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Abstract

Since the inception of civilization, the aspiration to create machines capable of think-
ing has persisted. Over the centuries, this dream has gradually come to fruition,
with Artificial Intelligence now emerging as a field with numerous applications
and promising research avenues. As a subfield, Deep Learning (DL) is dedicated
to developing algorithms that can discern patterns in data, empowering machines
to make predictions, draw conclusions, and carry out intricate tasks. This thesis
delves into the enhancement of DL performance from various perspectives and van-
tage points, revealing the complexity of this field and the myriad ways it can be
approached, while also highlighting the challenges of navigating through different
levels of abstraction and maintaining the focus on the problem at hand.

In our exploration, we discuss second-order methods, random embeddings, and
relation extraction. We address the initialization and optimization of neural net-
works (NNs) by introducing a new approximated chain rule, which aims to enable
rapid and systematic training of NNs. Given that NNs are use-case sensitive, re-
searchers and practitioners must undergo a series of laborious steps before deploy-
ing and ultimately releasing a functional model. Although the challenges of training
and optimizing NNs are well understood, no single solution exists, and most con-
temporary approaches rely on simple and empirical heuristics. In Part II, our ap-
proximated chain rule for Hessian backpropagation transcends empirical first-order
methods and lays a theoretical foundation for optimizing and training NNs. We
systematically evaluate our approach through experiments, showcasing the supe-
rior efficiency of second-order methods across multiple datasets. In Part III, we shift
our focus to analyzing the performance of random embeddings as a crucial tool for
dimensionality reduction, with these embeddings playing a significant role in both
Machine Learning (ML) and DL algorithms. Our research demonstrates improved
bounds for sparse random embeddings compared to previous state-of-the-art tech-
niques, with our bounds exhibiting considerable improvements across a range of
real-world datasets. Our analysis strives to bridge the gap between theory and
practice, providing robust and provable guarantees for sparse random embeddings
while extending to Rademacher random embeddings and offering non-oblivious in-
sights into input data. Lastly, in Part IV, we delve into information extraction, specif-
ically targeting relation extraction. By examining the most advanced techniques
and tools for extracting and analyzing textual data, we demonstrate their applica-
bility in real-world scenarios. Our approach combines distant supervision, few-shot
learning, OpenIE, and various language models to enhance the task of relation ex-
traction, showcasing the capabilities of these methods through a simple and effi-
cient approach to extracting relational labels from text. The diverse approaches and
strategies discussed in this thesis collectively succeed in augmenting deep learning
performance across various scenarios and applications.
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Chapter 1

Introduction

1.1 Study Context

1.1.1 Artificial Neural Networks

Machine Learning (ML) is a subfield of Artificial Intelligence (AI) that enables com-
puters to learn from examples, much like humans do. It focuses on the development
of algorithms capable of identifying patterns in large datasets, allowing machines to
make predictions, draw conclusions, and perform complex tasks. In recent years,
ML has gained immense popularity due to its ability to deliver remarkable results
that were previously unattainable. It is now utilized in numerous disciplines, includ-
ing Computer Science, Bioinformatics, Applied Statistics, Computational Physics,
and many many more. Deep Learning (DL) models, often referred to as Deep Neu-
ral Networks (DNNs) consist of multiple interconnected layers. These layers, which
include input, hidden, and output layers, process and transform data to ultimately
produce a desired output. The term "deep" refers to the number of hidden layers in a
neural network, which can range from 2-3 layers in traditional networks to hundreds
or even thousands in more complex models.

One of the key strengths of DL models is their ability to handle unstructured
data, such as images, text, and sound. They can perform tasks directly from raw
data, without the need for manual feature extraction. This enables DL models to
achieve state-of-the-art accuracy in various applications, sometimes even surpassing
human-level performance.

The fundamental block of NNs, the perceptron, came out as a work by Rosen-
blatt, 1958 and it was in the news for weeks. At the time, researchers thought that the
problems related to AI were solved entirely. This was far from being true and was
pointed out by Minsky and Papert, 1972, the huge expectations around perceptron
were shattered as it has been shown that the perceptron is, in reality, a linear classi-
fier and cannot solve or learn XOR problems (non-linear problems). The generation
of machine learners after Rosenblatt successfully extended linear models to repre-
sent nonlinear functions of x by applying the linear model to a transformed input
ϕ(x), where ϕ is a nonlinear transformation. Further progress in DL was achieved
in the 1980s when some of the earliest learning algorithms were intended to be com-
putational models of biological learning (that is models of how learning happens
in the brain), but we had to wait until recent years to see DL techniques become
feasible and for its widespread adoption. There are two main reasons for this: the
requirement for large amounts of labeled data and the need for substantial comput-
ing power. The advent of Big Data has provided researchers with vast datasets to
train their models, while advances in hardware, such as Graphics Processing Units
(GPUs) and specialized accelerators like Tensor Processing Units (TPUs), have made
it possible to efficiently train large-scale DNNs.



