chapter 8 and tackled by the
study on Learning-Based Mutant Selections for Comparisons of Mutants Effectiveness.
Chapter 9 provides descriptions on Supported Datasets and Tools used throughout
the dissertation. While final Chapter 10 provides the insight in the Future Work and
concludes the dissertation.
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2
Background and Technical Terms

This chapter introduces the reader to the technical background and familiarises with
terminologies and definitions used throughout the dissertation. Its sole purpose is to
rather guide the reader through the context in which this dissertation regards - ease
the reading and reasoning.

Contents
2.1 Adequacy Criteria-based Software Testing . . . . . . . . . . . . . 14
2.2 The Theory of Mutation Analysis . . . . . . . . . . . . . . . . . 14

2.2.1 An Example of the Process of Mutation Testing . . . . . 15
2.2.2 Fundamental Principles - Mutants Behaviour . . . . . . 16
2.2.3 Different Categories of Mutants as Quality Indicators . . 18
2.2.4 Mutant-Fault Resemblance . . . . . . . . . . . . . . . . . 19
2.2.5 Mutation Testing Tools . . . . . . . . . . . . . . . . . . . 22

2.3 Testing Evolving Systems . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Continuous Testing . . . . . . . . . . . . . . . . . . . . . 24

2.4 Mutation Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Learning-based Selection . . . . . . . . . . . . . . . . . . 26
2.4.2 Developer Work Simulation . . . . . . . . . . . . . . . . 27

2.5 Additional Definitions . . . . . . . . . . . . . . . . . . . . . . . . 27



Chapter 2. Background and Technical Terms

2.1 Adequacy Criteria-based Software Testing
Software Testing measures via tests how well we exercise different parts of a

software program or - to put it in another way - measures how the program behaves
under a specific test input [1]. Software practitioners want to keep track of software
execution to identify inconsistencies that will lead to unexpected software output/be-
haviour, a.k.a. bugs, faults, defects etc. The reason rests in the software complexity
and numerous decision paths that are often too long and deep to apprehend. To
maintain a bigger picture of the executed scenarios through tests, different Test
Criteria are used to serve as test adequacy metrics and guide various testing activities.
Test criteria metrics quantify the extent to which systems are tested [1]. They are
based on the notion of test requirements, i.e., portraying and providing insights on
a question: “What should be covered by tests in the software system?“. Different
testing requirements gain information on how well a set of tests, a.k.a. test suite,
covers various parts of software, e.g., execution of statements, conditional branching
etc. [9]. The aim is that no code statement or program execution path leading to a
program output is left unexposed and the behaviour assessed.

Depending on test requirements covered by a test suite, a test criterion defines
a concrete value that reflects how well the program is tested w.r.t. its intended
behaviour. To practitioners, the overall value serves as a coverage rate which
synonymously relates to testing thoroughness, given the testing technique and test
criteria used for software execution. Reaching a specific test criteria threshold can
assess whether effort adequately enough has been invested into software testing
activities to achieve confidence in software behaviour or rather extra testing needs
to be conducted by executing the program under additional inputs, w.r.t., creating
new tests. Thus, besides assessment - it is worth noting - test criteria drive different
aspects of the testing process, such as test generation [30] or test selection [31] etc.

All-around, test requirements serve to assess the thoroughness of a test suite,
indicate redundant tests, guide towards new tests, and decide if more effort should be
devoted to testing or if reasonable confidence has been gained in the behaviour of the
system. Test criteria are also used to assess other criteria for the reason of difference
in effectiveness and subsumption between criteria - some are simply stronger than
others [9, 32].

2.2 The Theory of Mutation Analysis
The previous subsection puts test requirements in the core of software testing

practice as they guide the identification of unwanted program behaviour w.r.t.,
program faults. Mutation analysis is such a test adequacy criterion [33] that operates
by estimating the capability of a test suite to detect artificially seeded program faults.
These seeded faults are better and broadly known as mutants of a program under
test. A mutant usually takes the form of a small syntactic change in the code, such
as, for instance, changing the relational expression of the statement “if (a > b)” into
“if (a ≥ b)” ; see Section 1.1.1 for a more practical example of mutants generation.

A set of mutants is often systematically generated, following a set of replacement
rules called mutation operators. Different mutation operators can be used in order
to tailor the creation of the mutant and, thus, the test requirements. This gives the
tester freedom and allows focus on different aspects of the test suite effectiveness
concerning the level of testing, testing aim or testing specific parts of the program;
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Figure 2.1: Mutation-based Testing Process

should the tester only want to focus on those. Once mutants, i.e., test requirements,
are created as multiple faulty versions of a program under test, the test suite runs
against the original and the mutants, aiming to differentiate their behaviour. The
behaviour is usually represented by the output, triggered with test input and captured
by test oracle, a.k.a., expected-actual values mechanism.

If a test triggers and captures different behaviours between the original program
and a mutant, the mutant is considered to be “killed”, w.r.t., a test suite is able to
distinguish this artificial fault - fulfilling a test requirement. A test killing a mutant
not only demonstrates that the test covered the mutant but also that it is capable of
detecting altered and propagated program states the mutant introduces. If, for all
tests considered, the original program and a mutant behave the same, the mutant
is said to “survive” tests, and its output escapes being identified. This process
of assessing the ability and thoroughness of the test suite to differentiate between
the program under test and generated mutants is called mutation analysis. The
thoroughness is measured using the “Mutation Score” (MS), the ratio of mutants
killed by test suites over all killable mutants created. Notice there may exist mutants
that cannot be killed by any test since they are functionally equivalent to the
original program [34]. On the other hand, the number of killable mutants does not
necessarily represent the number of test cases since several mutants can be redundant;
for instance, one test may also kill several mutants at the same time. Thus, the
effort put into analyzing and executing redundant or not appropriate mutants for a
particular use case is wasted; hence it is desirable to analyze only the mutants that
add value.

2.2.1 An Example of the Process of Mutation Testing
Mutation Analysis makes a core of a mutation-based testing process. Mutation

testing is often used interchangeably with mutation analysis, yet, there exist slight
differences that are noteworthy to distinguish. As described in the previous subsection,
mutation analysis is a methodology that encloses the generation of program mutations
and the execution of tests to kill/distinguish them in order to obtain the metrics on
test assessment. On the other side, mutation testing is a technique with a repetitive
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process where the mutation-based analysis guides towards the generation of new
tests for not killed mutants. Thus, the technique helps augment the test suite,
conveys confidence by providing assurance of reaching a predefined testing threshold
or guides towards fixing a program under test. The process adapter from the survey
by Papadakis et al., this dissertation depicts in Figure 2.1, as it is the more recent
process following current trends [8]. More curious readers are encouraged to refer to
the first process defined by A. J. Offut and R. Untch [35].

First, the process starts with a program under test and its code as input for the
test adequacy evaluation - step 1. On the input code, we generate the set of mutants
M , which represent instantiated versions of the executable program - step 2. Once
the mutants are instantiated, we determine a test suite T to run - step 3. In the
case that no tests exist, we need to create tests, either manually or automatically,
in support of some available tools [30]. Alternatively, all tests can be selected for
execution or just those that cover mutants to save execution time. Naturally, a test
that does not cover a mutant cannot kill it. Tests can be executed on a mutant until
at least one test kills it; while executing all covering tests on all mutants still has its
benefits, as it can measure the coverage and strength of tests and mutants through
the whole execution matrix; this knowledge can be reused in the steps related to
mutants selection, test prioritisation etc. The next step involves executing test suite
T on the set of generated mutants M - step 4 - and calculating a mutation score
from the killing matrix as the product of the execution - step 5. In case the mutation
score threshold is aimed - step 6, as often is the case, separate activity needs to
be conducted to define the threshold - step 7. In a scenario where the threshold is
not reached, step 8, further effort is needed to distinguish all remaining behaviours
caused by the mutants. Thus, new tests are created based on surviving mutants -
step 9. The test suite T is augmented with new tests, and the process repeats. If,
in the next cycle, the mutation score reaches the predefined threshold suggesting
sufficient thoroughness and sensitivity of the test suite T , the process continues, and
a question comes to be whether the program P under test behaves correctly on all
tests - step 10. Note that a mutant can also be killed if a test passes on the mutant
but fails on the original program. In the case in which the program under test does
not behave correctly in regards to T , its identified unwanted behaviour requires
fixing - step 11 - and repeating the whole process with the newly fixed version of
the program. On the contrary, in the case when the program behaves correctly,
and T is sensitive to different program outputs, testing quality is considered on the
satisfactory level, thus bringing confidence in the output of P .

It is important to be aware that the process of mutation testing incorporates
multiple actions or steps not included in the figure. For example, mutant selection
and mutation reduction w.r.t., which mutants to use, test selection and prioritisation,
w.r.t., which tests and in which order to perform execution on mutants, and many
others. Note no step has less importance; however, for the purpose of this dissertation
and for the purpose of simplicity, the figure depicts the basic steps, while some
additional ones follow in subsequent subsections.

2.2.2 Fundamental Principles - Mutants Behaviour
The overall idea behind the process of mutation testing comes to be simple.

Syntactic changes representing artificial faults called mutants are generated, and we
observe whether tests can distinguish between the original program and mutants
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under the same test input. Now, natural questions may tickle the mind of a curious
reader: How test execution leads to different behaviour for a mutant and original
program? Why is it important to identify mutants with tests? And moreover, why is
this approach effective? There is more than one answer to satisfy each question. First,
we must start with a simple broader explanation. Mutants are simple code-potential
faults that a tester would target when evaluating the correctness of a program against
the presence of real faults. Assume that there exists a set of complex faults in a
program under test, such as that those faults produce an erroneous undesirable
program behaviour. Therefore we desire our tests to trigger erroneous behaviour,
and even more, we desire them to be sensitive enough to capture even the slightest
change in the program behaviour caused by faults, since, accordingly, the tests will
also be able to capture more complex faults. By creating slight faults, a.k.a. mutants,
systematically in a program under test, a program is stressed on various locations,
causing various program behaviours and allowing tests to reveal other types of faults
often overlooked by the developers. Practically, mutants require test cases to be
capable of propagating corrupted program states to the observable program state, at
which point real faults have good chances of becoming observable as well.

Furthermore, it is important to understand that mutations represent common
programmer mistakes [36]. More recent studies found that real faults include infection
of only a couple of code elements, thus confirming once again the Competent
Programming Hypothesis [10] on which grounds the mutation testing emerged. The
hypothesis states that a programmer produces software close to being correct, with
only slight syntactic variations of what comes to be incorrect program behaviours.
Thus by mutating what is considered correct behaviour, we can evaluate whether
incorrect behaviours escape being distinguished by tests and assess whether tests
differentiate correct from incorrect.

Finally, to fully understand why the approach of mutation is effective, we need to
understand that the behaviour of mutants is considered in relation to the expected
observable - what is often considered correct - program behaviour of interest. In
simple words, by leading to expected and unexpected observable program behaviour,
mutants help in testing all corner cases that easily escape even the most competent
programmers. To understand why mutants lead to different behaviour and why this
behaviour is of interest, we need to consider the RIPR fault model, which defines
the Reachability, Infection, and Propagation Revealability of real faults [1]. To
find a fault in a program, the test case needs to reach the location of faulty syntax
(Reachability). Next, this faulty syntax needs to cause an infection in a program state,
such as that the program state diverges from the expected or what is considered
correct one (Infection). This divergence or corruption of the program state needs
to propagate to the output of the program since it only then impacts the program
behaviour (Propagation). In the end, the undesirable output needs to be intercepted
and asserted by a test case (Revealability). On the opposite, undesirable erroneous
program behaviour escapes the attention of the tester and propagates to the end
user with potential consequences. Therefore, in summary, when we use mutants as
test requirements, we check for the perceptiveness of erroneous program states.

More often than not, mutation behaviour and, with it, mutation testing, can be
summarised in a premise: "If there exists a fault in a program, there will usually be
a set of mutants that can only be distinguished with test cases that lead to detection
of that fault" [37].
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2.2.3 Different Categories of Mutants as Quality Indicators
Questions about what drives a mutant interest or whether specific mutants are

better than others came to be subjective and conditional on a use case. Many studies
put effort into identifying the relationship between mutants and different testing
quality indicators, giving birth to different mutant categories [8].

Foremost, killing all mutants is not feasible, as some mutants are semantically
equivalent to the original program, i.e., they will behave the same way for all possible
inputs, although they are syntactically different. These mutants are called equivalent,
while mutants for which there exists an input for which their behaviour is different
from the original program’s, are said to be killable.

When using mutation analysis to measure the thoroughness of a test suite, we do
not desire to take equivalent mutants into consideration, as even a perfect test suite
will not kill them. Equivalent mutants have proven to be a major challenge in the
area of mutation testing [8, 34], as identifying them is an undecidable problem [38].
Interestingly, many killable mutants are functionally equivalent to others, introducing
skew in the mutation score. The studies of Papadakis et al. [39] and Kintis et al. [40]
have shown this to be problematic and suggest getting rid of duplicated mutants
w.t.t., mutants equivalent to others, in order not to count the same test requirement
multiple times. Different categories of mutants exist when it comes to mutants
operators, i.e., rules of their generation. Previous research concluded that mutants
of specific types, e.g., Relational Operators, are more important as they encode
test requirements not captured by other mutant types [41]. Research also suggests
that a mutant quality and importance should be judged by how easy it is to kill
it. Intuitively, if a mutant is so unreasonable that most or all tests distinguish its
behaviour, a mutant is not of a particular value since it is trivial, a.k.a., easy test
requirements. On the contrary, the researchers suggested that their stubbornness,
i.e., how hard it is to generate a test required to distinguish it, should judge the
mutants. Calculating hard-to-kill mutant is accomplished with the ratio of tests that
identify its divergent output over how many tests cover it. A mutant is hard to kill
if it is killed only by a small proportion of the tests that reach it. Another category
defines the fault-revealing capability of mutants. It focuses on those mutants that
reveal the fault, such as that a behaviour a mutant produces is truly what is expected
from a program to behave, while an incorrect behaviour, in this case, is the one of
the original program.

Moreover, blindly using available mutants will lead to overhead in testing when
it comes to effort. A specific category of mutants that contributes to the overall
computation expense but they do not contribute to the overall analysis of testing
quality is called redundant mutants. The redundant mutant will always be redundant
if there exist other mutants distinguished with the same test. Plus, redundant mutants
provide noise to the overall mutation adequacy score, consequently providing the
noise into a comprehensive observation of test suite quality. Redundant mutants
contribute to the overall computation cost because they are numerous, and to analyze
them, one would require additional tests to be executed. To deal with redundant
mutants, the category of subsuming mutants is born.

2.2.3.1 Subsuming Mutants

A mutant is adequate to consider if it can be a subset of other mutants, w.r.t.,
does it have disjoint behaviour from other mutants. The measurement is conducted
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by studying whether the mutants have similar killing conditions, which means
distinguishing between a set of mutants leads to determining its subsumed set.
Specific mutants that form a set and subsume all other mutants are a representative
set of all mutants. The literature accepts a subsuming set of mutants as a minimal
set of mutants bypassing mutant redundancy [32,42,43].

Following mutants subsuming relations aims at finding the minimal set of mutants
required to cover all (killable) mutants [44]. Intuitively, this set of mutants has
minimal redundancies and represents a nearly optimal mutation testing process with
respect to cost [29,32]. A mutant M1 subsumes a mutant M2 if killing M1 implies
killing M2, i.e., if fulfilling the requirement represented by M1 means fulfilling the
requirement represented by M2. More formally, let us consider that M1, M2, and
T be two mutants and a test suite, respectively. Consider also that T1 ⊆ T and
T2 ⊆ T are the set of tests from T that kill mutants M1 and M2, respectively, where
T1 ̸= ∅ and T2 ̸= ∅ indicating that both M1 and M2 are killable mutants. We say
that mutant M1 subsumes mutant M2, if and only if, T1 ⊆ T2. In case T1 = T2, we
say that mutants M1 and M2 are indistinguishable. The set of mutants that are
both killable and subsumed only by indistinguishable mutants are called subsuming
mutants. For instance, assuming that T1 = {t1, t2} and T2 = {t1, t2, t3}, one can
notice that every time we run a test to kill mutant M1 (i.e., t1 or t2) we will also kill
mutant M2. While vice versa does not hold since if we kill mutant M2 by t3, we will
not kill mutant M1. In this case, we say that M1 subsumes M2.
2.2.3.2 High-Order Mutants

Depending on the number of mutation operators we apply to the one instance
of the original program, we can categorize the mutants by the number of simple
changes one has to introduce in the original program to form one mutant. That is,
first-order mutants (FOM) are obtained by making only one simple syntactic change
to the original program. Second-order mutants (SOM) are obtained by making
two syntactic changes to the original program (or applying one additional mutation
to first-order mutants). In the general case, higher-order mutants (HOM) [45] are
produced after the successful application of n mutations to the original program.

At the time of the inception of the technique, using higher-order mutants in
mutation testing was not considered viable because of the Coupling Effect proposed
by DeMillo et al. [10]. It stated that “Test data that distinguishes all programs
differing from a correct one by only simple errors is so sensitive that it also implicitly
distinguishes more complex errors”. However, later on, Offut et al. [37] defined first-
order mutants as simple faults while characterizing higher-order mutants as complex
artificial defects able to capture more complex internal program state infection.

Determining the right location and type of mutants to apply, and deciding if
mutants are relevant for the testing activity is part of ongoing research, and typically
is up to a software tester and the tools selected to make a decision.

2.2.4 Mutant-Fault Resemblance
In the program development iterations, developers often go through many cycles

of implementation carving. As previously said, programmers are competent that
have a rough idea of what errors are most likely to occur.

Besides systematically generating code-grammar mutations, research has proposed
to mimic and learn a fault pattern observed in some error-occurring program instances,
seeking to bring program behaviours even more, closer to real faults. Advances in
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data mining proposed techniques to mimic real faults, and advances in machine
learning proposed techniques to learn how to seed faults based on bug fixes, such as
to craft "natural" faults by replacing code tokens based on deep learning language
models code embedding of what caused real faults. An argument often used in favour
of "natural" faults is the tester’s ability to understand them better.

The number of possible mutations to generate has been regulated differently
based on the utilised techniques and accompanied fault-seeding tools. The question
that often occurs is how to deal with design choices, e.g., when to stop the generation
of mutants, and at which mutants are the most similar to real faults.

Two types of metrics are usually used to decide on the mutants’ quality and
evaluate the resemblance of a mutant to a real fault: syntactic and semantic similarity.
Intuitively, syntactic similarity refers to the distance between the text representations
of the mutant and the real faulty code, while semantic similarity to the program
behaviour similarities between the mutant and the real fault.

Note that mutants’ syntactic and semantic similarities vary from 0 to 1. Similarity
0 represents a mutant completely syntactically dissimilar to a fault or a mutant
that semantically does not lead to a fault. While score 1 illustrates that the mutant
is syntactically the same as a fault or semantically recreates an actual fault. By
selecting semantically similar mutants, a developer would write a test that would
find a fault mutant recreates.

2.2.4.1 Syntactic Similarity

One of the widely used scores to compute the syntactic similarity between two
sequences of tokens, w.r.t., code elements, is Bilingual Evaluation Understudy (BLEU)
score [46], which is often used for quantifying machine-translated text in Natural
Language Processing (NLP) [47–50]. Given a candidate and reference code, the
BLEU score takes the candidate text, breaks it into n-grams, w.r.t., characters or
sub-strings, and computes how many n-grams appear in the reference text. The
geometric mean of all n-grams up to 4 is often used in the literature [51]. Besides
the BLEU score, syntactic similarity can be captured with additional metrics. One
example is Cosine and Jaccard Similarity Coefficient. Cosine similarity1 is a metric
used to determine how similar a reference and a candidate text are, irrespective
of their size. The metric requires sets of the word counts of two input texts and
measures the cosine of the angle between two vectors projected in a multi-dimensional
space. The Jaccard Coefficient metric2, measures similarity between two observed
sample texts by calculating the size of the intersection tokens divided by the size of
the union of the sample sets.

2.2.4.2 Semantic Similarity

To compute the semantic similarity, researchers often resort to dynamic test
executions since capturing all program behaviours is an undecidable problem. The
most popular approach is to compute the similarity of the passing and failing tests.
Figure 2.2 depicts the semantic similarity between a fault and a set of mutants. The
Ochiai coefficient [52] calculation is a common practice in many different lines of
work to represent semantic similarity, including mutation testing [45,53,54] and goes
as far as to program repair [55] and code analysis [56] studies. The Ochiai semantic

1https : //en.wikipedia.org/wiki/Cosine_similarity
2https : //en.wikipedia.org/wiki/Jaccardindex
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Figure 2.2: Semantic similarity. Mutant M0 perfectly resembles (semantically) fault B,
while M1, M2 and M6 resemble it partially. M6 resembles B better than M2 and M1 since
it correctly detected 2 out of 3 cases that detect either B or M6, while M2 detected 1 out
of 3 cases and M1 1 out of 2. M1 underestimates test effectiveness as it does not capture
t1, M2 does not capture t0 and overestimates effectiveness as it mistakenly captures t2,
while M6 mistakenly captures t2.

similarity coefficient compares the behaviour given two program versions and their
accompanied reference test suite.

The Ochiai coefficient represents the ratio between the set of tests that fail in
both versions over the total number of tests that fail in the sum of the two. More
formally, let P1, P2, fTS1 and fTS2 be two programs and their respective set of
failing tests, then the Ochiai coefficient between programs P1 and P2 is computed as
Ochiai(P1, P2) = |fT S1∩fT S2|√

|fT S1|×|fT S2|
, where |·| denotes the set size. A mutant M resembles

fault B, if and only if its semantic similarity is equal to 1, i.e., Ochiai(B, M) = 1.
Another metric often used to approximate semantic similarity is defined as FDP,

w.r.t., fault detection probability. This metric is also a probabilistic form of fault
coupling, as it is a target metric of fault seeding that measures the subsumption of a
real fault by a mutant, in the context of mutation-guided testing. Table 2.1 provides
the overview of fault detection probability, where a real fault B is identified by the
tests that detect a seeded fault M . The metric is, therefore, computed as the ratio
of the number of tests detecting both M and B to the number of tests detecting
M . Precisely, FDP (B, M) = |fT SB∩fT SM |

|fT SM | , where fTSB and fTSM denote the set
of tests detecting the fault and killing the mutant, respectively.

Table 2.1: Semantic similarity between the real fault and the mutants captured from
Figure 2.2. Mutant M0 perfectly resembles (semantically) fault B.

Tests t0 t1 t2 t3 t4 Ochiai(B, Mi) FDP (B, Mi)

Se
ed

ed
Fa

ul
ts

B ✓ ✓ - -
M0 ✓ ✓ 1.00 1.00
M1 ✓ 0.70 1.00
M2 ✓ ✓ 0.50 0.50
M3 ✓ ✓ ✓ 0.40 0.33
M4 ✓ ✓ ✓ 0.00 0.00
M5 ✓ ✓ ✓ ✓ ✓ 0.63 0.40
M6 ✓ ✓ ✓ 0.82 0.66
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Example of Semantic Similarity provided in Table 2.1. Let B be a real
fault, M = {M0, . . . , M6} a set of mutants and T = {t0, . . . , t4} a set of test cases.
Figure 2.2 depicts the mutant killings of T and M . We observe that tests t0 and t1
detect fault B. Particularly, mutant M0 is killed by the same tests, t0 and t1, resulting
in a semantic similarity with the fault B equal to 1. Mutant M1, is killed by test t0
that also finds fault B, but is not killed by test t1, and thus its semantic similarity is
Ochiai(B, M1) = |{t0}|/

√
|{t0, t1}| × |{t0}| = 1/

√
2× 1 = 0.71. Mutant M2 is killed

by tests t1 and t2, so its semantic similarity is Ochiai(B, M2) = 1/
√

2× 2 = 0.50.
The semantic similarity between mutant M3 and the fault B is 0.40 (Ochiai(B, M3) =
1/
√

2× 3 = 0.40). Semantic similarity of M4 is 0, since all tests killing mutant M4 do
not detect the fault. Mutant M5 is killed by all tests (t0, . . . , t4) and has a semantic
similarity of Ochiai(B, M5) = 2/

√
2× 5 = 0.63. Notice that mutant M6 is killed by

tests t0, t1 and t2, where 2 of them also find the fault, leading to a semantic similarity
of Ochiai(B, M6) = 2/

√
2× 3 = 0.82. Table 2.1 summarises the Ochiai coefficient

between the mutants and the real fault B.

2.2.5 Mutation Testing Tools
Grammar-Based Mutation Testing Tools

Over the years, many grammar-based mutation testing tools have been proposed
to generate mutants by either mutating source code or lower-level intermediate code
representation. All those tools have been identified, in detail described and compared
in different empirical studies and surveys [8, 22,57]. Yet, one mutation testing tool
has been predominantly used.

PiTest (PIT) [58] has been continuously recognised as a state-of-the-art mutation
testing tool for Java language that works by analyzing bytecode sequences and
by looking for a possible location, i.e., instruction, to seed faults, using syntactic
transformation rules (aka mutant operators). The mutation operators are categorized
into 29 task-specific distinct groups. Examples of groups include Conditionals
Boundary and Return Value mutators, which seed variations concerning relational
operators and method call return values. PiTest has over 120 mutant operators,
among which are many experimental mutants used for scientific purposes.

Learning-Based Mutation Testing Tools
Recently, many different approaches and associated tools emerged in pursuit of

mimicking real faults and in an attempt to learn faulty patterns, see Section 2.2.4.
IBIR [54] is, at the time of writing, a state-of-the-art fault seeding tool that

uses an information-retrieval-based fault localization model (IRFL) combined with
automatic program repair inverted fix-patterns. It favours the generation of few
but realistic natural mutants. It takes as input the git repository of the program to
mutate and a bug report, written in natural language and seeds faults (introducing
multiple faulty versions) that emulate the fault described in the bug report.

IBIR starts by analysing the given bug report using IRFL [59] to identify locations
that are likely to be related to the features impacted by the corresponding fault. It
then applies fault patterns on the identified locations, which are inverted fix-patterns
used in pattern-based automated program repair approaches [54]. As the fix patterns
are crafted from real bug-fixes, their inverse would induce faults similar to real faults.
IBIR repeats this process until it exhausts all pre-defined patterns.
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µBERT [60] is a mutation testing tool that uses a pre-trained language model
(CodeBERT) to generate mutants by masking and replacing tokens. µBERT takes a
Java class, extracts tokenized expressions, which are then masked for token replace-
ment (mutation), e.g., for binary expressions µBERT masks the binary operator, and
invokes CodeBERT to complement the masked sequence. For instance, in sequence
int mid = (low + high) / 2; µBERT mutates the variable name expression low
by feeding CodeBERT with the masked sequence int mid = (<mask> + high) /
2;. CodeBERT predicts the 5 most likely tokens to replace the masked one, e.g., it
predicts low, mid, Low, high, and medium for the given masked sequence. µBERT
uses these predictions to generate mutants by replacing the masked token with
the predicted ones (5 mutants are created per masked token). µBERT discards
non-compilable mutants and those that are syntactically the same as the original
program, which are the cases in which CodeBERT predicts the original masked token
(aka duplicated mutants [40]).

DeepMutation [61] generates mutants by employing Neural Machine Translation
[51] a.k.a., NMT, which is also used by many recent studies [48,62–64]. It uses an
NMT model trained on a large corpus (∼787k) of existing bug-fixing commits mined
from GitHub repositories. It takes a Java method as input and outputs a mutant.

In particular, every method is abstracted, in which the user-defined variable
names and literals are replaced by predefined identifiers to obtain an abstracted code
representation. These abstracted code representations are then input into the trained
NMT model to produce abstracted mutants. The user-defined variable names and
literals are restored to obtain source-code mutants.

The studies under this dissertation use the publicly available trained model of
DeepMutation [65] to generate the mutants and src2abs [66] tool to perform the
abstraction process. We followed the guidelines [61] and used beam search to generate
10 mutants per method.

2.3 Testing Evolving Systems
In modern software development, many developers contribute, w.r.t., commit code

changes to the common-code base through the practice called Continuous Integration
(CI). This contribution is shared among many developers through automatic chrono-
logical procedures of merging, building and testing software, eventually resulting in
the development life cycles of a Continuously Evolving System [21].

Software evolves for many reasons, e.g., due to new features, bug fixes, code
refactoring etc. Moreover, software systems evolve frequently due to ever-emerging
program requirements that continuously adapt to user needs and the never-ending
attempts to capture complex real-world environments. Hence, it is pertinent to
provide strategies and approaches to analyze the impact of the program changes.
Program changes result in behavioural changes usually captured through test suites.
Regression testing helps in this respect by re-running the test suite on the altered
version of the code to ensure that the developed functionality behaves as expected.
Simultaneously, developers’ attention rests on whether will any test case fail since
it will indicate that altered/new functionality breaks what was until that point
considered a stable system. Hence, after appending a change to the shared code
base, every developer’s primary concern and interest is whether modifications behave
correctly not to cause breakage scenarios, plus whether modifications are tested
enough such that in the future they do not be the cause of breakage scenarios.
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Figure 2.3: Typical evolution of software and its test suite depicted through four versions
(v1 to v4) of a program (main) and its test suite (test). The green portions of the program
(main) symbolize the program changes (e.g., a commit-change), and the explosions symbolize
the mutants injected into the program. In the test suite (test), ti symbolizes a test case i,
and the green rectangles represent changes in the test suite (i.e., addition and modification
of tests). The test suite and source code evolve as the program evolves through versions.
As the size of the program increases, we can observe that the number of mutants increases
as well. This eventually leads to a substantial number of irrelevant mutants that result in a
waste of effort since the change does not impact their behaviour. In the figure, red mutants
are irrelevant, while yellow mutants are impacted by the committed change. Notice that
focusing only on commit-relevant mutants reduces the number of requiring attention and
potentially leads to significant cost reductions. Additionally, the set of commit-relevant
mutants can potentially quantify and capture the extent to which practitioners have tested
the program behaviours affected by the change.

All-around, with every potential new code version, developers assume the previous
version is operational, stable, and has the correct behaviour if all tests were passed
successfully. Therefore, developers are interested in testing the delta between versions
and establishing confidence that the system behaves as expected. Unfortunately
- and what comes to be continuously surprising - regression issues arise from the
unforeseen interaction between changed and unchanged code.

This dissertation argues that in testing evolving systems it is not only about what
we are expecting; it is also about what we are not expecting. New tests need to stress
new code increments, and an existing test suite needs to be evaluated on the premise
of how well it can distinguish wanted and unwanted software behaviours impacted by
the program code changes. The change-aware criteria would be a desirable solution,
such as to quantify test suites’ ability to test the error-prone program behaviours
affected by code changes. That being said, this dissertation strives to utilize the
power of Mutation Testing and versatile erroneous mutation output as a robust
fault-based testing criterion and bring this testing technique to change-level testing,
a.k.a. commit-level, suitable for Evolving Systems.

2.3.1 Continuous Testing
As the software evolves, the test suite also evolves. Concretely, as the program

changes, new tests are added, or old tests may be modified to exercise those changes.
Figure 2.3 illustrates the evolution of a program and its test suite during a typical
software development process, showing changes in four versions of the program source
code and the test suite. Each version can incorporate changes like new functionalities,
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modified functionalities, code refactorings or bug fixes etc. These alterations, a.k.a
commit changes, locate in code source files (main), and they are usually - at least they
should be - followed by extended or altered test source files for testing introduced
commit changes (the figure refers to them as test).

It is important to understand; how to test the program change, if it is enough to
test only the changed lines, as well as how many test requirements and test cases are
needed to analyze. Previous works [67,68] have shown that many severe integration
issues arise from unforeseen interactions triggered between the introduced change
and the rest of the software. Notably, developers are burdened with the challenge of
testing evolving systems, specifically, how to effectively analyse the difference in the
program behaviours induced by their changes. A common approach to address these
challenges is to leverage code coverage information, i.e., analyzing changed code
statements or code elements having some sort of dependency on what is changed.
Yet, the coverage information does not quantify to which extent the change has been
tested and does not disclose unexpected behaviour impacted by the change, which is
often overlooked. These are the main challenges of regression testing.

Therefore, there is a need for change-aware test metrics to guide effective regression
testing and allow developers to quantify the extent to which they tested the error-
prone program behaviours affected by their changes. This dissertation plans to use
mutation testing to capture these interactions by targeting suitable mutants that
demonstrate an (implicit) interaction between the changed lines and the unmodified
part of the program (i.e., the code outside the change). These mutants form the
change-relevant requirements and should be used to determine whether test suites
are adequate and provide guidance in improving the test suite.

As the software evolves, the codebase becomes more complex and prolonged. We
can observe in the figure this linear relationship between the lines of code and the
number of mutants generated for each program version (referred to as explosions in
the figure). When software approaches maturity, the number of potential mutants
is very high. For visualization, observe versions 2 and 3 in the figure compared
to version 1. If we assume that in the provided depiction, the interval of changes
between versions is reasonably short, analyzing all mutants per version becomes
costly. The number of mutants (both red and yellow in the figure) is independent
of the program changes; it is actually dependent on the size of the program version
and increases as the size increases. Hence, traditional mutation testing will be costly
in general, since it uses more mutants than required. More importantly, analyzing
mutants that are not relevant to what is actually changed in the code introduces
noise in the change-aware testing activities.

2.4 Mutation Selection
The mutation testing process incorporates the activities of mutation-selection

aiming to reduce the number of potential mutation candidates. To avoid a large
number of mutants, if not infinite, the mutation testing process requires specifying a
set of mutation operators to instantiate mutants. Designing and deciding on mutant
operators greatly depends on the programming language, application in question,
type of expected software defects, code, data or interface testing etc. Many different
tools for code mutation have been released (see Section 2.2.5), and each cherishes
its own set of mutant operators. Some shared operators target code expressions
concerning Conditional Operators, Arithmetic Operators, Relational Operators and
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many others. Due to a plethora of mutants operators, one of the first occurring and
well-studied mutant selection strategies is based on the mutants operators. The idea
is that some types are more important than others and that the mutant generation
should always be performed by selecting a specific set of mutant operators from
which to generate mutants [41].

Depending on the application of mutation testing, whether performed for test
assessment, or guidance for test generation, further reduction in the number of
mutants is usually required - yet, keeping in mind to not lose mutation effectiveness
by narrowing the scope of mutation. Naturally, one of the most used approaches to
perform reduction is to randomly sample mutants w.r.t., sampling 10%, 20%, 30%,
50% etc. of generated mutants. Although it looks simple, the approach loses the
mutation testing fault detection effectiveness [69]. However, studies showed that
randomly sampling 5% sufficiently represents the population in terms of mutation
score [70]. Note that randomly sampled mutants are evenly distributed, which is
reported to be vulnerable to the subsuming mutants, as a category of mutants that
bypasses the noise of traditional mutation score and emphasises the importance and
quality of mutants that represent a.k.a., subsume, all the others [68].

However, opinions on selection strategies are still divided up to this day, as some
argue that the selection of mutants requires to be guided by anticipated quality and
that mutant seeding should be in the program parts that are likely to be faulty or
can influence program output, e.g., branch statement, return variables etc. Another
broad opinion, especially in industry settings and concerning testing evolving systems,
is to create and analyse mutants only on the lines where the code has been changed,
thus hoping to capture the interaction between changed and not changed code.

Overall, all selection strategies lead to attempts at some sort of ranking of mutants
based on their specific importance. By ranking mutants, practitioners will customise
the analysis on only a certain number of mutants taking into consideration needs,
usually related to available time and resources. More recently, many approaches
emerged that integrate intelligence into the selection and ranking of mutants, such
as utilising the power of machine learning approaches.

2.4.1 Learning-based Selection
Selecting mutants of high quality is not a trivial task. Yet, with the advances in

machine learning, several mutation selection approaches emerged that, by learning
the labelled ground-truth of mutants’ characteristics, are able to predict the same
in the future. Learning-based approaches attempt to rank the mutants by their
probability of being representative of the set of mutants on which ML models, a.k.a.,
algorithms are trained. The ranking is often directed by an engineered set of different
categories of static code features that characterise a mutant with respect to code,
e.g., type, line, statement complexity, branch block etc. After representative features
are fed into multi-dimensional latent space, a non-linearity can be drawn, classifying
mutants of interest over those of no interest. Machine learning model power is to
learn this distinction during the process of training by seeing characteristics of all
categories of mutants used for the training. Following the trial-error-adjust practice,
the learning-based approaches bring mutants of a category of interest close together
in the latent space. After the training, when the learning is finished, a model is ready
to associate a probability to a mutant being close to a certain category of mutants
of interest based on its characteristics used for training the model.
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2.4.2 Developer Work Simulation
To compare different types of mutants, e.g., in correspondence with fault detection,

or to compare different mutation testing techniques, the practice of simulating real
developer work has often been conducted. This practice includes standard developer
work of selecting a mutant and writing a test to kill it. It is simulated since, due
to effort required in time, it is unrealistic to assume the human feedback on the
large scope [8]. Such simulation has been recognised by the community and has
repeatedly been utilised as real work simulation. More precisely, it starts with an
initial - usually empty - test set and the set of mutants not detected by those tests.
The next step is to select a mutant - usually with high priority given by some strategy
- together with a randomly selected test (without replacement) which is added to
the test suite, and the mutant is discarded as satisfying the test requirement. The
simulation is repeated until meeting the guiding function of detecting all mutants.
Some mutants cannot be killed as they are functionally equivalent to the original
program; thus, they are discarded by the developer. Hence, the thoroughness of a
test suite is measured in terms of its mutation score, computed as the ratio of killed
mutants over the total number of generated ones, or in the case of fault detection,
computed as a ratio of tests identifying existing faults over several repetitions to
remove the threat of randomness.

2.5 Additional Definitions
The studies conducted in this dissertation make use of different kinds of statistical

tests and bivariate analyses to quantify and, with confidence, measure whether
data support a particular hypothesis. In particular, this dissertation uses Wilcoxon
non-parametric statistical tests to measure whether the values of one group sample
are different from the values of another group sample. The test outputs the p-value,
which is a measurement that helps decide whether there is no real effect/difference
between the compared groups (a.k.a null hypothesis). The value ranges between 0
and 1, where a lower p-value indicates that there is a statistically significant difference
between the compared groups and attributes confidence that the difference is not due
to chance alone. The significance level often used to decide on the difference is 0.05
(a.k.a, alpha), leading to a confidence level of 95%. Alpha is usually defined before the
analysis starts. Depending on the data types and the analysis, this dissertation also
uses the Mann-Whitney U test to decide whether there is a statistically significant
difference and whether one observed group has higher or lower values than another
observed group. In contrast, this test observes independent samples of data, meaning
an observation from one sample is not paired with the associated observation from
another sample. This dissertation uses the same alpha levels, 0.01 and 0.05, to
calculate significance.

To calculate whether two observed sets of data show any mutual correlation or
relationship, in this dissertation, we use Kendall rank coefficient τ (Tau-a), Pearson
product-moment (r) and Spearman correlation coefficient. Each of those correlation
coefficients quantifies and summarises the strength and direction of a relationship
between two variables. Values of the analysis are in the range from -1 to 1, where
values close to both ends represent negative and positive correlations, respectively.
While values in a range of absolute 0.2 around zero denote absence and insignificant
correlation, while values higher than absolute 0.2 indicate a moderate or strong
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relationship between two observed variables. In all cases, we also use the p-value to
measure the significance of the results.

To evaluate the magnitude of difference between observed groups, we calculate the
Vargha and Delaney A12 effect size [71]. A12 values over 0.56, 0.64 or 0.71 indicate
a small, medium or large difference between the two populations, respectively.
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3
Related Work and Evolution of Progress

This chapter contains information on the solid grounds of related work on which this
dissertation builds. Special care was taken to thoroughly cover all related published
work up to the time of conducting and writing the studies of this dissertation.
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Chapter 3. Related Work and Evolution of Progress

3.1 Mutants as Real-Faults representation
In this section, we discuss the empirical studies related to mutants-real faults

syntactic similarity and mutants’ behavioural closeness with the real faults. This
section mainly relates to the first contribution described in Chapter 4.

Mutation Testing is widely used in experimental studies as a way to compare
and assess testing techniques since it serves as a valid substitution for real faults
occurring for a program under test [8]. The technique assumes that seeded faults
include properties that are in some sense similar to real ones [72]. Interestingly, it
introduces faults that are syntactically simple and are quite different from real faults
that are in their majority more complex [8, 36]. In particular, the study of Gopinath
et al. [36] provided empirical evidence showing the misalignment between seeded and
real faults that are produced by traditional mutation operators and concluded that
real faults are rarely equal, syntactically, to mutant faults.

To deal with this observation and motivated with the aim to bring seeded faults
closer to programmers understanding, Brown et al. [73] proposed inferring fault
seeding patterns, w.r.t, mutation operators, by using historical fault-fixing commits.
The idea was to form - syntactic - fault patterns that resemble - in terms of syntax -
real historical faults. The results show that syntactic fault patterns can be mined from
code versioning systems, and these differ - syntactically - from those used by modern
mutation testing tools. Roughly since the time when Gopinath et al. [36] provided
the empirical evidence, until this moment of writing, clear trend and practitioners’
positioning can be observed towards mutants-faults similarity [28, 51, 61, 73–78] - see
Table 6.1 for a tabular view of the clear trend in proposed approaches and techniques.
Motivated by advances in data mining and machine learning, practitioners lean
towards the assumption that the more syntactically similar the seeded faults are to
the real ones, the more they resemble them semantically. Suggesting the relationship
between these metrics.

In short, DeepMutation [61], a neural machine translation technique [51] that
automatically infers fault patterns from historical fault-fixing commits, was proposed.
It was shown that DeepMutation resembles exact matches of 45% of real faulty
cases while achieving relatively good syntactic similarity scores in most of the cases.
SemSeed [77] aims to infer faulty patterns from bug fixes and to generalize them
by appropriately adapting them to the particular local code, i.e., context. More
recently, mutation monkey [28] was built by mining frequently occurring faults from
complex changes that caused operational issues at Facebook [28]. The analysis
of these faults indicated they were good at finding holes and missing tests in the
systems under test. Consequently, language models pre-trained on code stirred tasks
such as code mutation while using syntactic matching to derive the context and
evaluate code manipulation [74,75]. Interestingly, the above studies aim at mimicking
- syntactically - real faults, and as a result, they have been evaluated with “static”
syntactic-nature metrics such as syntactic similarity.

Overall, the observed trend raises the question of whether such syntactic-distance
metrics are suitable to capture mutants’ behaviour and guide tasks in dynamic
analysis, such as those in mutation testing, i.e., incorporating realistic semantic fault
properties, and moreover, how they compare with traditional mutation testing. All
these form open questions that this dissertation investigates in the scope of its first
contribution related to the real faults-mutants behavioural properties.
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3.1.1 Fault Coupling
Since its origin, traditional mutation testing has aimed at seeding faults using

simple syntactic changes [10, 79, 80]. Showing empirical evidence of the coupling
effect, DeMillo et al. [10] state that simple faults subsume almost all the complex
ones [37]. Meaning that a test that identifies a simple fault, at the same time, is able
to recognise a more complex fault [72]. Offut et al. provided a general assumption
about the ”size” of faults [81], suggesting that seeded faults, even often with small
syntactic distance from the original program, introduce semantic deviations which
form valuable test requirements [82] and have a high fault revealing potential [29].

While traditionally mutants are seeded by performing simple syntactic changes
in the programs, real faults are in their majority more syntactically complex [36, 83].
As described in the previous section, recent studies aim to introduce mutants that
are complex and look like being similar to real faults, holding the assumption that
such techniques produce mutants of high quality, i.e., that have high real fault
detection ability. In particular, it was proposed to form mutation operators based
on fault-fixing commits [61,73] or recurrent real fault instances [28,54].

Knowing the portion of mutants with high fault detection probability provides
additional insights into different techniques, mutants’ fault-related utility and opens
further directions for their studies. Over the years, we witnessed several mutation
testing approaches competing for the state-of-the-art throne. Those approaches gave
birth to tools that can be further categorised as Grammer-Based Mutation Testing
Tools and Learning-Based Mutation Testing tools (see Section 2.2.5).

The relation between mutants generated by different grammar-based mutation
testing tools has also been studied [8,84], and showed that PIT, which this dissertation
uses for its studies, is the most effective tool today and produces mutants of the
highest quality [57]. However, previous studies compare the effectiveness of mutation
testing tools and draw conclusions under the assumption that every mutant has the
same probability of being selected, that is, under a standard mutant selection policy.
Therefore, the coupling between seeded faults has also been considered a source of
bias in mutation testing studies as it introduces large overlaps between the seeded
fault instances [32,45,68]. Recently, learning-based approaches emerged to question
how to optimally select subsuming mutants and discard that subsumed [63]. Those
studies have resulted in powerful techniques for cost-effectively selecting mutants, i.e.,
by avoiding the analysis of redundant mutants (basically, equivalent and subsumed
ones). This makes it a promising technique to remove the noise of each of the
techniques and allow focusing only on the mutants of the high-quality and their
corresponding fault detection ability.

Overall, raising questions about how the effectiveness of mutants - arriving
from different approaches - is compared when using learning-based approaches for
their selection. This dissertation studies these questions in detail as a part of the
contribution found in Chapter 8.

3.2 Regression Mutation Testing
The field of regression testing investigates how to automatically evaluate evolving

software systems to avoid regression bugs occurring due to code change. Researchers
have been proposing approaches in this field for a considerable interval of time [31].
Indeed, applying mutation during continuous testing has long been proposed but,
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unfortunately, hasn’t been studied thoroughly. In particular, among a few studies
that occurred, Zhang et al. [85] proposed Regression Mutation Testing, a technique
that speeds up mutant execution on evolving systems by incrementally calculating
the mutation score (and mutant status, killed/live) by only considering mutants on
execution traces affected by changes. As such, they assume that testers should use
the entire set of mutants when testing evolving software systems. Another study that
takes into consideration evolving nature of modern software is the study of Predictive
Mutation Testing [86, 87]. The goal of predictive mutation testing is to estimate
the mutation score without mutant execution using machine learning classification
models trained on different static features [87].

Furthermore, existing mutation testing tools, such as Pitest [58], include some
form of incremental analysis in order to calculate the mutation score (and mutant
status, killed/live) of the entire systems or class under test.

Overall, it should be clear that a few existing techniques are either targeting
the entire set of mutants or those located in the modified code areas. All proposed
approaches are focused on speeding up test execution and approximating mutation
score computation for testing evolving software systems. In contrast, this dissertation
- Chapter 5 - focuses on identifying the test requirements - mutations - relevant
and impacted by the program changes. Moreover, such a set of mutants provides a
refined and exact change-aware mutation testing score that provides developers with
mutation-based test assessment to capture changed program behaviours and thus
evaluate to what extent code modification is tested.

3.2.1 Diff-based Commit-aware Mutant Selection
Following a similar line of work, Cachia et al. [88] proposed an Incremental

Mutation Testing that limits the scope of mutant generation to strictly changed
code regions since the last mutation run. Therefore, holding the assumption that
in order to test a code change, it is sufficient to test lines impacted by the change.
Similarly, Petrovic and Ivankovic [26] proposed a diff-based probabilistic mutant
selection technique that focuses only on the mutants located within the program
changes. The mutations within the code change are used for the purpose of the
code-review phase by randomly picking some mutants located in the altered code
areas. These approaches differ from the approaches introduced as main contributions
in this dissertation as they ignore the program dependencies between the committed
changes and the unmodified code by design, plus they lack to provide a quantifiable
metric that captures the testing change-aware effort. The approaches described in
this dissertation - Chapter 6 - account for the dependencies between program changes
and unmodified code when identifying commit-relevant mutants to demonstrate the
extent to which using mutants from modified code can help.

3.3 Static and Dynamic analysis based Approaches
In this section, we discuss motivating related work in the areas of change impact

analysis, program slicing, interface mutation, and test augmentation.

3.3.1 Change-Impact Analysis
To accomplish the aim of this dissertation, it was necessary to refer to the works

that study how to analyze and test the impact of program changes on evolving
software systems. To this end, researchers have proposed several automated methods
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to assess the impact of program changes on the quality of the software, e.g., in terms
of correctness and program failures [31]. For instance, researchers have employed
program analysis techniques to identify relevant coverage-based test requirements,
specifically by analyzing the impact of all control and data dependencies affected by
the changed code to determine all tests that are affected by the change [89,90]. Unlike
these works, contributions in this dissertation focus on performing dynamic change
impact analysis employing commit-aware mutation testing. In particular, aiming
to empirically evaluate the properties, distribution, prevalence and effectiveness of -
subsuming - commit-relevant mutants.

3.3.2 Interface Mutation
Delamaro et al. [91] proposed an inter-procedural mutation analysis approach for

generating mutants that are relevant for integration testing, i.e., suitable for testing
the interactions between program units. In particular, Interface Mutation aims
at testing component integrations, it injects mutants on the component contracts
(interfaces) and pairs of them at the component call sites and related uses of the
interface parameter inside the components bodies in order to capture potential
interactions between the caller and called components. This mechanism of capturing
dependencies through pairs of mutants is, to the extent, the most similar to the
approaches proposed in Chapters 5 and 6, and relates to the identification of commit-
relevant mutants via High Order mutants, but more restrictive as it targets interfaces
- call sites and method parameter uses. The work presented by Delemaro et al.
demonstrates that inter-procedural program slicing is applicable for mutation analysis,
particularly for integration testing. In contrast, commit-aware mutation testing aims
at identifying relevant dependencies between changed and unchanged code and not
between components.

3.3.3 Program slicing
A related line of work regards the formulation of dynamic or observation-based

slicing [92–94]. These techniques aim at identifying relevant program statements
and not mutants [95, 96]. Though, they could be used in identifying relevant mutant
locations, in which every located mutant could be declared as relevant.

For instance, Guimaraes et al. [97] proposed the use of dynamic program slicing
to determine the subsumption relations among mutants, in order to detect redundant
mutants and reduce the number of tested mutants. In their evaluation, the authors
demonstrate that using dynamic subsumption relation among mutants reduces
mutation testing time by about 53%, on average.

3.3.4 Change-Aware Test Augmentation
This line of research aims to automatically generate additional test cases to

improve the fault-revealing ability of test suites and, thus, quality. This area is
particularly important and provided additional motivation for this dissertation due to
rapid software system changes requiring the generation of new tests that exercise the
program changes; as a vital practice to evaluate anticipated and unexpected software
behaviours. Researchers have proposed several test augmentation approaches to
trigger program output differences [98], increase coverage [99] and increase mutation
score [100, 101]. Some test augmentation approaches have been developed to ad-
dress code coverage problems using propagation-based techniques [102–105]. Other

33



Chapter 3. Related Work and Evolution of Progress

approaches employ symbolic execution for test augmentation by generating tests
that exercise the semantic differences between program versions by incrementally
searching the program path space from the changed locations and onwards; this
includes approaches such as differential symbolic execution [106], KATCH [107] and
Shadow symbolic execution [108]. These techniques rely on dependency analysis
and symbolic execution to decide whether changes can propagate to a user-defined
distance by following the predefined propagation conditions. Hence they are con-
siderably complex and computationally expensive, for instance, because they are
limited by the state explosion problem of symbolic execution. These studies are
complementary to the work done in this dissertation since the aim is to generate
additional tests to improve existing test suites. However, the presented contributions
in this dissertation focus on identifying suitable mutants, i.e., test requirements or
objectives such as lead to test augmentation that exercise code changes, albeit using
mutation testing.

3.4 Mutation Cost Reduction Solutions
In this section, we discuss motivating related work regarding the use and usefulness

of subsuming mutants, different categories and different strategies utilised for mutant
selection.

3.4.1 Useful Mutants Selection

Several researchers have studied the impact and prevalence of subsuming mutants
for traditional mutation testing [29, 32, 43, 97, 109, 110]. For instance, Alipour et
al. [109] demonstrated that subsuming mutants could reduce traditional mutation
testing efforts. In particular, their empirical study on mutation test reduction found
that subsuming mutants can reduce the number of mutants requiring analysis by up to
80%. Their study demonstrated the importance of subsuming mutants in traditional
mutation testing, emphasizing that there is strong inter-dependency among mutants.
In their empirical evaluation of traditional mutation testing involving four C projects
and thousands of mutants, they found that test case reduction based on N mutants
can reduce mutation testing effort (in terms of the number of mutant test executions)
by 33 to 80% [109]. Likewise, Guimarães et al. [97] empirically demonstrated
that identifying dynamic subsumption relations among mutants reduces traditional
mutation test execution time by 53%. More recently, Kaufman et al. introduced a new
measure of mutants’ usefulness named TCAP, which stands for test completeness
advancement probability [111]. TCAP is estimated with the probability of the
expected number of tests to be written in order to achieve mutation adequacy. Due
to the strong linear relationship between subsuming mutants and test completeness,
TCAP can be considered a dominator score and closely related to subsuming mutants
targeting the reduction of cost in traditional mutation testing.

However, despite the evidence of the impact of subsuming mutants on traditional
mutation testing and integration testing, their impact on commit-aware mutation
testing remains unknown. Thus, as one of the contributions, this dissertation studies
the prevalence and distribution of mutants relevant to a committed change and the
extent to which subsuming relations are maintained.
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3.4.2 Machine-Learning Selection
Among the first papers that utilise the power of machine learning for static

mutation selection is the work that introduces FaRM, a technique for selecting
fault-revealing mutants [112]. The work proposes that fault-revealing mutants, which
are killable and lead to test cases that uncover real faults, can be characterised and
learnt by the set of static code features. By learning to select and rank mutants, the
paper shows that with respect to mutants selection FaRM is able to identify 23% to
34% more faults than any of the baseline methods.

Recently, a few papers emerged that aim to learn the behaviour of mutants
with respect to their subsuming characteristics. Moreover, Kaufman et al. [111]
uses linear and random forest machine learning models to learn TCAP scores of
mutants based on their static features context similar to the approach of FaRM. The
reported results suggest that the prediction model can lead to the practical use of
TCAP as a mutant selection-stopping criterion. Next, Garg et al. [63] proposed a
machine-translation approach named Cerebro that learns the surrounding context
of a mutant instead of its static manually engineered features. The results show
that the approach is able to lead to strong tests able to kill 2 times a higher number
of subsuming mutants than the corresponding baselines using manually engineered
mutant features. Plus, the approach outperforms state-of-the-art by requiring 90%
fewer test executions.

Yet, the closest recent work that builds on the contributions of this dissertation
presents a machine learning and static analysis-based approach for predicting commit-
relevant mutants called Mudelta [113]. The technique illustrates the importance of
commit-aware mutation testing, particularly its ability to reduce mutation testing
effort and reveal commit-related faults while drawing attention to the ability of the
ML models to learn the mutant features in the C programming language on which the
study is conducted. In comparison to the random mutant selection, Mudelta reveals
45% more commit-relevant mutants and achieves 27% higher fault-revealing ability in
fault-introducing commits. Unlike this work, this dissertation defines and formalises
commit-relevant mutants, evaluates their relationship with traditional mutation test
criteria, emphasises the importance of commit-aware mutation testing, conducts
an in-depth empirical study to understand the characteristics of commit-relevant
mutants to shed more light on their properties and provide scientific insights for
future research in commit-aware mutation testing.

3.5 Mutation Testing in Practice
The motivating related work for this dissertation likewise came from several

reports and work from the industry. Google [26] applies mutation testing at scale,
providing 6.000 developers with diff-based mutants after each code change. The
company considers the effects of mutants as useful in attracting developer attention
and in assisting the code-review process. A study by Petrovic et al. [26] at Google
includes 13.000 code authors, the authors of the study report that after "70.000
commit diffs, testing 1.1 million mutants, the mutants surfaced 150.000 actionable
findings during code review". Moreover, they document that 75% of surfaced findings
developer feedbacks reported as useful, while many mutants caught actual bugs in
the code and improved tests suites such as to kill them. These results led Petrovic et
al. to more thorough studies related to the question of whether mutation testing
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would improve the testing practices at Google [26] and what are the challenges,
lessons and research directions for future industrial application of mutation testing.
Their work reports that after analysing how mutants influence developers over time,
they observed that it helps them to write more tests which consequently resulted in
the active improvement of the test suites. Moreover, the work also concludes that
the mutants relate to the real faults, as some of the real-high priority faults coupled
with the mutants, while some of the faults would be prevented if a mutant existed to
capture a code behaviour impacted by the change. Based on the study with 30.000+
developers and 1.9 million committed changes, the authors also report no significant
overhead to the software development process, while they emphasise and point out
the challenges caused by unproductive mutants, i.e., mutants that do not represent
a relevant test requirement to a code change, concluding that in studied context
achieving traditional mutation adequacy is, in their words, "neither practical nor
desirable".

Unlike all before-mentioned work, this dissertation delivers a novel change-aware
mutation testing approach that introduces relevant mutants as a separate category of
mutants that represents a set of productive, practical and desirable requirements to
evaluate the impact of a code change; plus, this dissertation is also arguing against
the noise introduced by the traditional mutation testing in the context of evolving
system by proposing the usage of learning solution to rank and prioritise mutants
based on their fault detection ability.
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4
Empirical Evaluation of Syntactic versus Semantic
Similarity of Mutants and Real Faults

The relationship between using syntactic or semantic distance metrics for evaluating
seeded artificial faults, a.k.a. mutants, in the context of mutation-test assessment has
not been well established due to a lack of empirical evidence. Researchers increasingly
make the assumption that seeding faults with syntactic patterns that are similar to a
real fault, results in mutants that are semantically similar to real faults and, thus,
more realistically capture their behavioural properties. We show this is not the case
and find no evidence suggesting any link between syntactic and semantic similarity of
real and seeded faults. Our results indicate that the semantic similarity is uniformly
distributed project-wise, exemplifying that behavioural properties of real faults cannot
be approximated by syntactic similarity, and establish that semantics is independent
of similar and dissimilar mutants w.r.t., significant syntactic changes do not imply
significant semantic changes, and vice-versa.

This chapter is based on the work published in the following journal article:

• Milos Ojdanic, Aayush Garg, Ahmed Khanfir, Renzo Degiovanni, Mike Pa-
padakis and Yves Le Traon, "Syntactic vs. semantic similarity of artificial and
real faults in mutation testing studies.", 2023, IEEE Transactions on Software
Engineering.
https://doi.org/10.1109/TSE.2023.3277564
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4.1. Introduction

4.1 Introduction
Fault seeding techniques, such as mutation testing, are extensively used in

controlled studies to evaluate and compare testing techniques [8,32]. These techniques
allow researchers to seed faults under experimentally controlled conditions and thus
perform reproducible test assessments. In a sense, by comparing the number of
seeded faults revealed by test methods, researchers can form a proxy metric that
approximates the fault-revealing potential of the performed testing [53,72,114].

Although popular, such techniques have been criticised for producing unrealistic
faults [36,51,73,77], i.e., faults that are significantly different from real ones in terms
of syntax [36], and as a result, numerous propositions have been made claiming to
produce seeded faults that are syntactically similar to real ones. The most recent
research, in particular, motivated by the code naturalness hypothesis [115]1, aims
at forming realistic faults that are, in fact, artificial faults that have some form
of syntactic similarity to real ones, i.e., usually following particular syntactic fault
patterns. We call this line of work as fault mimicking approaches.

Table 4.1 lists a set of recent fault-mimicking techniques that aim, in diverse
forms, at generating (syntactically) realistic faults. By inspecting the table, the
research trend becomes evident as these techniques seek the realism of fault-seeding,
which is defined and evaluated by some form of non-semantic metrics, i.e., mainly
syntactic-based metrics (number of tokens changed, BLEU score, etc.) from real
faults. This means that many studies are solely guided by syntactic metrics and
not semantic ones. Nevertheless, such approaches may indeed succeed at generating
some exact matches of targeted real faults and may indeed be effective in their
domain. However, since those fault mimicking methods are guided by non-semantic
metrics, a key question that remains is whether they are suitable for fault-based test
assessment [8], as is the typical use of mutation testing in research studies [8, 32, 72].

Mutation testing is based on the basis that fault seeding should be performed using
untargeted program syntactic changes [10,35,37]. These changes are defined using the
programming language grammar and are completely unaware of any fault semantics.
The key assumption is that simple syntactic changes, although syntactically dissimilar
to complex faults, result in semantic deviations that are coupled with complex and
real faults2 [9, 37] and can be used for test assessment [72].

In contrast, the key strategy followed by fault mimicking is to identify program
locations where fault opportunities emerge and perform relevant changes, following a
pattern observed in some fault instances, that alter the program behaviours similarly
to real faults. This implies an underlying assumption that seeding faults with frequent
syntactic fault patterns that have similarities with a real fault will result in faults that
are subtle or semantically similar to real ones. Similarly, another assumption is that
seeding faults that are syntactically dissimilar to real ones results in unrealistic faulty
semantics, i.e., the seeded fault semantics are quite different from those of real faults.

These assumptions may appear intuitive but have absence of evidence, except,
of course, in the case where seeded faults match exactly real ones. Early research
on the coupling effect [37] stated that “simple faults can cascade or couple to form

1Naturalness hypothesis states that programs exhibit properties similar to text and thus, natural
language process techniques can be used to support code analysis techniques.

2In this study, we use the term “real faults" to refer to the set of reproducible curated faults
provided at the Defects4J dataset [116]. Therefore, our results reflect the similarities between the
artificial faults and their corresponding curated fault.
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Table 4.1: Fault Mimicking Techniques

Approach Year Aim Evaluation metric Venue

Bug Creation for Neural Bug Detectors [74] 2022 Derive contextual mutation operators to inject more
realistic faults

Syntactic match ICST

A Study of Codex, Pre-Trained Language Model on
Code [75]

2022 Evaluate code manipulation and code generation
tasks such as code mutation

Exact syntactic match and manual analysis arXiv

Self-Supervised Bug Detection and Repair [76] 2021 Produce and detect hard-to-detect faults Syntactic match NeurlIPS

SemSeed: Token Embeddings [77] 2021 Derive syntactic patterns that are syntactically simi-
lar to real faults

Exact syntactic match ESEC/FSE

Mutation Monkey [28] 2021 Deriving common fault syntactic patterns Detection Ratio ICSE

A SBST Framework of Source Code Embedding [78] 2021 Generate adversarial code snippets that can fool a
downstream task

Number of tokens changed ICST

DeepMutation: Learning-based Mutations [61] 2020 Produce mutants syntactically similar to real faults Syntactic distance from real faults ICSE

Learning-based Mutations [51] 2019 Derive syntactic patterns from bug-fixes Syntactic distance from real faults ICSME

Wild-Caught Mutations [73] 2017 Deriving simple syntactic patterns from bug-fixes Token similarity, Compilability ESEC/FSE

Analysis of real faults and mutants [36] 2014 Syntactic similarities of bug-fixes and mutants Number of tokens changed ISSRE

other emergent faults“, implying that fault instances couple independently of their
pattern. Additionally, recent studies report large semantic overlaps between simple
and complex faults [32,45,68], questioning the role of the syntactic-based metrics.

This raises the question of whether syntactically similar, or dissimilar, faults are
also semantically similar, or dissimilar. More generally, a question of whether the
use of such techniques results in faults that: a) are semantically similar to real faults,
b) resemble (semantically) more faults than the dissimilar ones, and c) are subsumed
by simple untargeted syntactic deviations as done by mutation testing, i.e., whether
they form a useful addition to mutation testing.

We answer the above questions by employing four fundamentally different fault-
seeding techniques. These include PiTest [58], a popular mutation testing tool [57],
that uses simple syntactic patterns, IBIR [54], a mutation testing tool with manually
crafted fault patterns, DeepMutation [61], a deep learning-based tool that derives
patterns from real bug-fixes [51], and µBERT [60], a mutation testing tool that uses
a pre-trained language model (CodeBERT [117]). Hence, we investigate the ability of
all faults produced by these techniques to form similar semantic deviations as the real
faults of Defects4J V2 [116] and check their potential utility within mutation-based
test assessment.

Perhaps surprisingly, our results show that syntactic similarity does not reflect
semantic similarity, indicating that syntactic distance cannot be used as an evaluation
metric in the context of mutation testing. Additionally, our results show that the
real faults of Defects4J V2 can be semantically resembled and subsumed by µBERT,
PiTest, IBIR and DeepMutation faults, respectively.

Moreover, we also show that simple faults introduced by IBIR subsume almost all
faults introduced by other tools, being complemented in ≈ 2% by PiTest and µBERT.
Furthermore, when controlling the number of seeded faults, we find that µBERT
resembles similar number of real faults as PiTest, while IBIR keeps a significantly
higher ratio compared with the rest of the tools in ≈10%. Additionally, we find
that other techniques probably subsume DeepMutation, whose technique produces
significantly fewer mutants which are, at the same time, easier to kill (on average,
DeepMutation’s mutants are killed by 10 more tests compared to other tools).

Overall, we aim to raise awareness of the use of semantic and syntactic evaluation
metrics in fault seeding studies. Key contributions expose the use of syntactic metrics
and provide evidence related to the utility of recent fault seeding advances in the
test assessment context. The findings significantly improve our understanding on
the role of the faults’ syntactic nature with respect to program semantics and the
use of the semantic-based metrics in the context of fault-based test assessment.
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4.2 Motivating Example
We demonstrate the potential differences between syntactic and semantic de-

viations in fault seeding by using an example from the work of Tufano et al. [51].
Consider the following example3:
// Original ( abstracted ) code in abstract representation ( representation used by

Tufano et al .)
public TYPE_1 remove ( int index ) {

TYPE_2 < TYPE_1 > VAR_1 = this . VAR_2 . remove ( index ) ;
return null != VAR_1 ? VAR_1 . get ( ) : null ; }

In this example, the remove method first accesses one of the attributes of the
invoking object (this.VAR_2) and invokes the method remove recursively, saving
the result in variable VAR_1. Then, it returns null in the case that VAR_1 was null,
otherwise, it returns the result of invoking VAR_1.get(). Tufano et al. in their work
seed a fault that resembles exactly the real faulty instance, which is the following:
// Successful fault seeding by Tufano et al. (the fault resembles exactly the real

fault )
public TYPE_1 remove ( int index ) {

return this . VAR_2 . remove ( index ) . get ( ) ; }

The fault is caused because of the conditional check that is skipped and, indeed,
resembles a real fault made by developers [51]. In particular, this fault removes the
check on whether the result of the recursive call is null.

Consider now a particular fault seeded by “traditional” mutation testing, using
simple syntactic changes (e.g., generated by the REMOVE_CONDITIONALS 4

operator from PiTest [58]):
// Fault seeded using mutation testing , simple syntax - based mutation
public TYPE_1 remove ( int index ) {

TYPE_2 < TYPE_1 > VAR_1 = this . VAR_2 . remove ( index ) ;
return true ? VAR_1 . get ( ) : null ; }

This mutant replaces the condition null != VAR_1 by true, causing the guarded
statements (i.e. VAR_1.get()) to be executed irrespective of the condition.

Interestingly, by comparing the two faulty instances, one can easily observe that
they are syntactically different despite being semantically equivalent. One can also
observe that a simple syntactic transformation, such as the one used by mutation
testing, perfectly matches the complex transformation learned by Tufano et al. To
make the differences concrete, we can compute the BLEU scores (syntactic similarity
between seeded and real fault), i.e., the evaluation metric used by Tufano et al. [51],
and see that the returned scores are 1 and 0.48, respectively. However, as the
mutants are equivalent and resemble a real fault, their semantic similarity is 1 despite
the large difference in the BLEU scores.

The above example clearly shows that seeded faults do not necessarily need to be
similar to real faults in order to resemble them. At the same time, the above example
demonstrates the fault coupling [37], i.e., simple syntactic transformations, such as
those used by mutation testing, couple to more complex faults. In this particular
case, the transformation performed by mutation is significantly smaller than Tufano
et al. as it has a BLEU score (syntactic similarity from the original code) of 0.85,
while Tufano et al. has 0.39.

3this example was taken from [51, Figure 2] and demonstrates a successful case where the fault
seeded by Tufano et al. matches exactly a real fault.

4https://pitest.org/quickstart/mutators/#REMOVE_CONDITIONALS
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4.3 Research Questions
We start our analysis by recording the syntactic and semantic similarity between

seeded and real faults. We perform this analysis to understand the general relation
between seeded and real faults and check if there are any associations between these
two variables. The existence of such a relationship will provide evidence that fault
seeding techniques, instead of using grammar-based (simple) transformations as is
traditionally done in mutation testing, should attempt to form frequent fault patterns
and design fault seeding techniques guided by actual fault instances, in a sense follow
a similar path to static code analysis [118,119]. Therefore, we ask:

RQ1 How semantically and syntactically similar are seeded and real faults?

The answer to this question will provide evidence on the use of syntactic distance
metrics in evaluating fault seeding methods in the context of mutation-based test
assessment. More precisely, whether seeded faults with small (or big) syntactic
distance from the actual faults are indeed semantically close (or far) to actual faults
(at least closer than those not syntactically similar).

Syntactic evaluation metrics are used by recent research (Table 4.1), and there
is no empirical evidence of their suitability in test assessment. This means that we
want to check whether the techniques of Table 4.1 could be used in mutation testing
studies and whether syntactic distance metrics are appropriate in this context.

Answering the above question aims to investigate general trends among seeded
and real faults. However, it does not say much about the extent to which real faults
are resembled by seeded ones and does not provide quantitative evidence on the real
faults that can be resembled (have high semantic similarity) by syntactically close
and far-seeded faults. Thus, we ask:

RQ2 How many real faults can we (semantically) resemble by using syntactically
similar and dissimilar seeded faults?

In case we find many syntactically similar seeded faults being semantically similar
to real ones, we have evidence that syntactic distance actually leads to "True Positives"
and may be used in mutation testing. On the contrary, if we find many syntactically
similar seeded faults that are semantically dissimilar to real ones, we have evidence
that syntactic distance leads to many "False Positives". Similarly, if we find many
syntactically dissimilar seeded faults that are semantically similar to real ones, then
we have evidence that fault-mimicking techniques produce many "False Negatives".
By putting all cases together, we have evidence on how effective fault-mimicking
techniques are.

While we investigated the relationship between seeded and real faults, we have
not said much about how the faults from different seeding techniques differ, w.r.t.,
the resemblance of real faults by different techniques. Hence we ask:

RQ3 How do the employed techniques compare to each other in resembling real
faults?

Knowing how different techniques compare provides evidence in support of
semantic fault resemblance. In particular, we check whether there is a compliment
in fault resemblance or subsumption between fundamentally different approaches.
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Overall, answering these questions raises awareness on the use of semantic and
syntactic metrics in fault seeding and provides evidence on fault resemblance by fault
seeding techniques.

4.4 Fault Seeding
PiTest (PIT) [58] is a state-of-the-art mutation testing tool that works by

analyzing bytecode sequences and by looking for a possible location, i.e., instruction,
to seed faults using syntactic transformation rules (aka mutant operators). The
mutation operators are categorized into 29 task-specific distinct groups. Examples
of groups include Conditionals Boundary and Return Value mutators, which seed
variations concerning relational operators and method call return values. PiTest has
over 120 mutant operators, among which are many experimental mutants used for
scientific purposes. For this study, we take into consideration all mutants generated
by PiTest.

IBIR [54] is a fault seeding tool that uses an information-retrieval-based fault
localization model (IRFL) combined with automatic program repair inverted fix-
patterns. It favours the generation of few but realistic mutants (similar to real ones).
It takes as input the git repository of the program to mutate and a bug report,
written in natural language and seeds faults (introducing multiple faulty versions)
that emulate the fault described in the bug report.

IBIR starts by analysing the given bug report using IRFL [59] to identify locations
that are likely to be related to the features impacted by the corresponding fault. It
then applies fault patterns on the identified locations, which are inverted fix-patterns
used in pattern-based automated program repair approaches [54]. As the fix patterns
are crafted from real bug-fixes, their inverse would induce faults similar to real
faults. IBIR repeats this process until exhausts all pre-defined patterns. In this
study, we run IBIR on the classes changed by the bug-fix on Defects4J to exclude the
mutants from other classes, and we apply all pre-defined patterns exhaustively on
every location, instead of mutating only the lines predicted by the IRFL. This will
allow us to explore more faulty patterns and study more broadly their relationship
with real faults. Under this setting, IBIR results in producing a large number of
mutants for the studied subjects.

DeepMutation [61] generates mutants by employing Neural Machine Translation
[51] aka NMT, which is also used by many recent studies [48,62–64]. It uses an NMT
model trained on a large corpus (∼787k) of existing bug-fixing commits mined from
GitHub repositories. It takes a Java method as input and outputs a mutant. In this
study, we use beam search to generate a maximum of 10 mutants per method, which
provides us with a more thorough study of the correlation with real faults.

In particular, every method is abstracted, in which the user-defined variable
names and literals are replaced by predefined identifiers to obtain an abstracted
code representation (as shown in Section 4.2). These abstracted code representations
are then input into the trained NMT model to produce abstracted mutants. The
user-defined variable names and literals are restored to obtain source-code mutants.

We use the publicly available trained model of DeepMutation [65] to generate
the mutants and src2abs [66] tool to perform the abstraction process. We followed
the guidelines [61] and used beam search to generate 10 mutants per method.

µBERT [60] is a mutation testing tool that uses a pre-trained language model
(CodeBERT) to generate mutants by masking and replacing tokens. µBERT takes a
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Java class, extracts tokenized expressions, which are then masked for token replace-
ment (mutation), e.g., for binary expressions µBERT masks the binary operator, and
invokes CodeBERT to complement the masked sequence. For instance, in sequence
int mid = (low + high) / 2; µBERT mutates the variable name expression low
by feeding CodeBERT with the masked sequence int mid = (<mask> + high) /
2;. CodeBERT predicts the 5 most likely tokens to replace the masked one, e.g., it
predicts low, mid, Low, high, and medium for the given masked sequence. µBERT
uses these predictions to generate mutants by replacing the masked token with
the predicted ones (5 mutants are created per masked token). µBERT discards
non-compilable mutants and those that are syntactically the same as the original
program, which are the cases in which CodeBERT predicts the original masked token
(aka duplicated mutants [40]).

4.5 Experimental Setup
Real Faults

We used Defects4J [116] v2.0,0, which contains over 800 faults with supporting
build infrastructure and forms one of the largest collections of reproducible real faults
for Java programs.

Every fault in the dataset consists of the faulty and fixed versions of the code,
a developer’s test suite accompanying the project, and information regarding the
commit modified classes and the patches produced to fix the fault. The faults have
been manually minimized, so every irrelevant change to the fix has been removed.
The dataset also includes at least one fault-triggering test that fails in the faulty
version and passes in the fixed one.

For the purpose of this study, we consider the following projects and the number
of faults. We refer to these curated faults (mined through a systematic process)
as real faults. We consider Defects4J faults as a good sample since it consists
of real, systematically mined faults that have been built independently of the
present study. From Apache Commons [120] family, consisting of a collection of
projects of Java utility classes, we include commons-cli (39), commons-codec (18),
commons-compress (33), commons-csv (16), commons-math (101), commons-lang
(63), commons-collections (4), commons-jxpath (22). We also include projects from
the Jackson [121] family, which is a suite of data-processing tools for Java, we
include jackson-core (26), jackson-databind (102), and jackson-dataformat-xml (6).
Additionaly, we include faults from: Mockito (28), one of the most popular mocking
frameworks in Java; Jsoup (90), a Java library for HTML parsing; Gson (18), a Java
library for JSON parsing and generation from and into java objects; and joda-time
(26), a project for the Java date and time classes.

Defects4J faults span more than a decade of development history, making it hard
to apply all faulty versions with all the studied tools. Therefore, due to unsatisfied
build requirements caused by technical constraints, we do not consider certain faulty
versions. The technical issues we encountered included obsolete dependencies not
supported by studied tools, old testing frameworks (for example, some faults contain
JUnit 3 while the tools work on JUnit4+), Java language versions (some of the
tools require java 1.8+ to apply faulty patterns while the project Jfreechart (number
of faults 26) and Closure-compiler (174) contain 1.5 or 1.6). Furthermore, five
versions of the Math project also fall under this category. Additionally, at the time
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Table 4.2: Mutants used

Fault Seeding Tool # of Analysed Faults # of Mutants

DeepMutation 530 119,017
IBIR 382 1,094,493
µBERT 481 286,763
PiTest 508 1,120,719

of conducting this study, we found that 5 faults from the Jsoup project were not
compilable due to technical reasons, as already reported [122]. Overall, some of the
studied tools have been recently developed and are versions specific, not being able
to satisfy all the reported building requirements. In total, we analyzed 592 faults
from 15 projects and generated a significant number of artificial faults that portray
a representative dataset for our investigation.

Artificially Seeded Faults
For each selected faulty project version from Defects4J, we start by identifying the

modified classes between the faulty and fixed versions. Next, we generate mutants by
employing the selected mutation testing tools for the fixed version of each modified
class.

Table 4.2 records the number of faults analysed by each tool and the number of
mutants generated. Overall, PiTest generated 1,120,719 mutants for the 508 faults
that it was successfully applied to. µBERT was successfully applied on 481 faults and
produced a set of 286,763 mutants. DeepMutation produces ten mutants per method,
and thus, it produced 119,017 mutants for the 530 faults that it was successfully
applied. After applying all faulty patterns from IBIR, it produces 1,094,493 mutants,
per bug report, for the 382 faults that it operates.

After generation, in the mutant detection phase, we execute relevant tests from
Defects4J, as those tests are carefully filtered by the framework to leave out flaky
tests. We use Defects4Js predefined compile and test scripts.

Experimental Procedure
We start by executing every generated mutant using the Defects4J framework,

thus, recording the set of failing tests distinguishing (killing) each mutant. After, we
proceed to compute syntactic and semantic similarities between the mutants and
the corresponding faults, relying on the metrics defined in Section 2.2.4. Thus, the
syntactic similarity between the mutant (artificially seeded fault) and the real fault
will be measured in terms of the BLEU score, while the semantic similarity will
be characterised by the Ochiai coefficient between the mutant and the fault. It is
worth mentioning that, since PiTest produces the mutations at the bytecode level,
we perform the syntactic similarity computation between the bytecode instruction
sequences corresponding to mutants and faults.

To answer RQ1, we check the existence of correlations among the syntactic and
semantic similarity of the seeded and real faults. We consider all the mutants created
by all studied tools and analyse several cases, when mutants located in the project
classes and when mutants located on the same methods modified by the related fault
fixing patch, according to the information given by Defects4J (modified-methods
mutants). In all cases, we aim for general trends that indicate a relationship between
syntactic and semantic, over different percentages, similarity (e.g., values greater
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(a) At class granularity level. Weak link
between syntactic and semantic similar-
ity.

(b) When syntactic similarity is greater
than 80%. We observe no link between
syntactic and semantic similarity.

(c) At method granularity level. Faults on
the same method have diverse semantic
similarity.

(d) Distribution of Semantic similarities
across different levels of syntactic similar-
ities. Medians depicted with lines, Means
with triangles

Figure 4.1: Syntactic and Semantic Similarity between Seeded and Real Faults (RQ1)

than 80%). We also check whether high scores for syntactic similarity (i.e., seeded
and real faults are syntactically similar) imply high scores for semantic similarity
(i.e., seeded and real faults behave the same), and whether low scores for syntactic
metrics imply low scores for semantic metrics. To perform this, we sort mutants in
ascending order according to their syntactic similarity. Thus, we organise them into
four sorted quartiles Q1, Q2, Q3 and Q4, where Q1 represents the most syntactically
dissimilar mutants, w.r.t., the fault (lowest syntactic scores), while Q4 represents the
most syntactically similar mutants w.r.t. the fault (highest syntactic scores). For
the mutants in each quartile, we also analyse their semantic similarity w.r.t. the
fault, aiming to observe if there is any evidence that more syntactically dissimilar
mutants behave very differently than the faults and whether syntactically similar
mutants behave the same as the faults. To avoid potential threats in the quartiles
composition, it is worth noting that we do not consider mutants which are extreme
cases and introduce noise, such as those with Ochiai equal to zero and those that
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(a) Syntactic similarity of the semantic
closest mutants. We observe no link be-
tween syntactic and semantic similarity.

(b) Average Semantic Closeness, per stud-
ied fault, of the most syntactically simi-
lar mutants (Q4), the most syntactically
distant mutants (Q1), and a quartile of
randomly sampled mutants.

(c) Average Syntactic Closeness, per stud-
ied fault, of the most semantically simi-
lar mutants (Q4), the most semantically
distant mutants (Q1), and a quartile of
randomly sample mutants.

(d) The average intersection size, per
fault, between sets of mutants with clos-
est and distant syntactical and semantical
similarity.

Figure 4.2: Syntactic and Semantic Similarity between Seeded and Real Faults (RQ1)

syntactically exactly match the real faults.
To further strengthen our analysis, we examine whether there are faults that

do not have syntactically close mutants that are semantically close. Similarly, we
examine if there are faults that do have syntactically distant mutants that are
semantically close. We consider semantically close mutants to be the ones with
Ochiai > .8, and syntactically close or distant, if they belong to previously defined
Q4 or Q1, respectively. In particular, we count the number of faults with at least
one mutant that is semantically close, among all mutants that are syntactically
close and distant to the fault. We also do the same count among randomly picked
mutants of the same sample size as the syntactically close and distant sets of mutants.
This means that a relationship between the two metrics exists if there are many
more faults with high semantic similarity to the mutants that are syntactically
similar than to either those that are syntactically distant or to the randomly picked
ones. Furthermore, we also analyze the extreme cases (i.e., the set of semantically
and syntactically most close and most distant mutants). To do so, we repeat the
previous analysis, but now from the set of semantically closest mutants, per fault,
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we select semantic and syntactic relations between the syntactically closest and the
syntactically most distant mutant. We plot the data points on a scatter plot and
further evaluate their relationship with statistical tests. This process allows us to
check whether there is any potential trend in the very extreme case of syntactic
similarities. Additionally, we also measure the average semantic or syntactic closeness
of the faults and check whether there are any statistical differences among the sets of
semantically/syntactically close or distant mutants. Therefore, we study the average
semantic closeness of the most syntactically similar mutants (Q4) and the most
syntactically distant mutants (Q1), plus the average syntactic closeness of the most
semantically similar mutants (Q4) and the most semantically distant mutants (Q1).

Finally, we check the number of mutants that are in the intersection of the
closest and distant syntactically and semantically similar mutant sets. In particular,
we compute the average size of the intersection set between the most semantically
close and most syntactically close mutants and compare it with that of the most
syntactically distant and most semantically distant ones. Suppose the intersection of
both sets – semantically close but syntactically distant mutants and vice versa – is
similar to the intersection of mutants semantically and syntactically close. In that case,
we can reason that even if exists a small set of mutants semantically and syntactically
close, there also exist mutants which are semantically similar but syntactically
dissimilar (or vice versa), indicating that semantic similarity exists independently of
syntactic similarity. We also measure the average size of the intersection, since a high
intersection would suggest that for the small sets of mutants, high syntactic similarity
encloses high semantics and vice versa. While the low intersection would further
confirm our hypothesis around the absence of a relationship between semantic and
syntactic similarity. To reduce the impact of selecting an arbitrary mutant sample
size on our obtained results, we repeat this analysis with the closest and most distant
5, 10 and 20 mutants as well as the 5% and 10% closest mutants w.r.t. both metrics.

To answer RQ2, we measure the ratio of real faults for which at least one mutant
has semantic similarity equal to 1. We focus the analysis on the same quartile split
as done for RQ1 to observe whether syntactically similar or dissimilar mutants yield
higher semantic similarity over different projects.

In RQ3, we analyse the percentage of real faults that each tool can resemble.
Plus, we study the ability of the tools to resemble different faults. It is noted that we
consider the intersection of faults for which each tool can generate mutants. To make
a fair comparison, we are controlling for the number of seeded mutants. We, thus,
study tool pairs based on the number of mutants each tool generates by randomly
selecting and controlling the set of mutants for each tool and calculating the tool’s
mean ratio to produce a mutant that resembles the real fault. We do this to avoid
bias because each tool generates a different number of mutants. To avoid coincidental
results, we repeated the experiment 100 times.

The dataset of generated mutants and results are publicly available in the
accompanying website [123].

Statistical Analysis
To study the relationships between semantic and syntactic properties, we use a

correlation metric since it analyses any statistical relationships between variables,
whether causal or not. In particular, we use the Kendall rank coefficient (τ) (Tau-a)
and Pearson product-moment correlation coefficient (r). In both cases, we use the
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0.05 significance level. Each correlation coefficients measure similarity, taking values
from -1 to 1. Values close to both ends represent negative and positive correlations,
respectively. While values in a range of absolute 0.2 around zero denote absence and
insignificant correlation. In our case, it refers to the degree to which a pair of variables
are related. Concretely, the two variables we study characterize the syntactic and
semantic similarity between faults and mutants. Particularly, we use the BLEU score
as a syntactic similarity metric and the Ochiai coefficient as a semantic similarity
metric (later on, during the discussion and threats to validity sections, we also include
other syntactic and semantic metrics). Therefore, correlation measures whether the
two variables are related and indicate a predictive relationship that can be exploited
in practice, i.e., aiming at syntactic similarity instead of semantic as done by many
approaches, e.g., DeepMutation. To evaluate the magnitude of difference between
observed groups, we calculate the Vargha and Delaney A12 effect size [71]. A12 values
over 0.56, 0.64 or 0.71 indicate a small, medium or large difference between two
populations, respectively.

4.6 Experimental Evaluation
4.6.1 RQ1: Syntactic and Semantic Similarity between Seeded

and Real Faults
Figure 4.1a shows the syntactic and semantic similarity values of the mutants

created with different tools. Interestingly, we notice that while many of the mutants
have high syntactic similarity, their semantic similarity is scattered from 0 to 1. This
seems to imply that the relationship between the two metrics is weak. Figure 4.1b
depicts syntactic and semantic similarity values for all mutants with a syntactic
similarity greater than 0.8. We notice that the mutants behaving as faults (obtaining
Ochiai 1) are both syntactically similar and dissimilar to the faults (see the plots’
top values, y-axis). We also observe that most mutants that are syntactically close
to real faults (BLEU near 1) behave very differently (Ochiai near 0), indicating that
the relationship is weak even when seeded faults are syntactically close to real ones.