4 Chapter 1. Introduction

DL is a powerful technique that has revolutionized the field of AI. By leverag-
ing vast amounts of data and advanced NN architectures, DL models can perform
a wide range of tasks with exceptional accuracy, making them indispensable tools
in various disciplines and industries. The ongoing development of hardware and
algorithms promises to further expand DL’s potential applications and capabilities
in the coming years.

Fundamental Problems

The types of learning are usually divided into two main categories: supervised
learning and unsupervised learning.

Supervised learning involves training a model with labeled data, where inputs x
are paired with corresponding outputs y. The goal is to learn a mapping from x to y,
given a labeled set of input-output pairs {(xi, yi)}n

i=1. This is called the training set,
and n is the number of training examples. In its simplest form, each input xi used
for training is represented by a d-dimensional vector that represents the features of
the data such as height and weight of a person. However, in more general cases,
the input may consist of complex objects, such as a graph, an image, a time series,
sentences, etc. The form of the output can vary, but many methods assume yi to be
a categorical variable from a finite set or a real-valued scalar. When the output is
categorical, the problem is called classification problem, and when the output is a
real-valued scalar, it is known as a regression problem.

Unsupervised learning involves finding intriguing patterns in data with no pro-
vided output to guide the learning process. In fact, here we only have given inputs
{xi}N

i=1. This task is often referred to as knowledge discovery and is not as clearly
defined as supervised learning because there are no prescribed patterns to search
for, and no easily identifiable error metric to use.

A less frequently utilized form of learning is reinforcement learning (although
recently has gained an incredible amount of attention in research), which involves
learning how to act or behave in response to intermittent reward or penalty signals.
However, this topic is beyond the scope of this thesis and it will not be discussed.

Supervised Learning

Classification involves learning a mapping from inputs x to outputs y, where y ∈
{1, ..., c} with c being the number of classes. When there are two classes involved,
it is referred to as binary classification. When more than two classes are involved,
it is called multi-class classification. If the class labels are not mutually exclusive,
it is referred to as multi-label classification. One way to approach this problem is
to consider it as a function approximation. We assume y = f (x), and the goal is
to estimate the function f based on a labeled training set. The main objective is to
make predictions on new inputs, which have not been previously encountered since
making predictions on the training set is relatively easy. This ability to generalize
is crucial, and the aim is to train NNs with strong generalization skills to tackle
challenging classification problems. Some examples of classification problems in
DL:

• Image classification: Image classification is a popular problem that involves
identifying the object or scene depicted in a digital image. Images can be con-
sidered as high-dimensional vectors and classified into various categories such
as cat, car, human, or airplane. A classification model can be developed to cate-
gorize images into different classes. For instance, DL techniques can be used to
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automate the classification of images of dogs and cats based on pre-classified
images of these animals.

• Customer behavior prediction: Classification models can categorize customers
based on their buying patterns and website browsing behavior. By using such
models, it is possible to predict whether a customer is likely to purchase more
items or not.

• Spam filtering: To identify spam emails, an algorithm is trained to learn the
attributes that distinguish spam from non-spam emails. After training the clas-
sification model, it can be used to sort incoming emails as either spam or non-
spam.

• Document classification: To categorize documents into various groups, a multi-
nomial classification model can be employed. Such a classification model can
be viewed as a function that assigns a category label to a given document.

• Current trends: One of the most notable trends in this domain is the advance-
ment of transformer-based architectures, such as GPT-4 and its contempo-
raries. These models have demonstrated exceptional capabilities in generating
high-quality and coherent text, images, and even audio. Researchers have also
been focusing on improving the efficiency and scalability of these models by
leveraging techniques like sparsity, model distillation, and low-precision train-
ing. Additionally, the exploration of semi-supervised learning methods has
been gaining traction, as they facilitate the creation of more robust generative
models with reduced dependence on labeled data. As we progress, the fusion
of these advancements is expected to drive the development of increasingly
sophisticated generative models with widespread applicability across diverse
fields.

Regression is a technique that resembles classification in the sense that both are
supervised ML methods used to make predictions based on input data. While classi-
fication focuses on categorizing data points into distinct classes or groups, regression
deals with predicting continuous numerical values. A continuous response variable
represents a measurable quantity that can assume any value within a certain range.
This is in contrast to categorical outputs, where the response variable can only take
on a limited number of discrete values, such as labels or classes.

One common application of regression is to predict the expected claim amount
for an insured individual. In this scenario, an algorithm might be trained using
historical data, including factors such as the individual’s age, gender, and driving
behavior. By identifying patterns and relationships, the regression model can make
more accurate predictions about claim amounts, which can ultimately help insur-
ance companies assess risk and set premiums accordingly. Another example of re-
gression is forecasting future security prices in the financial sector. By analyzing
historical price data, along with other relevant information like market trends and
economic indicators, a regression model can be trained to make informed predic-
tions about future security prices. These predictions can be invaluable for algorith-
mic trading, which involves leveraging computer algorithms to execute trade orders
at high speeds and frequencies. By incorporating regression-based predictions into
their strategies, traders can optimize their investment decisions and potentially gen-
erate higher returns.
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Unsupervised Learning

Unsupervised learning is a subcategory of ML that involves the presentation of input
data to the system without the accompanying output data. The system’s primary ob-
jective is to identify and reveal hidden patterns, structures, or relationships within
the data, which may not be immediately noticeable. This type of learning has the
advantage of not requiring human experts to laboriously label data, a process that
can be expensive, time-consuming, and demanding of specialized knowledge. In
contrast to supervised learning, where the desired output for each input is explicitly
provided, unsupervised learning does not offer direct guidance on what the system
should be searching for. This makes the unsupervised learning process more chal-
lenging as the algorithm must explore and analyze the data independently in order
to discern meaningful information.

Unsupervised learning is thought to more closely resemble the learning pro-
cesses of humans and animals, where the majority of learning is self-directed and
rooted in the recognition of patterns without explicit instruction. This enables the
discovery of novel insights and the development of more generalized understand-
ing based on the data.

The benefits of unsupervised learning extend to its applicability across a wide
range of data types. Additionally, it can help circumvent issues arising from using
labeled data that may not be representative of the true data distribution or contain
enough information to accurately estimate the parameters of intricate models.

Some examples of unsupervised learning are:

• Self-supervised learning: Self-supervised learning is a subcategory of un-
supervised learning that focuses on training models by generating auxiliary
tasks, which do not require labeled data. This enables models to learn mean-
ingful representations by solving these proxy tasks. In Natural Language Pro-
cessing (NLP), self-supervised models like BERT have revolutionized the field
by capturing rich linguistic structures through pretraining on massive text
corpora. In computer vision, frameworks such as SimCLR and MoCo have
demonstrated state-of-the-art performance in learning visual representations
by predicting transformations or contrastive learning on unlabeled images.

Clustering and dimensionality reduction: Unsupervised learning algorithms,
like clustering and dimensionality reduction, are crucial for understanding
complex data structures and discovering latent patterns. Recent advancements
in this area include methods like UMAP and t-SNE, which have proven effec-
tive in visualizing high-dimensional data in lower-dimensional spaces, facil-
itating more interpretable representations. These techniques are widely em-
ployed in fields like Bioinformatics, Finance, and Social Sciences, where large,
high-dimensional datasets are common.

• Reinforcement Learning (RL): Integrating unsupervised learning with rein-
forcement learning has garnered significant interest, as it allows agents to au-
tonomously learn from their environment without explicit supervision. Tech-
niques like intrinsic motivation, curiosity-driven exploration, and unsuper-
vised skill discovery are being investigated to enable agents to learn more ef-
fectively and generalize better across tasks. This research direction holds great
potential for developing more intelligent and adaptable artificial systems.

• Transfer learning and multitask learning: One of the key challenges in un-
supervised learning is leveraging the knowledge acquired from one domain
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or task to improve performance in another. Researchers are exploring transfer
learning and multitask learning techniques that enable models to share and
reuse learned representations, thereby reducing the need for extensive labeled
data in new tasks. These approaches have demonstrated success in various
applications, such as NLP, computer vision, and reinforcement learning.

1.1.2 Natural Language Processing

Over the past few decades, researchers have been addressing numerous challenges
in the field of AI with the goal of enabling machines to mine knowledge from these
unstructured sources. This is crucial as the volume of available online data contin-
ues to expand rapidly. Instead of reorganizing the Web to make it more machine-
readable, the primary focus of research in these areas is to develop methods and
algorithms that allow machines to automatically create, populate, and maintain ex-
tensive knowledge graphs or knowledge bases. Knowledge graphs are structured
representations of information, linking entities and their relationships in a way that
facilitates the extraction of valuable insights and information from diverse online
data sources. By enabling machines to generate knowledge graphs automatically,
researchers aim to improve the efficiency and effectiveness of information retrieval,
recommendation systems, and various AI applications. This development will re-
duce the time and effort required by users to find the answers they need and will
further advance the capabilities of AI systems in understanding and processing nat-
ural language data.