These results are on the class granularity level, and therefore their syntactic
and semantic changes may be impacted by the “size” of the seeded faults. We,
thus, analyse the results at method-level granularity as well. Figure 4.1c shows
the syntactic and semantic similarities for the mutants that reside on the same
methods as the real faults. In this case, we see a similar trend with the class-level
results, i.e., both syntactically similar and dissimilar mutants behave exactly like real
faults. Additionally, when syntactic similarity is close to 1, the semantic similarity is
scattered from 0 to 1.

To further analyze this relationship, we investigate whether seeding faults with
small syntactic distance results in semantically close faults. The key objective is to
check whether there is some effect when we have high syntactic similarity as well as
high semantic similarity.

Figure 4.1d shows the distribution of semantic similarities when we group mutants
according to their syntactic similarity. We observe that semantic similarity is
uniformly distributed between mutants that are syntactically similar and dissimilar
to the real faults. This observation is visible even when considering only mutants with
very close semantic similarity. This evidence that smaller syntactic transformations
do not imply smaller semantic changes; at the same time, bigger syntactic changes
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do not imply bigger semantic changes.
Additionally, we find that 39% of studied faults do not have syntactically close

mutants that are semantically close (Ochiai > .8). This percentage is roughly the
same as that of syntactically distant mutants that are semantically close ( 41%). This
observation indicates no relation between metrics since analysing either syntactically
close or syntactically distant mutants, leads to the same number of faults (w.r.t.,
mutants being semantically similar independently of their syntactic similarity).
Figure 4.2a) shows the same data for the semantically closest mutants. From these
data, we observe no relationship even in the extreme cases of the most syntactically
close and distant mutants. By observing this plot, it becomes evident that there
is no relationship between the two variables (note Pearson and Kendall correlation
coefficients to be both < .1, indicating no relationship; plus, via Wilcoxon statistical
test, we find no sign that higher syntactic similarity leads to higher values of semantic
similarity (p < 0.05).

We also studied what is the average closeness of the semantically and syntactically
closest fault mutant pairs (respectively, the figures 4.2b and 4.2c). Our results show
that the average semantic closeness of the syntactically closest fault mutant pairs
is 0.4192; the closeness of the syntactically distant mutant pairs is 0.4020, while
the closeness of the randomly picked mutants is 0.4058. The difference between
these averages is negligibly small to suggest a link between syntactic and semantic
similarity metrics. Wilcoxon statistical test further confirms these observations by
showing no statistically significant difference between the average semantic closeness
of syntactically close and the average semantic closeness of syntactically distant
mutants (p<0.05), plus, no statistically significant difference between the average
semantic closeness of syntactically close and randomly sampled mutants. Similar
results are observed, leading to the same conclusions when calculating the average
syntactic closeness of the semantically closest (0.9550) and semantically distant
mutants (0.9530) and randomly sampled mutants (0.9543).

Figure 4.2d depicts a follow-up analysis in which we study the intersection of a
set of semantically closest and a set of syntactically closest mutants. Our results
show that the intersection between the top five syntactically and semantically closest
mutants is of only 5%, refuting any implication between both metrics in 95% of
the cases. We observe the same pattern and small semantic and syntactic similarity
overlapping for the top 10, 20 mutants, and 5 and 10 percent of mutants, 10%,
17%, 8% and 13%, respectively. Our results discover a small difference ( 2%)
when comparing semantically and syntactically closest mutants overlapping with the
overlapping of the semantically closest and syntactically distant ones (and vice versa).
This analysis again confirms our previously shown evidence, i.e., even for a set of
mutants with the metrics closest to real faults, semantics behaves independently of
syntactic and vice versa. By examining the faults that do not have syntactically
close mutants that are semantically close and the average closeness of semantically
and syntactically closest fault mutant pairs, we confirm the previous results and
find no indication of a pattern or relationship that would suggest that syntactic
measurement leads to the semantic closeness of mutants and real faults.

Here, it is important to mention that the plots used throughout this section only
consider BLEU score since it showed to be more sensitive to small changes, suitable
for quantifying small mutations. Please refer to the supplementary material for the
Jaccard and Cosine scores.
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Table 4.3: RQ2 Percentage of resembled real faults - Quartiles represent mutants
sorted by syntactic similarity

Project Faults ∃ Semantic Mutant Q1 Q2 Q3 Q4

Cli 39 71.79 53.84 61.53 48.71 58.97
Codec 18 72.22 44.44 44.44 44.44 50.0
Collections 4 75.0 75.0 25.0 50.0 50.0
Compress 33 93.94 81.81 90.90 78.78 81.81
Csv 16 81.25 37.50 75.0 62.5 43.75
Gson 18 72.22 50.0 61.11 38.89 66.67
JacksonCore 26 88.46 73.07 65.38 73.07 76.92
JacksonDatabind 102 77.45 60.78 57.84 53.92 62.74
JacksonXml 6 83.33 83.33 83.33 50.0 83.33
Jsoup 90 12.22 11.11 12.22 7.77 7.77
JxPath 22 68.18 54.54 54.54 59.59 63.63
Lang 63 68.25 58.73 63.49 64.49 60.31
Math 101 67.32 54.45 52.47 59.40 59.40
Mockito 28 60.71 39.28 32.14 50.0 46.42
Time 26 65.38 50.0 53.84 50.0 57.69

Total/Average 592 70.51 55.19 55.55 52.67 57.96

Many seeded faults behave similarly to real faults (high semantic similarity),
while they have low syntactic similarity to real faults. We find no evidence
suggesting any link between syntactic and semantic similarity, except in the
cases of exact matches.

4.6.2 RQ2: Semantically Resembling Real Faults
Table 4.3 summarizes the results related to the percentage of resembled faults,

i.e., having at least one mutant that semantically resembles the fault. The column
Faults refers to the number of faults studied per project, and column ∃ Semantic
Mutant refer to the percentages of faults with at least one semantically similar
mutant. We sort mutants based on their syntactic similarity and group them into
4 buckets/quartiles (columns Q1, Q2, Q3 and Q4 in increasing order). Table 4.4
records the ratio of mutants that are semantically similar per fault (column Ratio)
and the ratio per syntactically similar bucket.

For the 592 real faults, we observe that seeding techniques can produce at least one
artificial fault that is semantically similar to the real one for 417 of them (70.51%).
From the distribution of the results over different quartiles, we see the absence
of trends suggesting that higher syntactic similarity does imply higher semantic
similarity. For example, the project with the highest number of faults studied
(JacksonDatabind – 102 faults) has quite similar ratios among the quartiles, i.e.,
60.78%, 57.84%, 53.92%, 62.74%. Overall, on average, across all studied faults, the
distribution of faults that can be resembled is 55.19%, 55.55%, 52.67%, 57.96%.

Table 4.4 shows a similar distribution across quartiles. On average, the percentage
of seeded mutants with semantic similarity is 11.77%, while over different levels of
syntactic similarity, the distribution is 3.01%, 2.95%, 2.59% and 3.20%, respectively.

Our results indicate that real faults are resembled by artificially seeded faults
independently of their syntactic similarity.
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Table 4.4: RQ2: Mean ratio of mutants resembling real faults - Quartiles represent
mutants sorted by syntactic similarity

Project Ratio Q1 Q2 Q3 Q4 Exact Matches

Cli 12.79 2.61 2.82 3.15 4.05 0.13
Codec 5.54 1.33 0.94 1.38 1.61 3.74
Collections 12.75 6.25 1.15 3.0 2.0 0.17
Compress 12.39 2.72 3.48 2.36 3.72 2.72
Csv 9.12 0.93 4.3 1.93 2.0 0.25
Gson 7.94 1.38 3.0 1.05 2.61 0.09
JacksonCore 19.46 4.88 4.23 4.42 6.00 0.54
JacksonDatabind 14.20 3.17 3.79 3.48 3.71 0.32
JacksonXml 11.66 4.33 2.33 2.33 3.0 0.37
Jsoup 5.13 1.12 1.68 1.01 1.12 0.86
JxPath 13.77 3.40 4.04 2.86 3.31 0.02
Lang 22.06 5.23 5.28 5.49 5.96 1.29
Math 12.16 2.98 2.61 2.78 3.71 0.10
Mockito 8.42 2.60 1.42 1.75 2.67 0.58
Time 9.26 2.15 2.76 1.92 2.23 0.08
Total/Average 11.77 3.01 2.95 2.59 3.20 0.75

Table 4.5: RQ3: Mean ratios of mutants resembling real faults.

Fault Seeding Tool Overall Q1 Q2 Q3 Q4

DeepMutation 1.99 0.39 0.42 0.56 0.59
IBIR 2.79 0.53 0.58 0.55 1.05
µBERT 2.94 0.69 0.54 0.74 0.89
PiTest 2.66 0.47 0.54 0.65 0.93

4.6.3 RQ3: Comparing Seeding Techniques
Table 4.5 records the mean ratios of mutants that resemble the real faults. We

observe that, on average, between 1.99%-2.94% of mutants resemble the real faults,
independently of their syntactic similarity. Table 4.6 records the percentage of real
faults that were resembled by at least one mutant produced by each tool. We observe
that PiTest resembles 65.11% of the real faults, while µBERT resembles 61.39%,
DeepMutation 9.76% and IBIR 76.44%. Interestingly, µBERT and PiTest resemble
a similar number of the real faults, while µBERT identifies 0.6% of real faults not
identified by other tools (Figure 4.3), while PiTest identifies 1.7%. IBIR resembles
76.44% of faults, and 5.2% is not identified by the other tools. However, when we
compare the performance when controlling the number of seeded faults (Table 4.7),
we observe that when generating a number of mutants equal to the number of mutants
generated by DeepMutation, µBERT, IBIR and PiTest perform similarly, resembling
real faults with 43.84%, 45.34% and 41.72%, respectively. When generating the
same number of mutants with µBERT, we observe that both IBIR and µBERT
outperform PiTest by around 10%. And when the number of seeded faults is higher,
(equal to what PiTest produces), IBIR outperforms PiTest for 8.05% of real faults
resembled. We observe that PiTest performance is the lowest indicating a large
number of redundancies. Regarding exact matching, IBIR successfully resembles
1.98% of the faults, outperforming the rest of the tools, which only managed to
match around 1%. DeepMutation resembles real faults also resembled by other tools,
indicating that it is probably subsumed by them.
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Table 4.6: RQ3 Percentage of resembled real faults - Quartiles represent mutants
sorted by syntactic similarity.

Fault Seeding Tool Total Q1 Q2 Q3 Q4 Exact Matches

DeepMutation 9.76 5.11 6.04 6.04 5.11 1.07
IBIR 76.44 38.60 46.04 59.06 59.65 1.98
µBERT 61.39 39.06 34.41 41.39 45.11 1.24
PiTest 65.11 42.32 45.11 46.97 56.27 0.01

Table 4.7: RQ3 Percentage of resembled real faults when the number of mutants is
controlled - different tools used as a baseline

Fault Seeding Mutant Selection Control Groups
Tool DeepMutation µBERT PiTest IBIR

DeepMutation 9.76 - - -
µBERT 43.84 61.39 - -
PiTest 41.72 51.48 65.11 -
IBIR 45.34 62.34 73.16 76.44

IBIR resembles 76.44% of the real faults, PiTest (65.11%), µBERT (61.39%)
and DeepMutation (9.76%). When seeding the same number of mutants, IBIR
shows better performance than all other tools (≈10%).

4.7 Discussion
4.7.1 Use Cases of Fault Seeding

Over the years, fault seeding has served multiple purposes, e.g., testing, depend-
ability analysis, debugging etc., as found by the survey work of Papadakis et al. [8].
The survey also identifies that fault seeding is primarily used in research for a)
mutation-based test assessment, i.e., empirical and experimental evaluation of test
techniques (seeded faults are used as a means to compare test techniques based on
the number of faults they detect), and b) mutation-guided testing, i.e., guiding testers
to write test cases (by using seeded fault as objectives to be covered).

These two use cases are often confused and considered as being equal [9], while
in fact they are different—though related. This is not only because of the different
underlying processes but also due to the involved assumptions.
Process: in mutation-based test assessment, a) case, tests are independently pro-
duced by external parties, while in mutation-guided testing, b) case, tests aim at
detecting specifically targeted faults. This implies an untargeted case (case a))
that starts from independent test cases and aims at estimating their fault detection
potential versus a targeted one (case b)) that starts from seeded faults then goes to
tests that aim at finding real faults.

In terms of injected faults, this difference means that in case a), one needs seeded
faults that are as close (semantically) as possible to the real ones in order to estimate
their test potential, while in case b), one needs seeded faults that lead to tests that
detect faults. In essence, real faults in case a) should be detected by every test case
that detects a seeded fault, while in case b) should be detected by the subset of test
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Figure 4.3: Real faults with at least one semantically similar mutant by each tool. PiTest -
IBIR - µBERT - DeepMutation

cases that detect a seeded fault. For example, consider the seeded faults M0 and M1
from Figure 2.2 that both are detected by tests that also detect the real fault B. This
means that for the case b) both M0 and M1 are equally useful since they can both
lead to a test that detects the real fault. However, for the case a) (test assessment),
M0 is better than M1 since it does not underestimate the fault detection potential of
t1.
Assumptions: in mutation-based test assessment, a) case, it is assumed that the
tested/asserted program behaviour is correct, while in mutation-guided testing, b)
case, this is not the case (testers judge the observed behaviour). These assumptions
often imply differences in both the definition of fault detection (deciding whether
mutants are killed) and the used artifact (by experimental studies). The difference in
the definitions is usually that, in a) case, the behaviour of seeded faults is contrasted
with that of the specifications (through test assertions) while, in b) case, that is
contrasted with that of the program under test, which may or may not be correct.
Similarly, experiments targeting case a) are applied on program versions where test
suites pass, while in case b) experiments are applied on buggy program versions
where test suites fail, i.e., detect some real faults.

In essence, the differences in the assumptions necessitate a different treatment
in the way seeded faults are detected and used. For instance, it is unclear what
causes a test failure when executing a test in a buggy program version where a fault
has been seeded. Typically this case is treated by considering the behaviour delta
between the buggy and the faulty seeded versions (seeded on the buggy version) [9].
However, this behaviour delta between the buggy and the seeded fault is different
from the behaviour delta between the specifications and the buggy version as has
been demonstrated by Chekam et al. [9].

Similarly, the seeded faults on the fixed and the buggy program versions differ.
Consider, for example, the case of an omission fault where an if condition is missing.
This fault is easy to emulate if one seeds faults in the non-buggy version by simply
deleting the related condition. However, the fault is hard to detect if one seeds faults
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in the buggy version since the related code is not there (it is hard to seed a fault
that can detect such a bug).

The above discussion aims at detailing the differences among the two main use
cases of fault seeding and motivating the need for appropriate metrics that fit well
with the envisioned application use cases. In the following subsection we demonstrate
the importance and appropriateness of using semantic similarity, as opposed to
fault detection estimates, used by previous studies [29, 112], in the context of test
assessment.
4.7.2 Semantic similarity Vs. Fault Detection Probabilities

in Test Assessment
Mutation testing has long been based on the notion of fault coupling [10, 37]

that assumes couplings among different types and (syntactic) sizes of faults. This
assumption has been validated by recent studies that report large semantic overlaps
between simple and complex faults [32, 37, 45]. Undoubtedly, faults that couple with
real ones are the most important when one performs mutation-guided testing (the
b) use case of fault seeding that was described in the previous section) since the
starting point is the seeded faults. However, this is not necessarily the case for the
test assessment (the a) use case of fault seeding that was described in the previous
section) since we want accurate estimations of test effectiveness.

Previous studies [29, 112] have defined FDP, as a probabilistic form of fault
coupling, as a target metric of fault seeding that measures subsumption of a real
fault by a mutant, in the context of mutation-guided testing. In essence, the metric
form an approximation of the fault detection probability, w.r.t. a real fault B, of the
tests that detect a seeded fault M . The metric is, therefore, computed as the ratio
of the number of tests detecting both M and B to the number of tests detecting
M . Precisely, FDP (B, M) = |fT SB∩fT SM |

|fT SM | , where fTSB and fTSM denote the set
of tests detecting the fault and killing the mutant, respectively.

To illustrate this concept, let us consider the example of Figure 2.2. The mutant
killing matrix is presented in Table 2.1, together with the semantic similarity and fault
detection probabilities between the mutants and the fault (columns Ochiai(B, Mi)
and FDP (B, Mi), respectively).

An interesting observation from Table 2.1 is that the FDP of mutants M0 and
M1 is 1, since all the tests killing them also find the fault, but the Ochiai coefficients
(semantic similarity metric) distinguish between these mutants (Ochiai(B, M0) = 1
but Ochiai(B, M1) = 0.70). This example shows that in the case of mutation-guided
testing, both M0 and M1 are of equal value (since targeting either of these faults
leads to tests that detect the real fault). However, in the case of test assessment,
M0 is preferable over M1 since it does not underestimate the test potential of t1.
Consider, for example, 10 combinations of test suites of two tests (C(|{t0...4}| , 2) =(

|{t0...4}|
2

)
= 10). M1 mistakenly evaluates the fault detection potential of t1 − t2,

t1− t3, t1− t4 (3 out of 10) as being non-effective, while M0 correctly evaluates them
all. Similarly, M6 is better than M1 since it mistakenly evaluates the fault detection
potential in 2 out of 10 cases, i.e., considers that t2 − t3, t2 − t4, are effective while
they are not.

The above reflects the differences between the metrics of Table 2.1. The Ochiai
coefficient for mutant M6 is 0.82, being the second top-ranked fault, making it
preferable over M1. While FDP would prefer M0 and M2 over M6, which is actually
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Figure 4.4: Semantic Similarity yields significantly lower Mean Squared Errors in its
assessments than Fault Detection Probability. The results are statistically significant with
99% of confidence and with a high effect size of 0.82

the case if one is guided by the faults. Another difference occurs between mutants
M2 and M5; while Ochiai for M5 is higher than for M2, the opposite happens when
we use FDP .

These examples aim at demonstrating the use of the metrics in the fault injection
context. By considering these examples and the differences outlined in the previous
section, it should be clear that both metrics are closely related, meaning that one
could approximate the other, but semantic similarity (Ochiai) is a better fit for test
assessment, while fault detection estimates (FDP ) are a better fit for mutation-guided
testing.

To empirically demonstrate these differences, we design a related test assessment
experiment, reflecting the example given above. We thus, treat semantic similarity
and fault detection estimates as estimators of the actual test assessment potential
of the mutants and compute their related error. To measure this, we use the Mean
Squared Error (MSE) of the estimators with respect to the actual ratios of fault
detection potential of test suites, i.e., the ratio of test suites that detect both the
seeded and the real fault over the number of test suites that detect either of them.
The MSE is typically used as a quality indicator of the estimated values, in this
case, semantic similarity and fault detection estimates, and aims at reflecting the
associated risk of using them.

In this analysis, we randomly pick 100 test sets of equal size, determined by the
ratios of tests detecting the real faults, in order to have a balance between failing
and passing sets. We then computed the MSE values on the faults of our dataset,
which have more than one failing test, 114 faults in total, of both semantic similarity
and fault detection estimates for all available mutants. We selected cases with more
than one failing test because the metrics are almost the same in all other cases.

Figure 4.4 depicts the MSE errors of both estimators. These results show that
both metrics have low error rates, with semantic similarity yielding statistically
significantly lower errors with sizable differences, i.e., A12, indicating that semantic
similarity is better suited for test assessment.

When exploring further, we observe that despite the clear relationship between
both semantic metrics, they prioritize mutants differently. For instance, Figure 4.5
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Figure 4.5: Overlapping between the set of mutants with Ochiai coefficient greater than
0.8, and the set of mutants with FDP greater than 0.8. The figure shows significantly low
overlapping between mutant sets, indicating that the metrics are appropriate for different
use cases even though they are strongly related.

shows two sets of mutants - one with high Ochiai and one with high FDP - and
provides evidence that the overlapping is significantly low; only 23% of the mutants
with a FDP greater than 80% have also an Ochiai greater than 80%. This may
explain why the sets of mutants are distinct for different use cases, and particularly
the preference of the semantic similarity metric (Ochiai) for test assessment.

Nevertheless, we also study if there is any relationship between syntactic similarity
and FDP (fault subsumption) as a semantic similarity metric, instead of using
Ochiai. We find that there is no relation and the message conveyed is the same as
when using Ochiai as a semantic similarity metric, that real faults are subsumed
independently of their syntactic similarity. On average all tools subsume 80.39%
of studied faults, while different quartiles Q1, Q2, Q3, Q4 show 66.41%, 66.40%,
63.02% and 67.78%, respectively. We also find that different tools (PiTest, IBIR,
µBERT, and DeepMutation) subsume 74.41%, 85.58%, 71.16%, 12.09% of real faults,
respectively - keeping the same distribution as we report studying semantic similarity.
Overall, the answer to the studied research questions would be similar if we would
adopt a related but different semantic metric such as FDP. We provide further figures
and tables regarding the subsumption of faults with FDP on the complementary web
page: https://mutationtesting-user.github.io/bugs_vs_mutants/

4.7.3 Sensitivity to Program Locations
One may wonder how sensitive the syntactic and semantic similarity metrics are

with respect to the seeded faults’ locations. In other words, these metrics may reflect
the utility of the locations and not of the faults. Thus, we study the variance of the
syntactic and semantic similarity of mutant pairs generated from the same location
(we do not consider DeepMutation since it creates only one mutant per method).
Figure 4.6 records the distances between the syntactic and semantic similarity of
mutant pairs, taken from a) the same randomly picked locations and b) from the
bug-fixing locations. We observe that while there is almost no syntactic difference
between mutants from the same location, the semantic similarity varies significantly.
There are a few outliers in which syntactic similarity varies up to 16% between
mutants from the same location. Some PiTest mutations remove a complete line or
replace entire boolean conditions with true (as shown in the motivating example),
affecting the bytecode generated. Figure 4.6 records a similar trend for all studied
tools. Please refer to the accompanying website for results related to additional
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studied syntactic metrics. [123].
Overall, these results support the conclusion that there is no link between syntactic

and semantic similarity. Interestingly, even small syntactic changes in the same
instruction can have a large and diverse impact on the program semantics.

Seeding Faults with DeepMutation
Guided by intuition, one would assume that DeepMutation - as a mutant genera-

tion tool based on deep learning - shall be able to generate more complex (stronger)
faults and thus complement and subsume other tools. However, we observed that
the tool seeds faults which are easy to kill or, in other words, the tests cannot miss
behaviour produced by those kinds of seeded faults as they are overly complex,
i.e., replacing too many code elements and thus significantly changing code logic.
In particular, we found that DeepMutation mutants are, on average, identified by
10 tests more than the mutants from other tools. Moreover, we analysed seeded
faults and found that from all seeded, 46% does not compile. In contrast, 29% are
duplicates or not killed — leaving 25% of seeded faults suitable for mutation analysis.
Out of those seeded faults, no fault can resemble faults that other tools cannot
(Figure 4.3), making the tool subsumed by other tools.
// Defects4j JxPath project - Bug version 7
private int compare ( Object l, Object r) {

double ld = InfoSetUtil . doubleValue (l);
double rd = InfoSetUtil . doubleValue (r);
return ld == rd ? 0 : ld < rd ? -1 : 1;

}

// DeepMutation mutant - does not compile due to the return type
private int compare ( Object l , Object r) {

double ld = InfoSetUtil . doubleValue (l);
double rd = InfoSetUtil . doubleValue (r);
return ld == rd ? 0 : ld;

}

Additionally, to further provide qualitative remarks on seeded faults, we provide
two examples in which seeded faults indicate the technique’s potential, even though
the mutants are considered weak. In the example of a mutant in a method taken
from project JxPath, the mutant alters the ternary operator condition, which is a
syntactically adequate location for a bug; however, the mutation does not consider
the return type, which results in a compilation error. In the second example, where
we observe a mutant from the Mockito project, the technique removes the complete
conditional check of whether an object is a valid instance, resulting in a weak
mutation that cannot escape a test suite. Instead, the conditional check should be
altered instead of removed, as those faults are subtle and represent a mistake that a
programmer would make. However, the mutant from the second example alters the
core logic of the code, which makes it unlikely to escape the majority of test cases
(Ochiai metric is ≈ 0.02.
// Defects4j Mockito project - Bug version 20
public MockHandler getHandler ( Object mock) {

if (!( mock instanceof MockMethodInterceptor . MockAccess )) {
return null;

}
return (( MockMethodInterceptor . MockAccess )

mock). getMockitoInterceptor (). getMockHandler ();
}
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(a) PiTest - Random lines (b) PiTest - Changed lines

(c) µBERT - Random lines (d) µBERT - Changed lines

(e) IBiR - Random lines (f) IBiR - Changed lines

Figure 4.6: Sensitivity of mutants from the same location (∆BLEU |M2 −M1| over
∆Ochiai |M2 −M1|). Small syntactic changes lead to diverse semantic changes.

// DeepMutation mutant - mutant compiles but has Ochiai 0.02 and it cannot escape
any test

public MockHandler getHandler ( Object mock) {
return (( MockMethodInterceptor . MockAccess )

mock). getMockitoInterceptor (). getMockHandler ();
}

Moreover, using semantic similarity for reinforcement metrics for learning algo-
rithms should bring more practical artificial faults than using syntactic metrics. This
knowledge can provide practitioners with insights and pave the way to discover more
fine-grained metrics to approximate semantics over existing ones.

4.7.4 Implications for practice
Our key finding regards the mismatch of syntactic and semantic similarity. This

implies that research studies should not attempt to approximate semantic similarity
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through syntactic similarity (as currently done by many methods). Therefore,
researchers should focus on measuring the semantic sensitivity of their results and
perhaps attempt learning based on semantic features rather than solely syntactic
ones. For instance, DeepMutation aims at mimicking syntactically real faults thereby
resulting in being relatively weak and probably subsumed by traditional mutants.

Additionally, our results shed light on the semantic similarity aspect of real
and seeded faults that has not been researched by the mutation testing literature.
Therefore, we believe our work can improve our understanding of this fundamental
relationship and offers a starting point for future research on the semantic approxi-
mation of real faults.

Moreover, the Ochiai score is a metric used by previous work in order to approxi-
mate the semantic similarity between a bug and a seeded fault. We thus expect it to
diverge from the true similarity due to the following two reasons. First, there is some
noise due to the incompleteness of the test suit used, and second, due to the coarse
granularity level of the test failures, i.e., we consider test failures in our approximation
and not the exact program output. We aimed at mitigating both factors by using
mature and strong test suites, augmented with automatically generated tests and
manually estimated the level of error due to the application of semantic similarity at
the test failure level(found it ≈ 2.8% as reported in Section 4.8).

In our work, we also report on the existence of a specific category of seeded faults
- the seeded faults that are syntactically dissimilar but semantically similar to real
bugs. This category can provide implications for practice towards increased test
assessment by providing targeted diversity represented through code comprehension.

4.8 Threats to Validity
To reduce external validity threats, we selected a new and significant benchmark

of faults that have not been used by previous studies. We excluded some faults for
technical reasons, making our study with 592 faults from 15 mature and well-tested
open-source real-world projects. Nevertheless, we do not exclude the generalization
threat in other domains. As we already discussed, while conducting our experiments,
we could not compile or run all the faulty program versions available in Defects4J.

One may argue that Defects4J is not the most representative dataset of all real
faults. We acknowledge this threat as the scope of real faults is, in theory, infinitive.
However, we believe that Defects4J is the most representative dataset available
to research and the most studied, which reduces the risk that the results will not
generalise to other real faults. Moreover, upon release of the new datasets in future,
we motivate practitioners to replicate our study.

Internal validity threats emerge from the tools’ specificity and configuration, such
as the number of mutants they generate and the source-code locations they are
applied to. For instance, DeepMutation produces fewer candidate mutants than
any other tools, while µBERT, IBIR, and PiTest generate mutants everywhere, in a
brute-force way. To mitigate this threat, we analyze the effectiveness of the tools
under the same number of mutants and the same locations and observe a similar
trend.

Unfortunately, we did not manage to compile and run the latest master-branch [124]
version available of DeepMutation. We thus had to handle the tool from the resources
and pre-trained artefacts provided in the repository.

Additional threat mitigation actions involved the analysis of mutants at different
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granularity levels (class, method, and location of patch). We also restricted the
scope of analysis to the artefacts where the bug fixes were available to reduce noise
from irrelevant mutants and tests. We ensured that all mutants reside on the same
class/method/statement as the target faults. Thus, we compare different mutated
versions w.r.t. their similarities and distances from the corresponding fixed and
faulty version.

To measure semantic similarity, we used the well-known Ochiai score that has
been regularly used in the fault-seeding community as a representative metric to
capture the semantic similarity between a seeded and real fault. The metric takes
into consideration test execution output and neglects the lower level of granularity,
i.e., whether the test crashed due to error or due to failure, which may result in a
divergence of behaviour between a bug and a mutant.

To study this threat, we conducted a manual follow-up analysis. In the manual
study, due to the inability of Defects4J to provide fine-grained test outputs, we sample
randomly from the mutant pool and analyze them in isolation. By taking around
4000 mutants that obtained an Ochiai coefficient equal to 1, which gives a confidence
level of 99% with a confidence interval of 2%, we found that just approximately 2.8%
of mutants show potentially different behaviour than the real fault (one triggers a
failure while the other triggers an error), even though the same test captures them.
This percentage of mutants does not impact the message we want to convey with
our study; nevertheless, we found this concern necessary to inform practitioners.

In addition to BLEU scores, for measuring syntactic similarity, we also used
Cosine [125] and Jaccard [126] similarity coefficients [123]. The results did not show
any significant differences w.r.t. the ones of BLEU scores. It is worth noting that
these metrics appear less often in the literature, and in an attempt to keep the story
clear and concise, we provide results on these metrics on an accompanying website.
Nevertheless, please refer to the accompanying website [123] for additional details on
using Cosine and Jaccard similarity.

Overall, our study aims to raise awareness of using semantic and syntactic
evaluation metrics in fault seeding studies since understanding is shaken by the rapid
integration of "intelligence" in the current software testing practices. In the spirit
of discarding all misinterpretations, we declare that it is far from our intention to
generalize the studied approaches and raise the claims regarding their future usage as
we believe in very much needed future studies on their utilities and effectiveness that
will undoubtedly result in new tools. Our study targets the current state-of-the-art
tools and embedded underlined approaches to shed more light on the studied area
and pave the way for future work.

4.9 Conclusion
We investigated the link between syntactic and semantic similarity of seeded and

real faults in the context of mutation-based test assessment. Our results showed
that many seeded faults behave similarly to real ones (they have high semantic
similarity), while at the same time having low syntactic similarity (to real faults).
We also observed the opposite case, i.e., faults with high syntactic similarity having
low semantic one. This means that we found no evidence suggesting any link
between syntactic and semantic similarity, except, of course, in the case of exact
matches. When considering the ability of fault injection tools to resemble real faults,
we found that 65.11%, 76.44%, 61.39% and 9.76% of the real faults in Defects4J
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V2 are semantically resembled by PiTest, IBIR, µBERT and DeepMutation faults,
respectively. For further inquiry about our data, figures and examples, please refer
to the webpage of the study:

https://mutationtesting-user.github.io/bugs_vs_mutants/
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5
Commit-Aware Mutation Testing

The questions concerning change-aware test criteria have received very little atten-
tion from research. In the current trend of continuous software development w.r.t.,
building software artefacts through increments, this is very unfortunate since it would
allow practitioners to focus on the particular changed program behaviours a.k.a., the
delta of behaviours between the stable and modified software version, instead of a
whole program. This chapter recognises the potential and proposes commit-aware mu-
tation testing that allows commit-relevant mutation-based test assessment to capture
changed program behaviours and thus evaluate to what extent code modification is
tested. In particular, the proposed approach characterises commit-relevant mutants
as a novel category of mutants representing change-aware test criteria suitable to
capture test requirements affected by a code change and, thus, in turn, accurately
and adequately guide testing of program modifications. Among different empirical
findings, in detail described in this chapter, our results reveal that commit-relevant
mutants have a 30% higher fault-detection ability over other strategies.

This chapter is based on the work published in the following journal article:

• Milos Ojdanic, Wei Ma, Thomas Laurent, Thierry Titcheu Chekam, Anthony
Ventresque, and Mike Papadakis. "On the use of commit-relevant mutants."
2022, Empirical Software Engineering Journal. 27, 5 (Sep 2022).
https://doi.org/10.1007/s10664-022-10138-1

https://doi.org/10.1007/s10664-022-10138-1
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5.1 Introduction
Software systems are subject to regular modification during their life-cycle. Mod-

ifications are usually made in order to maintain and improve the software (fixing
bugs, refactoring, or improving code quality), or to include new features. In either
case, automated testing is used as gate-keeping, i.e., to establish confidence that the
modifications did not break any of the previously developed program functionalities.

In such scenarios, developers often assume that the previous (operational) version
of the system was stable and correct. Therefore, they are interested in testing only the
behaviour delta of the changes they performed. This means that they want to assess
the delta of behaviours between their pre- and post-commit system versions. For
such cases developers need metrics quantifying the extent to which they have tested
the error-prone program behaviours affected by their changes. Unfortunately, little
research has been devoted to forming such change-aware test criteria. Change-aware
test criteria would offer a viable, from an economic perspective, way of dealing with
the continuous software modifications, as one would only focus on the particular
program changes or commits.

Mutation testing has long been established as one of the strongest test criteria [8].
It operates by measuring the extent to which test suites can distinguish the behaviour
of the original program from that of some slightly altered (syntactically altered)
program versions, which are called mutants. Testers can use mutants to design
strong test cases, likely to be fault revealing [1, 9] and to perform test assessment as
it effectively quantifies the test suites’ strengths [127].

Mutation testing research assumes a static nature of software, and thus it is
focused on making the mutation score metric accurate with respect to all possible
mutants that one can generate, by using a predefined set of mutation operators,
in a given piece code. Thus, existing research is focusing on using specific mutant
types [128]; on detecting equivalent mutants [40, 129], i.e., mutants that cannot
be killed by any test case because they are semantically equivalent to the original
program; or on eliminating redundant mutants [32,42,68], i.e., mutants that are killed
“collaterally” whenever other mutants are killed [42] (subsumed by the subsuming
mutants).

This strategy has the unfortunate effect of blindly using all possible mutants
without considering their relevance to the task or to the most recent changes in
question. To allow such focused testing, one should use only what we call commit-
relevant mutants, i.e., mutants interacting with the changed program behaviours.
These mutants are relevant to the program changes, meaning that they are killed
by tests that exercise the committed code and its integration to the rest of the
program under test. In terms of testing, these mutants form the change-relevant
requirements and can be used to judge whether test suites are adequate in testing
commits and, if not, to provide guidance in improving them (by creating tests that
kill commit-relevant mutants).

In an attempt to form such commit-relevant mutants one could use the entire
set of mutants or those that are located on the modified code, assuming that
mutant locations reflect their utility and relevance. Unfortunately, such solutions are
imprecise since they either include large volume of noise (irrelevant mutants), or are
insufficient to cover all possible interactions between the unmodified and changed
code. We argue that covering all interactions between unmodified and modified
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code is particularly important because problematic regression issues arise from such
unforeseen interactions [103,130]. This is demonstrated by our results, which show
that the majority of the altered program behaviours is captured by mutants located
on unmodified code parts. In fact the majority of the altered program behaviours
are captured by mutants located on unmodified code parts.

Overall, the contribution of the study regards the definition of the commit-relevant
mutants and the related commit-relevant mutation-based test assessment. Intuitively,
a mutant is commit relevant if it defines a test requirement (a mutant fault) that
depends on the commit, i.e., the test cases that cover this requirement (detect this
mutant fault) exercise the program behaviour altered by the commit. To ensure
a testable link between the mutants and the commits, we require the existence of
an “observable dependence” between the mutants and the committed code. This
means that the presence and absence of the mutant and the commit code imply an
observable behavioural change under some test execution.

We also show that by identifying those commit-relevant mutants one can accu-
rately and adequately test program changes. Perhaps more importantly, we also
demonstrate that mutation testing performed with the entire set of mutants or with
the mutants located on the committed code is insufficient to assess how well subtle
program changes have been tested. This implies that relevant mutants also enable the
study of commit-aware fault detection assessment, in a sense using relevant mutants
as a proxy for fault introducing commits. This aspect is missed by the software
testing literature since it mainly focuses on using mutants as proxy of faulty program
versions independently of the program changes under test. We showcase such a
case by using commit-relevant mutants to evaluate regression test prioritisation
techniques.

Taken together, the key research contributions of this present study can be
summarised as follows:

• We define commit-relevant mutation testing, which is based on the notion
of commit-relevant mutants, i.e., mutants capturing the interactions between
modified and unmodified code.

• We show that commit-relevant mutants are a distinct class of mutants, i.e., it
differs significantly from the other mutant classes (subsuming and hard-to-kill
mutants) [29].

• We investigate the extent to which mutation-based test assessment metrics such
as a) the mutation score (score that includes the entire set of mutants), b) the
delta of mutation scores between pre- and post-commit, c) the mutation score
of mutants located on the committed code, correlate with the commit-relevant
mutation score. Our results show that all three metrics have relatively weak
correlations (less than 0.4), indicating the need for a commit-relevant test
assessment metric.

• We further examine the potential guidance given by commit-relevant mutation
testing by comparing the gains and losses of strategies that use the entire set of
mutants, the mutants located on the committed code and the commit-relevant
mutants. Our findings suggest that commit-relevant mutants have 30% higher
fault revelation ability (w.r.t. real commit-introduced faults) than the other
strategies when analysing the same number of mutants.

• We illustrate a possible application of commit-aware mutation testing as a
metric to evaluate test case prioritisation.
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5.2 Commit-Relevant Mutants
Informally, a commit-aware test criterion should reflect the extent to which test

suites have tested the altered program behaviours. This means that test suites should
be capable of testing and making observable any interaction between the altered code
and the rest of the program. We argue that mutants can capture such interactions by
considering both the behavioural effects of the altered code on mutants’ behaviour
and visa versa. This means that mutants are relevant to a commit when their
behaviour is changed by the regression changes. Indeed, changed behaviour indicates
a coupling between mutants and regressions, suggesting relevance.

Figure 5.1: A mutant is relevant if it impacts the behaviour of the committed code and the
committed code impacts the behaviour of the mutant. This means that there is at least
one test case (test - t) that can distinguish both the behaviours of Pre-M from Post-M and
Post from Post-M.

5.2.1 Rationale Behind Commit-Aware Mutation Testing
Since relevant mutants form commit-aware test requirements they should be

killed by tests that exercise/test the committed code and its integration to the rest
of the program. This means that relevant mutants should be killed by tests that are
capable of detecting, i.e., making observable, any potential fault that depends on
the commit.

To identify such mutants we check, for each mutant, whether there is at least one
test case that can make observable any behavioural difference between the mutant
and:

1. the program version that includes only the mutant (mutant in the pre-commit
version).

2. the program version that includes only the committed changes (post-commit
version).

These two conditions ensure the presence of “observable dependencies” between
the mutant and the committed code since the removal of either of them impacts
(changes) the behaviour of the program under the same test execution. Figure
5.1 illustrates the use of the above conditions. In particular, given the pre- and
post-commit versions, and a mutant located on lines unmodified by the commit,
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denoted as pre-M and post-M, we can identify relevant mutants by checking whether
there is any test case (if there exists at least one) that can make observable the
differences between pre-M and post-M and between post-commit and post-M.

More formally:
• let m be a mutant of the post-commit version of the program under analysis.
• let t be a test case from a set T of all possible test cases for this program.
• let Ov(t) be an execution function of a test t on a program version v. Where v

takes format of:
– post - the post-commit version of the program.
– mpost - m mutated post-commit version of the program.
– mpre - m mutated pre-commit version of the program.

• let denote A as a set of commit non-relevant mutants.
• let denote B as a set of commit-relevant mutants.

Definition 1. Commit Non-Relevant mutant

m ∈ A := ∀ (t) ∈ {T} : Ompost(t) = Opost(t) ∨Ompost(t) = Ompre(t) (5.1)

Definition 2. Commit Relevant mutant

m ∈ B := ∃ (t) ∈ {T} : Ompost(t) ̸= Opost(t) ∧Ompost(t) ̸= Ompre(t) (5.2)

5.2.2 Demonstrating Example

Mutant M1 (Relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2;  // R = 0;
4.    if (x[R] > y[R]) {
5.        vR = 1; 
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

Mutant M2 (Non-relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2; 
4.    if (x[R] > y[R]) {
5.        vR = 1; // vR = 0;
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

Mutant M3 (Non-relevant)

int func (int x[3], int y[3]) {
1.    int L, R, vL = 0, vR = 0;
2.    sort(x); sort(y);
3.    R = 2; 
4.    if (x[R] > y[R]) {
5.        vR = 1; 
6.    } else if (x[R] == y[R]) {
7. - L = 1;
7. + L = 0;
8.        if (x[L] > y[L])
9.            vL = 1; 
10.   }
11.
12.   if (x[0] > y[2]) // if (x[0] >= y[2])
13.       return -1; 
14.
15.   return vL + vR;
}

No test can execute both the 
mutated statement (line 5) and the 
modification (line 7) in both pre and 

post commit versions

Any test that kills the mutant post-commit must fulfil 
the condition 𝑥𝑥 0 == 𝑦𝑦[2]. Any test that fulfil the 
above condition will make the mutant output -1 for 

pre and post commit versions. Thus no test can make 
the mutation interact with the modification.

For test input:  x = {0, 3 ,4} and y = {0, 2, 3},
the return codes are following:

• Mutant post-commit: 0
• Mutant pre-commit: 1
• Original post-commit: 1

≠
≠

Figure 5.2: Example of relevant and non-relevant mutants. Mutant 1 is relevant to the
committed changes. Mutants 2 and 3 are not relevant.

Figure 5.2 illustrates the concept of relevant mutants. The example function takes
2 arguments (integer arrays x and y of size 3), sorts them, makes some computations,
and outputs an integer. The commit modification alters the statement at line 7 by
changing the value assigned to the variable L from 1 to 0, denoted with the pink-
highlighted line (starting with ‘-’) for the pre-commit version and green-highlighted
line (starting with ‘+’) for the post-commit version.
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The sub-figure on the left side shows mutant M1. M1 is characterised by the
mutation that changes the statement R = 2 into R = 0 in line 3 (the C language style
comment represents the mutant’s statement). We observe that, with an input t such
that t : x = {0, 3, 4}, y = {0, 2, 3}, the original program post-commit has an output
value of 1, the mutant M1 pre-commit outputs 1 and the mutant M1 post-commit
outputs 0. Based on the definition of relevant mutants, M1 is relevant to the commit
modification.

The sub-figure in the center shows mutant M2 (mutation changes the statement
vR = 1 into vR = 0 in line 5). We observe that the mutated statement (in line 5)
and the modification (in line 7) are located in two mutually unreachable nodes of
the control-flow graph. Thus, no test can execute both the changed statement and
M2. M2 is not relevant to the commit modification.