NLP is an interdisciplinary field that combines Computational Linguistics, AI,
and Computer Science to enable machines to understand, interpret, and generate
human language. As one of the most critical areas in AI research, NLP has witnessed
significant progress and technological advancements in recent years. State-of-the-art
NLP systems can now perform a myriad of complex tasks with remarkable accuracy.
These tasks can include:

• Sentiment Analysis: NLP systems can gauge the sentiment behind a piece of
text, such as determining if it is positive, negative, or neutral. This capability is
crucial for businesses to analyze customer feedback or public opinion on social
media platforms.

• Machine Translation: NLP has revolutionized the translation industry by en-
abling fast and accurate translations between different languages. Machine
translation systems have become increasingly sophisticated, breaking down
language barriers in real-time communication and easing access to informa-
tion across linguistic boundaries.

• Summarization: Automatic summarization involves condensing lengthy pieces
of text into shorter, more digestible summaries while retaining the essential
information. NLP techniques have facilitated the development of summariza-
tion algorithms that can efficiently extract key points from documents, news
articles, or scientific papers.

• Question-Answering: NLP systems can process and respond to natural lan-
guage queries with relevant answers, drawing from vast repositories of knowl-
edge. These systems can save time and effort in searching for information by
providing direct answers to user inquiries.
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• Information Extraction: NLP enables the automatic extraction of structured
data from unstructured text sources. This process involves identifying entities,
relationships, and events within the text, enabling the efficient organization
and analysis of data.

However, despite these advances, NLP still faces numerous challenges that require
further research and innovation.

Information Extraction (IE) is a subfield of NLP that focuses on automatically
identifying and extracting structured information from unstructured text data. State-
of-the-art IE systems have demonstrated significant improvements, but the field still
grapples with various challenges. For example, IE systems often struggle with am-
biguities arising from polysemy, homographs, and syntactic variations. Extracting
meaningful information requires a deep understanding of context, which remains a
challenge for current NLP models. While significant progress has been made, identi-
fying and categorizing entities into fine-grained types (e.g., distinguishing between
types of organizations, diseases, or events) remains a challenge. This is due to the
difficulty of creating comprehensive ontologies and the scarcity of labeled data for
such fine-grained distinctions. Also identifying and extracting complex relation-
ships or events that span over multiple sentences or documents is a challenging
task. Current models may not be well-equipped to handle such intricate structures
and dependencies, especially when they require world knowledge or commonsense
reasoning. Domain adaptation is another very important aspect of IE systems as
they are usually tailored to specific domains, and their performance may degrade
when applied to new domains or genres. Developing more robust models that can
efficiently adapt to different settings remains an open research problem. Finally, real-
world text data can be noisy, inconsistent, or incomplete, making it difficult for IE
systems to extract accurate information. Developing models that are robust to these
issues and can effectively handle uncertain or missing information is a key challenge
in NLP.

To address these challenges, researchers and practitioners are exploring new ap-
proaches, including transfer learning, multitask learning, and unsupervised learn-
ing, to improve the generalization capabilities of IE systems. Additionally, incor-
porating external knowledge sources, such as knowledge graphs, and developing
methods for commonsense reasoning can help in enhancing the performance of IE
models. As the field of NLP continues to evolve, tackling these challenges in infor-
mation extraction will play a crucial role in unlocking the full potential of AI systems
to process and understand human language.

1.2 Terminology and Mathematical Concepts

In this section, we are going to provide the technical terminology and overview of
the mathematics concepts this thesis is based on.

1.2.1 Tensors, Derivatives and Algebra

Tensors in DL are multi-dimensional arrays that serve as fundamental data struc-
tures for representing and manipulating data. They originate from various sources
and play a crucial role in the functioning of models.

Tensors are used to represent input data, such as images, text, or audio, that is
fed into a DL model. For example, an image can be represented as a 3-dimensional
tensor with dimensions corresponding to width, height, and channels, where each
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element corresponds to a pixel value. DL models consist of layers with trainable
parameters (weights and biases), which are adjusted during training to minimize a
loss function. These parameters are stored as tensors, enabling efficient computation
and updates during the training process. As data flows through a model, each layer
transforms the input into an intermediate representation which is also represented
as tensors and passed on to the subsequent layers. During the training process,
gradients are computed using backpropagation to update the model parameters.
Gradients are the partial derivatives of the loss function with respect to the model
parameters, and they are also represented as tensors.
Tensor Derivatives. For two tensors A = Aj1,...,jq and B = Bi1,...,ip , of rank q and
p respectively, the derivative D = DAB is a tensor of rank q + p with coordinates

Dj1,...,jq,i1,...,ip =
∂Bj1,...,jq
∂Ai1,...,ip

.

For example, let

A =
[
A1 A2

]
and

B =

[
B11 B12
B21 B22

]
.