The sub-figure on the right side shows mutant M3 (mutation changes the expres-
sion x[0] > y[2] into x[0] >= y[2] in line 12). We observe that some tests execute
both the commit modification and the mutated statement. However, no test can
kill M3 in the post-commit version and at the same time differentiate between the
outputs of the pre-commit and post-commit versions of mutant M3. The reason
is that any test that kills M3 in the post-commit version must fulfil the condition
x[0] == y[2]. Any such test makes both the pre- and post-commit versions of M3 to
output −1, thus, not fulfilling the condition to be relevant. Since, there exists no
such test, M3 is not relevant to the commit modification.

Note that in case a modification inserts statements, all killable mutants (in the
post-commit version) located on these statements (new statements) are relevant
to the modification. In case of deletion (modifications remove statements), the
mutations located on these statement do not exist in the post-commit version, and
thus, are not considered.

5.3 Experimental Setup
5.3.1 Research Questions

We start our analysis by recording the prevalence of commit-relevant mutants in
code commits. Thus, we ask:

RQ1: (Mutant distributions) What ratio of mutants is relevant, is located on changed
code, and is located on non-changed code?

Answering this question will help us understand the extent of “noise” included in
the mutation score and will provide a theoretical upper bound on the application
cost of commit-aware mutation testing.

As we shall show, the majority of the mutants are irrelevant to the committed
code, indicating that using all mutants is sub-optimal in terms of the application
cost. Perhaps more interestingly, using such an unbalanced set could result in a
score metric with low precision. Therefore, we need to check the extent to which the
mutation score is adversely influenced by irrelevant mutants. Thus, we investigate:

RQ2: (Metrics relation) Does the mutation score (MS), computed based on all
mutants, on mutants located on the committed/modified code, and the delta
of the pre- and post- commit MS correlate with the relevant mutation score
(rMS)?
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Knowing the level of these correlations can provide evidence in support (or not)
of the commit-aware assessment (i.e., the extent to which the mutation score reflects
the level at which the altered code has been tested). In particular, in case there is a
strong correlation, we can infer that the influence of the irrelevant mutants is minor.
Otherwise, the effects of the irrelevant mutants may be distorting.

While the correlations reflect the influence of the irrelevant mutants on the
assessment metric, they do not say much about the extent to which irrelevant
mutants can lead to tests that are relevant to the changed behaviours (in case
mutants are used as test objectives). In other words, it is possible that by killing
random mutants (the majority of which is irrelevant), one can also kill relevant
mutants. Such a situation happens when considering the relation between mutants
and faults, where mutant killing ratios have a weak correlation with fault detection
rates but killing mutants significantly improves fault revelation [53]. Hence we ask:

RQ3: (Test selection) To what extent does the killing of random mutants result in
killing commit-relevant mutants?

We answer this question by simulating a scenario where a tester analyses mutants
and kills them. Thus, we are interested in the relative differences between the relevant
mutation scores when testers aim at killing relevant and random mutants. We use
the random mutant selection baseline as it achieves the current best results [68, 112].
We compare here on a best effort basis, i.e., the commit-relevant mutation score
achieved by putting the same level of effort, measured by the number of mutants that
require analysis. Such a simulation is typical in mutation testing literature [9, 68]
and aims at quantifying the benefit of one mutant selection approach over another.

Answering the above question provides evidence that killing relevant mutants
yields significant advantages over killing of random mutants. While this is important
and demonstrates the potential of killing commit-relevant mutants in terms of
relevance, still the question of actual test effectiveness (actual fault revelation)
remains. This means that it remains unclear what the fault revelation potential of
killing commit-relevant mutants is when the commit is fault-introducing. Therefore
we seek to investigate:

RQ4: (Fault Revelation) How does killing commit-relevant mutants compare with
killing of random mutants w.r.t. to (commit-introduced) fault revelation?

To answer this question we investigate the fault revelation potential of killing
commit-relevant mutants based on a set of real fault-introducing commits. We follow
the same procedure as in the previous research question (RQ3) in order to perform a
best effort evaluation. While answering the question about mutant’s fault revelation
ability, and showing their usefulness and practicality in finding faults, we would like
to know whether commit-aware mutants can be found through different classes of
mutants. If the majority of the relevant mutants are also part of other mutant classes,
it indicates that the other classes can be used as a proxy to relevant mutants. This is
important since previous research [89,131–133] heavily relied on other mutant classes
to evaluate regression testing techniques. Moreover, by investigating the relationship
with other mutant classes we can better understand the nature of relevant mutants
and their fundamental differences (and similarities) with other classes. In particular,
by investigating the relationship with Subsuming mutants, we can see how many
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subsuming mutants are relevant, which represents the relevant behaviours captured
by the mutants over all behaviours, i.e., ratio of relevant over all mutants after
minimising the noise from redundant mutants. This allows us to have a better
understanding of the discrepancies and potential wasted effort caused by irrelevant
mutants. Similarly, the comparison with hard-to-kill mutants can show whether
relevant mutants are not that difficult to kill and somehow distinct from the other
classes. Thus, we are engaged in knowing:

RQ5: (Mutants Classes) How different the relevant mutants are to the classes of
subsuming and hard-to-kill mutants?

We answer this question by investigating the relationship and overlap among the
three sets of relevant mutants, hard-to-kill mutants, and subsuming mutants. As a
reminder for a reader, hard-to-kill mutants are the set of mutants killed by a few
tests.

Overall, answering the above questions will improve the understanding of the
potential of the cost-effectiveness application of commit-aware mutation testing.

5.3.2 Analysis Procedure
We performed mutation testing on the selected subject using all the mutation

operators supported by Mart [134] and Pitest [58] (the mutation testing tools we use).
For the C programs, before conducting and running any experiment we discarded
all the trivially equivalent mutants (including the duplicated ones), using the TCE
method [39, 40] in order to reduce their impact on our results. This is an important
step in order to avoid influence from trivially equivalent mutants that could anyway
be reduced using the TCE method. Therefore, we applied our analysis on the
resulting sets of mutants i.e., those that are not trivially equivalent.

Identifying relevant mutants requires excessive manual analysis, thus we approxi-
mate them based on test suites (this is a typical experimental procedure [8,44,68]). To
do so we composed large test pools, which approximate the input domain. The pools
are composed of the post-commit version developer tests (mined from the related
repository). For C programs we augment the pools with automatically generated
tests, similarly to the process followed by Kurtz et al. [68] and Papadakis et al. [8].

Using the test pools, we execute all the mutants (on both pre- and post-commit
versions) and construct the mutation matrix that records the test execution output
of each test on each mutant. For C programs, the output is the standard output
produced when running the test, while for the Java programs it is the status (pass/fail)
of the test run.

By using this information, i.e., test execution outputs on every related version,
we approximate the relevant mutant set based on Algorithm 2. In the algorithm,
the function calls postCommitOrigOutput, postCommitMutOutput and preCommit-
MutOutput compute the output of the execution of test case ‘test’ on the post-commit
original program, post-commit version of mutant ‘mut’ and pre-commit version of mu-
tant ‘mut’, respectively. In particular, in C the function calls postCommitOrigOutput,
postCommitMutOutput and preCommitMutOutput return the exact concrete value of
a test case output when executed on a mutant or the original program. While in Java
they provide standard unit-level oracle pass/fail output. The generated output of
the execution of test case ‘test’, on each version of a software (post-commit version,
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mutant M generated on the pre- and post-commit version) is compared between the
versions to identify a difference in behavior between mutant pre-M and post-M.

Besides the relevant mutant set, we also extract the modification mutant set,
made of mutants that are located on a statements modified or added by the commits.
This set is computed by extracting the modified or added statements from the
commit diff and collecting the mutants that mutate those statements. Note that,
by definition, the killable modification mutants are also relevant mutants, as their
pre-commit output is not defined, and thus different from their post-commit output.

Therefore, we have a set of all the mutants generated on a post-commit version of
a program (post-M), which can be divided into two subsets; those that are identified
as commit-relevant by our approach (commit-relevant) and those that are identified
as commit-irrelevant (non-relevant). The set of post-commit mutants located on
statements modified or added by regression changes forms the (modification) subset
of mutants. As already mentioned the modification set of mutants includes both
relevant and irrelevant mutants. In RQ2, we want to know the correlations between
the mutation scores of the aforementioned mutant sets. To do so, we select arbitrary
test sets of various sizes and record the mutation scores on each mutant set and
compute their correlations.

Algorithm 1: Approximate Relevant Mutants Set
Data: TestSuite, Mutants
Result: Relevant Mutants
RelevantMuts← ∅;
for mut ∈Mutants do

for test ∈ TestSuite do
origV 2← postCommitOrigOutput(test);
mutV 2← postCommitMutOutput(test, mut);
mutV 1← preCommitMutOutput(test, mut);
if origV 2 ̸= mutV 2 ∧mutV 2 ̸= mutV 1 then

RelevantMuts← RelevantMuts ∪ {mut};
break;

end
end

end
return RelevantMuts ;

In RQ2 we arbitrary pick sets of tests representing 10%, 20%, ..., 90% of the test
pool. As these sets are randomly sampled we selected multiple sets (500 for C and
100 for Java) per size considered and per program commit (each subset of test can
be seen as a testing scenario). For every test set, we computed the mutation score
for each of the three mutant sets. We name as MS, rMS and mMS the mutation
scores for the whole mutant set, relevant mutant set and modification mutant set,
respectively. The mutation scores are computed on the post-commit versions and
using the mutation matrix. Thus, for each commit and each test size, we have three
statistical variables (MS, rMS and mMS), whose instances are the corresponding
mutation scores for each test set.

Having collected the data for the statistical variables MS, rMS and mMS, we
compute the correlations between rMS and MS as well as the correlation between
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rMS and mMS. If the correlation between rMS and MS (mMS) is high, it means
that MS (mMS) can be used as a proxy fo rMS. Otherwise, MS (mMS) is not a
good proxy for rMS and thus, rMS should be targeted directly.

We also computed, for each test set, the mutation score in the pre-commit ver-
sion. Then we compute the absolute change of mutation score (named deltaMS),
on the analyzed mutant set, incurred by a commit modification (delatMS =
|MSpost−commit − MSpre−commit|), and we compute the correlation between rMS
and deltaMS. A strong correlation would mean that the absolute change of mutation
score between versions is a proxy for rMS. Weak correlation would mean that rMS
cannot be represented by delatMS.

In RQ3, we simulate a scenario where a tester selects mutants and designs tests
to kill them. This is a typical evaluation procedure [8,68] where a test that kills a
randomly selected mutant (from the studied mutant set) is selected from the test
pool. This test is then used to determine the killed mutants, which are discarded
from the studied mutant set. The process continues (by picking the next live mutant)
until all mutants have been killed. If a mutant is not killed by any of the tests, we
treat it as equivalent. This means that our effort measure is the number of mutants
picked (either killable or not) and effectiveness measure is the relevant mutation
score. Since we perform a best-effort evaluation we focus on the initial few mutants
(up to 50) that the tester should analyse in order to test the commits under test.
We repeat this process (killing all mutants) 100 times and compute the relevant
mutation score.

For RQ4, we repeat the same procedure as in RQ3. However, instead of computing
the relevant mutation score, we compute the fault revelation probability.

For RQ5, we calculate the overlap of three different categories of mutants: relevant
mutants, hard-to-kill mutants, and subsuming mutants. We compute the set of
subsuming mutants following the standard subsumption theory described in Section
2.2.3. As typically performed, we use the available tests to compute the subsumption
relationships [8, 68]. Based on these relationships, we determine the subsuming
mutants set. When it comes to the set of hard-to-kill mutants, we consider as
hard-to-kill any mutant killed by less than 2.5% of covering tests, i.e., a mutant M
is hard-to-kill if and only if less than 2.5% of the tests that cover M also kill M .
For analysis of our results, we calculate relation between the corresponding sets of
mutants, following percentage formula: sample/population × 100.

5.3.2.1 Statistical Analysis

We perform a correlation analysis to evaluate whether the mutation score, when
considering all mutants, correlates with the relevant mutation score. To this end,
we use two correlation metrics: Kendall rank coefficient (τ) (Tau-a) and Pearson
product-moment correlation coefficient (r). In all cases, we considered the 0.05
significance level.

The Kendall rank coefficient τ , measures the similarity in the ordering of the
studied scores. We measure the mutation score MS and the relevant mutation score
rMS when using test suites of size 10%, ..., 90% of the test pools. The Pearson
product-moment correlation coefficient (r) measures the covariance between the MS
and rMS values. These two coefficients take values from -1 to 1. A coefficient of 1,
or -1, indicates a perfect correlation while a zero coefficient denotes the total absence
of correlation.

73



Chapter 5. Commit-Aware Mutation Testing

Table 5.1: C Test Subjects

Benchmark #Programs #Commits # Mutants #Test cases

CoREBench [83] 6 13 154,396 8,828

Benchmark-1 13 34 338,390 11,866

To evaluate whether the achieved mutation scores MS and relevant mutation
scores rMS are significantly different, we use a Mann-Whitney U Test performed
at the 0.05 significance level. This statistical test yields a probability called p-value
which represents the probability that the MSs and rMS are equal. Thus, a p-value
lower than 0.05 indicates that the two metrics are statistically different. We use
paired and two-tailed U test, to account for the different commits and programs.

5.3.2.2 Program Versions Used

To answer RQs 1-3 we used the C programs of GNU Coreutils1, used in many
existing studies [82, 108,135]. GNU Coreutils is a collection of text, file, and shell
utility programs widely used in Unix systems. The whole code-base of Coreutils
is made of approximately 60,000 lines of C code2. In order to obtain a commit
benchmark of Coreutils programs we used to following procedure to mine recent
commits from the Coreutils github repository. (1) We set the commit date interval
from year 2012 to 2019. This resulted in 5,000 commits considered. (2) Next, we
filtered out the commits that do not alter source code files. This resulted in 1,869
commit remaining. (3) Then, we only kept the commits that affect only the main
source file of a single program (This enable better control of test execution, because
other programs of Coreutils are often used to setup the test execution of a tested
program). (4) After that, we filtered out commits that are very large (commits whose
modification has an edit actions of more than 5 according to GumTree [136]). This
resulted in 218 commits. (5) Due to the large execution time of the experiments,
approx. 2 weeks of CPU time per commit, we randomly sampled 34 commits among
the remaining commits for the experiments. This constitutes our Benchmark-1.

In order to further strengthen our experiment and answer RQ4, we also use 13
commits from the CoREBench [83] that introduce faults. We selected these commits
to validate the fault revelation ability of relevant mutants. Since we approximate
relevant mutants, we needed commits where automated tests generation frameworks
could run. Thus, we limit ourselves to the 18 fault introducing commits of Coreutils
that we can run with Shadow symbolic execution [108]. Among these faults, two
were discarded due to technical difficulties in compiling the code (the build system
uses very old versions of the build tools). Three faults were discarded due to the
excessively high required execution time to run the mutants (we stopped after 45
days). Table 5.1 summarizes the information about the C language benchmarks used
in the experiments.

To answer RQs 1-3, we also consider a set of commits from well-known and
well-tested Java programs. We extract these commits from projects in the Apache

1https://www.gnu.org/software/coreutils/
2Measured with cloc (http://cloc.sourceforge.net/)
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Table 5.2: Java Test Subjects

Project # Commits # Mutants # Test cases

commons-cli 9 61,419 3,247

commons-collections 5 323,584 55,076

commons-io 3 105,181 3,972

commons-net 6 345,130 1,478

joda-time 5 561,782 20,962

jsoup 8 330,125 4,985

Commons Proper repository3, a set of reusable Java component projects, from Joda
Time4, a time and date library, and Jsoup5, an HTML manipulation library. For
each of the projects, we manually gathered the most recent commits meeting the
following conditions from the project’s history: (1) only source code is modified, no
modification to configuration files, (2) the commit introduces a significant change,
not a trivial one such as a typo fix, (3) test contracts are not modified, in order to
meaningfully compare pre- and post-commit outputs and (4) both pre- and post-
commit versions of the project build successfully. Overall, we gathered 36 commits,
Table 5.2 summarises information about the commits used from each project.
5.3.2.3 Mutation Mapping Across Versions

As mutation testing tools generate mutants for a given program version instead of
regression pairs, we need to identify the common mutants between the two versions.
In other words, we need to map each mutant from its pre- to post-commit version of
the program.

To establish such a mapping in the case of C programs, we unify the commit
modifications into a single program, as done in the literature [108], and apply any
standard (unmodified) mutation tool to generate the mutants. The code unification
of the commit modification is done through annotation that has no side-effect.
The annotations are made through a special function called “change" that takes 2
arguments/values (the arguments are the value of the pre-commit and post-commit
versions, respectively) and return one of the two values.

The annotations are manually inserted in the program, according the semantics
presented in previous studies [108].

Note that the statement insertion can be annotated by wrapping the inserted
statement with if(change(false, true)); and a statement deletion can be annotated
by wrapping the deleted statement with if(change(true, false)).

The choice of the version to use, for each mutant, is decided at runtime (by
specifying the version to use through an environment variable recognizable by the
change function).

For the Java programs, we perform the mapping of mutants from both sets of
mutants of pre- and post- commit versions and the commit diff. First we start by
generating the mutants for both pre- and post-commit versions of the program using

3https://commons.apache.org/
4https://github.com/JodaOrg/joda-time/
5https://github.com/jhy/jsoup
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the mutation tool. We then map pre- and post- commit line numbers by parsing
the commit diff, such as that we can identify which lines have been altered between
the versions. Then, we use this mapping of altered line numbers to map pre- and
post-commit mutants: using the line number, bytecode instruction number and
mutation operator of the mutants to match both sets. We adopt this way for the
Java programs in order to avoid making drastic changes on Pitest (the mutation
testing tool we use).

5.3.2.4 Mutation Testing Tools and Operators

As test suites are needed in our experiment, we use the developer tests suites for
all the projects that we studied. These were approximately 4,194 tests in total for C
programs.

To strengthen the test suites used in our study, we augment them in two phases.
First, we use KLEE [135], with a robust timeout of 2 hours, to perform a form of
differential testing [137] called shadow symbolic execution [108], which generates 234
test cases. Shadow symbolic execution generates tests that exercise the behavioural
differences between two different versions of a program, in our case the pre-commit
and the post-commit program versions.

In order to also expose behavioural difference between the original program and
the mutants, we used SEMu [82], with a robust timeout of 2 hours, to perform test
generation to kill mutants in the post-commit program versions. SEMu generates
17,915 test cases.

These procedures resulted in large test suites of 22,343 test cases for C programs
in total. Since we compare program versions, we use the programs output as an
oracle. Thus, we consider as distinguished or killed, every mutant that results in
different observable output than the original program.

We use Mart [134], a mutation testing tool that operates on LLVM bitcode, to
generate mutants. Mart implements 18 operators (including those supported by
modern mutation testing tools), composed of 816 transformation rules.

To reduce the influence of redundant and equivalent mutants, we enabled Trivial
Compiler Equivalence (TCE) [39,40,138] in Mart to detect and remove TCE equivalent
and duplicate mutants.TCE detected 13,322 and 460,072 equivalent and redundant
mutants.

For the Java programs, we use the developer test suites available. We perform
mutation analysis using Pitest [58], a state of the the art mutation testing tool that
mutates JVM bytecode. We use all mutation operators available in Pitest, which are
described in [139].

5.4 Experimental Evaluation
5.4.1 RQ1: Relevant mutant distribution

We start our analysis by examining the prevalence of commit-relevant mutants,
i.e., mutants that affect the altered program behaviours. Figure 5.3 records the
distribution of the relevant and non-relevant mutants among the studied commits.
Based on these results we see that only a small portion of the mutant population
produced by the selected mutation operators is actually relevant. This portion ranges
from 0.5% to 47%, among which 3.6% is located on the changed program lines, while
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Figure 5.3: The distribution of killable, non-relevant, relevant outside the modification and
relevant on the modification mutants among the studied commits.

the rest is located on the rest of the code. For the large portion, it is possible to
happen when the source code is not large, and the change is located in the crucial
position.

Interestingly, the presence of so many “irrelevant” mutants, can have major
consequences when performing mutation testing. Such consequences are a distorting
effect on the accuracy of the mutation score, and a waste of resources when executing
and trying to kill non-relevant to the commit mutants. We further investigate these
two points in the following sections.

5.4.2 RQ2: Relevant mutants and mutation score
Figure 5.4 visualizes our data; each data point represents the mutation score and

relevant mutation score of a selected test suite. As can be seen from the scatter plots,
there is no visible pattern or trend among the data. We can also see that there is a
large variation between mutation scores and relevant mutants scores in almost all the
cases. These observations indicate that the examined variables differ significantly. In
other words, one cannot predict/infer one variable using the other one. To further
explore the relationship between mutation score and relevant mutation score within
our data we perform statistical correlation analysis.

Finding a strong correlation would suggest that the two metrics have similar
behaviours (an increase or decrease of one implies a relatively similar increase
or decrease of the other). Figure 5.5 displays the results for the two correlation
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Figure 5.4: The relationship between Mutation Score and Relevant Mutation Score.

coefficients that have statistically significant values for randomly selected test suites
(from our test suite pool) of different sizes6. Interestingly, we observe that most of
the correlations are relatively weak with their majority ranging from 0.15 to 0.35.
Additionally, we see that both coefficients we examine are aligned, indicating a weak
relationship when either ordering test suites or considering their score differences.

One may assume that the relevant mutation score may be well approximated by
the mutants that are located on the modified code, assuming that mutants’ location
reflects their utility and relevance. Similarly, one may assume that the commit-
relevant score could be approximated by the delta of the pre- and post-commit
mutation scores. We investigate these cases and find that most of the correlations
are relatively weak with their majority ranging from -0.1 to 0.1.

Overall, our results indicate that irrelevant mutants have a major influence on
the mutation score calculation, and that using the overall mutation score does not
reflect the actual value of interest, i.e., how well the altered behaviours are tested,

6We observe similar trends with Pearson correlation. For the sake of saving space, Pearson
correlation results can be found on the accompanying website.
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which is represented by relevant mutation score (rMS). Approximating the rMS
using either the deltaMS or the mutants of the altered lines is also not sufficient.
Hence, our results suggest that MS and other direct metrics are not good indicators
of commit-related test effectiveness. We envision that future research should develop
techniques capable of identifying relevant mutants at testing time, i.e., prior to any
test generation and mutant analysis, in order to support testers.

10% 20% 30% 40% 50% 60% 70% 80% 90%
Proportion of Test Suite

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ke
nd

al
l C

or
re

la
tio

n

RMS and MS

(a) Java programs

10% 20% 30% 40% 50% 60% 70% 80% 90%
Proportion of Test Suite

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ke
nd

al
l C

or
re

la
tio

n

RMS and MS

(b) C programs

Figure 5.5: Correlation between Mutation Score and Relevant Mutation Score for different
test suite sizes on different languages.

5.4.3 RQ3: Test Selection
Recent research has shown that mutation testing is particularly effective at

improving test suites and revealing faults (guiding testers to design test cases that
reveal faults), while at the same time mutation score is weakly correlated with fault
detection [53]. In view of this, it is possible that despite the weak correlations we
observe in our case, traditional mutation could successfully guide testers towards
designing tests that collaterally kill relevant mutants.

Results are recorded in Figure 5.6 for the first 1-50 mutants to be analysed
by the tester. We observe a large divergence (approximately 50%-60%) between
the random, commit-based and relevant mutants. This suggests that by analyzing
mutants in interval of 5, from selected 5 mutants to selected 50 mutants at random,
one would miss approximately 60% and 50% of commit-relevant mutants for C and
Java programming languages, respectively. This difference is statistically significant
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Figure 5.6: Test suite improvement of mutation-based testing with random (traditional
mutation) and relevant mutants.

Table 5.3: Â12. rMS when aiming at Relevant, Random and Modification related
mutants.

#Mutants 5 10 20 30 40 50

Relevant-Random 0.90 0.95 0.98 0.98 0.98 0.97

Relevant-Modification 0.89 0.96 0.99 0.99 0.99 0.99

and with large effect size (Effect Size values are recorded on Table 5.3). Moreover,
what we can observe that as we start increasing the number of analyzed mutants
(5-50 mutants), the difference between the killed ratio of relevant mutants decreases.
This is expected since putting more effort essentially results in selecting more
mutants thereby increasing the chances to select some relevant. Taking together the
weak correlations we found in the previous section with these results, we conclude
that traditional mutation testing is sub-optimal and cannot be used to assess or
guide (in a best-effort basis) the testing of committed code. Therefore, to support
practitioners, future research should aim at identifying and using commit-relevant
mutants. Similarly, controlled experiments should be based on relevant mutants
when aiming at assessing change-aware test effectiveness.
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Table 5.4: Â12. Fault revelation when aiming at Relevant, Random and Modification
related mutants.

% Relevant mutants analysed 10% 20% 50% 75% 100%

Relevant-Random 0.55 0.59 0.64 0.66 0.64

Relevant-Modification 0.57 0.59 0.69 0.73 0.70

5.4.4 RQ4: Fault Revelation
To demonstrate the importance of commit-aware mutation testing, we further

compare the ability of the traditional mutants and commit-relevant mutants to reveal
commit-introduced faults (real faults). We follow the same procedure as in the
previous section but evaluate w.r.t. to the rate of faults revealed by the selected test
suites.

The fault revelation results are depicted in Figure 5.7. From this data, we can
see that a significant fault revelation difference (approximately 30-40%) between the
compared approaches can be recorded. This difference is statistically significant with
large effect size (Effect Size values are recorded on Table 5.4). Here it must be noted
that these results can be achieved by an effort equivalent to analysing 0.4% of the
mutants, which is 27 mutants per commit (on average).

Overall, our results demonstrate that by aiming at relevant mutants one can
achieve significant fault revelation benefits (approximately 30%) over the traditional
way of using mutation testing.
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Figure 5.7: Fault revelation of mutation-based testing with random (traditional mutation)
and relevant mutants.

5.4.5 RQ5: Mutant Classes
Figure 5.8 shows the overlap among the relevant, subsuming, and hard-to-kill

mutant classes for the C and Java benchmarks. From these results we can conclude:
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Figure 5.8: Relevant Mutants intersection with Subsuming and Hard-to-Kill Mutants

Commit-Relevant vs. Subsuming

Our results show that most of the relevant mutants are also non-subsuming,
more precisely 59.79% and 84.45% (11.03 / (11.03+0.2+0.23+1.6) * 100) for both C
and Java benchmark. Suggesting that relevant mutants have many redundancies,
similarly to other mutants. Now, if we measure overlapping just between those two
categories, commit relevant and subsuming mutants, we see an overlap of 11.38% and
0.21% for both languages, respectively. This overlap is small implying an imbalanced
case, i.e., by targeting subsuming mutants one wastes significant resources than if
targeting commit relevant mutants.

An interesting finding here is that most of the commit-relevant mutants are also
non-subsuming, meaning that relevant mutants have many redundancies, similarly
to other mutant classes. This is important since it indicates that mutant selection
may also benefit and be improved by emerging work on subsuming mutant selection
[63,129,140].
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Commit-Relevant vs. Hard-To-Kill
The results of the comparison with Hard-to-kill mutants shows that relevant

mutants are not that difficult to kill and somehow distinct from the other categories.
Among the union of mutants, 19.63% and 2.69% represent hard-to-kill mutants that
do not fall under other classes, both for C and Java, respectively. More precisely,
33.39% and 32.84% of mutants from the hard-to-kill set do not overlap with other
classes, while we can observe the overlap of 17.06% and 1.12% for both languages.
The overlap is small because the committed changes are in relevantly easy-to-reach
points of the programs.

In conclusion, relevant mutants is a distinct class of mutants that is hardly approx-
imated by other mutant classes. This means that if one would like to use mutation
testing to assess change-relevant fault detection (simulating faults introduced by
commits), will need to rely on relevant mutants since any other form is inherently
different.

5.5 Analysis of Commit-Relevant mutants
Our relevance definition include the set of mutants that can be impacted by the

committed changes by at least one test case. Strictly speaking this definition allows
the inclusion of mutants that may be killed by tests irrelevant to the committed
code. Though, we consider them as interesting as these tests exercise code parts,
the parts where these mutants are located, that depend on the changed introduced
by the commits. Therefore, these tests indirectly exercise the committed code. In
view of this, one can define different levels of relevance by considering the strength of
the dependence between the mutants and the commits. We can thus define a strong
relevance relationship by mandating an observable difference between pre-M and
post-M by every test case that kills mutant M. In such a case we can define a weak
relevance relationship, w.r.t., complete relevance relationship, as we do in this paper,
by mandating an observable difference between pre-M and post-M by at least one
test case that kills mutant M.

Formally:
• let m be a mutant of the post-commit version of the program under analysis.
• let t be a test case from a set T ′ of all test cases that kill mutant m.
• let Ov(t) be an execution function of a test t on a program version v. Where v

takes format of:
– mpost - m mutated the post-commit version of the program.
– mpre - m mutated the pre-commit version of the program.

• let denote D as a set of strong commit relevant mutants.

Definition 3. Strong commit relevant mutant

m ∈ D := ∀ (t) ∈ {T ′} : Ompost(t) ̸= Ompre(t) (5.3)

This definition allows selecting mutants that always lead to commit-relevant
tests, i.e., tests that directly exercise the committed code. Informally, the mutant
relevance leans on the strength of dependency between a mutant and commit changes,
expressed through the number of tests that observe the dependency over the number
of tests that kill the mutant. The value of relevance lies between 0 and 1. When
relevance takes value 0 there is no observable behavioural difference on test outputs
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Figure 5.9: Illustration of different levels of relevance. The outer rounded rectangle
represents all tests of the program under test. Set of tests Tx (red circle) includes all tests
t that make observable the differences between post-commit and mutated post-commit
version of a program under test (Definition 2). Set of tests Ty (blue circle) includes all tests
t that make observable the differences between mutated post-commit version and mutated
pre-commit version (Definition 2). We identify three cases, a) Non-Relevant mutants, i.e.,
no test t belongs to both Tx and Ty, b) weakly-relevant mutants case with least one test
t that belongs to Tx and not to Ty, c) strongly-relevant mutants where every test t that
satisfies Tx also satisfies Ty.

impacted by code-change. As the value of relevance increases, the mutant is assessed
to be more relevant, until the value equals 1, in which case the behavioural difference
can be observed with every test, making a mutant strongly relevant.

Formally, let’s consider the same notations as for the definition of strong commit
relevant mutants. Let t be a test case from a set T of all possible test cases for a
program under analysis. Thus, formal definition of mutant relevance level can be
defined as follows:

Definition 4. Relevance

relevance(m) = |∀ (t) ∈ T : t ∈ T ′ ∧Ompost(t) ̸= Ompre(t)|
|T ′|

(5.4)

Furthermore, in RQ5 (Mutants Classes) we witnessed that most of the relevant
mutants are non-subsuming. This phenomenon suggests that many relevant mutants
are redundant. This means that one could envision an optimised scenario where
redundancies among relevant mutants are minimised. Thus, we can define subsuming
commit relevant mutants, which is the set of relevant mutants that subsumes the
set of all relevant mutants. Formally, let M be a set of mutants {m0, ..., mn} for
post-commit version of the program under test. Let RM be a set of commit-relevant
mutants, whereas RM ⊂ M . Let subsuming(M) be a function that returns the
subsuming mutant subset of M [44, 45]. Thus, the set of subsuming commit-relevant
mutants SRM can be defined as:

Definition 5. Subsuming commit-relevant mutants

SRM = subsuming(RM) : SRM ⊂ RM ⊂M (5.5)
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5.6 ShowCase the use of Relevant Mutants in as-
sessing Regression Test Prioritisation methods

5.6.1 Test Case Prioritisation
Testing is a key process in Software Engineering, but can also be a very expensive

one. Test case prioritisation aims at ordering the different tests that are executed
against the system in order to achieve some desired goal more efficiently. Tests
are ordered to reveal a fault as early as possible in the execution of the test suite,
providing faster feedback to testers and developers [31].

Much work has been done on test case prioritisation in the context of regression
testing [31,133,141]. In this context, tests can be ordered based on their contribution
to some test criterion on the previous version of the system, either totally or addi-
tionally [131]. Examples of test criteria used for regression test case prioritisation
include code coverage [142], logic coverage [143], and also mutation score [14].

Mutation analysis has also been used as a metric to evaluate and compare different
test prioritisation methods [133]. The different tests orderings are then compared
based on how much each new test execution improves the mutation score, i.e., how
fast the best possible mutation score is achieved by an ordering.

5.6.2 Demonstrating ShowCase
The primary purpose of regression testing is to validate whether the changes

performed to the software break any of the unchanged program functionality. There-
fore, test prioritization is used to support the regression testing of commits, giving
rise to the question of how well they perform against commit-relevant faults. We,
therefore, use commit-relevant mutant score as a metric to evaluate the ability of
test prioritization techniques to detect change-relevant faults. Our motivation is
to showcase the use of relevant mutants in a regression scenario where mutants
serve as a proxy for the introduced faults (from the commits) and use them to
assess test case prioritization approaches, i.e., assess how well test case prioritization
techniques reveal faults introduced by the commits. This is important since previous
research [89,131–133] heavily relied on other mutant classes to evaluate regression
testing techniques.

Figure 5.10: Test Prioritisation Pipeline

To demonstrate the use of commit-relevant mutants, we illustrate their application
in evaluating regression test case prioritisation techniques. We thus, apply popular
test case prioritisation techniques to the commits that we used in our experiments and
evaluate their performance w.r.t commit-relevant mutation score. In particular, for
every commit, we collect the statement-, branch-, and mutant-coverage information
of the available tests (the same tests used in Section 5.3) on the pre-commit version
of the programs. Each test is then run in isolation and produces a trace of units
(statements, branches, mutants) covered. These traces direct the different test
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prioritisation methods, which are listed in Table 5.5. This study considers the most
popular priorization techniques, i.e., total incremental coverage test prioritisation
methods [131], as described in the related literature [144].

On the post-commit version of the programs, we execute different test orderings
generated from each pre-commit coverage. Each new test, executed following the
ordering, may kill new commit-relevant mutants and thus increase the commit-
relevant mutation score. This evolution of the relevant mutation score along the test
ordering is recorded and represent a curve. The area under that curve divided by
the total number of test cases represents the average Average Percentage of Fault
Detected (APFD) [144]. Note that in our context, the (artificial) faults are the
commit-relevant mutants. The APFD shows the average commit-relevant mutation
score achieved across all possible numbers of tests, taken according to the orderings.
The APFD shows how well the ordering prioritises tests killing commit-relevant
mutants, i.e., tests that are relevant to the commit. The higher the APFD, the more
commit-relevant tests are prioritised.

Figure 5.10 visualises the process of the use case we conduct.

Table 5.5: Test Prioritisation Criteria

Acronym Name Prioritisation Objective

TR Random Cover by randomised ordering
TB Total Branch Cover the maximum number of branches
TAB Additional Branch Cover the maximum number of uncovered

branches
TM Total Mutant Cover the maximum number of killed mutants
TAM Additional Mutant Cover the maximum number of mutants not

yet killed
TS Total Statement Cover the maximum number of statements
TAS Additional State-

ment
Cover the maximum number of uncovered
statements

Figure 5.11 shows the experimental results, aggregated across commits for both
the C (Figure 5.11b) and Java (Figure 5.11a) benchmarks. For each test prioritisation
technique (see Table 5.5), it records the APFD values achieved by the method.

The results on C programs, shown in Figure 5.11b, do not indicate significant
benefits from the total coverage methods (TS, TB, TM) over random selection (TR).
Additional coverage methods (TAM ,TAS) result in higher APFD values, showing that
the test orderings produced by these methods better detect commit-relevant mutants.
However, the improvements are relatively small, indicating that further research,
perhaps change-aware test prioritisation should be considered when testing such
cases.

The results on Java programs, shown in Figure 5.11a, however, show clear
benefits from all coverage-based test prioritisation techniques over the random test
prioritisation, as well as more difference between the different criteria. Mutation-
based prioritisation performs best in terms of the APFD values, while statement-based
prioritisation performs the worst. Similar to the results shown for the C programs,
additional coverage based methods perform better than total coverage based methods.
Additional mutant coverage prioritisation TAM performs best, achieving over 0.9
APFD for most commits.
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Furthermore, what is also interesting to observe in the box plot is the high APFD
value for TAM . It indicates that mutation-based prioritisation remains robust in the
presence of the committed changes.
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Figure 5.11: Test Prioritisation.

Overall, we have shown that the approaches featuring the “total” strategy per-
form worst, in contrast to the additional strategy which offers more robust test
prioritisation. This conclusion conforms with the one in [133], which shows that the
best approaches reach the APFD median of approximately equal to 87%. In our case,
our best additional approaches reach APFD median of approximately 95%, while
the best approach TAM , reaches the average value above 95% for 75% of commits
and above 90% for 100% of commits. One key insight out of the above is that test
prioritisation offers relatively small improvements, indicating that further research,
should be directed towards change-aware test prioritisation.

5.7 Threats to validity
External validity: We selected commits that do not modify test contracts. Such

commits are common in industrial CI pipelines [145] but rare in open source projects.
To mitigate this threat, we performed our analysis on a relatively large set of
commits given the computational limits posed by mutation analysis. In C, our
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experiment required on average approximately 2 weeks of CPU time to complete, per
commit studied (executions performed using Muteria [146]). In addition, we used an
established research benchmark (CoREBench [83]) where we found similar results.
Unfortunately, we consider fault introducing commits only in C as the Java datasets
do not adhere to our non-changed test contract requirement.

Another threat may relate to the mutants we use. To reduce this concern we used
a variety of operators covering the most frequently used language features including
the operators adopted by the modern tools [139], in both C and Java.

Another threat may relate to the occurrence of flaky tests. We believe that
we bypassed this threat by running 5 times all test cases of each project and its
corresponding version. However, we consider more than one reason why flaky tests
should not change conclusions related to our results. First, we worked with open-
source software that does not contain solid environmental dependencies, one of
the leading root causes of flakiness [147]. Second, all the programs we used as a
benchmark for our study are well-studied projects with a reliable test suite with no
previous reports on the occurrence of flaky tests. And as third, we consider that we
study versatile and various projects for both C and Java programming languages.
Thus, we have reduced any potential external validity related to the flaky tests.

Internal validity: Such threats lie in the use of automated tools, the way we
treated live mutants and non-adequate test suites. To diminish these concerns, we
used KLEE, a state of the art test generation tool and strong mature developer
test suites. Nevertheless, the current state of practice [26] relies on non-adequate
test suites, so our results should be relevant to at least a similar level of practice.
To ensure our results, we carefully checked our implementation and performed a
manual evaluation on a sample of our results. Moreover, we use established tools
also employed by numerous studies.

To deal with randomness and minimize stochastic effects, we repeated our experi-
ments 100 times and used standard statistical tests and correlations.

Construct validity: Our effort related measurement, number of analysed mutants,
essentially captures the manual effort involved in test generation. Automated tools
may reduce this effort and change our best-effort results. Still, we used the current
standards, i.e., TCE [40] to remove all trivially equivalent mutants before conducting
any experiment and KLEE (including a mutation-based test generation approach [82]).
In test generation, we acknowledge that automated tools may generate test inputs
that kill mutants, but we note that they fail to generate test oracles. Therefore,
even if such tools are used, the test oracles will still require human intervention,
i.e., introduce some effort. Here it should be noted that we consider the mutant
execution cost as negligible since it is machine time and our focus is on the human
time involved when performing mutant analysis. Moreover, existing advances [86]
promises to reduce this cost to a practically negligible level.

Overall, we believe that our effort measurements approximate well (in relative
terms) the human effort involved. All in all, we aimed at minimizing potential threats
by using various metrics, well-known tools and benchmarks, real and artificial faults
and following methodological guidelines [8]. Additionally, to enable reproducibility
and replication we make our tools and data publicly available7.

7The study presents a subset of our results. Our data and results are openly accessible on the
following Github link: https://github.com/relevantMutationTesting
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5.8. Conclusion

5.8 Conclusion
We proposed commit-aware mutation testing, a mutation-based assessment metric

capable of measuring the extent to which the program behaviors affected by some
committed changes have been tested. We showed that commit-aware mutation testing
has a weak correlation with the traditional mutation score and other regression testing
approximations (such as the delta on mutation score between the pre- and post-
commit versions and mutants located on modified code), indicating that it is a distinct
metric. Furthermore, we investigated and concluded that the relevant-mutants set
is a distinct mutant set that cannot be found or expressed through proxies in
different mutant classes. Our results also showed that traditional mutant selection
is non-optimal for evolving and commit-oriented systems as it loses approximately
50%-60% of the commit-relevant mutants when analyzing 5-25 mutants. Moreover,
we demonstrated that by focusing attention on commit relevant mutants, over
randomly selected ones and the mutants occurring on a modification, one has 30%
more chances of revealing commit-introducing faults. Additionally, to provide further
evidence of the importance and diversity of commit-relevant mutants’ applicability,
we demonstrate a potential use case of the commit-relevant mutants and illustrate
their application in evaluating regression test-case prioritization techniques. We
show that commit-relevant mutants can be used to evaluate test case prioritization
techniques.

In the next chapter, we plan to study relevant mutants and their occurrence
through commit-history. The exploratory study of relevant mutants will shed more
light on the properties of this particular category of mutants and their usability.
Moreover, we want to study the properties of mutants in combination with commit-
changes properties to identify potential correlations that can lead to more autonomous
techniques and the development of machine learning models for automatic commit-
relevant mutant selection.
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6
Commit-Relevant Mutants via High-Order
Mutations

The question arises whether we can determine commit-relevant mutants by releasing
the conditions of the state-of-the-art approach, which captures behavioural differences
of two consecutive chronological program versions. This chapter presents an approach
for identifying commit-relevant mutants using the notion of observational slicing on a
single program version. Naturally, the relevance of an instruction to a program point
of interest, such as a program state or variable(s), can be determined by mutating
instructions and observing their impact on the point of interest (changes in the target
program state or variable). Since we aim to identify mutants relevant to changed
instructions, we check the impact of mutants located in the changed code on mutants
located in the unchanged code. In essence, with this approach, we measure the impact
of second-order mutants on the first-order ones, which captures the existence of
implicit interactions between the changed and unchanged code parts. In this chapter,
we provide a detailed description of the proposed approach, with the up-to-date, most
extensive empirical study of commit-relevant mutants in the context of the evolving
system, counting more than ten million mutants over around three hundred commits
and five projects. Our analysis studies the distribution and location of commit-relevant
mutants. At the same time, our results show that by focusing on a special category of
subsuming-commit-relevant mutants, a.k.a, the minimal set of mutants that represent
all the others, we can reduce the number of mutants for selection by about 93%, on
average through commits.