Tensor Products. Contraction sums over paired indices (axes), thus lowering the rank
by 2 (or more when more pairs are specified). For example, contracting positions a
and b in A produces the tensor ∑ia=ib

Ai1 ...ia ...ib ...ip with indices {i1, . . . , ip} \ {ia, ib},
where the dimensions of paired indices should match. A full tensor product combines
tensors A and B by cross-multiplications (A⊗B)i1,...,ip,j1,...,jq = Ai1,...,ip ·Bj1,...,jp , thereby
producing a tensor of rank p + q. A tensor dot-product is the full tensor product fol-
lowed by contraction of two compatible dimensions. For example, the standard
matrix product of Ai,j and Bk,l is the tensor product followed by contraction of j and
k. We denote the dot-product by •, thereby omitting the contracted axes when this
is clear from the context.

For example, given the same tensors A and B as above, we have:
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Chain & Product Rules. Tensors obey similar chain and product rules as matrices.
Specifically, we have Dx(A • B) = DxA • B + A • DxB. Also, when B = f (A(x))
holds, we have DxB = DA f • Dx(A). The contraction is over all dimensions of A
which match the arguments of f .
Spectral Norm. For any matrix A, the singular eigenvalues are defined as the square
roots of the eigenvalues of ATA (which is square symmetric and positive definite).
The spectral norm then is the biggest singular eigenvalue of A.
Neural Networks. From an algebraic perspective, we look at a neural network (NN)
as a chain of mappings of the form:

z(k+1) = f (k)
(

W(k) · z(k) + b(k)
)

which sequentially processes an input vector x = z0 through a number of layers k =

0 . . . n− 1. We assume that z(k) are real-valued vectors of shape [dk], weights W(k) are
matrices of shape [dk+1, dk], biases b(k) are of shape [dk+1], and f (k) are (possibly non-
linear) activation functions which are applied element-wisely. The task of learning
then is to minimize a given loss function L(z, t) where z = zn is the network output
and t is the ground-truth, over the weights W0, . . . , Wn−1.

1.2.2 Probability Theory, Combinatorics and Optimization

Probability distributions and random variables play a significant role in many di-
mensionality reduction techniques, particularly those based on probabilistic mod-
els. They are used to model relationships between data points, estimate model pa-
rameters, and capture the uncertainty associated with the reduced representations.
In dimensionality reduction, the goal is to find a lower-dimensional representation
of high-dimensional data that preserves the underlying structure and relationships.
Probabilistic models help capture these relationships by modeling the data as ran-
dom variables following certain probability distributions. Probabilistic dimension-
ality reduction methods, assume that the data points are generated from an under-
lying probability distribution. These methods use random variables to model the
observed data and the latent lower-dimensional space, and they learn the probabil-
ity distributions that best explain the observed data. Some dimensionality reduction
techniques use probability distributions to model pairwise similarities between data
points in both the high-dimensional and low-dimensional spaces. The objective is
to minimize the divergence between these two probability distributions so that the
lower-dimensional representation preserves the original data structure.
Probability Distributions. Throughout the thesis we work on basic probability dis-
tributions: normal, binomial, and Rademacher. Given a vector x we denote by ∥x∥
its euclidean norm and by ∥x∥0 the number of its non-zero components; we also say
that x is ℓ-sparse with ℓ = ∥x∥0, for example x =

( 1
4 , 1

4 , 1
4 , 0
)

is 3-sparse.
Random Variables. The d-th norm of a vector x and a random variable X, respec-
tively, are defined as:

∥x∥d = (∑
i
|xi|d)

1
d and ∥X∥d =

(
E
[
|X|d

]) 1
d

we also define ∥x∥∞ = maxi |xi| as usual. Bern(p) denotes the Bernoulli distribution
with success probability p, while Binom(n, p) denotes the binomial distribution with
n trials and success probability p. The Rademacher distribution takes values 1 and −1
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with equal probabilities. Moreover, a random variable X is called symmetric when it
has the same distribution as −X.
Majorization Order. We say that on n-dimensional vectors, majorization is defined
as follows: x is dominated by y, denoted by x ≺ y, if for their non-decreasing rear-
rangements (x↓i ) and (y↓i ) we have the inequality ∑k

i=1 x↓i ⩾ ∑k
i=1 y↓i for k = 1, . . . , n

with equality when k = n; equivalently, x can be produced from y by a sequence of
Robin-Hood operations which replace

xi > xj, xi ← xi − ϵ, xj ← xj + ϵ for ϵ ∈
(

0,
xi − xj

2

)
.

Intuitively, x being dominated by y means that x is more spread-out/dispersed
than y. For example, we have

( 1
4 , 1

4 , 1
4 , 1

4

)
≺
( 1

3 , 1
3 , 0, 1

3

)
(it takes 3 Robin-Hood trans-

fers).
Schur-convexity. Given a function f : Rn → R is the following property: x ≺ y
implies f (x) ⩽ f (y); we speak of Schur-concavity when the inequality is reversed.
Schur-convex or Schur-concave functions are necessary symmetric; symmetric func-
tion is Schur-convex if(

∂ f
∂xi
− ∂ f

∂xj

) (
xi − xj

)
⩾ 0 (Schur-Ostrowski criterion).

For example, power sums ∑i xq
i for q ⩾ 1 are Schur-convex.

We define the moment domination of a random variable Y over X, denoted as
X ≺m Y, by requiring EXq ⩽ EYq for all positive integers q. In particular, it implies
that MGF of Y dominates the MGF of X, the majorization in the Lorentz stochastic
order.

1.3 Structure of the Thesis

The structure of this thesis is organized into five distinct sections, each addressing
a key aspect of the research. Part I sets the stage by introducing the study’s con-
text, motivation, and contributions that will be the main themes throughout the
manuscript. This section provides a foundation for understanding the research’s
purpose and its significance within the field. In Part II, the focus shifts to second-
order methods for DL. This section presents an overview of current state-of-the-art
approaches, along with a discussion of their limitations and challenges. The pur-
pose is to identify gaps in the existing methods and provide a comprehensive un-
derstanding of the current landscape. Following this analysis, the main contribu-
tions and novel approaches are proposed as solutions to the identified challenges,
offering potential advancements in DL techniques. Part III delves into the perfor-
mance of random embeddings as a critical tool for dimensionality reduction. These
embeddings play a significant role in both ML and DL algorithms. This section
examines the effectiveness of random embeddings in various contexts, comparing
their performance to other dimensionality reduction techniques and assessing their
potential benefits and drawbacks. In Part IV, the thesis narrows its focus to infor-
mation extraction, specifically targeting relation extraction. This section explores
the most advanced techniques and tools for extracting and analyzing textual data,
demonstrating their application in real-world scenarios. The goal is to showcase the
capabilities of these methods and provide insights into their potential impact on in-
formation extraction tasks. Lastly, Part V concludes the thesis by summarizing the
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key findings and contributions presented throughout the manuscript. This section
also discusses the implications of the research and offers suggestions for future work
in the field, providing a comprehensive wrap-up of the study’s significance and po-
tential impact on the research community.

The organization of the manuscript is as follows:

• Chapter 2 provides an introduction to second-order methods, which serve as
a foundation for the subsequent chapters. These methods are essential to un-
derstanding the context and techniques employed in the research.

• Chapter 3 lays out the necessary background information for Part II of the
thesis, offering context and setting the stage for the discussions and analyses
that follow.

• In Chapter 4, the proposed solutions are presented, complete with theoretical
foundations and experimental results from real-world datasets. This chapter
demonstrates the practical implications of the proposed methods and draws
upon the following publications.

Maciej Skorski, Alessandro Temperoni and Martin Theobald
(2021). "Revisiting Weight Initialization of Deep Neural Net-
works." In: Proceedings of the Thirteenth Asian Conference of Ma-
chine Learning (ACML). Online, pp. 1192-1207

Alessandro Temperoni, Mauro Dalle Lucca Tosi and Martin
Theobald (2023). "Efficient Hessian-based DNN Optimization
via Chain-Rule Approximation." In: Proceedings of the 6th Joint
International Conference on Data Science & Management of Data
(CODS-COMAD). Mumbai, India, pp. 1192-1207

• Chapter 5 familiarizes the reader with dimensionality reduction techniques,
which play a crucial role in ML and DL algorithms.

• Chapter 6 presents the key concepts required for Part III of the thesis, provid-
ing a foundation for understanding the material discussed in the subsequent
chapters.

• In Chapter 7, the robustness of sparse random embeddings is explored. This
chapter offers valuable insights into the efficacy of these embeddings in vari-
ous contexts and draws upon the following publication.

Maciej Skorski, Alessandro Temperoni and Martin Theobald
(2022). "Robust and Provable Guarantees for Sparse Random
Embeddings." In: Advances in Knowledge Discovery and Data
Mining: 26th Pacific-Asia Conference (PAKDD). Online, pp.

211-223

• Chapter 8 proposes a non-oblivious analysis of Rademacher random embed-
dings with respect to the data. The work in this chapter is under review as

Maciej Skorski, Alessandro Temperoni (2023). "Exact
Non-Oblivous Performance of Rademacher Random

Embeddings" In: (submitted)

• Chapter 9 introduces the topic of relation extraction, setting the stage for the
exploration of advanced techniques and tools in the following chapters.
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• In Chapter 10, an overview of the state-of-the-art in relation extraction is pro-
vided, offering a comprehensive understanding of the current landscape in
this area.