This chapter is based on the work published in the following journal article:

• Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and
Yves Le Traon. "Mutation Testing in Evolving Systems: Studying the Rele-
vance of Mutants to Code Evolution." 2023, ACM Transactions on Software
Engineering and Methodology. 32, 1, Article 14 (January 2023), 39 pages.
https://doi.org/10.1145/3530786

https://doi.org/10.1145/3530786
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6.1. Introduction

6.1 Introduction
Software systems evolve and are typically developed through program evolution

cycles that involve frequent code modifications [21]. Therefore, when software evolves,
the program modifications need to be tested to avoid introducing faults and ensure
the expected program behaviour. To test an evolving program, developers need to
perform regression testing, i.e., assessing the impact of the change on the program
by generating additional test cases targeting the change and its dependencies [31].
Typically, developers have to write or generate test cases to exercise the changes, stress
their dependencies, and check that the program changes behave as intended [102].

Mutation testing is an established software testing technique [8]. It is typically
applied to reveal faults in a program by modifying the program (aka injecting
mutants) and generating tests to reveal the faults (i.e., kill the mutants) in the
modified program. Mutation testing is an effective approach to improve the test
suite’s strengths by ensuring that it is adequate and diverse enough to kill all injected
mutants. In the last decade, mutation testing has focused on selecting or reducing
the number of executed mutants to ensure that mutation testing is feasible and scales
in practice. To this end, researchers have proposed mutation testing with a specific
type of mutants [128], mutant reduction by detecting equivalent mutants [40,112]
or by focusing on a particular category of mutants such as subsuming mutants1 or
hard-to-kill mutants [29,42,68].

Traditional mutation testing involves injecting mutants into the entire code base
of the software. However, mutation testing of evolving programs is challenging due
to the scale of the required mutation analysis, the complexity of the program, and
the difficulty of determining the impact of the dependencies of the program changes.
The sub-field of mutation testing addressing these issues by targeting the mutation
testing program changes is referred to as commit-aware mutation testing [148].

A few commit-aware mutation testing approaches have been proposed to tackle
the challenges of mutation testing of evolving software systems [26, 88, 113, 148].
These approaches suggest that mutation testing of evolving systems should focus
on the program changes rather than the entire program. Recent studies have also
indicated that commit-relevant mutants can be found on unchanged code due to
unforeseen interactions between changed and unchanged code [113,148]. However, no
scientific insights into the nature and properties of commit-relevant mutants and their
utility over time have been provided. For instance, it is necessary to understand the
distribution and program location of commit-relevant mutants over a representative
span of a program history in order to confidently aim to identify, select, or predict
commit-relevant mutants effectively.

In this study, we address this challenge by conducting an exploratory empirical
study to investigate the properties of, at the time of writing, the most extensive dataset
of commit-relevant mutants. Specifically, we examined the distribution, location
and prevalence of commit-relevant mutants, as well as subsuming commit-relevant
mutants2. To achieve this, we propose an experimental approach for identifying
commit-relevant mutants using the notion of observational slicing [94], i.e., the
relevance of an instruction to a program point of interest (such as a program state or

1Subsuming mutants [45] or disjoint mutants [42] is a set of mutants that has no mutant that is
killed by a proper subset of tests that kill another mutant.

2Subsuming commit-relevant mutants is a set of commit-relevant mutants that has no commit-
relevant mutant killed by a proper subset of tests that kill another commit-relevant mutant
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variable(s)) can be determined by mutating instructions and observing their impact
to the point of interest (changes on the target program state or variable). Since
we aim to identify mutants relevant to changed instructions, we check the impact
of mutants located on the changed code, as performed by observational slicing, on
mutants located on unchanged code. In essence, with this approach, we measure the
impact of second-order mutants on the first-order ones [149,150], which captures the
existence of implicit interactions between the changed and unchanged code parts
(for a detailed explanation of the notion of higher-order mutants, please refer to the
chapter of background, Section 2.2.3).

Overall, our formulation of the commit-aware mutation testing addresses the
limitations and challenges of the state of the art [113,148], in particular, making it
more general and applicable for most evolving systems (see Section 6.3.1). Using
this approach, we elicit the properties of commit-relevant mutants and study the
advantage of commit-relevant mutant selection in comparison to random mutant
selection or mutants located on program changes.

To the best of our knowledge, this is the most extensive empirical study of
commit-relevant mutants. Specifically, our evaluation contains 10,071,875 mutants
and 288 commits extracted from five (5) mature open-source software repositories.
Our experiments took over 68,213 CPU days of computation. The main objective
of this work is to provide scientific insights concerning the application of mutation
analysis in testing evolving software systems. The main findings of this paper are
summarized as follows:

• Commit-relevant mutants are prevalent. In our evaluation, 30% of mutants
are commit-relevant, on average. Hence, by reducing the number of mutants
(by around 70%) and concentrating merely on those representing change-aware
test requirements, considerable cost reductions can be achieved.

• Selecting subsuming commit-relevant mutants significantly reduces the number
of mutants. Selection of subsuming commit-relevant mutants reduces even
further the number of mutants, by about 93%, on average.

• A large proportion of commit-relevant mutants are located outside of the program
changes. The majority of the commit-relevant mutants are located outside the
changed methods (69%).

6.2 Commit-Aware Mutation Testing via HOMs
6.2.1 Definition

Intuitively, commit-relevant mutants are those that are linked with (capture)
changed program behaviour, by the committed changes.

These mutants are those that a) are killable and are located on the changed
lines because they capture behaviour relevant to the committed changes, and b)
those that are killable, are located on unchanged lines and affect the change, by the
commit, program behaviour, because they capture the interaction of the changed and
unchanged code. This is approximated by a special form of observational slicing that
uses higher-order mutants (for a detailed explanation of the notion of higher-order
mutants, please refer to the chapter of background, Section 2.2.3). The idea is that
mutants located on unmodified code, that impact the behaviour of mutants located on
modified code, are commit-relevant because they depend/interact with the changed
code. Consider two first-order mutants MX and MY , such that MX is located on
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Figure 6.1: Example of relevant and not-relevant mutants. Left Sub-Figure: Mutant
M1

X is relevant as mutant MY impacts its behaviour. Center Sub-Figure: Mutant M2
X is

non-relevant as mutant MY does not impact its behaviour. Right Sub-Figure: mutant M3
X

is not relevant since there is no behavioural difference for every possible MY .

the changed code and MY is located within the changed code. Then, the higher
order mutant (MXY ) is the one created by combining MX and MY . We say that
MX is commit-relevant if the higher-order mutant (MXY ) has a different program
behaviour from the first-order mutants MX and MY . That is, MX is commit-relevant
if (MXY != MY ) and (MXY != MX). Formally, the definition of commit-relevant
mutant can be formed as:

Definition 6 (Commit-relevant mutants). A mutant MX is relevant to a commit-
change if a) it is killable and is located on the changed code, or b) there is a second
order mutant MXY (formed by the mutant pair of MX , located outside the change,
and MY , located on the change) that has different behaviour from the two first-order
mutants MX and MY that it is composed of.

6.2.2 Motivating Examples
Simple Example

Figure 6.1 describes three simple scenarios illustrating commit-relevant mutants
on a toy code example. In the code snippet on the left, we observe the example
function fun that takes two arguments (integer arrays of size 3 ). It starts by sorting
the arrays’ elements, then makes computations, and returns an integer as a result.

The green rectangle on line seven (7 ) represents the line that has been modified
in the code. Using Java comments (symbols “//”) on line three (3 ) we represent
mutant outside the change MX , and the mutant on the change MY on line seven
(7 ). Mutant MX changes the value of variable “R” to zero (0 ), while the mutant
MY changes the value of variable “L” to one (1 ).

Consider that our test suite is confirmed just by one test that invokes function fun
with the following arguments: z = {0, 3, 3} and k = {0, 2, 3}. The output of the
corresponding input value is observed from the inside of an atomic assertion as the
input’s actual value. We can see that after comparing obtained values after running
each mutant in isolation, given the same test input, the mutant’s behaviour is different.
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Following our definition, this suggests that MX is relevant to the modification since
the actual execution value output (fun(z, k)) for mutant MX is 0, which is different
from mutant MY whereas fun(z, k) = 1, and MXY fun(z, k) = -1.

The code snippet in the middle of the figure presents the scenario in which a
mutant is not relevant to the modification. Precisely, let us consider the same mutant
MY on the change on line 5.+ as before, but now mutant MX located outside the
change is on line 3. Mutant MX modifies the assignment statement into R = 0.
Given the same test input as before (i.e., z = {0, 3, 3} and k = {0, 2, 3}), and
following the mutants execution behaviour, we can observe that mutants show no
observable interaction. Therefore, mutant MX is not considered relevant for this
particular change.

The code snippet on the right side shows an additional example of a non-relevant
mutant. However, in this example, we observe two mutants that are unreachable
from each other. These two mutants, for any test input, do not show observable
differential interaction. Therefore, mutant MX is considered to be non-relevant to
test the corresponding change.

Real Example

Figure 6.2 presents an excerpt of a program from the Apache commons-io3 project,
version 81210eb. The figure shows an evolution of the program in which the function
read was modified in line 142 (from
org.apache.commons.io.input.BoundedReader.java). The program change adds
a constraint on the function’s return value, suggesting that it should return a negative
one (-1) in case the buffer does not contain any more values, and otherwise, it should
return the index of the current iteration (i.e., i). Specifically, the previous version of
the program always returned i in line 142, but the modified version either returns
-1, when i is equal to 0, or i otherwise.

The function read takes three parameters, namely, an array of chars cbuf, and
two integers off and len. Intuitively, the function read aims at modifying a certain
number of characters (len) of array cbuf, starting from the given offset position
off.

The function starts by reading a new character from a different buffer (see built-in
read() invocation in line 140), then it proceeds to update cbuf array with the new
character, and finally it returns the number of updated characters4 Notice that the
read() invocation (line 140) returns the fed character as an integer in the range
between zero (0) to 65535 (0x00-0xffff), or it returns negative one (-1) if the end of
the buffer has been reached.

As an example, consider a testing scenario that executes function read with the
following inputs:

read([‘X’, ‘X’, ‘X’, ‘X’], 1, 2);
and the buffer accessed by the read() call in line 140 is as:

[‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘0’];
For this test case, both versions of the program, the previous one and the recently
changed version, will return the same output (i.e., len = 2). Moreover, both versions
of the program will produce the same modifications into array cbuf given as input,

3https://github.com/apache/commons-io
4For more information about the implementation of this method, please refer to official imple-

mentation documentation page: [151]
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Figure 6.2: Method (read()) excerpted from the BoundedReader.java program in the
from Apache commons-io project (version 81210eb)

resulting in:

[‘X’, ‘0’, ‘1’, ‘X’]

This is an example of a test case that does not exercise the program changes since
the change (line 142) is never executed for this test case. Hence, the test does not
show any behavioural difference between the previous version of the program and
the current modified version of it.
Commit-aware Mutation Testing

Now, consider that during the mutation testing analysis, four mutants (M1
to M4) are injected into the function read, as it is shown in Figure 6.2 via Java
comments (“//”). Particularly, Mutant M1 is located on the modified statement in
line 142, i.e., it is a mutant within the program change, and it replaces the condition
== (equal) with != (not equal). Mutant M2 is located on line 139 (outside the
change) and replaces the variable len with a constant value zero (0), mutating the
condition of the for loop i < len to i < 0. Mutant M3 is also injected on the same
statement (line 139) but it uses a unary insertion (++i) to update variable i within
the condition check of the for loop, such that condition (i < len) is mutated to
(++i < len). Finally, Mutant M4 removes the statement located on line 140 (i.e., c
= read()).

Then, by using our HOM-based approach, we can create higher-order mutants by
pairing all four mutants. Precisely, we pair the mutants located outside the change
with the mutants on the commit-change (line 142), and we obtain three higher-order
mutants M12, M13, and M14. Table 6.1 illustrates the behaviour (outputs) of the
function read under its previous version, its current changed version, and all the
mutants.

Consider now a different testing scenario in which the input buffer accessed by
the built-in function read in line 140 is empty (i.e., []). This testing scenario shows
the behavioural difference between the previous version and the modified version
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Table 6.1: Test output observation for Figure 6.2 showing the program behaviour
(outputs) of the original program, the changed program, and the first and second-
order mutants of the program. The test observations are performed using input
read([‘X’,‘X’,‘X’,‘X’], 1, 2) and an empty buffer ([]) fed to the built-in
function read (in line 140)

Program Versions Program Changes Code line Test output Commit-Relevance

Pre-commit Old version 51f13c84 i 142 0 N/A

Post-commit New version 81210eb i == 0 ? -1 : i 142 -1 N/A

First-order mutant M1 == ⇒ != 142 0 Relevant

First-order mutant M2 len ⇒ 0 139 2 Non-Relevant

First-order mutant M3 i ⇒ ++i 139 1 Relevant

First-order mutant M4 delete statement 140 2 Non-Relevant

Second-order mutant M12 == ⇒ != ∧ len ⇒ 0 142 ∧ 139 2 N/A

Second-order mutant M13 == ⇒ != ∧ i ⇒ ++i 142 ∧ 139 -1 N/A

Second-order mutant M14 == ⇒ != ∧ delete statement 142 ∧ 140 2 N/A

of the program since it executes the change (in line 142). We observe that, while
the execution of the previous version of the program returns zero (0), the modified
version returns negative one (-1).

Table 6.1 highlights the behaviour (i.e., output) of each mutant. First, according
to the traditional definition of commit-relevant mutants, M1 is a commit-relevant
mutant, since it is located on the program change [88]. Additionally, according to
our extension of the definition of commit-aware mutation (see subsection 6.2.1),
we compare the output of the second-order mutants and their isolated first-order
mutants. We observe that the second-order mutant M13 is also a commit-relevant
mutant. This is because the second-order mutant (M3) has a different behaviour
from the isolated first-order mutants (i.e., M13 != M3, and M13 != M1). Meanwhile,
the other second-order mutants, i.e., M12 and M14 are not commit-relevant because
they have similar behaviours as the isolated first-order mutants (i.e., M12 == M2,
and M14 == M4).

Commit-aware Criteria

Let us illustrate the importance of the strict constraint employed in our approach
to compare the behaviours of first-order and second-order mutants (e.g., the need to
ensure M13 != M3 AND M13 != M1) using a counter-example. Specifically, we will
discuss the rationale for this constraint and why considering a less strict constraint
does not suffice (and mutants like, for instance, M2 are not commit-relevant, despite
the fact that M12 != M1 but M12 == M2). Let us consider the example program
in Figure 6.2 and the output behaviour observed in Table 6.1. Even though M1 and
M12 have different outputs, inspecting the behaviour of M12 on the program change
using the provided test cases, we observe that the behaviour of the second-order
mutant M12 is not different from that of M2. In fact, M2 does not execute the
program change nor the mutant within the change. Indeed there is no input that can
force mutant M2 to execute the changed line (in line 142) since the for loop condition
will always evaluate to false. This implies that using a less strict constraint (e.g., an
“OR” operation) in our check, will lead to such miss-identification of commit-relevant
mutants, implying that mutants that can never lead to the execution of the program
change (e.,g., M2) can be miss-classified as relevant to the program change. Thus, it
is important to ensure that the behaviour of the second-order mutant and that of
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the isolated first-order mutants are indeed different.
Subsumption Relation

Let us illustrate the subsumption relation of commit-relevant mutants. Consider
the two commit-relevant mutants in our example, i.e., mutant M3 that we have
identified as commit-relevant, and mutant M1 located on the changed statement
(commit-relevant by default). In our example (Figure 6.2), both mutants are killed
by the initial test input (in Table 6.1). Let us consider that the test suite has one
additional test, in particular, the following test:

read([‘X’,‘X’,‘X’,‘X’], 1, 1)

Given this new test input, we observe that mutant M1 is killed by this test input
(output zero (0)), but mutant M3 is not killed by the test (output one (1)). Fol-
lowing the definition of mutant subsumption [44], we can observe that a test that
distinguishes mutant M3, will also distinguish mutant M1, but mutant M1 can be
distinguished by a test that cannot distinguish mutant M3. In this situation, we
say that M3 subsumes M1, making M3 a subsuming commit-relevant mutant. This
example illustrates a scenario where a subsuming commit-relevant mutant is located
outside the program change. The mutant residing outside the change subsumes a
mutant residing on the program change, which makes the test requirement of the
mutant on the change redundant. We can satisfy both mutants (M1 and M3) by
writing test requirements to identify the subsuming commit-relevant mutant located
outside of the committed change (i.e., M3), which is the commit-relevant mutant
also identified by our approach.

6.2.3 Design Requirements
Our commit-relevant mutation approach aims to fulfil certain requirements to

ensure we gather and study a vast number of commits and commit-relevant mutants.
These design requirements address some of the limitations and challenges of state-of-
the-art [26,113,152]. In particular, we address the following:

• Location of Commit-relevant Mutants: In this work, we focus on identi-
fying commit-relevant mutants within and outside the program changes, i.e.,
within the commit-change as done in prior work [26], and the unmodified pro-
gram code. In particular, we are interested in revealing behavioural interactions
induced by the program changes on the rest of the unmodified program code.
We achieve this by identifying the commit-relevant mutants outside of the
program changes. In particular, we employ second-order mutants; we analyze
the impact of second-order mutants on the behaviour of the evolving program
(see Section 6.2.4).

• Test Contract: Our experimental approach employs only the test suite from
the post-commit program version. In previous work [152], the experimental
design requires the execution of test suites across the pre-commit and post-
commit versions of the program. Plus, it implies that the number of tests
does not increase or decrease across versions, i.e., the test contract is intact.
Therefore, the approach observes the delta between versions by comparing
mutants test suites from pre- and post-change commits. This assumption
can be challenging to address since the test suite also evolves as the program
evolves, e.g., when implementing new features or fixing bugs. In this work,

99



Chapter 6. Commit-Relevant Mutants via High-Order Mutations

we observed that this assumption is not significantly common in practice. In
particular, in our study, the proportion of commits where the test contract is
preserved is less than 40%.

• Commit Patches and Hunks: In this approach for commit-aware muta-
tion testing, we require the commit patches and commit hunks for empirical
evaluation and analysis. Indeed, commit properties are vital for commit-aware
mutation testing and are commonly used by state-of-the-art techniques [113,152].
In this work, we employ commit properties (i.e., patches and commit hunks) for
both commit-relevant mutant detection and experimental analysis. Particularly,
this approach requires the commit patches (i.e., the delta between pre-commit
and post-commit versions) to identify the interaction of the mutants within the
change and the mutants outside the change. We also employ commit hunks in
our experimental analysis, to identify the number of individual code-chunks
structures present in a commit. Involving commit hunks in our analysis sheds
light on the relationship between altered statements in the commit hunk and
the mutants residing outside the commit hunk.

• Post-Commit Version: Proposed experimental approach requires the post-
commit version of the program to be compilable, executable, and testable. These
requirements are vital for the dynamic analysis of our approach and they only
apply to the post-commit version of the program. In contrast, our previous
work [152] requires two program versions (pre-commit and post-commit) and
assumes a green test suite, no build failures and no compilation errors for both
program versions. In our evaluation setup, we find that these conditions are
irregular (less than 40% of the cases). To address this concern, we ensure our
approach requires the post-commit version of the program, without the need for
the pre-commit version. This allows collecting significantly more commits for
our study and allows us to evaluate a vast amount of commit-relevant mutants.

• Test Oracle: In this work, we employ test assertions of system units as our
test oracle. This is a fine-grained test oracle used by unit tests. Here it is
important to note that when we refer to assertions these are test assertions,
and not program assertions and are used for checking the observable behaviour
of the program units, as mandated by strong mutation. In practice, we use test
assertions to define the mutant behaviour and study the impact of mutants
and changes on program behaviour.

• Number of Commits: Our empirical study characterized commit-relevant
mutants and required a substantial number of commits and commit-relevant
mutants. Dues to the flexibility of our experimental approach, in this study, we
analyzed significantly (10x) more commits and mutants than in our previous
work [152]. We addressed the significant limitations and assumptions of prior
work, in which strict design constraints could contain gathering a sufficient
number of commits and commit-relevant mutants. For instance, as stated in
the paper Ma et al. [148], it is challenging to find commits in open-source
projects that do not break the test contract, i.e., keep the test suite intact. This
challenge further inhibits our goal of automatically studying the characteristics
of relevant mutants. Addressing the concerns above allows us to gather and
study more commits than previous studies.

Our experimental approach aims to target the requirements above to ensure
that we gather many commits and cover several realistic corner cases for evolving
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software systems. Overall, fulfilling these requirements and addressing these concerns
enables us to collect significantly more commits and identify significantly more
commit-relevant mutants for our study. In particular, our study involved 10x more
commits and 6x more commit-relevant mutants than previous studies.

6.2.4 Approach Overview
Our study aims at investigating the existence and distribution of commit-relevant

mutants in evolving software systems. Specifically, we study the relationship between
the lines of code changed in a commit hunk and the mutants residing in program
locations outside the commit hunk under consideration. Intuitively, we want to
study the interaction between two program locations, where one location is part of
the commit hunk, and the other is outside the change. We plan to employ high-
order mutants (second-order, to be more precise) and simulate potential changes
in a commit hunk and the mutants outside the commit hunk. This study aims
at providing scientific evidence of the relationship and relevance of mutants (test
requirements) outside commit hunks that need to be taken into account when testing
evolving systems.

To determine if a mutant is relevant for a commit hunk, we plan to observe
whether the commit changes affect mutants’ behaviour. Intuitively, suppose a change
in a location in the commit hunk (produced by a mutation) affects the outcome of
the mutant outside the commit. In that case, we have evidence that there exists an
interaction between these two locations, indicating that the mutant is relevant for
the commit. The absence of interactions indicates either the existence of equivalent
mutants [149,150] or the absence of dependence/relevance. To account for the case
of equivalent mutants and ensure the relevance of observations, we sample multiple
mutants per statement.

Mutants’ behaviour is (partially) determined by observing their covering test set.
Implying that if we want to observe the interaction between mutants in different
locations, the test set should make any difference in the mutant’s behaviour whether
they are run in isolation or combined. More precisely, if we can observe that the
behaviour of two mutants MX and MY run in isolation differs from the behaviour
of the second-order mutant MXY (obtained by combining both mutations MX and
MY ), then we can conclude that mutants MX and MY influence each other. Consider
a situation where the test set {t0, t1} is able to observe that MXY ’s behaviour differs
from MX and MY ’s behaviour. For instance, test t0 passes on mutants MX and MY

but fails on mutant MXY . Thus, we can conclude that locations in which mutations
MX and MY were applied to interact with each other.

Following a similar idea, consider generating one of the mutants outside the
change (MX) and the other one on the change (MY ), and their combination makes
a second-order mutant (MXY ) suitable for observing if there exists an interaction
between them. To determine if mutant MX is relevant for the commit change, we
can iterate this process by exploring different high-order mutants MXY by varying
mutant on the change MY , with the aim of finding one combination that evidences
their interaction.

To compare mutants’ behaviours, first, we need an intersection set of tests covering
mutants MX , MY , and MXY . Second, we proceed to run these tests to observe a
difference between the mutants. Instead of considering only passing and failing
output as a standard unit-level testing oracle, we instrument tests and contained
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assertions to obtain and compare actual assertion values. For instance, an assertion
like assertEquals(0, Z) can be violated by a (potentially) infinite number of
values for Z, all of them violating the assertion. Suppose after executing mutants
MX , MY and MXY , the value of Z is different. In that case, we can observe a
difference in their execution, allowing us to determine if there exists an interaction
between these mutants, concluding that mutant MX is relevant for the commit
change. Section 6.3.6.3 describes the implementation details on how we instrument
test executions to obtain actual assertion values.

Figure 6.3 illustrates our approach to detecting interactions between mutants by
comparing their behavioural assertion values. It depicts that after executing each
first-order mutant MX and MY in isolation (assertions that cover them), we compare
the output values with the value obtained after running second-order mutant MXY .
If running MX and MY in isolation differs from running MXY , we determine that
mutant MX is relevant for the commit change.

Figure 6.3: A mutant MX is relevant to a commit-change, if any higher order mutant
MXY , shows different behaviour from MX and MY executed in isolation

6.2.5 Algorithm
To perform an empirical study toward distinguishing relevant mutants, we generate

the first-order mutants located around and on the commit change (i.e., MX and
MY , respectively). The second-order mutants (i.e., MXY ) are a combination of
the previous two. The mutant-assertion matrices were obtained by executing the
mutants against developer-written and automatically generated test pools. Note
that test run status is pass/fall for Java programs; therefore, to observe behavioural
differences produced by mutants, we need to focus on test assertions and record
assertion execution actual value output of each test on every mutant. Precisely,
for every mutant and every test assertion, a mutant-assertion matrix stores the
assertion values obtained after running a mutant against a test. As noted, this study
performs mutation analysis on commits from Java programs, using PiTest5 as the
Java mutation testing tool and EvoSuite6 as the state-of-the-art test case generation
tool. Section 6.3.3 provides further details regarding mutants test case generation
and test assertions instrumentation.

After computing mutant-assertion matrices, we proceed to approximate which
mutants are relevant to the change, according to our Definition 6 following the steps
incorporated in Algorithm 2. The algorithm summarises the previously described

5http://pitest.org/
6https://www.evosuite.org/
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process, where functions MutantsonChangeMutantOutput, aroundChangeMutantOut-
put, highOrderMutantOutput return the output of a specific test assertion execution
per specific mutant. Finally, Algorithm 2 returns a set of relevant mutants for a
particular commit change.

This algorithm has a worst-case polynomial time complexity of O(n4) due to
the four nested for loops (O(n ∗ n ∗ n ∗ n)). For each of the three inputs fed to
the algorithm (TestSuite, MutantsOnChange and MutantsAroundChange), there is
a linear-time complexity (O(n)). Additionally, there is a linear-time complexity
(O(n)) for evaluating each test assertion corresponding to the test cases. Overall,
the performance of the algorithm depends on the number of mutants in the change,
the number of mutants injected in the modified code, the size of the test suite and
the number of assertions in each test. Specifically, to derive higher-order mutants,
we consider every pair of mutants within and outside the change; we also execute all
test cases corresponding to these mutants and evaluate all test assertions in each
test case. This algorithm can be optimized by improving the number of evaluated
tests, assertions or pairs of mutants.

The complexity of this algorithm can be reduced to O(log(n) ∗ n3) via a binary
search on the pair of mutants (outside the change) that exposes a behavioural
difference. Likewise, the complexity can be reduced to cubic complexity (O(n3))
by executing a constant number of test cases/assertions (O(1)). For instance, an
improvement is achievable by selecting and executing only the most relevant tests
for the changes, e.g., from historical test executions in the CI. A reduction is also
achievable if only one test assertion is evaluated for each test case, e.g., executing
only the assertion that captures the interaction between the pair of mutants has a
constant time complexity (O(1)).

Algorithm 2: Approximate Commit-relevant Mutants Set
Data: TestSuite, MutantsOnChange, MutantsAroundChange
Result: Relevant Mutants

1 RelevantMuts← ∅;
2 for X ∈MutantsAroundChange do
3 for Y ∈MutantsOnChange do
4 for test ∈ TestSuite do
5 for assertion ∈ test do
6 Y val ← onChangeMutantOutput(assertion, Y );
7 Xval← aroundChangeMutantOutput(assertion, X);
8 XY val← highOrderMutantOutput(assertion, Y, X);
9 if Y val ̸= XY val ∧Xval ̸= XY val then

10 RelevantMuts← RelevantMuts ∪ {X};
11 jump to line 2 and take next mutant X;
12 end
13 end
14 end
15 end
16 end
17 return RelevantMuts ;
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6.3 Experimental Setup
6.3.1 Goals

Besides introducing the new approach to determine commit-relevant mutants,
the main goal of this study is to investigate the prevalence and characteristics of
commit-relevant mutants in evolving software systems in terms of their distribution,
program location and correlation with program changes and the number of mutants
outside the changes. We also study subsuming commit-relevant mutants and what is
the proportion of those that are sufficient to test and cover all other commit-relevant
mutants. Specifically, our empirical goal is to achieve the following three main goals:

1. Study the prevalence, distribution and location of commit relevant mutants
(RQ1 and RQ2);

2. Examine the correlation between commit-relevant mutants located within and
outside the program changes (RQ3);

3. Investigate to what extent we can even further reduce the scope of commit-
relevant mutants by targeting the ones with subsuming properties (RQ4).

Overall, our study aims at providing insights into the properties of commit-
relevant mutants and demonstrate their importance and effectiveness in testing
evolving systems.

6.3.2 Research Questions
As we aim to assess the potential of mutation testing in evolving systems, we

investigate the following research questions (RQs).

RQ1 Prevalence What is the prevalence of “commit-relevant mutants” among the
whole set of mutants?

RQ2 Location Are commit-relevant mutants located within or outside the devel-
opers’ committed changes?

RQ3 Correlation Is there any correlation between the number of commit-relevant
mutants located within program changes and the number of commit-relevant
mutants outside the changes?

RQ4 Subsumption What is the proportion of “subsuming commit-relevant mu-
tants”, i.e., the number of commit-relevant mutants that subsumes other
commit-relevant mutants, such that testing only these subsuming mutants is
sufficient to test all other commit-relevant mutants?

RQ1 aims at improving our understanding of the prevalence, i.e., distribution,
of relevant mutants in relation to committed changes. The answer to the question
allows having a rough view of the relevant mutant’s distribution over different
projects and their associated commits. By answering RQ2, we aim to show how
many commit-relevant mutants are within or outside the committed changes. The
answer promises insights on how to perceive testing of the developer changes on
the impacted program effectively, w.r.t., it is important to not only test within

104



6.3. Experimental Setup

the committed changes but also all the unforeseen dependencies that interact with
the changed code. Previous work [32] has shown that redundant mutants inflate
mutation scores with the unfortunate effect of obscuring their utility. We, therefore,
aim to validate whether relevant mutant sets also suffer from such inflation effects.
We attempt to observe a difference in size between sets of identified relevant mutants
and subsuming-relevant mutants. Plus, we investigate whether there is a correlation
between mutants identified as relevant, subsuming-relevant, and mutants on a change
(RQ3 and RQ4). In particular, having a strong correlation would indicate that the
size of a change itself influences the number of relevant mutants. Otherwise, the
relationship does not exist for the reason of the complexity and area of the change.

6.3.3 Analysis Procedure
We focus our empirical study on commits of Java programs as selected subjects.

To perform the mutation analysis, we employ PiTest7 [58], one of the state-of-the-art
Java mutation testing tools. We approximate the set of commit-relevant mutants by
following the algorithm introduced in Section 6.2.5. Besides the approximated set
of commit-relevant mutants located outside of commit-change, we also record and
consider as commit-relevant all those mutants residing on the location of commit-
change (in our approach, MY mutants). This corresponds to work done by [26],
whereas the commit-relevant mutants set is made out of mutants located on the
commit diff, i.e., statements modified or added by commit.

To make our approximation robust, we follow the steps described in the evaluation
process of previous studies [8, 44,68]. Our approach uses mutant-assertion matrices
to identify mutants interactions that constitute, up to our knowledge, the first study
conducted on test assertion level for Java programming language (bypassing standard
tests passing/failing mutation behaviour for Java programs). Mutant-assertion
matrices were computed by running large test pools built by considering developer
tests and adding automatically generated tests using EvoSuite8 [30], a state-of-the-art
test case generation tool. From the computed mutant-assertion matrices, we obtain
three sets of mutants: mutants on a change, mutants relevant to a change and
mutants not relevant to a change.

To answer RQ1, we study the prevalence of commit-relevant mutants in every
commit by analyzing the average number of relevant/non-relevant mutants and their
distribution. We address RQ2 by studying whether the commit-relevant mutants
are located within or outside the committed changes. Moreover, we observe the
proportion of those mutants, and we observe the ratio of commit-relevant mutants
located within changed methods. To answer RQ3, we evaluate whether there is
a correlation between the studied categories of mutants using different statistical
correlation analysis tests, further described in Section 6.3.5. In the end, we answer
RQ4 by studying the proportion of subsuming commit-relevant mutants among all
commit-relevant mutants and all subsuming mutants. This will estimate an extra
possible reduction we can achieve if we focus only on subsuming mutants. We consider
traditional passing/failing test behaviour to compute the set of subsuming mutants
per subject (notice that this information is also captured when mutant-assertion
matrices were built).

7http://pitest.org/
8https://www.evosuite.org/

105



Chapter 6. Commit-Relevant Mutants via High-Order Mutations

6.3.4 Subject Programs and Commits
We focus our empirical study on commits of a set of well-known, well-tested, and

matured Java open-source projects taken from Apache Commons Proper repository9.
The process of mining repositories, data analysis, and collection was performed as
follows:

1. Our study focuses on the following projects: commons-collections, commons-
lang, commons-net, commons-io, commons-csv. These projects differ in size
while having the most extended history of evolution. We extracted commits
from the year 2005 to 2020. To extract commit patches and hunks in our setup,
we employ PyDriller10 (V1.15) to mine commits from the selected projects11.
We applied PyDriller to query the project’s information such as commits
hash id, modifications date, modified source code, modification operation, and
hunks of the commits and quickly exported such information into a JSON file.

2. We kept only commits that use JUnit4+12 as a framework to write repeatable
tests since it is required by EvoSuite [30], the test generation tool we use for
automatically augmenting test suites.

3. We filtered out those commits that do not compile, do not have a green test
suite (i.e., some of the tests are failing), or do not affect a program’s source
code (i.e., commits that only change configuration files). Some commits with
failing tests are filtered out since PiTest requires a green test suite to perform
mutation testing analysis.

4. Due to the significant execution time for commits containing several files, we
set a limit for 72h of execution on a High-Performance Computer to generate
and execute mutants per commit. Please note that the test suites contain
developer-written and automatically generated tests, where both are used to
create mutation matrices. All experiments were conducted on two nodes with
20 physical cores and 256GB of RAM. Specifically on Intel Skylake Xeon Gold
2.6GHz processors, running on Linux Ubuntu OS across four threads.

Overall, we generated 9,368,052 high-order mutants and 260,051 first-order mu-
tants, over 288 commits, that required 68,213 CPUs days of execution. Table 6.2
summarises the details of the mined commits. Column “# Commits” reports the
number of commits mined per project, column “# LOC” (Lines Of Code) indicates
a subject scope in terms of lines of code, “Maturity" reports on the date of the
first commit, column “# FOM” (First-Order Mutant) indicates the total number
of First Order Mutants generated for those commits, “#Mutants on Change” indi-
cates the number of First Order Mutants generated on the changed lines, column
“#HOM” (High-Order Mutant) indicates the total number of High Order Mutants
generated, column “# Dev. Tests” (Developer written Tests) reports on the number
of developer-written test cases, and column “# Evosuite Tests” reports on the number
of automatically generated tests.

9https://commons.apache.org
10https://pydriller.readthedocs.io/en/latest/intro.html
11PyDriller is an open-source Python framework that helps developers mine software repositories

and extract the information given the GIT URL of the repository of interest.
12https://junit.org/junit4/
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Table 6.2: Details of Subjects Programs and Studied Commits. Columns: “#
LOC” - Lines Of Code, “# FOM” - First Order Mutants, “# HOM” - Higher Order
Mutants, “# Dev. Tests” - Developer written Tests

Commons

Projects
# LOC # Maturity # Commits # FOM

# Mutants

on Change
# HOM

# Dev.

Tests

# EvoSuite

Tests

collections 74,170 14/04/2001 45 27,417 2,026 1,192,188 4,797 1,285

io 29,193 25/01/2002 30 24,970 1,115 668,448 914 286

text 22,933 11/11/2014 46 47,847 4,155 2,073,829 1,084 322

csv 4,844 25/01/2002 101 66,862 3,577 1,968,137 6,144 2,833

lang 85,709 19/07/2002 66 102,072 3,891 3,885,341 7,574 959

Total 216,489 N/A 288 269,168 14,764 9,787,943 20,513 5,685

6.3.5 Metrics and Measurements
Statistical Analysis: To answer our research questions, we performed several

statistical analyses to evaluate correlations among several variables. For instance, in
RQ3, we analyzed whether the number of commit-relevant mutants correlates with
the number of mutants residing on a change and whether the number of subsuming
commit-relevant mutants correlates with the number of subsuming mutants.

In this study, we employ two correlation metrics, namely Kendall rank coefficient
(τ) (Tau-a), and Spearman’s rank correlation coefficient (ρ - (rho)) , with the level
of statistical significance set-up to p− value 0.05. The Kendall rank coefficient (τ)
measures the similarity in the ordering of studied scores, while Spearman’s ρ (rho)
measures how well the relationship between two variables can be described using a
monotonic function [153]. The correlation metrics calculate values between -1 to
1, where a value close to 1 or -1 indicates strong correlation, while a value close
to zero indicates no correlation at all. Additionally, to facilitate comprehension of
our figures, we employed coefficient of determination (R2 trendline) as a statistical
measure that describes the proportion of the variance in the dependent variable that
is predictable from the independent variable(s).

6.3.6 Implementation Details
Our commit-relevant mutant identification approach is implemented in approx-

imately 5 KLOC of Python code, 600 LOC in Shell scripts and 3 KLOC of Java.
It employs several external tools and libraries, including Evosuite, git-diff and
PiTest. We have also implemented additional infrastructure on PiTest to ensure
analysis of evolving software and extract assertion information. In the following,
we describe each of these tools. For replication and future use, our implementation
is publicly available at the following web link: https://mutationtesting-user.
github.io/evolve-mutation.github.io/

6.3.6.1 EvoSuite (V1.1.0)

To obtain a rich test suite for our study, we collected developer-written tests
and automatically generated tests. For our mutation testing analysis, we augment
developers’ test suites with test cases automatically generated with EvoSuite [30].
EvoSuite is an evolutionary testing tool that generates unit tests for Java software. In
our analysis, we run EvoSuite against all several coverage criteria (e.g., line, branch,
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mutation, method, etc.); we also executed EvoSuite with default configurations,
especially concerning running time.
6.3.6.2 PiTest (V1.5.1) and git-diff

PiTest does not have built-in functionality to satisfy the requirements of our
experiment. Therefore, we extended the framework for High Order Mutants [154] on
top of PiTest that takes as an input the gitdiff output13. Based on the statement
difference between the versions, the framework extends the mutants generation
functionality by generating, i.e., mapping, mutants on the change, with the mutants
around the change. Thus, creating second-order mutants for that particular commit
file. Our framework is configured to generate the extended set of mutants available
in PiTest, introduced by Laurent et al. [139]. Kintis et al. [57] has also shown that
this extended set of mutants is more powerful than the mutant sets produced by
other mutation testing tools.
6.3.6.3 PiTest Assert

PiTest (V1.5.1) creates killing matrices and identifies whether a mutant is
killed or not based on test case oracle prediction (test fails or passes). These matrices
were not suitable for our experimental procedure. Therefore, we built a framework
on top of PiTest to extract additional information concerning each test case assertion
(from tests that cover mutants). Our framework performs bytecode instrumentation of
each test executed on a specific mutant, using ASM14 as an all-purpose Java bytecode
manipulation and analysis framework. By instrumenting each test case assertion, we
can obtain execution information. More precisely, each assertion has a unique test
name where it locates, an assertion function name, an assertion line number, and an
assertion actual execution value. If an assertion triggers an exception, we keep track
of the stack-trace execution. However, for this study’s purpose, we disregard the
assertions that trigger the exception from our relevant mutants calculation (please
refer to Algorithm 2) since we only aim at actual mutants’ observable behavioural
output. Hence, the mutant assertion matrix is a weighted matrix. For each (mutant,
test-assertion) pair, the value corresponds to the actual assertion value obtained by
running the test on the mutant or the exception stack trace if an assertion throws
an exception.

Concretely, we employ the JUnit4 15 testing framework, which contains a public
class (called Assert) that provides a set of assertion methods to specify test con-
ditions. Typically, these methods (e.g., Assert.assertEquals(expected value,
actual value)) directly evaluate the assertion’s conditions, then returns the final
assertion’s output (e.g., conditions not satisfied, pass, or fail). To obtain the value of
parameters within the assert statement, in our framework, we use PiTest Assert to
instrument each assertion method. Such that we serialize the provided input values
in the assert statement before they propagate to conditional checks, i.e., before the
conditional check is reached in org.junit.Assert16 and the output values are fed to
org.hamcrest.Matcher17 for evaluation. Specifically, we serialize both the expected
and actual values after they propagate as input parameters of the assert statement.

13https://git-scm.com/docs/git-diff
14https://asm.ow2.io/
15https://junit.org/junit4/
16https://junit.org/junit4/javadoc/4.13/org/junit/Assert.html
17http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/Matchers.html
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Figure 6.4: Research Protocol

This allows us to assess the input parameters of the assert statement (e.g., an
expression or a method call (assertEqual(foo(), bar()))) for concrete values.
Hence, in our setup, we compare the output values of both the expected and actual
values present in each assertion. However, our experimental framework does not
directly account for the potential dependencies within assertions and test cases; we
address this concern in the threats to validity (see section 6.6). The test assertion
framework is built on top of PiTest and is publicly available18.

6.3.7 Research Protocol
Figure 6.4 highlights our experimental protocol, which proceeds as follows:

For each project (e.g., commons-collections) and each mined commit (e.g., hash:
03543e5f9, we first augment the developers’ test suite with automatically generated
tests using EvoSuite [30]. Next, we obtain the commit changes (a.k.a hunks) of the
commit using the git-diff tool, in order to identify the changed and unchanged
program statements. We then generate both first-order and second-order mutants
for the program, using PiTest Assert as our extension of PiTest Mutation Testing
tool [58]. After mutant generation, we execute every mutant to obtain the mutant-
assertion matrices, which provides information about test assertion type, position
and value. Finally, we execute our relevant mutant detection algorithm 2 to identify
commit-relevant mutants.

Our result analysis proceeds after computing mutant assertion matrices and
identifying commit-relevant mutants. We then perform the data gathering and
analysis required to answer every research question (RQs).

Table 6.3: Details of the Prevalence of Commit-relevant Mutants. Columns: “#
C. All R. M.” - Number of Commits with all relevant mutants, “# C. No R. M.” -
Number of Commits with no relevant mutants

Commons

Project

# Commits

(C)
# C. All R. M. # C. No R. M. # Relevant

# Not

Relevant
Ratio

Reduction

Ratio

collections 45 2 4 6,833 18,558 32,31% 67,69%

io 30 0 3 6,052 17,803 28,70% 71,30%

text 46 1 4 8,810 34,882 27,10% 72,90%

csv 101 4 0 27,441 35,844 47,39% 53,61%

lang 66 1 2 15,724 82,457 19,22% 80,78%

Total 288 8 13 64,860 189,544 N/A N/A

Average 58 N/A N/A 225 658 29,58% 70,42%

18https://github.com/Ojda22/pitest/tree/pit-SOM-RM-AssertCache

109



Chapter 6. Commit-Relevant Mutants via High-Order Mutations

6.4 Experimental Results
We start by studying the proportion of commit-relevant mutants that affect the

commit changes out of all mutants by using the pipeline just introduced in Section 6.3.
Thus, in the following RQs result analysis, we consider as commit-relevant mutants
all mutants identified by our approach, including the set of killable mutants residing
on modified statements. We distinguish commit-relevant mutants in the categories
of those located on changed and unchanged code to demonstrate and estimate the
potential reduction in terms of the number of mutants requiring analysis and the
number of test executions required to cover them if the tester focuses testing only
on commit-relevant mutants instead of the whole set mutants, or on the mutant set
consisting of all mutants residing on the modification.