• Chapter 11 examines open information extraction as a potential solution for
improving relation extraction, highlighting its capabilities and possible bene-
fits. The work in this chapter is going to appear in the following publication.

Alessandro Temperoni, Maria Biryukov and Martin Theobald
(2023). "Enriching Relation Extraction with OpenIE." In:

Proceedings of the 12th International Conference on Data Science,
Technology and Applications.

• Finally, Chapter 12 concludes the thesis by summarizing the key findings and
contributions presented throughout the manuscript. This chapter also dis-
cusses the implications of the research and offers suggestions for future work
in the field.
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Part II

Second-order Methods for Deep
Learning
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Chapter 2

Introduction

2.1 Multilayer Perceptron

In this section, we are going to describe the perceptron, the building block of NNs,
and we are going to see how it is possible to represent nonlinear functions of x by
applying the linear model to a transformed input ϕ(x), where ϕ is a nonlinear trans-
formation. We can think of ϕ as providing a set of features describing x, or as provid-
ing a new representation of x. The deep feedforward networks also called feedfor-
ward NNs or multilayer perceptrons come from this line of research. A feedforward
network is a type of artificial NN that aims to approximate a specific function f ∗,
such as a classifier y = f ∗(x) that maps an input x to a category y. A feedforward
network defines a mapping y = f (x; θ) and learns the value of the parameters θ
that results in the best function approximation. The network operates by passing
the input through a series of intermediate computations to ultimately produce an
output. Unlike recurrent NNs, feedforward networks do not have feedback connec-
tions, meaning that the output does not influence the input.

Feedforward networks are crucial in ML and are often used as the basis for many
commercial applications, such as convolutional networks (that are a specialized kind
of feedforward networks) for object recognition. They are also a necessary step to-
wards recurrent networks, which are commonly used for NLP.

The network is composed of many functions that are combined in a directed
acyclic graph, with the overall function being learned through the network’s weights
or parameters. For example, we might have three functions f (0), f (1), and f (2) con-
nected in a chain, to form f (x) = f (2)( f (1)( f (0)(x))). In this case, f (0) is called the
first layer of the network, f (1) is called the second layer, and so on. In DL, the goal is
to learn a parameterized representation, ϕ, that best approximates the function. The
model includes both θ and W parameters, where θ is used to learn ϕ from a wide
range of functions and W maps the learned representation to the desired output.
This is an example of a deep feedforward network, with ϕ defining a hidden layer.
Through optimization algorithms, the θ parameter is found to correspond to a suit-
able representation. To achieve high generality, a broad family of functions ϕ(x; θ)
can be used.

An example of Rosenblatt’s perceptron is depicted in Figure 2.1. This is a sim-
plified network having just one layer and that can be written as y = f (x ·W + b).
The issue pointed out by Minsky was solved by using a nonlinear function to de-
scribe the features of the network. Typically, NNs use an affine transformation
that is controlled by learned parameters, followed by a fixed, nonlinear activation
function that is applied element-wisely. The recommended default activation func-
tion for modern feedforward NNs is the rectified linear unit or ReLU, defined as
g(z) = max{0, z}. This activation function, when applied to the output of a linear
transformation, yields a nonlinear transformation that is still close to linear, as it is a
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FIGURE 2.1: Example of a perceptron

piecewise linear function with two linear pieces. The benefit of using rectified linear
units is that they maintain many of the properties that make linear models easy to
optimize with gradient-based methods and generalize well. In computer science, it
is a common practice to build complex systems from minimal components, and just
as a Turing machine’s memory only needs to store 0 or 1 states, a universal function
approximator can be built from rectified linear functions.

FIGURE 2.2: Rectified Linear Unit
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FIGURE 2.3: Illlustration of XOR

Example: learning the XOR function.

We can illustrate the concept of a feedforward network by presenting a practi-
cal example of a working feedforward network that can accomplish a straight-
forward task that linear classifiers cannot solve, which is learning the XOR
function. For this purpose, we will demonstrate a fully functional feedfor-
ward network that is trained on a dataset of four points (0, 0), (0, 1), (1, 0),
and (1, 1), and the main objective will be to "only" fit the training set (as this
is just a simple example and therefore we will not focus on statistical gener-
alization). The "exclusive or" (XOR) function is an operation on two binary
values x1 and x2. The XOR truth table and its 2D plot are shown in Figure 2.3.
Let’s then show a possible solution for the XOR problem. Let

W1 =

[
1 1
1 1

]
,

b =

[
0
−1

]
,

and

w2 =

[
1
−2

]
.