Additionally, we evaluate the properties of commit-relevant mutants that can
inform their selection among all mutants. Thus, we examine the location of commit-
relevant mutants, whether they are mostly located within the commit or outside
the committed changes. We also assess whether there is a correlation between the
number of identified commit-relevant mutants and the number of commit-relevant
mutants within the committed change to determine if the number of mutants within
a commit can serve as a proxy to determine the number of commit-relevant mutants.
Besides providing analysis on commit-relevant mutants, we also cover and analyse
subsuming commit-relevant mutants as a minimal set of mutants that characterise
all relevant mutants.
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Figure 6.5: Distribution of mutants across all commits showing the proportion of non-
relevant mutants (in blue) as well as commit-relevant mutants within committed changes
(in red) and outside committed changes (in green)

6.4.1 RQ1: Prevalence
Table 6.3 and Figure 6.5 illustrate the distribution of commit-relevant mutants

among all mutants. In our evaluation, we found that only about one in three (≈30%)
mutants are commit-relevant, on average. In particular, we observed that only about
225 mutants are relevant to a commit out of 833 mutants, on average. This implies
that an effective commit-aware mutation testing technique can reduce significant
mutation testing effort, both computational when executing mutants and manual
when analysing mutants. In addition, we found some (21) outliers in our analysis
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Figure 6.7: Proportion of commit-
relevant mutants within the change
method (30.05%) and the outside
changed methods (69.95%)

of commit-aware mutants, see columns “# C. All R. M.” (Number of Commits
with all Relevant Mutants) and “# C. No R. M.” (Number of Commits with No
Relevant Mutants): In particular, we found that only 2.8% of commits (8) had
100% commit-relevant mutants, this portrays the importance of mutant selection
for evolving software systems. On the other hand, our evaluation results show that
in 4.5% of the commits (13), we found no commit-relevant mutants outside the
change; this suggests that it is pertinent to develop commit-aware mutation testing
techniques that discern relevant from non-relevant mutants. Overall, these findings
demonstrate the importance of developing commit-aware test selection for evolving
software systems, in particular, in selecting relevant mutants to reduce testing effort.

One in three (approximately 30%) mutants are commit-relevant; hence, select-
ing commit-aware mutants can significantly reduce mutation testing costs.

6.4.2 RQ2: Location
In our evaluation, most (81%) commit-relevant mutants are outside of developers’

committed changes (see Figure 6.6). Making only about one in five (19%) commit-
relevant mutants within the committed changes of developers. For instance, a
developer that tests all commit-relevant mutants within the changed method will
test only 30% of commit-relevant mutants and miss almost 70% of commit-relevant
mutants (see Figure 6.7). This result suggests that to test the impact of developer
changes on the program effectively, it is important to not only test within the
committed changes. It is also highly pertinent to test the interaction of committed
changes with the rest of the unmodified program.

Most (81% of) commit-relevant mutants are located outside of the commit,
and only a few (19% of) commit-relevant mutants are within the commit.

6.4.3 RQ3: Correlation
Our evaluation results show that there is a weak trend between the number of

commit-relevant mutants and the number of mutants within the commit. Our sta-
tistical correlation analysis shows that there is a weak correlation between both
variables. In particular, we found Spearman and Kendall correlation coefficients of
0.212 and 0.141, respectively. Indeed, both the Spearman and Kendall correlation
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coefficients are statistically significant (with p-values of 0.0006 and 0.0007, respec-
tively). Figures 6.8, 6.9 and 6.10 summarize the results of the different studied
correlations. These correlation results suggest that there is a weak relationship
between the number of mutants within a change and the number of commit-relevant
mutants, but no robust and predictable pattern or trend between both variables. This
implies that the number of mutants within the commit can not reliably predict the
number of commit-relevant mutants (in unmodified code regions), and vice versa.

There is a statistically significant weak positive correlation between the number
of commit-relevant mutants and the number of mutants within the change
(Spearman and Kendall correlation coefficients of 0.212 and 0.141, respectively).

6.4.4 RQ4: Subsumption
In this section, we investigate the prevalence of subsuming commit-relevant

mutants among commit-relevant mutants. Estimating the proportion of subsuming
commit-relevant mutants is important to demonstrate the further reduction (in the
number of mutants to analyse) achieved by “selecting" or “optimizing” for effectively
identifying subsuming commit-relevant mutants, in comparison to commit-relevant
mutants, subsuming mutants and all mutants. The two subsumption relations (i.e.,
one for the commit-relevant mutants and the other one for all mutants) are computed
by following the definition introduced in Section 2.2.5.

Additionally, we examine the correlation between the number of subsuming
commit-relevant mutants and the number of commit-relevant mutants within a
change and subsuming mutants; this is rather important to determine if these
variables hold a relationship and can predict or serve as a proxy for determining
subsuming commit-relevant mutants. Thus we ask:

What is the proportion of “subsuming commit-relevant mutants” among commit-
relevant mutants, such that a test suite that distinguishes a(ll) subsuming commit-
relevant mutant(s) covers (all) other commit-relevant mutants? Figure 6.11 illustrates
the proportion of subsuming commit-relevant mutants and their intersection with
commit-relevant mutants as well as all mutants. In our evaluation, we found that
“subsuming commit-relevant mutants” are significantly smaller than commit-relevant
mutants and all mutants. About one in 20 mutants is a subsuming commit-relevant
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Figure 6.11: Venn diagram showing the proportion of “commit-relevant mutants” (29.58%
in orange)) and “subsuming commit-relevant mutants” (6.13% in purple) among all mutants
(in pink).
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Figure 6.12: Venn diagram showing the number and intersections among “commit-relevant
mutants within commit changes” (in blue),“subsuming commit-relevant mutants” (in
orange) and “subsuming mutants” (in pink).

mutant, and about one in five (5) commit-relevant mutants is a subsuming commit-
relevant mutant. Specifically, “subsuming commit-relevant mutants” represent 20.72%
and 6.13% of all commit-relevant mutants and all mutants, respectively. This suggests
it is worthwhile to identify and select subsuming relevant mutants from all (commit-
relevant) mutants. Invariably, generating only subsuming commit-relevant mutants
reduces the number of mutants to analyze by 79% and 93% compared to generating
commit-relevant mutants and all mutants, respectively. This result implies that
developing automated mutation testing methods that effectively identify, select or
generate subsuming commit-relevant mutants can significantly reduce mutation
testing costs.

Selecting “subsuming commit-relevant mutants” can reduce the number of
mutants to be considered by about 79% and 93% in comparison to commit-
relevant mutants and all mutants, respectively.

What is the proportion of “subsuming commit-relevant mutants” among “subsum-
ing mutants” and “commit-relevant mutants within a change”? Figure 6.12 illustrates
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the intersections between all three types of mutants. Notably, most (92.98% – 18,117
out of 19,484) subsuming commit-relevant mutants are subsuming mutants as well,
and they represent 26.42% of all subsuming mutants (68,553). This implies that
searching for subsuming commit-relevant mutants among subsuming mutants (instead
of all mutants) is beneficial in reducing the search scope.

We also observed that all subsuming commit-relevant mutants within committed
changes are subsuming mutants. Meanwhile, about one in five (19.36% – 3,772 out
of 19,484) subsuming commit-relevant mutants are within the developers’ committed
changes; they represent 28.38% (3,772 out of 13,290) of all mutants within the
change. This suggests that less than one in three mutants within the change are
subsuming commit-relevant mutants. Hence, it is important to search for subsuming
commit-relevant mutants outside of the committed changes since most subsuming
commit-relevant mutants (81%, 15,772) are outside the committed changes.

Most (92.98% of) subsuming commit-relevant mutants are subsuming mutants,
while a few (19.36% of) subsuming commit-relevant mutants are located within
committed changes.

Is there a correlation between the number of subsuming commit-relevant mutants
and the number of mutants within a change? Our correlation analysis shows that there
is a weak positive correlation between the number of commit-relevant mutants within a
change and the number of subsuming commit-relevant mutants (see Figure 6.13). Both
Spearman and Kendall correlation coefficients report a weak positive correlation, with
correlation coefficients 0.222 and 0.148, respectively, (see Figure 6.13). In particular,
the correlation coefficients are statistically significant with p-values less than 0.05,
specifically, 0.0003 and 0.0004 for Spearman and Kendall coefficients, respectively.
This result suggests that the number of mutants within a change can not strongly
predict the number of subsuming commit-relevant mutants; hence, it is important to
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subsuming commit-relevant mutants (in red); Commits are sorted from left to right in
ascending order of the proportion of subsuming relevant mutants

identify all commit-relevant mutants that interact with the committed changes and
not only test the change itself.

The number of mutants within a change can not reliably predict the number
of subsuming commit-relevant mutants since there is only a weak positive
correlation between both variables.

What is the relationship between the number of subsuming commit-relevant mu-
tants and the number of subsuming mutants? Figure 6.14 illustrates the distribution
and correlation between the number of subsuming mutants and the number of sub-
suming commit-relevant mutants. In this figure, the trending line shows that there is
a moderate positive correlation between both variables. Indeed, both Spearman and
Kendall correlation coefficients report a moderate positive relationship between both
variables, with correlation coefficients 0.476 and 0.368, respectively, (see Figure 6.14).
The correlation coefficients also show that the positive relationship is statistically
significant (p-value < 0.05). As expected, we observed that the proportion of subsum-
ing relevant mutants per commit increases (trendline R2=0.881) as the proportion of
commit-relevant mutants increases (see Figure 6.15). Overall, this result implies that
these variables can serve as a proxy for each other, hence predicting one variable
could help identify the other. In particular, this implies that selecting subsuming
mutants significantly increases the chances of selecting subsuming commit-relevant
mutants.

There is a moderate positive relationship between the number of subsuming
commit-relevant mutants and the number of subsuming mutants, such that
one can predict the other and vice versa.
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6.5 Discussion
6.5.1 Summary of Contributions and Implications

In this study, we propose a novel experimental approach for determining commit-
relevant mutants by studying the relevance of an instruction to a program point of
interest. To achieve this, we measure the impact of the second-order mutant on the
first-order ones, thus approximating its relevance and the explicit relation that exists
between a mutant that rests on a changed part of the code and those that rest outside
of the changed code. Therefore, we further illustrated that dynamic approaches (like
observation slicing) could complement static or machine learning-based approaches in
effectively identifying commit-relevant mutants. This formulation of commit-relevant
mutants allowed us to create up to date the most extensive dataset of commit-relevant
mutants, which counts 10,071,875 mutants and 288 commits extracted from five (5)
mature open-source software repositories. Generation of such a dataset took over
68,213 CPU days of computation. After thorough studying of the dataset, we come
up with some empirical findings that include the following:

1. Commit-relevant mutants, at the unit level, are highly prevalent (30%), and
most commit-relevant mutants (81%) are located outside of program commit
changes. Hence, it is important to conduct a mutation analysis of evolving
systems to determine the influence of the program changes on the rest of the
unmodified code.

2. Adequate selection of (subsuming) commit-relevant mutants significantly re-
duces the number of mutants involved (approximately 93%); thus, there is a
huge benefit to developing effective and practical techniques for the selection
of (subsuming) commit-relevant mutants in evolving systems.

Additionally, our evaluation results show that most commit-relevant mutants are
located outside of the commit changes due to the interaction of changes with the
unmodified program code. In our evaluation, commit-relevant mutants that capture
evolving software behaviour are located all around the program changes. Besides, we
observe that the effective selection of commit-relevant mutants would significantly
reduce the number of mutants requiring analysis. Thus, we encourage researchers to
investigate automated methods for identifying and selecting commit-relevant mutants,
for instance, using statistical analysis or program analysis.

Next, one of the main insights of our study is to demonstrate that beyond the
committed changes, other program locations are also important for commit-aware
mutation testing. Hence, it is important to identify the relevant program locations
for commit-aware mutant injection. To achieve this, we encourage the use of program
analysis techniques (e.g., slicing) that determines the program dependencies between
changes and the rest of the program, such that mutant injection is focused on
selecting such dependencies to reduce the search space and cost for mutation testing
effectively. It is also pertinent to note that the subsumption relation of mutants can
help considerably reduce the effort during commit-aware mutation testing. Indeed, it
is important to identify and prioritize (subsuming) mutants during mutation testing
of evolving systems. Identifying those mutants allows developers to augment their
test suite to include new tests that exercise the program change and its dependencies.
Besides this use case, the commit-relevant mutants are important for effectively
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testing for regression bugs, i.e., if program changes (or commits) introduce new
failures or break previous features.

6.6 Threats to Validity
Our empirical study and findings may be limited by the following validity threats.

External Validity: This refers to the generalizability of our findings. We have
empirically evaluated the characteristics of commit-relevant mutants on a relatively
small set of open-source Java programs, test cases, and mutants. Hence, there is
a threat that our experimental protocol and findings do not generalize to other
mutants, programs, or programming languages. Additionally, there is the threat that
our findings do not generalize to other Java projects since our subject programs are
all from the Apache Commons project and may share similar characteristics in terms
of architecture, implementation, coding style and contributors. We have mitigated
these threats by conducting our experiments on five (5) matured Java programs
with a varying number of tests and a considerably large number of mutants. In our
experiments, we had 288 commits and 10,071,872 mutants with 25 different groups
of mutant types. In addition, our subject programs have 216,489 KLOC and 17
years of maturity, on average. Hence, we are confident that our empirical findings
hold for the tested (Java) projects, programs, commits, and mutants. Furthermore,
we encourage other researchers to replicate this study using other (Java) programs,
projects and mutation tools.

In our experiments, we used PiTest [58] to perform our analysis. However, it
is likely that the use of a different mutation tool may impact our findings since it
may contain different operators than PiTest. While this is possible, recent empirical
evidence [57] has shown that PiTest has one of the most complete sets of mutation
operators that subsumes the operators of the most popular grammar-based mutation
testing tools in almost all cases. Nevertheless, we are confident in our results since
PiTest includes a large sample of mutants; the general results are unlikely to change
with different types of simple mutations.
Internal Validity: This threat refers to the incorrectness of our implementation

and analysis, especially if we have correctly implemented/deployed our experimental
tools (e.g., Evosuite, PiTest and PiTest Assert), performed our experiment as
described and accounted for randomness in our experiments. We mitigate the threat
of incorrectness by (manually) testing our implementation, tools, and experimental
protocol on a few programs and commits to ensure our setup works as expected.
Specifically, we performed manual testing by examining five (5) representative Apache
programs containing about 500 LoC per commit on average. While we inspected in
total about 20 commits with over 30 LoC in patch sizes, on average. We also address
the threat of randomness in our experiments by repeating our experiments 100 times
to mitigate any random or stochastic effects.
Construct Validity: This refers to the incompleteness of our experimental approach,
in terms of identifying all commit-relevant mutants. Despite the soundness of our
approach, it only provides an approximation of commit-relevant mutants, such that
the set of identified commit-relevant mutants is only a subset of the total number of
all commit-relevant mutants. This is due to the finite set of test cases and mutants
employed in our experiments. We have mitigated this threat by ensuring we have
a reasonably large set of mutants and test cases for our experiments. For instance,
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following the standards set up by previous studies [8,44,68], we augmented developers’
written tests by automatically generating additional tests (using EvoSuite) to expand
the observable input space for commit-relevant mutants. Our experimental findings
are also threatened by the potential noise introduced by equivalent mutants. First,
notice that commit-relevant mutants come either from lines within the change or
outside the change. On the one hand, considering our algorithm 2 for identifying
commit-relevant mutants outside the change, you can notice that in case mutant X
is equivalent, then condition Y val ̸= XY val in Line 9 will evaluate to false since
mutants Y and XY will be equivalent as well, then mutant X will not be considered
as commit-relevant. On the other hand, our approach selects by default all the
mutants within the change as commit-relevant, so there is a potential threat in
selecting some equivalent mutant, even though mutants within the change are a
small fraction concerning the total number of mutants. To mitigate this threat, we
employ standard methods in mutation testing to reduce the probability of generating
equivalent mutants, for instance, by applying PiTest to ensure no common language
frameworks are mutated.

To determine the interactions between mutants, we employ a coarse-grained
assertion check in our experiments. Specifically, our assertion checks are at the
assert parameter level. As an example, given a first-order mutant and a second-order
mutant, we directly check the equality of the parameter values (i.e., the expected and
actual outcomes) for both mutants. This raises the threat of missing more fine-grained
assertion properties, especially the effect of dependencies within assertions and test
cases. Our approach may mask such dependencies, e.g., if there is a dependency
between the expected and actual value within the assertion. Indeed, this assertion
checks may limit the number of observed commit-relevant mutants, as a more fine-
grained approach (e.g. one that accounts for such dependencies) may reveal more
commit-aware mutants. Finally, we encourage other researchers to investigate the
effect of these threats on the performance of commit-aware mutation testing.

6.7 Conclusion
We presented a novel approach to identifying commit-relevant mutants by using

high-order mutants. More precisely, with this approach, we measure the impact of
second-order mutants on the first-order ones, which captures the existence of implicit
interactions between the changed and unchanged code parts. This approach allowed
us to create up to date the most extensive dataset of commit-relevant mutants, which
counts 10,071,875 mutants and 288 commits extracted from five (5) mature open-
source software repositories. After thoroughly analysing the mutants, our results
show that the commit-relevant mutants are highly prevalent (30%), and most (81 %)
are located outside of program commit changes. Additionally, it is pertinent to note
that we studied subsuming commit-relevant mutants as a minimal set of mutants
sufficient to represent all others, and found that by focusing on this particular
category of mutants, we can significantly reduce the number of commit-relevant
mutants by around 93%. Obtained results provide a sense of the huge benefit of
focusing on mutants that captures change-aware test requirements and open a new
direction on opportunities for studying and developing effective selection techniques
of commit-relevant mutants. For the link to the code of our approach, scrutiny and
future research, we publicly provide our artefacts, data and experimental results:
https://mutationtesting-user.github.io/evolve-mutation.github.io/
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7
Mutant Relevance to Code Evolution and Long
Standing-Mutants to Keep Mutation Test Suites
Consistent

Automatic selection of commit-relevant mutants is an open problem which regards
how to most cost-effectively identify commit-relevant mutants. Naturally, the ques-
tion emerges whether the most extensive dataset, to this end, of commit-relevant
mutants can provide scientific insights concerning the selection of mutants in testing
evolving systems written in Java language. Precisely, this chapter aims to examine
the properties, predictability, and utility of commit-relevant mutants, as well as sub-
suming commit-relevant mutants such as to quantify further the potential benefits of
selecting relevant mutants during project evolutions concerning cost and effectiveness.
Furthermore, this chapter argues that there is a remaining barrier to uptake: mutant
consistency. Besides tracking test effectiveness after each code modification, a consis-
tent set of mutants for a project is needed so that test effectiveness can be consistently
tracked against a common baseline over a series of project releases. In this chapter,
we also present a mutation test brittleness metric represented through long-standing
mutants, which can be used to assess a mutation suite, and software project, in terms
of the rate at which mutation test relevance decays over a series of releases. Our
results demonstrate that mutants have diverse life spans across program versions,
while our analysis shows that identifying a high-quality suite of long-standing mutants
allows us to maintain mutant relevance over a series of releases: a long-standing
mutant suite provides test effectiveness relevance for at least 10x longer than a ran-
domly selected suite.

This chapter is based on the work published in the following research papers:

• Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and
Yves Le Traon. "Mutation Testing in Evolving Systems: Studying the Rele-
vance of Mutants to Code Evolution." 2023, ACM Transactions on Software
Engineering and Methodology. 32, 1, Article 14 (January 2023), 39 pages.
https://doi.org/10.1145/3530786

• Milos Ojdanic, Mike Papadakis, and Mark Harman. "Keeping Mutation Test
Suites Consistent and Relevant with Long-Standing Mutants." Under submission
in the ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), Ideas, Visions and
Reflections (IVR) Track, 2023, arXiv:2212.11762

https://doi.org/10.1145/3530786
arXiv:2212.11762
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7.1. Introduction

7.1 Introduction
Testing evolving systems requires significant efforts in re-assessing every changed

program functionality in every evolution cycle. To reduce these efforts, automatic
tests are applied to re-test previously formed functionality, enabling test reuse. While
this practice is effective and valuable, it leaves the test adequacy question open,
i.e., whether test suites are sufficient for testing the given system version. More
often than not, developers add their tests ad hoc, following specific coverage criteria,
which often gives the false impression of test adequacy, implying stability for future
changes. Ultimately, even if testing was successful on its previous or current version,
it might not be the case in the future, given that the program evolves and testing
requirements accumulate. Applying traditional mutation testing in CI processes is
impractical due to its cost. Meanwhile, Commit-Aware Mutation Testing promises
to scale and defines commit-relevant mutants as a set of mutants affected by the
changed program behaviour that serve as commit-relevant test requirements to guide
test assessment by aiming at the changed program functionality [88,155]. Commit-
relevant mutants capture unforeseen interaction between a changed part of the code
and a not changed part of the code and likewise serve as valuable change-aware test
assessment metrics. More recently, learning-based approaches [113] emerged capable
of learning the commit-relevant mutants defined by a regression change in commit
time in C programming language, thus showing potential and opening a direction
towards learning mutant’s behaviour in evolving context. However, for Java as one
of the most popular languages, the task of learning mutant behaviour comes to be a
nontrivial task due to its dynamic nature. Therefore, in this chapter, we perform
an empirical analysis of commit-relevant mutants in Java programming language to
understand the properties of commit-relevant mutants, aiming to identify, select, or
predict commit-relevant mutants effectively. Specifically, we examined the location
of mutants, their types, effectiveness, predictability, and utility of commit-relevant
mutants, as well as subsuming commit-relevant mutants.

However, in this chapter, we also recognise another challenge. Evolving systems
require a continuous test assessment to avoid the degradation of testing strengths. In
particular, skipping some test requirements will result in debts that will snowball into
errors and be costly to localize and resolve. Therefore it is essential to create tests as
an investment for the future, also considering parts of the system that do not change
often and whose test assurance is pending to converge toward test thoroughness.

We argue that there is a remaining barrier to uptake: mutant consistency. We
need a consistent set of mutants for a project so that test effectiveness can be
consistently tracked against a common baseline over a series of project releases.
Unfortunately, almost all existing research on mutation testing assumes that a fresh
set of mutants is created for each release of the system [8, 156]. An alternative
would be to fix a set of mutants as a baseline and use this to measure ongoing test
effectiveness evolution. However, as the results of this study show, such a fixed
mutation set will quickly degrade in its relevance.

We introduce a mutation test brittleness metric, which can be used to assess a
mutation suite, and software project, in terms of the rate at which mutant relevance
decays over a series of releases. Our results demonstrate that mutants have diverse
life spans across program versions. We show that identifying a high-quality suite
of long-standing mutants allows us to maintain mutant relevance over a series of
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releases: a long-standing mutant suite provides test effectiveness relevance for at
least 10x longer than a randomly selected suite. In order to increase the consistency
and relevance of mutation testing, we conclude that the research community should
focus on long-standing mutants, their applications, the opportunities they open, and
the remaining open questions.

Specifically, this chapter’s primary contributions are:

1. Analysis of the properties, predictability, and utility of commit-relevant mu-
tants.

2. Studying effectiveness and test execution performance of (subsuming) commit-
relevant mutants in comparison to the selection baselines. State-of-the-art
mutant selection approaches miss a large portion of commit- relevant mutants.
For example, random mutant selection techniques miss approximately 45% of
subsuming commit-relevant mutants when analyzing the scope of 20 mutants. In
contrast, commit-relevant mutation testing significantly reduces test executions,
specifically reducing the number of test executions by about 16 times compared
to random mutant selection.

3. Reveal that several evaluated commit or mutant-related features can not reliably
predict (subsuming) commit-relevant mutants. For instance, (the number of)
commit-relevant mutants cannot be reliably predicted by features such as the
commit size or mutant operator types.

4. The introduction of long-standing mutants as an important category warranting
further study.

5. The introduction of metrics for assessing mutant brittleness and visualisations
of how this metric varies for a given project over time.

6. An empirical study of long-standing mutants based on four non-trivial systems
and 143,500 mutants.

7. The key motivating finding is that long-standing mutant suites enjoy an order
of magnitude longer relevance than a randomly selected suite over the four
systems studied.

8. An important ‘special relationship’ between long-standing and subsuming
mutants: mutants that are subsuming in one version have a high probability of
subsuming in the following versions. This relationship is important because
it opens optimistic prospects for mutants’ ability to maintain consistency,
relevance, effectiveness and subsumption over a series of releases.

7.2 Motivation and Problem Formulation
Applying traditional mutation testing in CI processes is impractical due to its cost.

Meanwhile, Commit-Aware Mutation Testing scales and defines commit-relevant
mutants as a set of mutants affected by the changed program behaviour that serve as
commit-relevant test requirements to guide test assessment by aiming at the changed
program functionality [88, 155]. More recently, learning-based approaches [113]
emerged capable of learning the commit-relevant mutants defined by a regression
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change in commit time, thus showing potential and opening a direction towards
learning mutant’s behaviour in evolving context. Therefore, it is necessary to
investigate the properties, predictability, and utility of commit-relevant mutants, as
well as subsuming commit-relevant mutants such as to quantify further the potential
benefits of selecting relevant mutants during project evolutions concerning cost and
effectiveness. However - it is necessary to realise that to improve the testing process
continuously and thus quantify overall testing quality - it would require applying the
technique after each program change cycle not to indebt and lose test requirements.
The merit of reappearing mature mutants is that they preserve test requirements
and thus complement commit-relevant mutants. In particular, the long-standing
mutants promise to keep overlooked testing requirements from oblivion and provide
test assessment for a prolonged time.

In an attempt to further scale and make test assessment affordable, many recent
studies (consult the survey by Papadakis et al. [8, 29]) consider subsuming mutants
to reduce the number of mutants required to measure test adequacy [8]. Indeed
traditional mutation operators introduce many trivial, duplicated, equivalent and
redundant mutants [29,39]. Specifically, a subsumption relationship between mutants
emerges from mutant behaviours, thus suggesting that the majority of the mutants
fall into the redundancy basket since distinguishing those subsuming mutants will
lead to the identification of all other mutants [42]. See the section 2.2.5 for more
information about subsumption.

More formally, given a finite set of mutants M and a finite set of tests T, mutant
mi is said to dynamically subsume mutant mj if some test in T kills mi and every
test in T that kills mi also kills mj [44]. Calculating test effectiveness over subsuming
mutants offers a much better test effectiveness indicator than the traditional mutation
score since subsuming mutants have an almost linear relationship between the number
of tests, providing more practicality for determining how much testing work remains
over how much has been completed [110].

Although the evidence is strong and the benefits are multi-fold, calculating
subsumption in real time requires knowledge of the mutant’s behaviour, usually
represented through test execution, which is unpractical in real time. Recently few
approaches have used learning-based methods to target subsuming mutants with
a certain level of confidence, considering their location and properties [63]. In this
study, we aim to reuse the guarantee of the quality of test assessment when the
mutants are also long-standing.

Figure 7.1: Example of mutants standing through 3 chronological sequences of code versions.
The example code snippet comes from Apache commons-io project, while method read() is
excerpted from the BoundedReader.java (versions around 81210eb). The green and red
rectangles represent associated commit changes. While java comments (//) describe the
set of mutants Mi,j , where i is the observed program version, and j is a mutant ID.
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7.3 Long-Standing Mutants
7.3.1 Motivating Example

A key challenge in the current state of mutation regression testing is a sequential
version-to-version execution. Suppose we keep a record of generated mutants to
the same element on which the mutant is generated and version them from one
version to another. Figure 7.1, depicts a chronological sequence of 3 different versions
of method read() extracted from Apache Commons-io project. The figure shows
a) code changes, where addition is in a green rectangle and labelled with the "+"
sign, and deletion is in a red rectangle labelled with the "-" sign, and b) a set of
mutants M for each version containing descriptive mutant operators, written in the
format of Java comment "//". Following the evolution of the code, we can observe
the evolution of the mutant set. We notice that most mutants reside in the same
place across the versions. Moreover, all eight mutants emerging in version 1 are
in the same positions in version 2, although a change introduces a new mutant
(M7). When a mutant location is unchanged from version to version, we consider
that it stands through time. While if a mutant does not occur in the next version,
we consider it to stop standing, e.g., M2,4 does not exist as M3,4 due to deletion
changes. We can observe that instead of M2,0 Constant Replacement, there is a new
mutant M3,0 Empty return, making M2,0 cease to exist due to the occurrence of the
called method. From the example, we can observe when a system reaches maturity,
as in the case of commons-io, the majority of the changes do not touch the core
logic, and most mutants M1,n are long-standing (still exist as M3,n) precisely six
out of eight. In particular, this indicates the potential reuse of past subsumption
knowledge concerning selection priority (among other things), avoiding redundancy,
addressing technical testing debt and aspiring towards test completeness of mature
code components.

7.3.2 Definition
To assess whether mutant M exists (stands) in time or whether the mutant

does not exist, the appropriate mapping is required, such as that for a mutant
generated on one class statement with a unique mutant operator; there exists the
same mutant operator for the exact location on the following program version.
Therefore long-standing mutants definition is:

Definition 7. Given n and m as timepoints of the first and last versions under the
study of the program P, where n > m. A mutant M is said to be long-standing if
it exists on the same code element E throughout consecutive versions P n, P n+1, ...
,P m until the point when the mutant M due to a committed program change does not
appear on the code element E of a program version P m+1.

It is worth mentioning that long-standing mutants can exist for several versions or
just a few. As long as a mutant stands for at least a version, the knowledge it cares
from the previous run has the potential to be reused and provide test assessment
for a prolonged time. We envision this property to allow the long-standing measure
where mutants can be approached by their maturity.

Given that mutants can ‘stand’ for several versions or just a few, we argue that the
rate at which a mutation suite and mutant relevance decays over a series of releases
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suggests a mutation test brittleness. Knowing the degree to which mutants hold high-
quality tests for a series of releases helps provide more prolonged test effectiveness.
Accordingly, we introduce the mutation brittleness metric that measures mutants’
longevity and overflow between versions.

7.4 Experimental Setup
7.4.1 Goals

The main goal of this study is twofold. First, the aim is to investigate the
characteristics and predictability of commit-relevant mutants in evolving software
systems in terms of their relationship to commit hunks, mutant types and some
other features reportedly used in the related work. We also study the mutants’
effectiveness and efficiency in testing evolving systems in comparison to the state-of-
the-art. Second, the aim is to investigate the mutation brittleness and long-standing
subsuming mutants, such as to demonstrate to what extent subsuming mutants
convey their dynamic behaviour and how mutation selection can affect the test
assessment capability of mutation testing over time.

Specifically, our empirical goals are the following:

1. study the properties of commit-relevant mutants, in terms of their prevalence,
mutant types, location and proportions, as well as the subsumption relation of
commit-relevant mutants;

2. examine the relationship between commit-relevant mutants and commit proper-
ties (e.g., commit size);

3. investigate the benefit of commit-relevant mutation testing, in terms of their
effectiveness and efficiency in comparison to the baselines.

4. investigate mutants lifetime w.r.t., longevity, over program history.

5. investigates the relationship between long-standing mutants and subsuming
mutants such as that the dynamic subsumption relationship can be carried to
the next versions.

Overall, our study aims at providing insights into the properties of commit-relevant
mutants and demonstrate their importance and effectiveness in testing evolving
systems. Plus, to introduce long-standing mutants that evaluate the brittleness of
mutation test suites and demonstrate that due to the diverse lifetime of mutants in
evolving contexts, some mutants can pour their dynamic subsuming behaviour in
the following program versions.

7.4.2 Research Questions
As we aim to evaluate the benefit and assess the potential stronger utility of

mutation testing in evolving systems, we investigate the following research questions:

RQ1 Commit Size: Is there a relationship between the size of the commit (i.e.,
number of commit hunks) and the number of (subsuming) commit-relevant mutants?

We answer this question by investigating the distribution of hunks through com-
mits and their association with identified relevant mutants. Answering this question
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will help us to understand further how a committed change influences relevant
mutants. After analyzing the ratio of sufficient mutants, their location, and their
relationship with commit hunks, we want to examine whether it is possible to re-
duce the number of mutants even further by only focusing on specific types. We study

RQ2 Commit-Relevant Mutant Types: What is the distribution of mutant
types in commit-relevant mutants?

To answer this question, we studied 25 distinct groups of mutant types, among
which we were able to identify the most dominant groups across relevant commit
mutants. Answering this question will help us to understand patterns when it comes
to the identification of relevant mutants and whether a certain type of mutation
dominates, making it appropriate for the selection. While the previous questions
reported relevant mutants distribution and their characteristics, they do not say
much about the usability and properties. Thus, we ask:

RQ3 Comparative Effectiveness: How effective are (subsuming) commit-
relevant mutants, in comparison to the baselines (i.e., random mutation and “commit-
only mutation”)?

We answer this question by simulating a scenario where a developer analyses
mutants and write tests to kill them. Hence, we are interested to know how much
a developer can benefit from relevant mutants by measuring the relative difference
between relevant mutation scores. This standard developer simulation aims to quan-
tify the benefit of one mutation-selection technique over another [9,68]. For different
selection techniques, i.e., baselines, we use random mutant selection, mutants on
modification, and subsuming-relevant mutants. Answering the above question pro-
vides us with insights into the advantages of killing relevant mutants over others.
While this is important to demonstrate the usage potential of relevant mutants,
there is an open question regarding test efficiency. More precisely, it remains unclear
what are the benefits of relevant mutants when it comes to computation. Thus, we ask:

RQ4 Test Executions: What is the performance of (subsuming) commit-
relevant mutants in comparison to the baselines, in terms of the number of required
test executions?

We perform a simulation of the testing scenario, similar to the previous question,
in which we measure the number of test executions necessary to reach the same
mutation score across baselines. Please note that we are simulating an incremental
process where the developer picks mutants, generates a test to kill them, removes
killed mutants, and selects the next surviving (see Section 2.4.2). On the opposite
side of the commit-relevant mutants, the question emerges how many mutants of
a specific file exist on the same code elements through time from their inception
without being altered by a code change? The existence of such mutants provides
insights into whether there exists a set of consistent mutants being able to track test
effectiveness over a series of releases consistently. Therefore we ask:

RQ5 Mutation Brittleness: What is the longevity (lifetime) of mutants over
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different code evolution timelines?

We answer this question by performing mapping each mutant of a specific pro-
gram version to its subsequent versions in the program history. As we will see in
our results, the longevity of mutants is diverse, and there are mutants with long
lifetimes in their project history timelines. Therefore, the next question of interest is
whether such mutants can keep their dynamic (subsuming) behaviour even in the
future version, thus standing as subsuming bypassing computation of subsuming
through test execution. Therefore we ask

RQ6 Long-Standing Subsuming Mutants: To what extent do subsuming
mutants convey their dynamic behaviour, and how can mutation selection affect the
test assessment capability of mutation testing over time?

By answering this question, we can demonstrate the role of mutant selection in
the context of evolving systems and emphasise that besides selecting mutants which
serve as change-aware test requirements, we should also focus on mutants standing
longer in history as they represent "test investment" and be the most optimal set
which does make test suite suffer from degradation and obsolete test requirements;
moreover quite contrary, those mutants will be capable to continuously track test
effectiveness between series of commits (releases).

7.4.3 Analysis Procedure and Implementation Details
To address RQ1 and RQ2, we perform a similar statistical analysis used in

the previous chapter Section 6.3.5. In this study, we also look for any correlation
between the number of commit-relevant mutants and the size of commit hunks, and
the type of mutants. In RQ3 and RQ4, we simulate a mutation testing scenario
where the tester starts by picking a mutant for analysis for which a test to kill it is
developed. During this simulation, for each analyzed mutant, we randomly picked
the test to kill it from the pool and computed which other mutants were collaterally
killed by the same test. The process proceeds by picking a survived mutant until
every mutant has been killed. We consider a mutant as equivalent if there is no test
in the pool that kills it. This kind of simulation has been used in various related
works to assess the effectiveness of mutation testing techniques [8,44,68,148]. We
consider four different mutant selection techniques when answering these questions.
Two of them we use as baselines, where one consists of randomly selecting from
the set of all mutants, and the other one consists of selecting only the mutants
on the change. Another selection technique consists of selecting from the pool of
commit-relevant mutants, while the last technique consists of selecting subsuming
commit-relevant mutants. We aim to obtain the best-effort evaluation by maximizing
effectiveness and minimizing the effort. We focus on the first 20 mutants picked
by a tester to test commit changes while we measure effectiveness in terms of the
commit-relevant mutation score reached by the selected mutants that guide the
testing process. Simultaneously, we measure the computational effort in terms of the
number of test executions required to accomplish the same effect over the different
baselines (different mutants pools). In this simulation, we are interested in the test
executions with the tests derived from the analysed mutants. The dependent variable
is the test sets, while the independent variable is the test executions. We iterate the
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process (killing all selected mutants) 100 times and compute the relevant mutation
score and computation effort. To answer RQ5 and RQ6, we reuse the evolution of
program versions and the history of mutants to follow their standing (w.r.t. how long
a mutant ‘stands’ in one location without being altered). For this study, we map
mutants considering changed lines and the context of change from git diff tool [157].
Our scripts take two program versions and map code statements from version to
version. Figure 7.1 indicates information of line numbers shift from version to version.
Note that for the purpose of this study, the history length of a mutant is computed
from the first studied version till the last chronologically observed version.

We start our analysis by extracting files with the most extended history of change
from the open-source mature Apache Commons projects. Then, we use the state-
of-the-art PIT mutation testing tool [58] to generate mutants per each changed
(committed) file, followed by the execution of tests and generation of the killing
matrix. Next to the killing matrix, for each changed file, we keep metadata (info.
about hunks, timestamps, mutants bytecode index, location etc.) Using extracted
information, we create a regression history for each file, making a file-specific historical
timeline. In the timeline of each file, a time-point represents a commit that introduces
changes to the file. While for each time-point, we calculate subsuming mutants
(reminder: the set of mutants, when distinguished, distinguish all other mutants).

Besides the set of mutants, each time point contains information about mapping
changes to the consecutive time point. Hence, the long-standing mutation metric
is a function F (Mt,change_map) = M ′

t. Where Mt is a mutant from time t, and
change_map is a map containing information about code transition from time t →t’,
while M ′

t is the mutant at time t’.1

Table 7.1: Observed files through projects evolution
Observed Files Time points Mutants Commons Project
CSVParser 31 8757 csv
CSVRecord 16 2656 csv
Lexer 21 10688 csv
CSVLexer 17 11208 csv
CSVFormat 47 52432 csv
CSVPrinter 21 20382 csv
IterableUtils 10 6441 collections
CharSequenceUtils 10 6802 lang
WordUtils 15 24128 text

7.4.4 Metrics and Measurements
To answer our research questions, we performed several statistical analyses to

evaluate correlation among variables similar to Section 6.3.5. However, we also
employed mutation-specific metrics such as the commit-relevant mutation score and
subsuming commit-relevant mutation score to measure the effectiveness and efficiency
of the selected mutants that guide the testing process. We measure how the test

1When mapping mutants, the occurrence of the same operators on the same line is theoretically
possible with PIT mutants; however, we didn’t witness such a scenario in our experiments. In
case of the occurrence, it is possible to distinguish mutants based on bytecode instructions since,
theoretically, two mutants with the same mutant operator cannot occur on the same bytecode
instruction.
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suite effectiveness progresses when we analyze mutants from the different mutant
sets (e.g., all mutants, relevant mutants, subsuming relevant, etc.). Similarly, we
measure efficiency by counting the number of test executions involved (to identify
which mutants are killed by the test suites) when the test suite progresses.

7.4.5 Evaluation Data
For the purpose of the aforementioned empirical goals of this study, we continue

to study and use the same dataset we previously defined, described and used for the
purposes of the study in the previous Chapter 6.

Yet, in order to explore the longevity of mutants as one of the aims of this study,
we observe the same projects and perform the mapping of mutants through different
time points (commits). The subject data is described in Table 7.1. From 4 different
Apache Commons projects, we extracted nine files with the longest history of change
and their corresponding commits. It is important to emphasize that due to technical
reasons (e.g., PiTest mutation testing tool requires green test suite to run), the time
gap between commits is rather "longer" than one commit. Nevertheless, this didn’t
stop us from mapping and observing long-standing mutants through the history of
evolving systems.
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Figure 7.2: Average Number of Commit-relevant mutants per commit

7.5 Experimental Evaluation
7.5.1 RQ1: Commit Size

In this section, we investigate if there is a relationship between the number of
(subsuming) commit-relevant mutants and the size of the commit, measured in terms
of the number of commit hunks.

In particular, we pose the following question: Is there a relationship between the
number of commit hunks and the number of (subsuming) commit-relevant mutants?

Figure 7.2 illustrates the relationship between the number of commit-relevant
mutants and the number of commit hunks. For commit-relevant mutants, we
found that the number of commit-relevant mutants (moderately) increases (trendline
R2=0.125) as the number of commit-hunks increases. This implies that there
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Figure 7.3: Average Number of Subsuming Commit-relevant mutants per commit

is positive direct relationship between the size of the commit and the number of
commit-relevant mutants. However, Figure 7.3 shows that the number of subsuming
commit-relevant mutants (moderately) decreases (trendline R2=0.023) as the number
of commit-hunks increases. These results suggest that there is an indirect relationship
between the size of the commit and the number of subsuming commit-relevant
mutants. The size of the commit does not directly predict the number of subsuming
commit-relevant mutants. Indeed, the number of subsuming commit-relevant mutants
decreases as the average size of the commit increases. Overall, this result demonstrates
the effectiveness and importance of subsuming commit-relevant mutants in reducing
testing effort, even for large commit changes.

The number of “commit-relevant mutants” increases as the size of the com-
mit increases; however, the number of “subsuming commit-relevant mutants”
decreases as the size of the commit increases.
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Figure 7.4: Prevalence of Commit-relevant Mutant Types

130



7.5. Experimental Evaluation

S
ub

su
m

in
g 

C
om

m
it-

R
el

ev
an

t 
M

ut
an

ts

0

1000

2000

3000

4000

In
ve

rtN
eg

sM
ut

at

OBB
NMut

at
or

s

In
cre

m
en

tsM
ut

at

Bo
ole

an
Fa

lse
Re

tu

Pr
im

itiv
eR

et
ur

ns

Em
pt

yO
bj
ec

tR
et
u

Bo
ole

an
Tr

ue
Re

tu

Co
nd

itio
na

lsB
ou

n

Ar
gu

m
en

tP
ro

pa
g

Vo
idM

et
ho

dC
all

M

Mat
hM

ut
at

or

Null
Re

tu
rn

Va
lsM

u

AO
DMut

at
or

s

Co
ns

tru
cto

rC
all

M

pit
_e

xp
er

im
en

ta
l

Re
tu

rn
Va

lsM
ut

at

AO
RM

ut
at

or
s

In
lin

eC
on

sta
nt

Mu

AB
SM

ut
at

or

Neg
at

eC
on

dit
ion

a

Non
Vo

idM
et
ho

dC

Re
m
ov

eC
on

dit
ion

CR
CR

Mut
at

or
s

RO
RM

ut
at

or
s

UO
IM

ut
at

or
s

Figure 7.5: Prevalence of Subsuming Commit-relevant Mutant Types

R
at

io
 o

f 
R
el

ev
an

t 
M

ut
an

t 
O

pe
ra

to
rs

0.0

0.2

0.4

0.6

OBB
NMut

at
or

s

Co
nd

itio
na

lsB
ou

n

In
cre

m
en

tsM
ut

at

UO
IM

ut
at

or
s

In
lin

eC
on

sta
nt

Mu

Bo
ole

an
Fa

lse
Re

t

Ar
gu

m
en

tP
ro

pa
g

Vo
idM

et
ho

dC
all

M

RO
RM

ut
at

or
s

Pr
im

itiv
eR

et
ur

ns

Mat
hM

ut
at

or

AO
RM

ut
at

or
s

CR
CR

Mut
at

or
s

Em
pt

yO
bj
ec

tR
et
u

Bo
ole

an
Tr

ue
Re

tu

Neg
at

eC
on

dit
ion

Re
m
ov

eC
on

dit
io

Re
tu

rn
Va

lsM
ut

at

AB
SM

ut
at

or

AO
DMut

at
or

s

Co
ns

tru
cto

rC
all

M

Non
Vo

idM
et
ho

dC

pit
_e

xp
er

im
en

ta
l

Null
Re

tu
rn

Va
lsM

u

In
ve

rtN
eg

sM
ut

at

Figure 7.6: Ratio of Commit-relevant Mutants over All Mutants per Mutant Type

7.5.2 RQ2: Commit-relevant Mutant Types
Let us investigate the prevalence of mutant types among (subsuming) commit-

relevant mutants, using 25 distinct mutant group types from PiTest [58]. This
is important to determine whether the generation, selection or identification of
commit-relevant mutants can be improved by focusing on specific mutant types.

What is the prevalence of mutant types among (subsuming) commit-relevant mu-
tants? Figure 7.4 illustrates the prevalence of mutant types among commit-relevant
mutants. Our evaluation results show that some mutant types are highly prevalent,
such as Unary Operator Insertion Mutators (UOIMutators), Relational Operator
Replacement Mutators (RORMutators) and Constant Replacement Mutator (CR-
CRMutators). On the one hand, UOIMutators inject a unary operator (increment or
decrement) on a variable; this may affect the values of local variables, arrays, fields,
and parameters [58], while RORMutators replace a relational operator with another
one, e.g., “<” with “>” or “<=” with “<”. On the other hand, CRCRMutators
mutates inline constants. For further details about the mutant types, the table of
constants and other mutation operators can be found in the official PiTest documen-
tation2. Specifically, 50.77% of the commit-relevant mutants are of one of these three
mutant types. This is mainly related to the fact these three mutation operators

2http://pitest.org/quickstart/mutators/
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Figure 7.7: Ratio of Subsuming Commit-relevant Mutants over All Mutants per Mutant
Type

produced the majority (54.5%) of the mutants considered in our study. Precisely,
Figure 7.6 shows that the distribution of commit-relevant mutants is clearly uniform
per mutant type. That is, in general, between 20% and 30% of the mutants for each
type result to be commit-relevant. This indicates that mutants type does not increase
or reduce the chances for mutants being commit-relevant. The outliers of Figure 7.6,
corresponding to mutant types Bitwise Operator Mutator (OBBNMutators) and
Invert Negatives Mutator (InvertNegsMutat), are because of the low number of
mutants for these types: 13 out of 81 (16%) mutants are commit-relevant in the
case of OBBNMutators mutant type, while 3 out of 5 (60%) mutants are commit-
relevant for InvertNegsMutat mutant type. In particular, OBBNMutators mutates
(i.e., reverses) bitwise “AND” (&) and “OR” (|) operators, while InvertNegsMutat
operators inverts the negation of integers and floating-point numbers. Similarly,
Figures 7.5 and 7.7 show that the ratio of subsuming commit-relevant mutants per
mutant type follows a uniform distribution as well. Typically, between 5-7% of
the mutants per mutant type turn to be subsuming commit-relevant. The outlier
of Figure 7.7 corresponds to InvertNegsMutat mutant type, where none of the 3
commit-relevant mutants identified for this mutant type is subsuming (because of
mutants of a different mutant type subsume them).

The distribution of (subsuming) commit-relevant mutants per mutant type is
uniform. Typically, between 20-30% (5-7%) of the mutants per mutant type
are (subsuming) commit-relevant.

7.5.3 RQ3: Effectiveness of Commit-relevant Mutants Selec-
tion

This section simulates a mutation testing scenario where the tester selects a
mutant for analysis for which a test to kill it is developed. Note that a test case
that is designed to kill a mutant may collaterally kill other mutants. Consequently,
opening a space to examine the effectiveness of the test suites developed when
guided by different mutant selection strategies. Accordingly, this study compares the
following mutant selection strategies: “random mutants selection,” “mutants within a
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Table 7.2: Comparative Effectiveness of selecting and killing (subsuming) commit-
relevant mutants in comparison to “all mutants” and “mutants within a change” by
observing RMS (Relevant Mutation Score) and RMS* (Subsuming Relevant Mutation
Score)

RMS RMS*
Selection Strategy/Interval 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

Random 46.67 70.59 82.42 88.10 91.95 95.26 95.74 96.85 97.50 98.05 11.11 35.00 54.17 66.13 75.00 81.25 85.71 88.24 90.89 92.76
Within a change 46.48 59.52 65.91 67.48 68.42 69.47 69.96 70.18 70.40 71.09 11.95 25.00 28.95 32.31 33.33 33.67 34.38 34.88 35.23 35.29
Commit-Relevant 75.00 95.05 100 100 100 100 100 100 100 100 40.74 83.72 100 100 100 100 100 100 100 100

Subsuming Commit-Relevant 80.00 98.51 100 100 100 100 100 100 100 100 65.75 95.35 100 100 100 100 100 100 100 100

(a) Relevant Mutants Progression (b) Subsuming Relevant Mutants Progression

Figure 7.8: Comparative Effectiveness of selecting and killing (subsuming) commit-relevant
mutants in comparison to “random mutants” and “mutants within a change”

change,” and (subsuming) commit-relevant mutants. We measure their effectiveness
in terms of the Relevant Mutation Score (RMS) and Minimal-Relevant Mutation Score
(RMS*), which intuitively measures the number of (subsuming) commit-relevant
mutants killed by the different test suites. Specifically, we investigate the extent to
which selecting and killing each aforementioned mutant type improves the test suite
quality in terms of the number of (subsuming) commit-relevant mutants killed by
the test suite.

Then we pose the question: How many (subsuming) commit-relevant mutants
are killed if a developer or test generator selects and kills random mutants or only
mutants within a change?

Table 7.2 and Figure 7.8 demonstrates how the effectiveness of the developed test
suites progresses when we analyze up to 20 mutants from the different mutant pools.
We observed that when the same number of mutants are selected from the different
pools, better effectiveness is reached by test suites developed for killing (subsuming)
commit-relevant mutants.

For instance, a test suite designed to kill six (6) selected (subsuming) commit-
relevant mutants will achieve 100% of RMS and RMS*. However, a test suite designed
to kill six randomly selected mutants will achieve 82.42% RMS and 54.17% RMS*,
while a test suite that kills six mutants within a change will achieve 65.91% RMS
and 28.95% RMS*, respectively. More precisely, even after selecting 20 mutants,
neither random selection from all mutants nor within a change selection achieved
100% of RMS and RMS*.

This result demonstrates the significant advantage achieved by selecting (subsum-
ing) commit-relevant mutants.

Moreover, we observed that random selection from all mutants is up to 1.6
times more effective than selecting mutants within a change. For instance, selecting
20 random mutants achieves 98.05% RMS and 92.76% RMS*, while selecting 20
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mutants within a change only achieves 71.09% RMS and 35.29% RMS*. This result
demonstrates the importance of selecting mutants outside developers’ committed
changes.

Selecting and killing (subsuming) commit-relevant mutants led to more effective
test suites. They significantly reduced the number of mutants requiring analysis
compared to random mutant selection and selecting mutants within a change.

7.5.4 RQ4: Test Executions
In this section, we study the efficiency of the different mutant sets in terms of the

number of test executions required to run the tests resulting from the analysis of 2-20
mutants. We, thus, approximate the computational demands involved when using
all mutants, relevant mutants, (subsuming) relevant mutants and mutants located
within commit changes.

Figure 7.9 illustrates the number of test executions required by the test suites
derived by the analysis of 2-20 mutants. We found that the analysis of commit-
relevant mutants significantly reduces the number of required test executions by
4.28 times on average over different intervals of analysed mutants (and 16 times
when using subsuming commit-relevant mutants) in comparison to test execution
required when analysing all mutants. For instance, users will need to perform 601 test
executions when deriving tests based on the analysis of 2 mutants, from the set of all
mutants, compared to 185 or 52 test executions needed by the use of commit-relevant
mutants or subsuming commit-relevant mutants, respectively.

The difference increases with the number of analysed mutants. Thus, for the 2
analysed mutants, the difference in test execution is 2.8 times. For 4 mutants, 3.65,
and 6 mutants, the difference in test execution is 4 times comparing all mutants
and the commit-relevant mutants. We can also observe an increase in the difference
between test executions needed by the use of subsuming commit relevant mutants
and all mutants over different intervals. This difference is 11.55 times, 14.68 and
16 for analysed 2,4 and 6 mutants, respectively. Overall, we can compare test
execution needed by using commit-relevant and subsuming commit-relevant mutants

Figure 7.9: Efficiency, number of test executions required when deriving test suite sizes (in
the range [2, 20]).
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Figure 7.10: Mutant sets for different observed files and their corresponding studied history
(timeline). Each cell in the heat map represents a normalised proportion of a subject history
length, and the corresponding colour represents a percentage of mutants from the initial
set over time through versions. The results show that mutants have diverse longevity, with
brittleness, on average, of 52%.

and observe a 4 times difference on average, with no considerable differences between
intervals.

Selecting subsuming commit-relevant mutants reduces test execution cost (i.e.,
the number of test executions) by up to 16 times compared to all mutants.

7.5.5 RQ5: Mutation Brittleness
Figure 7.10 depicts the brittleness of mutants over time. In particular, it tells us

how many mutants of a specific file exist through time, from their inception, on the
same initial code elements, w.r.t., a code change has not altered mutants. From the
figure, we can observe the diversity of the longevity distribution. Moreover, for the
file Lexer, the ratio of long-standing mutants is significant, over 80% over observed
time points. On the contrary, we can see that the CsvPrinter file contains significant
changes, and the ratio of the mutants degrade below 50% after the first half of the
observed points and below 20% in the second half of the observed history points.
For other observed files, we see changes do not impact over 70% of the mutants
in the first quartile of the timeline and between 40-60 % for the rest of the time
points. These results demonstrate that mutants have a diverse lifetime over different
evolution timelines, which suggests further investigation of whether mutants keep
subsuming dynamic relationships over time and how mutant selection can affect test
assessment.

7.5.6 RQ6: Long-Standing Subsuming Mutants
Figure 7.11 demonstrates to what extent subsuming mutants convey their dynamic

behaviour and how mutation selection can affect the test assessment capability of
mutation testing over time. In particular, the figure depicts the scenario in which
we select subsuming mutants at a certain point in time and observe the capacity in
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(a) Long-Standing Subsuming mutants for differ-
ent observed files throughout their studied his-
tory. An optimal set of mutants - when selected
- shows a long-standing prospect. In contrast, a
worst-case set of mutants, when selected, shows
brittleness - indicating obsolete test requirements.
A ‘special relationship’ between long-standing
and subsuming mutants exists and indicates that
subsuming mutants in one version are probably
subsuming in the following versions.

(b) Mean Square Error of Mutation Score of ini-
tially selected and long-standing subsuming mu-
tants. The optimal set of long-standing subsum-
ing mutants demonstrates a capability to perform
test assessments over time - preserving subsump-
tion relationships - unlike the worst-case or typi-
cal sets which show higher MSE. An optimal set
of long-standing mutant suites enjoy an order of
magnitude longer relevance.

Figure 7.11

which they exist over time together with how well they can perform test assessment
w.r.t., measuring mutation score. We randomly sample 10-30% of mutants (100 times
to remove the threat of randomness; we choose these selection intervals as obviously
selecting all mutants leads to traditional mutation testing) from each observed file
and consider the file history length - the figures show aggregated results since each
subject has different history length. Figure 7.11a illustrates the need for intelligent
mutant selection as we can significantly distinguish between two sets, a) sets of
mutants more optimal as they stand longer throughout observed history; hence
longer enjoying mutant suites relevance and b) other sub-optimal sets that suffer
relevance degradation, w.r.t., represent obsolete test requirements. Interestingly,
optimal mutant selection promises continuous tracking of test effectiveness as the
margin of degradation is ≈10% on the ratio of selected mutants. In comparison,
we observe worst-case sets of mutants, which indicate obsolete test requirements
and typical arbitrary sets as if there was no other way to select, then we would
end up with a random. To observe how capable those mutants are of affecting test
assessment over time - keeping their subsumption relationships - we calculate the
mean square error (MSE) of mutation score (MS) between the initially selected set
and those long-standing mutant sets. In Figure 7.11b we assess the difference in
the MSE of MS between the optimal and suboptimal sets of long-standing mutants.
We observe that the optimal set of long-standing subsuming mutants keeps MS
high over time (low MSE ≈ 0.01%-0.04%), indicating a gradual loss in MS as the
mutants stand longer in time, thus preserving mutant suite relevance. Accordingly, it
is important to realize the potential in conveying knowledge of previously calculated
dynamic relationships of mutants for at least 10x longer than a random selection. In
particular, by selecting the sub-optimal sets of mutants, the threat of not preserving
the knowledge appears, w.r.t., mutants less capable of test assessment over time,
suggesting their low priority (higher MSE ≈0.01%-0.20%).
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7.6 Discussion and Future Plans
7.6.1 Summary of Findings for Commit-Relevant Mutants

Commit-relevant mutation testing allows developers to identify and select the
mutants necessary for testing the program changes to avoid regression bugs and
newly introduced failures. This chapter presents an empirical study that examines
the prevalence and characteristics of commit-relevant mutants and provides scientific
insights concerning the mutation testing of evolving software systems. The main
empirical findings include the following:

1. Predicting (subsuming) commit-relevant mutants is not a trivial task. In our
evaluation, we studied several candidates proxy variables that do not reliably
predict commit-relevant mutants, including the number of mutants within a
change, mutant type, and commit size. Hence, we encourage the development
of statistical or machine learning approaches and program analysis techniques
to predict or identify commit-relevant mutants automatically.

2. Selecting commit relevant mutants is significantly more effective and efficient
than random mutant selection and the analysis of only mutants within the
program change. Commit-relevant mutation testing can reduce testing effort
(i.e., number of test executions) by up to 16 times, and by half, compared to
random mutant selection and mutants within a change, respectively.

We also observe that the effective selection of commit-relevant mutants signif-
icantly reduces the number of mutants requiring analysis. Thus, we encourage
researchers to investigate automated methods for identifying and selecting commit-
relevant mutants, for instance, using statistical analysis or program analysis.

In addition, we observed that commit-relevant mutant prediction and selection
is a challenging task. For example, many proxy variables could not reliably predict
commit-relevant mutants in our analysis (2). To buttress this, we further conducted
a correlation analysis of the features of commit-relevant and non-relevant mutants
using control and data flow features selected from Chekam et al. [112]. The goal is to
determine if mutants’ features previously used for other prediction tasks, for instance,
for selecting fault-revealing mutants [112], can also distinguish commit-relevant
mutants. Figure 7.12 presents our findings using a heat map, where each map
coordinate represents the Spearman correlation coefficient calculated between two
features on the coordinates. These features characterize relevant and not relevant
mutants, labelled with the suffix "R" or "N", respectively. Notably, we observe that
there are no strong positive or negative correlations among these features. This
implies that these features can not directly help distinguish between commit-relevant
and non-relevant mutants. However, we can observe two cases of a medium positive
correlation between the same class features, in particular, CfgDepth and NumInDataD
between both classes show correlation.3 This phenomenon is expected since there
will be more data-dependent expressions as the depth of a mutant in the control flow
graph increases.

3CfgDepth means the depth of a mutant in the control flow graph, i.e., the number of basic
blocks to follow to reach the mutant, and NumOutDataD refers to the number of mutants on
expressions on which a mutant m is data-dependent.
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Figure 7.12: Correlation between features of relevant and non-relevant mutants labelled
with suffixes “R" and “N", respectively. The features examined include the following:
CfgDepth - Depth of a mutant in Control Flow Graph, i.e., the number of basic blocks to
follow in order to reach the mutant; NumOutDataD - Number of mutants on expressions
data-dependent on a mutant expression; NumInDataD - Number of mutants on expressions
on which a mutant m is data-dependent; NumOutCtrlD - Number of mutants on expressions
control-dependent on a mutant; and NumInCtrlD - Number of mutants on expressions on
which m is control-dependent.

Furthermore, we found that commit-relevant mutant selection considerably im-
proves the effectiveness and efficiency of testing evolving systems, especially in
comparison to the random mutant selection and using the mutants within the pro-
gram changes (RQ3 and RQ4). Overall, these empirical findings shed more light
on the challenge of mutation testing of evolving systems and provide directions for
future research into the selection and prediction of commit-relevant mutants.

7.6.2 Implications, Guidelines and Use-Cases
The main insight of our study is the need to pay attention to the effective identifi-

cation, selection or prioritization of commit-relevant mutants. This is particularly
important to reduce the developers’ effort required for mutation-based regression
testing in continuous integration systems. Random mutant selection or selecting mu-
tants within the change is not effective for identifying commit-relevant mutants since,
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as shown in the previous chapters (see chapter 5 and 6), only one in three mutants
are commit-relevant, and only one in five commit-relevant mutants are located within
the commit (see RQ1). Notably, an effective commit-aware mutant selection method
can significantly reduce the number of mutants involved. In particular, the effective
selection of commit-relevant mutants significantly reduced the number of mutants
requiring analysis and the number of test executions compared to random mutant
selection and selecting mutants within a change (see RQ3 and RQ4, respectively).

To achieve the aforementioned goals, i.e., automate the identification and selection
of commit-relevant mutants to aid developers, we turn to the research community to
develop and investigate the techniques required for effective commit-aware mutation
testing. We note that neither the size of the commit nor the type of the mutant
reliably predicts (subsuming) commit-aware mutants. Even though the number of
commit-relevant mutants increases as the size of the commit increases, the number of
subsuming commit-relevant mutants decreases as the size of the commit increases (see
RQ1). Additionally, we observed that the distribution of (subsuming) commit-relevant
mutants per mutant type is uniform (see RQ2). Thus, the takeaway of this study is the
need to develop: a) novel techniques for selecting, prioritizing and predicting commit-
relevant mutants; and b) commit-aware test metrics to determine the adequacy
of commit-aware mutation testing. Although the problem of selecting/identifying
relevant mutants is active for traditional mutation testing, this is hardly well-studied
for commit-aware mutation testing. This is an important problem since several
studies [113, 148] (including studies in this dissertation) have demonstrated that
traditional (random) mutation testing is significantly costly for evolving software.

The previous chapter has further illustrated that dynamic approaches (like
observation slicing) can complement static or machine learning-based approaches
in effectively identifying commit-relevant mutants. We have also observed that
commit-relevant mutants cannot be predicted using only the committed changes or
program dependence properties. This implies that the current state-of-the-art is not
generally applicable for commit-aware mutation testing in practice. Thus, for more
effective approaches, we believe researchers need to consolidate the knowledge from
several sources, including the commit difference, mutant properties, the semantic
behaviour of mutants, and the semantic divergence produced by the change.

To this end, we encourage further investigation of the effectiveness of such
techniques for commit-aware mutation testing and the development of newer program
analysis-based approaches (e.g., symbolic execution or search-based techniques) for
identifying commit-aware mutants.

Finally, previous research [113] has shown that commit-aware mutation testing
requires different test metrics from traditional mutation testing. Thus, we encourage
researchers to define new test metrics targeting the changes and their dependencies
and investigate their effectiveness for commit-aware mutation testing. Overall, we
expect that addressing these challenges will reduce the performance gap between the
state-of-the-art in traditional mutation testing and commit-aware mutation testing.

7.6.3 Implications of Long-Standing Mutants
We believe that long-standing mutants are an interesting category in their own

right and worthy of further research. They have implications not only for mutation
testing but also beyond mutation testing. In this section, we set out future plans for
further evaluation and investigation of the properties of long-standing mutants and
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their applications.
Implications regarding subsuming long-standing mutants: Despite showing that

subsuming relationships can be preserved from version to version and that mutants’
utility can be reused, we do not yet fully understand why subsuming mutants tend
to last longer than subsumed mutants. A detailed study is needed to understand the
subsumption and longevity drivers fully.

Implications for mutation testing tools: Our results also have implications for
the development of future mutation testing tools. In particular, our results suggest
the development of a robust mutant versioning system. Existing tools [58, 134,158]
focus on the generation of mutants but not sophisticated mutant versioning. In
future work, we need to investigate mutation testing tools that allow logging mutants’
maturity, execution history, and fluctuation over time, supporting approaches that
learn mutant behaviour and relating this to code changes. Previous work on flaky
mutant detection [159], predictive modelling [160] and hyper-heuristics [161] (in
particular that focused on mutation testing [86]) may form a good starting point for
this research agenda.

Maximising long-standing mutant fault revelation: By focusing on long-standing
mutants, we favour mutants that reside in relatively unchanging parts of the code.
There is a natural concern that this may, in turn, lead to us favouring test suites
that do not tend to reveal faults in changing parts of the code. Fortunately, the fact
that a mutant lies in code region A does not render it insensitive to bugs that lie in
(lexically separate) code region B. If there are transitive dependencies between A
on B then we can expect high degrees of mutant coupling and even subsumption
between the two regions. This suggests future work on identifying mutants that
have high ‘transitive dependence reach’ through their transitive dependencies, using
techniques such as slicing [94] and chopping [162].

Implications of long-standing mutants beyond mutation testing research: The find-
ings reported in this paper have implications beyond mutation testing to automated
program repair [163,164] and genetic improvement [165,166]. It is often been argued
that program repair is the inverse of mutation testing. Instead of inserting faults,
repair seeks to remove them. Long-standing mutants are, therefore, also likely to find
applications and implications in the field of program repair and genetic improvement
research. For example, it would be interesting to explore ‘long-standing’ repairs as a
counterpoint to long-standing mutants. One might reasonably conjecture that such
repairs would remain relevant for longer than repairs in areas of code subject to high
degrees of churn. However, the empirical assessment of this phenomenon remains an
open problem for future work.

7.7 Conclussion
We studied the prevalence, location, effectiveness, and efficiency of commit-

relevant mutants. We have also examined the comparative advantage of commit-
relevant mutants compared to two baseline methods, i.e., random mutant selection
and selecting mutants within program changes. In addition, we observed that the
effective selection of commit-relevant mutants affords a significant testing advantage.
Specifically, it has the potential to significantly reduce the cost of mutation, and it is
significantly more effective and efficient than random mutant selection and analysis
of only mutants within the program change. We also investigate the predictability of
commit-relevant mutants by considering typical proxy variables (such as the number
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of mutants within a change, mutant type, and commit size) that may correlate
with commit-relevant mutants. However, our empirical findings show that these
candidate proxy features do not reliably predict commit-relevant mutants, indicating
that more research is required to develop tools that successfully detect this kind
of mutants. For replication, scrutiny and future research, we publicly provide our
artefacts, data and experimental results: https://mutationtesting-user.github.
io/evolve-mutation.github.io/. Furthermore, in this chapter, we introduce a
mutant brittleness measure and use it to audit software systems and their mutation
suites. We also demonstrate how consistent-by-construction long-standing mutant
suites can be identified with a 10x improvement in mutant relevance over an arbitrary
test suite. Our results indicate that the research community should consider avoiding
the re-computation of mutant suites and focus, instead, on long-standing mutants,
thereby improving the consistency and relevance of mutation testing.
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8
Learning-Based Mutant Selections for Comparison
of Mutants Effectiveness

To this end, various fundamentally different mutation approaches have emerged,
opening the question of whether the standard grammar-based mutation testing ap-
proach is still the most effective in detecting real faults. Plus, with the advances in
learning-based mutant selection strategies, it is pertinent to recognise the importance
of asking how effective are the mutants of different approaches when using those
strategies to remove the noise caused by the trivial mutants, focusing only on the
ones of the highest quality. Overall, this chapter analyses the mutant effectiveness
of the fundamentally different mutation testing approaches - directed by distinct
learning-based selection strategies. Our results lead to different conclusions on fault
detection, raising attention to the risk that the suitability of different kinds of mutants
can be misinterpreted if not removing the noise of trivial mutants. In particular, the
results demonstrate that under learning-based selection strategies, different mutation
approaches significantly improved their performance and reveal that when comparing
mutation effectiveness, it is imperative to account for a mutant selection suitable for
removing the noise, which leads to the drawing of incorrect conclusions.

This chapter is based on the work published in the following research paper:

• Milos Ojdanic, Ahmed Khanfir, Aayush Garg, Renzo Degiovanni, Mike Pa-
padakis and Yves Le Traon, "On Comparing Mutation Testing Tools through
Learning-based Mutant Selection", 2023, The 4th ACM/IEEE International
Conference on Automation of Software Test (AST 2023), In press.
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8.1 Introduction
Mutation testing is considered one of the most powerful testing techniques [1]. It

operates by posing the requirement to write tests to reveal artificially injected faults,
hence also revealing the real faults coupled with artificial ones [8, 9].

Motivated by its fault-revealing capability and application in various domains [8]
such as testing [167], debugging [18,168], maintenance and change-aware dependability
analysis [169–171], researchers and practitioners have proposed several mutation
testing approaches to automate fault injection and test suite assessment. Most
approaches inject faults based on predefined syntactic transformation rules (aka
mutation operators) [1, 58], such as replacing an instance of a relational operator
with another operator, e.g., replacing > with >=. Other approaches aim at injecting
faults by either following fault patterns created or learned from recurrent fault
instances [54,61,77] or by employing code pre-trained language models [60]. These
approaches have been implemented and made openly available as tools, serving the
main purposes of mutation testing – tests assessment and guidance criterion.

Interestingly, while several novel mutation testing approaches and their corre-
sponding tools have recently emerged, their fault revelation potential has not been
assessed and compared with the traditional grammar-based mutation testing tools.
Since these tools rely on fundamentally different underlying techniques such as man-
ually defined patterns [54], deep learning [61], grammar-based rules [58], and code
pre-trained language models [60], it is particularly interesting to check for potential
complementarities along with their strengths. Previous work [57,139] have limited
their studies to only grammar-based mutation testing tools [58, 172]. Hence, in this
chapter, we venture to investigate the effectiveness of the most recent mutation
testing tools and contrast their performance with the traditional ones under a new
and larger dataset by employing Defect4J v2.0.

8.1.1 Rationale behind the comparison
Powerful learning-based mutant selection strategies have been proposed recently

[63, 111,112], intending to reduce the application cost and noise of mutation testing,
which has been for long considered as a primary cause that keeps the technique away
from broad industrial service.

These strategies aim at discarding redundant mutants and providing testers
with mutants that will bring value to the testing process. Typically, these strategies
employ user-defined features - code features learned using deep learning - independent
of how mutants are introduced. Since these mutant selection strategies give different
importance to mutants, this may affect the cost-effectiveness of mutation testing
and raises the question of how the different tools compare in terms of fault detection
under mutant selection strategy guidance.

To this end, we model the application cost they entail and perform a controlled
cost-effectiveness comparison under two different cost models, which reflect the main
efforts spent in mutation testing campaigns. These cost models are repeatedly used
for work simulation and encompass the number of analysed mutants and the number
of written tests required to reveal the injected faults [8, 111].

Precisely, we study the fault detection ability and the related cost-effectiveness of
four fundamentally different mutation testing tools that we deemed as representatives
of different approaches when guided with and without a mutant selection strategy.
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In particular, we consider 1) IBIR [54] – a mutation testing tool that represents
manually crafted fault patterns – 2) DeepMutation [61] – a deep learning-based tool
that derives patterns from real bug fixes – 3) µBERT [60] – a mutation testing tool
that uses a pre-trained NL-PL language model to replace tokens based on large
code corpus learning – and 4) two sets of operators from PIT [58] – a popular
grammar based mutation testing tool. As a learning-based selection strategy, we use
Cerebro [63], a deep-learning-based mutant selection technique that has been proven
efficient in reducing mutation testing campaign costs.

8.1.2 Contributions
In this study, we hypothesise that different mutation testing approaches - directed

by learning-based selection strategies - lead to different conclusions on the fault
revelation, raising a risk that their suitability can be misinterpreted. Our results show
that IBIR reveals most of the Defects4J faults (approximately 90% of the considered
real faults), followed by µBERT (approximately 74%) and PIT (approximately
73%). However, IBIR and PIT introduce significantly more mutants than µBERT;
approximately, IBIR produces twice as many mutants as PIT, which produces 3.2
times as many as µBERT. This seems to introduce a size effect on the number of
mutants, which influences fault detection. To account for this, we also control the
number of mutants (or tests) and perform a cost-effectiveness comparison.

Thus, when cost-effectively comparing the tools, we find that except for DeepMu-
tation, which is the least effective, all tools have similar fault-revealing abilities when
controlling cost/effort and applying them out of the box – without any guidance.
Perhaps surprisingly, when we combine them with mutant selection strategy, we see
a much different picture with µBERT performing significantly better, approximately
12%, than the other tools. Additionally, we find that the other tools subsume
DeepMutation by being able to identify more faults and doing it at a much lower
cost.

Overall, our work aims to study the fault detection performance of different testing
approaches when employing mutant selection strategies. Our key contributions can
be summarized by the following points:

1. We perform the first study investigating the fault detection capability of
fundamentally different fault seeding approaches (IBIR, DeepMutation, PIT,
µBERT) in a newly released bug dataset, i.e., Defect4J v2.0.

2. We propose a new way to compare the mutation testing tools using learning-
based strategy and show that leads to different conclusions on which is the most
cost-effective tool than the ones that could be drawn when not considering
it. We investigate the use of transformers, a state-of-the-art deep learning
technique Cerebro.

3. We show that combining µBERT with learning-based mutant selection yields
significantly higher fault detection, approximately 12% higher, than any other
tool.

146



8.2. Mutation Tools and Selection Strategies

8.2 Mutation Tools and Selection Strategies
8.2.1 Mutation Testing Tools

PIT [58] is one of the state-of-the-art mutation testing tools that seeds faults
using syntactic transformation rules (aka mutant operators) at the bytecode level.
We selected PIT as a representative of tools for grammar-based transformation since
it is considered a state of art tool with a vast community providing continuous
support. Besides, recently we have witnessed many empirical proofs and studies
distinguishing the tool of its competitors [139]. The tool implements 29 task-specific
categories of mutation operators; for instance, the Conditionals Boundary category
mutates relational expressions. When considering the 29 categories, PIT has over 120
mutation operators. However, PIT also provides different pre-defined configurations.
Thus in this study, we consider two. We will denote by PIT to the setting in which
all mutation operators from the 29 categories are considered and by PIT_Default to
the set of mutants contained in the default configuration of the tool - consisting of
11 categories. The tool default configuration is often used in industry settings, while
many existing studies employed all mutants for experimental purposes. We decided
to take both configurations for our study to dismiss the threat of biasing the tool.
We provide a code snippet demonstrating the mutation induced in the following box.
// PIT uses grammar transformations - e.g., relation > to <=

public boolean contains ( final Object object ) {
return indexOf ( object ) <= 0;

}

µBERT [60] is a mutation testing tool that uses a pre-trained language model
(CodeBERT) [117] to generate mutants by masking and replacing tokens. µBERT
takes a Java class and extracts tokenized expressions, which mask for token replace-
ment (mutation), e.g., it masks a variable name and invokes CodeBERT to complete
the masked sequence (i.e., to predict the missing token). This approach has been
proven efficient in increasing the fault detection of test suites [60] and improving
the accuracy of learning-based bug-detectors [74]; therefore, we consider it as a
representative of pre-trained language-model-based techniques. For instance, please
consider the code snippet provided, in sequence return indexOf(object) > 0;
µBERT mutates the method invocation expression indexOf by feeding CodeBERT
with the masked sequence return <mask>(object) > 0;. CodeBERT predicts the
5 most likely tokens to replace the masked one, e.g., it predicts contains, indexOf,
lastIndexOf, count, and size for the given masked sequence. µBERT takes these
predictions and generates mutants by replacing the masked token with the predicted
ones (per masked token creates five mutants). µBERT discards non-compilable
mutants and those syntactically the same as the original program (cases in which
CodeBERT predicts the original masked token).
// mBERT uses CodeBERT to alter tokens based on the context

public boolean contains ( final Object object ) {
return lastIndexOf ( object ) > 0;

}

IBIR [54] is a fault seeding tool that uses automatic program repair inverted
fix-patterns to inject faults that are similar to real ones. It takes as input the git
repository of the program to mutate and a bug report, written in natural language
and seeds (introduces) multiple fault candidates (mutants) that emulate the fault
described in the bug report. In particular, IBIR’s mutation operators are inverted
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fix-patterns crafted from actual bug fixes, and their inverse would induce seeded
faults that are similar to actual faults. IBIR, in one of its configurations, applies
faulty patterns exhaustively over the system-under-test to generate mutants without
any bug-report IRFL guidance. We use this configuration in our study to exclude
the advantage brought by the IRFL component to IBIR’s performance and, thus,
make a fair comparison between the considered approaches mutations. For instance,
if you consider the code snippet provided, in sequence return indexOf(object) >
0; IBIR can mutate the condition by expanding the expression with an extra one
&& object == null.
// IBIR uses inverted fix - patterns

public boolean contains ( final Object object ) {
return indexOf ( object ) > 0 && object == null;

}

DeepMutation [61] generates mutants by employing Neural Machine Translation
[51], aka NMT. It uses an NMT model trained on a large corpus (∼787k) of existing
bug-fixing commits mined from GitHub repositories. It takes a Java method as input
and outputs a mutant. Hence, it generates one mutant for every method in a Java
class file. In particular, every method is abstracted, in which pre-defined identifiers
replace the user-defined variable names and literals to obtain an abstracted code
representation. These abstracted code representations are then given as input into
the trained NMT model to produce abstracted mutants, which are converted back
to source-code mutants by reversing the abstraction.

We use the publicly available trained model of DeepMutation [65] to generate the
mutants and src2abs [66] tool to perform the abstraction process. This approach is
one of its kind until this moment, and we followed its guidelines [61] to generate one
mutant per method.
// DeepMutation uses Machine Translation for bug - fixing

public int contains ( final Object object ) {
return indexOf ( object );

}

8.2.2 Mutant Selection Strategies
The fault seeding techniques generate a very different number of mutants. Thus,

to make a fair comparison, we aim to control the number of mutants in answering
RQs 1 and 2. Since the order in which mutants are analyzed is relevant due to the
existence of equivalent and trivial mutants and can affect the application cost of
mutation testing, it can also alter the cost-effectiveness of the tools/techniques used.
Thus, we consider two mutant selection strategies that are very different from each
other.

Standard Mutant Selection consists of sampling uniformly from the entire
set of mutants [57, 68], i.e., every mutant has the same probability of being selected
since no prioritization heuristic is considered.

Cerebro [63] is a machine learning approach that has been shown effective in
statically selecting subsuming mutants. Subsuming mutants - a minimal subset of
mutants to identify such as to identify the original set reciprocally [29, 42] - are the
set of mutants that resides on the top of the subsumption hierarchy and subsume all
other mutants [43]. Cerebro learns to identify subsuming mutants given their context.
In particular, it learns the associations between mutants and their surrounding code
by using language-agnostic Neural Machine Translation [173], which is also used by
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many recent studies [48,51,62,64]. Cerebro’s learning scope is a relatively small area
around the mutation point that differentiates locally the mutants that are subsuming
from those that are not. This procedure allows the selection of the mutants from
program elements which fit best to their context rather than using entire codebases
with every possible transformation. Cerebro demonstrated preserving the mutation
testing benefits while limiting application cost, i.e., reducing all cost application
factors such as equivalent mutants, mutant executions, and the mutants that require
analysis. Cerebro outperformed other approaches that concern machine learning
models that capture code properties through manually engineered code features [63].

8.3 Experimental Design And Setup
8.3.1 Research Questions

This study aims to compare the cost-effectiveness of the recently proposed
mutation testing tools. To do so, we start our analysis by investigating the fault
detection ability of the studied tools in a scenario when a developer writes a test
that distinguishes a mutant and identifies coupled fault. Thus we ask:

RQ1 (Tool’s effectiveness) What is the fault detection ability of IBIR, DeepMutation,
PIT and µBERT mutation testing tools? How do the employed techniques
compare in terms of cost-effectiveness?

The answer to this question allows us to identify the most effective and cost-
effective tools in standard comparison settings with random mutant selection, which
have merits in deciding on their use and shedding light on their strengths.

Intelligent mutant selection strategies have recently been proposed to prioritize
mutants and reduce the mutation testing effort. Hence, our other objective is
to investigate whether the cost-efficiency of fault-seeding approaches would take
advantage similarly by these strategies. We consider an advanced learning-based
mutant selection Cerebro aiming to select subsuming mutants utilizing Neural Machine
Translation proficiency. We, therefore, investigate the following research question:

RQ2: (Learning-Based Selection) What is the cost-effectiveness of mutation testing
tools when mutants are selected according to a learning-based mutant selection
strategy?

Answering these questions provides evidence of whether and how much the
mutation testing tools/approaches benefit from the intelligent mutant selection and
whether there is one that benefits more than the others.

Taken all together, by answering the above questions, we study the fault detection
ability of fundamentally different mutation testing tools and estimate their cost-
effectiveness when guided by mutant selection strategy.

8.3.2 Benchmarks and Ground Truth
We use Defects4J [116] v2.0.0, which contains the build infrastructure to reproduce

(over 800) real faults for Java programs. Every bug in the dataset consists of the
faulty and fixed versions of the code and a developer’s test suite accompanying the
project that includes at least one fault-triggering test that fails in the faulty version
and passes in the fixed one.
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The set of faults spans more than a decade of development history, making it
challenging for us to synchronize the execution of faults over different fault-seeding
tools, following obsolete dependencies not supported by relatively recent tools and
old versions of frameworks or languages, i.e., some of the mutation tools require
Java 1.8+. Thus, intending to be as fair as possible with the selected tools, we
had not considered those faults that did not satisfy the building requirements —
specifically, the 26 faults from the project Jfreechart and 174 from Closure-compiler.
Additionally, when conducting this study, we found that 82 faults from the Jsoup
project were not compilable due to technical reasons [122]. In total, we analyzed 509
faults from 15 different projects.

It is pertinent to note that when comparing and observing performance between
different tools, we strictly use the intersection of faults, i.e., the faults we were able
to study for all tools in question, and strictly those faults where every tool generated
at least one killable mutant.

8.3.3 Generated Mutants
For each selected faulty project version from Defects4J, we start by identifying the

modified classes between the faulty and fixed versions. Then we generate mutants for
the fixed version of each modified class by employing the selected mutation testing
tools. Table 8.1 records the number of faults analysed and the number of mutants
generated by each mutation testing tool. DeepMutation delivers only one mutant
per method and produced 5,559 mutants for the 348 analysed faults. µBERT was
applied on 499 faults and produced 293,304 mutants. IBIR produced 1,113,113
mutants for the 393 analysed faults. As we previously introduced, we consider two
configurations in the case of the PIT mutation testing tool. PIT_Default uses the
subset of the mutation operators as specified in the tool’s production-ready setup.
These categories are considered the most effective ones (11 out of 29) and generate
110,480 mutants for 508 faults analysed. For the sake of thoroughness of the study,
as we already mentioned, we also use all available mutation operators of the tool,
denoted by PIT, and generate 1,212,544 mutants across 29 mutants categories for
the 509 faults analysed.

Table 8.1: Number of Faults and mutants used in the study.

Mutation Testing Tool # of Analysed Faults # of Mutants
DeepMutation 348 5,559
PIT_Default 508 110,480
µBERT 499 293,304
IBIR 393 1,113,113
PIT 509 1,212,544
* When comparing different tools, we strictly use the intersection of faults

8.3.4 Experimental Analysis Procedure
We start by executing all the mutants generated by the different tools on the

selected project subjects and recording the failing tests distinguishing those mutations.
Next, we use Cerebro, the machine learning approach, to obtain the (subsuming)
probability associated with each mutant needed for answering RQ2.
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The procedure to answer RQ1 studies the cost-effectiveness of the fault seeding
techniques when employing standard (random) mutant selection as the strategy of
selecting mutants in a developer work simulation. We repeat the procedure for RQ2;
however, this time, Cerebro guides the selection of mutants by prioritising mutants
and assigning the highest probability of being useful to those likely to subsume
others, considering their surrounding code context.

In particular, the standard developer workflow simulation emulates a testing
scenario where the mutants guide the testing process and serve as test requirements.
A tester selects mutants and designs tests to kill them until every (killable) mutant
is killed (a standard simulation often reported in the literature [8]). Intuitively, the
work simulation starts with an initial empty test set and the set of mutants to be
covered. The next step is to select a mutant with high priority given by some strategy
and either, select randomly a test (without replacement) that kills it, or judge it as
equivalent. Each selected test is added to the test suite, and every mutant killed by
that same test is discarded. The simulation is repeated until all mutants are treated.

Precisely, given a list M of mutants sorted by a particular mutant selection strategy
(i.e., Standard or Cerebro) and their predefined test pool P (provided within the
dataset Defects4J), we incrementally construct and measure the number of tests in
test suite T required to distinguish every (killable) mutant from M, likewise measuring
the number of analyzed mutants (killed or judged equivalent) during the process.
The simulation starts by picking the top mutant m, according to the selection strategy
used, among survived mutants (initially considering all mutants from M). Next, we
check if there exists some test in the test pool P that kills m (this process simulates a
tester picking, analyzing, and designing a test to kill a mutant). If no test kills a
mutant m, we judge it as equivalent and remove it from M. Otherwise, we randomly
pick one test t from the pool that kills m, add t to the suite T, and remove from M
every mutant that is killed by t. This process continues by taking the next surviving
mutant from M, finding a test t to kill it, and repeating until every mutant in M is
killed (or judged as equivalent).

In order to perform a more complete and fair comparison between the tools,
we measure the cost of a mutation testing tool in two ways: The number of tests
designed/written to kill all (killable) mutants [68], and the number of analyzed
mutants during the process [57].

Furthermore, it is necessary to note that we consider the effectiveness of a
mutation testing tool as the ability to devise a test suite T to detect the real fault.
That is, we measure whether, by running forged test suite T on the faulty version of
the program, we could detect the real fault.

To answer RQ1, we run previously described simulation by randomly sorting the
list of mutants from the different mutation tools and comparing their effectiveness
when applying the same effort, i.e., how many faults we can find when writing the
same number of tests or analyzing the same number of mutants. To answer RQ2, we
run the same simulation and comparison, but with the mutants prioritized according
to Cerebro’s importance prediction.

Since our simulation process includes some random effects (e.g., which test t is
selected to kill a mutant m), we repeat this process 100 times for all approaches to
reduce the threat of randomness [174].

Overall, this experimental setup promises to investigate the performance and
usability of the studied mutation testing tools when applied together with mutant
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Table 8.2: Prediction Performance of Cerebro.

Cerebro trained on: MCC Precision Recall
µBERT 0.56 0.81 0.52
IBIR 0.40 0.84 0.25
PIT 0.43 0.71 0.35
* Cerebro maintains similar performance as reported by Garg et al. [63]

selection strategies.

8.3.5 Cerebro Mutant Selection Prediction Performance
To use the machine-learning approach Cerebro [63] and select (subsuming) mutants

when addressing RQ2, we need to train it on our data set. We follow the guidelines
of Garg et al. [63] to implement Cerebro’s approach and perform training. Garg et
al. employ a 5-fold cross-validation to evenly split the benchmark into five parts,
providing five models to obtain probabilities. To evaluate the performance of Cerebro
on our dataset, we repetitively use one-fold of our benchmark for testing and 4 for
training. Table 8.2 reports the average prediction performance of our implementation
of Cerebro, which is comparable with the results of Garg et al. [63] when trained on
PIT mutants. When we train it on µBERT mutants, we observe better prediction
performance indicators (10% in Precision, 17% in Recall, and 13% in MCC) than
trained on PIT mutants. When training Cerebro on IBIR mutants, we obtain slightly
worse prediction performance than when trained on other tools (3% and 16% lower
MCC w.r.t to PIT and µBERT) (Note that since DeepMutation produces only one
mutant per method, no mutant prioritization is required).

For the sake of clarity, it is pertinent to note that column Precision describes the
ratio of mutants truly subsuming among all the mutants predicted as subsuming,
while column Recall is the ratio of mutants correctly predicted as subsuming among
all the subsuming mutants. The column MCC (referring to Matthews Correlation
Coefficient) [175] denotes the coefficient between 1 and -1. An MCC value of 1
indicates a perfect prediction, whereas a value of -1 indicates a perfect inverse
prediction, i.e., a total disagreement between prediction and reality. An MCC value
equal to 0 indicates that the prediction performance is equivalent to random guessing.

8.3.6 Statistical Analysis
To evaluate whether fault detection under the same invested effort is significantly

different between techniques, we use the non-parametric effect size measure Vargha
and Delaney A12 [71]. Intuitively, A12 measure will tell us how frequently one tool
obtains better indicators than the others. It returns values between 0 and 1, where
A12 = 0.5, showing that the two measures are completely equivalent; otherwise, they
have some differences.

8.4 Empirical Evaluation
8.4.1 RQ1: Tool’s effectiveness under Standard Selection

We start our analysis by examining the effectiveness of the mutation testing
tools/techniques under the standard mutant selection strategy.
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Figure 8.1: RQ1 Standard Selection: tools’ cost-effectiveness in fault detection over
different effort models – analysing mutants / writing tests. Different groups of tools
control the number for selection to address differences in the scope of mutant generation.
Table 8.3: Cost-effectiveness comparison under different mutant selection strategies (RQ1
and RQ2). Each cell represents the absolute difference in fault-detection between the
Observed Tool and the Baseline (-/+ for lower/higher fault detection) when the same
effort is invested (#M stands for the same number of mutants analysed, and #T stands
for the same number of tests written). For instance, using Standard Selection (RQ1) IBIR
detects, on average, 14.50% more faults than DeepMutation, when analysing the same
number of mutants.

RQ1: Standard Selection
Observed Tools Comparison Baseline Tools

DeepMutation PIT_Default µBERT PIT
#M #T #M #T #M #T #M #T

PIT_Default 15.52 1.95 — — — — — —
µBERT 16.68 2.57 -0.64 0.72 — — — —
PIT 12.30 2.28 -7.42 -0.65 -7.59 -2.84 — —
IBIR 14.50 3.79 -3.66 2.12 -0.50 1.15 11.66 3.06

RQ2: Learning-Based Selection (Cerebro)
Observed Tools Comparison Baseline Tools

PIT_Default µBERT PIT
#M #T #M #T #M #T

µBERT 12.14% 3.30% — — — —
PIT -2.09% -2.45% -10.42% -3.64% — —
IBIR -1.78% -2.39% -7.06% -0.73% 5.77% -0.70%
* Columns correspond to columns in the grids of Figures 8.1 and 8.2

Figure 8.1 visualizes fault detection concerning the number of analyzed mutants
and the number of written tests. It is pertinent to note that the selection number
is controlled since different observed tools generate different numbers of mutants.
Hence, when studying the detection of each fault, the maximum cost is directed by
the tool that produces the least number of mutants, more precisely, which requires
the least effort to analyse all of its mutants. Table 8.3 summarises the differences in
fault detection of the tools involving the same effort. Let us consider from Sub-table
(RQ1) in Table 8.3, the first column – DeepMutation. This column summarises the
fault detection difference between the tools observed in the two left Sub-figures of 8.1,
in which DeepMutation is considered the reference tool that limits the maximum
cost of the simulation (as its mutants require the least effort to be all analysed, in
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the majority of the cases). The sub-columns #M and #T values report the fault
detection advantage (or disadvantage) of using a tool from the first column instead of
using DeepMutation, when spending the same effort in terms of respective mutants
analysed and tests written. For instance, the first row indicates that PIT_Default
(29.54%) can detect 15.52% more faults than DeepMutation (14.02%) when analyzing
the same number of mutants while detecting near 2% more faults when writing
the same number of tests. Hence, we use different tools as a baseline to represent
our results in Table 8.3 and Figure 8.1, sorted in ascending order according to the
number of mutants generated with each tool: DeepMutation, PIT_Default, µBERT
and PIT.

We observe that DeepMutation is the least cost-effective technique - other tools
detect between 12% and 17% more faults when the same number of mutants is analyzed.
Moreover, we notice that the rest of the tools require the analysis of fewer mutants
than DeepMutation (around four times less) to reach the same fault detection. The
differences are statistically significant, according to the computed p-value. We also
compared them with the Vargha-Delaney A measure (Â12) [71], showing that other
tools achieve better fault detection on average in 99.6% cases.

We can also observe that the effectiveness of PIT_Default (58%), µBERT (57%)
and IBIR (54%) is similar, outperforming PIT (50%) when analyzing as many
mutants as PIT_Default. When writing the same number of tests, we observe that
µBERT reaches similar effectiveness (54%) as PIT_Default, PIT 53% and IBIR 56%.

When we focus on µBERT, we can observe that both µBERT (73.2%) and
IBIR (72.7%) are more effective than PIT (65.7%) under the same effort. These
differences also have statistically significant p-value, and Â12 when compared to their
cost-effectiveness, evidencing that µBERT and IBIR in ≈ 99% cases can detect more
faults. Moreover, to reach the same effectiveness as PIT, µBERT and IBIR need to
analyze 44% and 38% fewer mutants than PIT. When we compare the number of
tests, we observe that IBIR (65.2%) and µBERT (64.01%) can detect near 4% more
faults than PIT (61.16%) under the same effort.

Finally, we can observe that IBIR (near 90%) is more effective than PIT (74%)
when the same number of mutants are analyzed. IBIR needs to analyze 80% fewer
mutants (and 25% fewer tests) than PIT to reach the same effectiveness. This
difference is also statistically significant p-value<0.01.

IBIR is the most effective tool, identifying on average ≈ 90% of real faults. It requires
the analysis of 80% fewer mutants (and 25% fewer tests) than PIT to reach the same
effectiveness. In terms of cost-effectiveness µBERT, IBIR, PIT_Default perform
similarly, with PIT performing slightly worse. All other tools subsume DeepMutation
concerning fault detection through standard selection.

8.4.2 RQ2: Tool’s effectiveness under Cerebro
Figure 8.2 visualize cost-effectiveness simulation of the fault seeding techniques

when we use a machine learning-based approach, i.e., Cerebro for mutant selection.
It is important to note that due to findings in the previous research question, we
don’t find it suitable to consider DeepMutation in this research question since it is
subsumed even when using all its mutants.

As can be seen in Figure 8.2, learning-based mutant selection improves the
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Figure 8.2: RQ2 Learning-Based Selection: tools’ cost-effectiveness in fault detection
over different effort models – analysing mutants / writing tests. Different groups
of tools control the number for selection to address differences in the scope of mutant
generation.
remaining fault-seeding techniques’ cost-effectiveness. Table 8.3 in RQ2 cells presents
the absolute differences in fault detection between the tools.

Interestingly, when using Cerebro to select mutants, µBERT achieves ≈12%,
≈14% and ≈13% higher fault detection rate than PIT_Default, PIT and IBIR,
respectively, when analyzing the same number of mutants and ≈4%, ≈6% and
≈6% when analysing the same number of tests. The differences are statistically
significant, according to the computed p-value (< 0.01). We have also validated
these findings by computing the (Â12) measure, showing that it achieves higher fault
detection on average in 96.2% cases. Surprisingly, µBERT analyses 50%, 82%, and
78% fewer mutants than PIT_Default, PIT and IBIR, respectively, to reach the
same effectiveness. Concerning the number of tests, the difference is also noticeable
when compared with PIT, since µBERT obtains ≈5% higher fault detection under
the same number of tests written.

Interestingly, in the presence of the learning-based mutant selection strategy,
IBIR keeps its significantly high difference in fault detection when analyzing the
same number of mutants as PIT, ≈6%. This difference is also statistically significant
with p-value<0.01.

Overall, our results indicate that using learning-based mutant selection signifi-
cantly impacts the cost-effectiveness of the fault-seeding techniques. This observation
promises to impact how we use fault-seeding techniques and how we compare new
fault-seeding techniques’ effectiveness.

µBERT has significantly improved its performance under the machine-learning-
based selection strategy, i.e., Cerebro, becoming the most cost-effective fault seed-
ing technique. µBERT needs to analyse 50%, 82%, and 78% fewer mutants than
PIT_Default, PIT and IBIR, respectively, to reach the same effectiveness when
selecting mutants according to Cerebro. IBIR, PIT_Default and PIT all experience
improved performance but overall, they all perform similarly.
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8.5 Discussion
8.5.1 Mutant Selection or not: How does the mutant selec-

tion impact the mutation testing tools?
Regardless of the fundamental differences between the considered approaches, our
results show they are all efficient in guiding testing towards higher fault detection
capabilities. In fact, with relatively low efforts, they score comparable fault detection
rates. Their difference becomes noticeable only by spending extra efforts or leveraging
a mutants selection strategy to spare the efforts lost in analyzing irrelevant mutants
- as can be seen from our results in RQ2. While in RQ1, under the standard mutant
selection strategy, we do not report any statistically significant difference (p<0.05)
between the tools, except in the cases where DeepMutation is subsumed and µBERT
and IBIR deviate from others. Although we observe that IBIR is the most effective
when considering extra effort in analyzing mutants - with statistically significant
differences. The reasoning is that a) IBIR provides mutants with high fault detection
capabilities but b) produces numerous equivalent and irrelevant ones, which increase
the cost to the target.

The impact is revealed when we applied a learning-based mutant selection ap-
proach in RQ2, which deflates mutant redundancy. Learning-based selection Cerebro
makes µBERT the most cost-effective, significantly outperforming the other ap-
proaches, which differs from standard selection conclusions. We argue that Cerebro
boosting µBERT, particularly, unlike the others, lies in the similarity and homo-
geneity among its mutants, which all replace one token with another considering the
code context. In contrast, others may remove or alter multiple tokens or statements,
making the learning task harder.

To further investigate this variance in cost-efficiency between the studied tech-
niques, we should check whether the other approaches could also get boosted by
classification techniques like µBERT. This question is particularly interesting in the
case of IBIR, which introduces significantly more mutants, thus, more subsuming
and subsumed mutants than µBERT, which challenges any classifier. To check this
hypothesis, we plan in future work to construct and study more classifiers (learning-
based or not) together with a perfect classifier (an artificial model that perfectly
predicts whether a mutant is subsuming or not) and thus obtain more insights about
the cost-effectiveness of the available fault-seeding techniques.

Altogether, we conclude that when comparing mutation testing techniques, the
standard mutant selection strategy can lead to incomplete conclusions as the most
cost-effective tool/technique is not necessarily the same under learning strategies
which we encourage researchers and practitioners to utilize and explore further.

So far, the investigation also implies that some operators of different approaches
provide beneficial ingredients that should be considered and further explored as
complements to mutation testing tools. In the following, we scratch the surface and
pave the way for future researchers towards this direction.

8.5.2 Complementarity of the approaches
So far, we have elaborated on the cost-effectiveness of fundamentally different

approaches when guided – or not – by intelligent selection. However, we haven’t
investigated and given insights into "how?" and "what?" an approach can and cannot
reveal, and consequently, 1) what could be the added value of spending more effort
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using each approach and 2) whether the approaches could complement each other.
As a first step in this direction – as encouragement for future studies since a

thorough breakdown may undermine the intent and scope of this work – we amend
our quantitative study with a qualitative one. We investigate the bugs that each
approach can find – at least once among our simulation repetitions – and distinguish
the ones that could not be found by all approaches. Then, we examine these bugs
with their revealing mutants and discuss the particularities and shortages, i.e. the
fault injection patterns that make any difference between all considered approaches.

The Venn diagram in Figure 8.3 depicts the distribution of the bugs that are
revealed by each tool. Same as per previous results, IBIR outperforms all approaches
in terms of fault detection capability, finding 99,57% of the target bugs followed by
µBERT (92,7%), PIT (87,55%), PIT_Default (85,83%) and finally DeepMutation
(41,20%). In fact, IBIR can discover all the target bugs except one (Mockito 5), which
no approach can find, indicating the pseudo-completeness of its mutation operators.
Indeed, 2 bugs are only found by IBIR – Math 12 and Mockito 33 – mainly thanks
to patterns’ power, such as removing or inserting new statements, replacing method
invocations, and adding extra conditions.

Concerning µBERT mutations, even if they do not remove or insert new code
but only change one token by another, they can reveal 17 bugs which only IBIR
could find. Additionally, µBERT finds respectively 26 and 29 bugs that mature and
sophisticated operators of PIT_Default and PIT missed. We explain this by the
fact that µBERT’s pre-trained model CodeBERT and its knowledge of code (the
information it retrieves from the code) to mutate perms it to propose real-like code
replacements, thus, real-like mistakes and bugs, i.e. changing method calls, access to
objects’ fields and arrays etc.

PIT and PIT_Default yield comparable results, showing they can amend µBERT
capabilities in finding respectively 13 and 14 bugs more, thanks to patterns that
involve multiple tokens changing, i.e. the removing mutation operators.

Overall, we believe that future research should investigate the appropriate joint
use of IBIR’s inverted fix-patterns, well-crafted and mature PIT_Default grammar
transformations, and µBERT’s code and context-knowledge based mutations.

8.5.3 Implications for practice
Over the last decade, mutation testing (a.k.a. fault seeding, fault injection) has

been used exhaustively for testing, debugging, maintenance, change-aware dependabil-
ity analysis, test assessment, etc. In the context of mutation testing, recent industrial
applications less often include the generation of all mutations or coverage-adequate
test sets. Cheaper trends concern the effort required, and the risk of unrealistic test
requirements is seen through the objective of equivalent mutants. Instead, industrial
applications are interested in obtaining a curbed sample of mutants that reliably
mimic real faults. Thus, satisfying the famous mutation testing proverb: "Do fewer,
do smarter, do faster" [35].

At the same time, with the wave of open possibilities brought by machine learning
models, many tools emerged. Their diversity provokes a topic of interest in the
development and research circles – together with empirical comparisons – about which
approach/tool is more efficient in emulating and revealing actual bugs. However, as
we showed in the paper, solely comparing tools based on their mutant generation
degree does not lead to solid conclusions. Each technique brings additional value, with
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Figure 8.3: Which bugs are revealed by every approach? IBIR is capable of finding almost
all (99,57%) bugs, followed by mBERT (92,7%), Pit (87,55%), Pit-default (85,83%) and
finally DeepMutation (41,20%).

an inevitable cost in noise. Thus, with this study, we aspire to spread the message to
practitioners to consider the actual cost of every technique expressed through some
form of intelligent selection and effort analysis, thus discarding the noise. Furthermore,
we shed light on different degrees of redundancy that different approaches carry,
transformations that make them distinguishable and complimentary, making them
less costly. Altogether, the central insight of our study to future researchers and
tool developers is to consider appropriate selection strategies when comparing and
developing fault-seeding techniques. Moreover, we encourage researchers to explore
the combination of models to identify promising locations for mutant generation and
joint transformation rules.

When comparing mutation testing techniques or tools, it is imperative to account for
a mutant selection technique suitable for this purpose. The use of standard mutant
selection entails a risk of drawing incorrect conclusions.

8.6 Threats to Validity
External Validity: To reduce threats that may relate to the subjects we used,

we selected 509 faults from 15 mature open-source real-world projects that are
well maintained and tested from Defects4J v2.0. As we already discussed, while
conducting our experiments, we could not compile or run the tests of all the versions
available in Defects4J v2.0. Although our evaluation expands to many faults and
Java projects of different sizes, the results may not generalize to other projects or
programming languages.

Another external threat lies in the tools’ specificity and running configurations we
consider. To reduce this threat, we employ fundamentally different modern mutation
tools and run them exhaustively using their corresponding default configurations,
generating as many mutants as the tool can generate for each subject.

Another threat can be related to the mutant selection strategies used in the study.
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To reduce this threat, we consider two fundamentally different approaches. Never-
theless, we do not remove the threat that results can change when another mutant
selection technique is employed or considering another language (e.g. Cerebro [63]
was also evaluated on C programs, which was not explored in this paper) - yet we
plan to follow this line of work in the future.

Internal Validity: Threats to internal validity may arise in how we train the
machine learning-based approach Cerebro for RQ2. To address this threat, we strictly
follow the guidelines reported by Garg et al. [63] and explain the steps in Section
8.3.5. In contrast to Garg et al. [63] that evaluated Cerebro only with mutants
generated with PIT, in this study, we also train Cerebro on mutants generated with
µBERT and IBIR. Other threats may relate to how we label mutants as subsuming.
To counter this threat, we rely on the developer suites provided by the Defect4J
benchmark, as it is regarded as the most detailed dataset of faults from projects with
thorough test sets in Java language. Any weakness in the suites may lead to incorrect
labelling for mutants, introducing some noise that can affect Cerebro’s prediction
abilities. Unfortunately, we could not compile and run the master-branch [124] of
DeepMutation. Thus, we had to operate the tool from the resources and pre-trained
artefacts provided in the repository.

Another threat to internal validity may be that we generate mutants only for
the class fixed in the bug-fix pairs provided by Defects4J. Thus, we do not reduce
the potential threat that the results do not apply to mutants from other classes
interacting with the mutants used in this study.

Construct Validity: Our assessment metrics, number of analyzed mutants,
number of written tests and fault detection may not entirely and exhaustively reflect
the actual testing cost / effectiveness values. These metrics have been suggested
by literature [8, 68, 127] and are intuitive, i.e., the number of analyzed mutants
and the number of tests essentially simulate the manual effort involved by testers
when mutants guide the testing process [1, 32]. These two cost models illustrate
objective comparison as the engineering effort is assumed to be fixed, which would
not be the case in a human study, fluctuating based on a participant’s experience.
While measuring real execution time (computational effort) would be impacted by
the environment, e.g., the number of machines, machines’ performance, scheduling
algorithms and maturity of the tools in a sense if they have built-in support for
multi-threading/parallelism.

At the same time, fault detection is the effectiveness metric of interest in this
study that can be impacted by randomization. To address this threat, we run and
repeat 100 times a simulation scenario where a tester selects mutants and designs
tests to kill them. Overall, we mitigate these threats by following suggestions from
mutation testing literature [8, 68,127], using state-of-the-art tools and performing
several simulations. We also find consistent and stable results across our subjects.

8.7 Conclusion
We studied the fault detection performance of recently proposed mutation testing

tools (DeepMutation, PIT, IBIR and µBERT) on a new and large fault dataset.We
also employed two different mutant selection strategies a) standard, b) state-of-the-
art deep learning driven one, then we performed a cost-effectiveness comparison
using two typically adopted cost models; one associated with the number of mutants
requiring analysis and a second one with the number of tests to reveal the injected
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faults. Our results showed that IBIR has the highest fault detection capability
(≈90% on average) but is not the most cost-efficient. In contrast, µBERT, even
less effective, has significantly higher cost-effectiveness when using learning-based
selection strategies, approximately 12% higher, than all the other tools. More notably,
we found that mutation testing tools perform differently when guided by mutant
selection strategies, indicating the need for considering intelligent selection when
comparing mutation testing tools.
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9
Supported Datasets and Tools

This chapter presents the datasets generated in support of evaluating proposed
approaches and the tools used in support of our analysis. We believe the
open-sourced datasets and reference on the existence of tools will provide further
benefits to practitioners and solid ground to build new techniques and conduct
rigorous studies building on the contributions of this dissertation.
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Chapter 9. Supported Datasets and Tools

9.1 Mutation datasets
In order to perform the studies described in this dissertation, a substantial amount

of time was dedicated to building appropriate datasets. Aiming to point to those
datasets for the benefit of future practitioners, this section consolidates and in detail
describes the information they carry and provides the links for their straightforward
access. For orientation purposes, available datasets refer to Commit-Aware Mutation
testing with clean test contract (Chapter 5), Commit-Relevant mutants via HOMs
(Chapters 6 and 7), and dataset used for studying the efficiency of mutants of different
mutation approaches when using learning-based selection (Chapter 8).

9.1.1 Dataset of mutants with clean test contracts

Table 9.1: Java Mutants Dataset for commits of clean test contracts

Project # Commits # Mutants # Test cases

commons-cli 9 61,419 3,247

commons-collections 5 323,584 55,076

commons-io 3 105,181 3,972

commons-net 6 345,130 1,478

joda-time 5 561,782 20,962

jsoup 8 330,125 4,985

This dataset contains mutants for a set of commits that preserve clean test-
contract, w.r.t., a commit does not touch or change test files. Precisely, for each
commit, mutants are generated for both the commit in question, a.k.a., post-commit,
and the previous commit, a.k.a., pre-commit. Commits are mined from well-known
and well-tested Java language programs. In total, this dataset counts 6 different
programs and 31 commits. The commits come from projects in the Apache Commons
Proper repository1, precisely, commons-cli2 counts 9 commits with 61,419 generated
mutants executed with 3,247 tests, commons-collections3 counts 5 commits with
323,584 mutants executed with 55,076 tests, commons-io4 counts 3 commits and
105,181 mutants executed on 3,972 tests, commons-net5 counts 6 commits and
345,130 executed mutants on 1,478 test. These projects represent a set of reusable
Java component projects. Moreover, the rest of the commits in this dataset come
from Joda Time6, representing Java time and date library, counting 5 commits with
561,782 mutants executed on 20,962 tests, and Jsoup7, an HTML page render and
manipulation library, with 8 commits containing in total 330,125 mutants executed
on 4.985 tests.

1https://commons.apache.org/
2https://github.com/apache/commons-cli
3https://github.com/apache/commons-collections
4https://github.com/apache/commons-io
5https://github.com/apache/commons-net
6https://github.com/JodaOrg/joda-time/
7https://github.com/jhy/jsoup
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Worth noting is that for each of the projects, a manual gathering of the most
recent commits was conducted at the time of the study in Chapter 5, meeting the
following conditions from the project’s history: (1) only source code is modified, no
modification to configuration files, (2) the commit introduces a significant change,
not a trivial one such as a typo fix, (3) test contracts are not modified, in order
to compare pre- and post-commit outputs meaningfully and (4) both pre- and
post-commit versions of the project build successfully.

As previously noted, this dissertation uses PiT as a state-of-the-art mutation
testing tool for mutation generation. For each project commit, the dataset contains
two files as the output of the tool, named v1.xml and v2.xml, describing mutants of
pre- and post- commits, respectively. Each element of the corresponding XML files
represent a mutant and contains information, a.k.a. attributes, whether the mutant is
detected by tests, what is its killing status, and how many tests run on the particular
mutant. Besides this information, the mutant element contains sub-elements serving
as metadata about the mutant exact location in the code under test, w.r.t., source
code class, mutated method, file line number, bytecode index and a block on which
the mutant acts together with the information about the mutation operator used as
a transformation rule. Furthermore, each mutant element has a list of killing tests,
i.e., their names and package location, and a list of tests that successfully run on
mutants without distinguishing them.

Overall, this available dataset, in total, offers 36 commits and 1,727,221 mutants
executed on complete project source code, with 89,720 JUnit test cases. Table 9.1
summarises information about the available dataset that can be accessed on the
following maintained webpage:
https: // ojda22. github. io/ milos-ojdanic/ mutation_ datasets .

9.1.2 Dataset of High-Order mutants
This dataset, built for the purposes of studies described in Chapter 6 and 7, con-

tains, to time, the most extensive dataset of project commits and associated mutants
in the context of evolving systems. Precisely, the dataset contains chronological
commits from the following well-known, well-tested, and matured Java open-source
projects taken from Apache Commons Proper repository: commons-collections - 45
commits, commons-lang - 66 commits, commons-csv - 101 commits, commons-io
- 30 commits and commons-text - 46 commit. The commits are mined from their
timestamped year 2005 to 2020 and include the use of JUnit4+8 testing framework.
The test suite for each commit is augmented with EvoSuite [30], the test generation
tool. As mentioned, this dataset contains both automatically generated tests, 5,685
test cases in total, and 20,513 developer-written test cases executed on generated
mutants. In difference from the previously described dataset, in this dataset, three
categories of mutants are generated and clearly distinguished per committed files. In
particular, the commons-collection commits count 27,417 first-order mutants, 2,026
mutants on a change, and 1,192,188 high-order mutants generated as a conjunction of
mutants from around the change and on a change. From commons-io commits, this
dataset contains 24,970 mutants, from which 1,115 is on a change, resulting in 668,448
high-order mutants. The commons-text commits contain 47,847 mutants across all its
studied commits, from which 4,155 are on a change, resulting in 2,073,829 high-order
mutants. All commons-csv commits result in 66,862 first-order mutants, 3,577 on

8https://junit.org/junit4/
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Table 9.2: Java Mutants Dataset for commits with high-order mutants

Commons

Projects
# LOC # Maturity # Commits # FOM

# Mutants

on Change
# HOM

# Dev.

Tests

# EvoSuite

Tests

collections 74,170 14/04/2001 45 27,417 2,026 1,192,188 4,797 1,285

io 29,193 25/01/2002 30 24,970 1,115 668,448 914 286

text 22,933 11/11/2014 46 47,847 4,155 2,073,829 1,084 322

csv 4,844 25/01/2002 101 66,862 3,577 1,968,137 6,144 2,833

lang 85,709 19/07/2002 66 102,072 3,891 3,885,341 7,574 959

Total 216,489 N/A 288 269,168 14,764 9,787,943 20,513 5,685

a commit-change, and 1,968,137 high-order mutants. The commons-lang contains
102,072 first-order mutants, 3,891 mutants on a change and 3,885,341 high-order
mutants. In total, the number of first-order mutants for all 288 commits is 269,168,
while the number of mutants generated in a diff-based manner, w.r.t, mutants on
a committed change, is 14.674. Combined, as described for the purposes of the
study, these mutants generate 9,787,943 high-order mutants in total executed on the
associated tests, 20,513 developer-written tests and 5,685 EvoSuite automatically
generated tests.

The dataset, besides standard mutants metadata described in the previous section,
contains information on every assertion executed as a part of a test. Moreover,
each mutant, besides information on test execution, contains information about
the test name and the list of its assertions, where each assertion contains an id
consisting of the test name, line number and assertion method. Each assertion has
its concrete execution value and the output of its oracle. Based on these values and
the formalisation of mutant relevance described in Chapter 5, the dataset labelled
relevant mutants, strongly relevant mutants, subsuming mutants and subsuming
commit-relevant mutants.

Overall the generation of this dataset required 68,213 CPU days of execution
on two nodes with 20 physical cores of Intel Skylake Xeon Gold 2.6GHz processors
running on Linux Ubuntu OS with 256GB of RAM. Table 9.2 summarises information
about the available dataset while the further descriptive information in comma-
separated format (.csv) can be accessed together with the dataset on the following
webpage: https: // ojda22. github. io/ milos-ojdanic/ mutation_ datasets .

9.1.3 Dataset of mutants from different mutation approaches
This dataset contains mutants of different mutation testing approaches gener-

ated on well-known and well-maintained Defects4J [116] (v2.0.0) Java language
real faults dataset. Due to technical reasons, which often include challenges in
executing relatively recent mutation tools on program versions with relatively old
dependencies, this dataset contains mutants only from those faults that satisfy the
building requirements. Specifically, this dataset considers the following projects and
the commits from the Apache Commons [120] family: commons-cli - 38 commits,
commons-codec - 18 commits, commons-compress - 33 commits, commons-csv - 16
commits, commons-math - 100 commits, commons-lang - 63 commits, commons-
collections - 4 - commits, commons-jxpath - 21 commits. Also in this dataset can
be found projects from the Jackson family, which is a suite of data-processing tools
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for Java and includes jackson-core - 26 commits, jackson-databind - 102 commits,
and jackson-dataformat-xml - 6 commits. Additionaly, this dataset includes faulty
commits from Mockito - 27 commits, one of the most popular mocking frameworks
in Java, Jsoup - 11 commits, a Java library for HTML parsing, Gson - 18 commits,
a Java library for JSON parsing and generation from and into java objects, and
joda-time - 26 commits, for the Java date and time classes. For each selected faulty
project version from Defects4J, this dataset contains mutants generated on the mod-
ified classes between the faulty and fixed versions. Precisely, mutants are generated
for the fixed version of each modified class by employing the following mutation
testing tools: DeepMutation fault-seeding tools deliver 5,559 mutants for the 348
analysed faults. µBERT, after being applied to 499 faults, produced 293,304 mutants.
IBIR produced 1,113,113 mutants for the 393 analysed faults. While PiT, as the
state-of-the-art tool with its all available mutation operators, generated 1,212,544
mutants across 29 mutants categories for the 509 faults analysed. For each generated
mutant, this dataset offers metadata, such as a unique mutant id, the mutant tool,
killing tests, pre-calculated OCHIAI score and FDP score.

Table 9.3 summarises the number of faults analysed and the number of mutants
generated by each mutation testing tool, while the available dataset can be fetched
on the following webpage:
https: // ojda22. github. io/ milos-ojdanic/ mutation_ datasets

Table 9.3: Java Mutants of different mutation approaches from Defects4J Dataset

Mutation Testing Approach & Tool # of Analysed Faults # of Mutants
DeepMutation 348 5,559
PIT_Default 508 110,480
µBERT 499 293,304
IBIR 393 1,113,113
PIT 509 1,212,544

9.2 PiTest Assert
Due to the constraints of the PiTest mutation testing tool to satisfy the require-

ments of experiments described in this dissertation, we implemented an additional
infrastructure on the PiTest fork to ensure the analysis of evolving systems with
appropriate mutant generation. The extension was built on top of the PiTest High
Order Mutants [154], such as to take as an input parameter the gitdiff output9,
a.k.a., a file with statement difference between two commit versions. Based on the
difference, the extension augments the mutants’ generation function by mapping,
i.e., generating mutants on the change, with the mutants around the change. Thus,
creating second-order mutants for that particular commit file.

Another reason behind the extension lies in the PiTest testing tool (V1.5.1)
evaluation of whether a mutant is killed or not based on test case oracle prediction
(test fails or passes), which stood not suitable and too high level for some of the
experiments conducted in this dissertation (Chapter 6). To satisfy the requirements
of the experiments and focus on lower test output granularity, the extension also
extracts additional information concerning each test case assertion - from each test

9https://git-scm.com/docs/git-diff
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that covers mutants. The PiTest Assert extension extracts test assertions outputs by
performing bytecode instrumentation of each test executed on a specific mutant, using
ASM10 as an all-purpose Java bytecode manipulation and analysis framework. By
instrumenting each test case assertion, the extension obtains execution information
of expressions used for the oracle. More precisely, for each assertion, the extension
outputs its unique test name, the line where it locates in a test file, the assertion
function name, and the assertion’s actual and expected execution value. Indeed, if
an assertion triggers an exception, stack-trace execution is logged. The product of
PiTest Assert is a weighted mutant-assertion matrix. For each mutant test-assertion
pair, the value corresponds to the actual assertion value obtained by running the
test on the mutant or the exception stack trace if an assertion throws an exception.

It is worth noting that the extension in the current form employs the JUnit4 11

testing framework, which contains a public static class called Assert, that provides
a set of assertion methods to specify test conditions. Typically, these methods
(e.g., Assert.assertEquals(expected value, actual value)) directly evaluate
the assertion’s conditions, then returns the final assertion’s output (e.g., conditions
not satisfied, pass, or fail).

Therefore, to obtain the value of parameters within the assert statement, PiTest
Assert instruments each Assert method. Such that it serializes the provided input
values in the assert statement before they propagate to conditional checks, i.e., before
the conditional check is reached in org.junit.Assert12 and the output values are fed
to org.hamcrest.Matcher13 for evaluation.

Specifically, it serializes both the expected and actual values after they prop-
agate as input parameters of the assert statement. This allows assessing the in-
put parameters of the assert statement (e.g., an expression or a method call
(assertEqual(foo(), bar()))) for concrete values. However, it is worth specify-
ing that this experimental framework does not directly account for the potential
dependencies within assertions and test cases. This test assertion framework used
for experimental purposes and constructed on top of PiTest is publicly available on
the GitHub14.

10https://asm.ow2.io/
11https://junit.org/junit4/
12https://junit.org/junit4/javadoc/4.13/org/junit/Assert.html
13http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/Matchers.html
14https://github.com/Ojda22/pitest/tree/pit-SOM-RM-AssertCache
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10
Conclusion and Future Work

This chapter concludes this dissertation with the summary of contributions offered
and outlines the future work with the preliminary ideas, results and directions of
promise.

Contents
10.1 Summary of Achievements . . . . . . . . . . . . . . . . . . . . . 168
10.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . 169



Chapter 10. Conclusion and Future Work

10.1 Summary of Achievements

This dissertation presents a code-change aware mutation-based testing approach
that aims at bringing mutation testing closer to practice by considering its application
in the context of continuously evolving systems. The studies conducted under this
dissertation strive to provide knowledge to software practitioners about the potential
of mutation testing to assess the automatic regression testing quality and enable
testing of the unexpected effect of the change that often gives rise to regression
faults. In particular, the challenges that this dissertation targets relate to the code-
mutants’ behavioural properties, testing regular code modifications and mutants’
fault detection effectiveness. The contributions built around these challenges and
offered in this manuscript can be summarised and grouped into 1) An empirical
study to examine the ability of the mutants to capture the behaviour of regression
faults and to evaluate the relationship between the mutants and real faults, which is
often captured with the semantic and syntactic distance metrics. The outcome of
the study shed light on the present misleading assumption indicating to practitioners
that tailoring fault patterns, a.k.a, mutants, to be more syntactically close to the real
fault makes them also semantically close. The study conducted on the most extensive
dataset, to date, of real-faults shows a lack of evidence that syntactic similarity reflects
semantic similarity. The various syntactic distance metrics often used to capture
this similarity do not show suitability for the task, indicating that the mutants are
not the only points in the program but rather follow well established RIPR model
often captured by semantic metrics. This dissertation provides experiments that
evaluate the suitability of semantic similarity metrics that approximate mutants’
behaviour through tests. Next, this dissertation provides 2) A formalisation of
the novel commit-aware mutation testing approach that offers commit-relevant
mutants as an efficient and effective change-aware test requirement target. The
proposed approach offers modification-focused testing able to capture unforeseen
behavioural interaction between changed and unchanged code on which regression
faults often occur. In particular, the conducted experiments show that this particular
novel commit-relevant mutants are able to capture 30% more regression faults in
comparison with the baseline categories, plus it shows that the commit-relevant
mutants cannot be approximated or any other studied category used as its proxy due
to the substantial noise of traditional mutation when used in continuously evolving
systems. Further, this dissertation offered an approach to identify commit-relevant
mutants through High-Order mutations, resulting in the most extensive study of
this novel category of mutants, eliciting further studies on mutants’ properties and
scientific insights. Concretely, this dissertation shows that one in three mutants
are commit-relevant per committed files, yet when focusing on subsuming commit-
relevant mutants, which represent a minimal set of required mutants, a reduction
of 93% can be achieved, indicating high redundancy between these mutants. The
further findings show the low predictability power of these mutants, highly dependent
on the semantics of the change, which is one additional dimension to consider when
targeting the nontrivial task of automatically predicting these mutants. The study of
the mutants in evolving context led to the discovery of long-standing mutants, which
regards a separate category of mutants that ultimately deserve further attention as
the experiments demonstrate their ability to assess test suite brittleness and to keep
the relevance of mutation test suite an order of magnitude longer than the randomly
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selected mutants. 3) The final contribution of this dissertation comes in the form
of an empirical study on the utilisation of learning-based selection strategies when
questioning the effectiveness of mutants from different mutation approaches, often
questioned due to the noise of impractical mutants. The experiments demonstrate
that different mutation approaches significantly improve their performance when
guided by learning-based mutant selection solutions, which bring out of them the
mutant of the highest quality. More importantly, the results of this dissertation also
reveal that it is imperative to account for a mutant selection suitable for removing the
noise, which often regards mutation testing as costly, as the noise often leads to the
drawing of incorrect conclusions. Finally, this dissertation provides artefacts which
are, at the time, the most extensive datasets of mutants available in the context of
evolving systems, and together with tools used across all conducted studies, makes
the available aid for future practitioners and researchers.

10.2 Future Research Directions
Automatic Prediction of Commit-Relevant Mutants With Graph Neu-

ral Networks: Besides the offered contributions in this dissertation and emphasise
on the benefits of change-aware mutation testing approaches, in this section, we
provide takeaways and some preliminary results and promising directions for future
work concerning the automatic prediction of commit-relevant mutants. Manually
engineering features for predicting commit-relevant mutants have been shown to
be challenging to capture due to the dynamic dimension of change, which impacts
different parts of code for each commit [113]. Advances in Graph Neural Networks,
in short, machine learning models able to learn on unstructured data, have been
shown very effective due to the message passing paradigm, which exchanges graph
node features with adjacent nodes and thus places and distinguishes nodes in the
latent space based on their neighbourhood and their interaction with the nodes of
interest [176]. This mechanism we found worth exploring for the task of capturing
change-impacted mutants located in and around changed nodes of a commit code
graph. Moreover, as the first step in this direction, we model a suitable knowledge
code graph (see the Figure 10.1) that contains information about the mapping of
mutants with associated code instruction, data and control dependency between
the code nodes, and as the product of our work with High-Order mutants (see
Chapter 6), we mapped the relationship as edges between mutants on a change and
mutants around the change as it has been shown by the preliminary results that
greatly reduces the sparsity in the graph and gives the more context by allowing
the nodes of interest to exchange the information. Therefore, a product is a code
graph data structure, rich in information for a machine learning model to pick up
and learn the change impacted mutants. The following Figure 10.1 describes the
process, and future work is necessary to explore the performance and configuration
of different kinds of neural network models in capturing the relevance of mutants per
each committed change.

Automatic Change-Aware Test Generation guided by Commit-Relevant
Mutants: This dissertation offered empirical studies and simulations showing the
effectiveness and cost-efficiency of commit-relevant mutants to lead to tests that
identify a real regression fault. Due to the ability of this kind of mutant to hold the
information about the change-impacted behaviour of the code under test, we believe
the promising future direction is to seize those often unexpected execution traces
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Figure 10.1: Given a code under test and the corresponding code change (line 4, represented
in a green rectangle), a program dependency graph can be constructed as such that each
code element node holds mutants (represented as explosions) and being defined commit
relevant depending on the impact of the change (e.g., node 4). This code graph can be
further augmented by isolating each mutant as a separate node and by placing an edge
between each mutant around the change and the ones on the change (following similar
HOM mapping provided in this dissertation, chapter 6). Each node can be represented
with an instruction on which it rests and the mutation operator that defines it. After
setting such an environment for each mutant node, the message-passing mechanism can
provide further embedding of such mutant vectors in the latent space to position, learn
and distinguish mutants based on their node features and related neighbourhood nodes,
some of which affected by code-change graph nodes.

caused by commit-relevant mutants and guide automatic test generation. Given a
change X and a set of mutants M impacted by X, the promising future step is to
explore different search-based solutions, dynamic or static symbolic execution models
such as to generate tests T , and evaluate the ability of T to assess the impact of the
change X by being able to distinguish and capture observable behavioural output
between M and the original program. If such an approach is developed, we believe
it would bring further benefits to the field of automatic regression testing.

Implications of Long-Standing Mutants: We believe that long-standing
mutants are an interesting category in their own right, worthy of further research, and
it will bring promising novel research direction. This category of mutants promises
further implications not only for mutation testing but also beyond mutation testing.

Implications regarding subsuming long-standing mutants: Despite showing that
subsuming relationships can be preserved from version to version and that mutants’
utility can be reused, we do not yet fully understand why subsuming mutants tend to
last longer than subsumed mutants. A detailed study is needed to fully understand
the subsumption and longevity drivers.

Implications for mutation testing tools: Our results also have implications for
the development of future mutation testing tools. In particular, our results suggest
the development of a robust mutant versioning system. Existing tools [58, 134,158]
focus on the generation of mutants but not sophisticated mutant versioning. In
future work, we need to investigate mutation testing tools that allow logging mutants’
maturity, execution history, and fluctuation over time, supporting approaches that
learn mutant behaviour and relating this to code changes. Previous work on flaky
mutant detection [159], predictive modelling [160] and hyper-heuristics [161] (in
particular that focused on mutation testing [86]) may form a good starting point for
this research agenda.

Maximising long-standing mutant fault revelation: By focusing on long-standing
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mutants, we favour mutants that reside in relatively unchanging parts of the code.
There is a natural concern that this may, in turn, lead to us favouring test suites
that do not tend to reveal faults in changing parts of the code. Fortunately, the fact
that a mutant lies in code region A does not render it insensitive to bugs that lie in
(lexically separate) code region B. If there are transitive dependencies between A
on B then we can expect high degrees of mutant coupling and even subsumption
between the two regions. This suggests future work on identifying mutants that
have high ‘transitive dependence reach’ through their transitive dependencies, using
techniques such as slicing [94] and chopping [162].

Implications of long-standing mutants beyond mutation testing research: The
findings reported in this dissertation have implications beyond mutation testing
to automated program repair [163, 164] and genetic improvement [165, 166]. It is
often been argued that program repair is the inverse of mutation testing. Instead of
inserting faults, repair seeks to remove them. Long-standing mutants are, therefore,
also likely to find applications and implications in the field of program repair and
genetic improvement research. For example, it would be interesting to explore ‘long-
standing’ repairs as a counterpoint to long-standing mutants. One might reasonably
conjecture that such repairs would remain relevant for longer than repairs in areas
of code subject to high degrees of churn. However, the empirical assessment of this
phenomenon remains an open problem for future work.
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