Let X be the input matrix including all four points represented in the truth
table:

X =


0 0
0 1
1 0
1 1


Now, we walk through the network and, as a first step, we will multiply the
input matrix by the first (hidden) layer’s weight matrix:

XW1 =


0 0
1 1
1 1
2 2


Then we add the bias vector b and obtain:
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0 −1
1 0
1 0
2 1


We apply the rectified linear transformation to add non-linearity to this model

0 0
1 0
1 0
2 1


This transformation has changed the relationship between the points. We fin-
ish by multiplying the matrix by the last’s layer weight vector w2

0
1
1
0


The NN has obtained the correct answer for every point. The solution was
explicitly defined in this example, and it was demonstrated that it achieved
zero error. However, in a realistic scenario, the number of parameters and
training examples can reach billions, which means we cannot rely on guessing
the solution as we did in this case.

FIGURE 2.4: XOR neural network

2.2 Gradient-based Learning

Training a NN is similar to training other ML models using gradient descent (Cauchy,
1874). Gradient descent is an iterative optimization algorithm that leverages first-
order partial derivatives to minimize a cost function (it will be explained more in
detail in section 2.4 ). However, the primary difference between linear models and
NNs is the nonlinearity introduced by the latter, which causes many loss functions to
become non-convex. As a result, NNs are typically trained using iterative, gradient-
based optimization techniques, rather than the linear equation solvers used for lin-
ear regression models or convex optimization algorithms used for logistic regression
or support vector machines (SVMs). Unlike convex optimization, stochastic gradi-
ent descent applied to non-convex loss functions lacks convergence guarantees and
is highly sensitive to initial parameter values. To initialize feedforward NNs, it is
crucial to set all weights to small random values and biases to zero or small positive
values. It is worth noting that we can also train models such as linear regression
and SVMs with gradient descent, especially when dealing with an extremely large
training set. Therefore, training a NN is not very different from training any other
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ML model. However, computing the gradient for a NN is slightly more complicated,
but it can still be done efficiently and exactly.

2.2.1 Output Units

To apply gradient-based learning, we need to choose a loss function and determine
how to represent the output of the model. Fortunately, the loss functions for DNNs
are similar to those used for other parametric models. In most cases, we use the
principle of maximum likelihood and the cross-entropy between the training data
and the model’s predictions as the loss function. The choice of the loss function is
closely linked to the choice of the output unit used to represent the output. Any
type of NN unit used as an output can also be used as a hidden unit. The role
of the output layer is to provide some additional transformation from the features
to complete the task that the network must perform. There are three main types
of output units: linear, sigmoid, and softmax. Linear units are based on an affine
transformation with no nonlinearity. Sigmoid units are used for binary classification
problems where the variable y is either 0 or 1. Softmax units are used when we
want to represent a probability distribution over a discrete variable with n possible
values. The choice of the output unit affects the form of the cross-entropy function.
For example sigmoid units, which have function

f (x) =
1

1 + e−x

have a saturation effect that can prevent gradient-based learning from making
good progress, so the −logP used in maximum likelihood undoes the exp of the sig-
moid to avoid this issue. Softmax functions are most commonly used as the output
of a classifier, to represent the probability distribution over n different classes.
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Example Softmax

The softmax function can be considered as a (probabilistic) softer version of
the argmax. Given a list of values from the last hidden layer of a network

[1, 3, 2]

applying argmax to this list returns

[0, 1, 0]

what if one is less sure about the outcome of the network and wants to express
the argmax with likelihoods? This can be done by converting the values in the
list into probabilities that sum up to 1.0. This is exactly what softmax does.

So f tmax(zi) =
ezi

∑K
j=1 ezj

where K is the number of classes. For example, every value in the list [1, 3, 2]
can be turned into a probability:

probability1 = exp(1)/(exp(1) + exp(3) + exp(2)) = 0.091

probability3 = exp(3)/(exp(1) + exp(3) + exp(2)) = 0.665

probability2 = exp(2)/(exp(1) + exp(3) + exp(2)) = 0.244

2.2.2 Hidden Units

Selecting the appropriate type of hidden unit for a feedforward NN is a unique de-
sign challenge that sets it apart from most other DL models. This particular aspect
remains an active area of research, with no definitive methodologies to address the
issue. While rectified linear units (ReLU) serve as an excellent default option for
hidden units, numerous alternatives exist. In this discussion, we will explore three
widely-used hidden unit types in DL: rectified linear units, logistic sigmoid, and hy-
perbolic tangent. The process of determining which hidden unit type to use can
be challenging, as it often involves a trial-and-error approach. ReLU, an activa-
tion function we have previously encountered, is defined as g(z) = max{0, z}. It
is straightforward to optimize due to its linear-like behavior, and several general-
izations of ReLU have been developed. These variations typically perform compa-
rably well, and in some instances, even outperform the original ReLU. Prior to the
rise of ReLU, NNs predominantly employed the logistic sigmoid activation function
(g(z) = σ(z)) or the hyperbolic tangent activation function (g(z) = tanh(z)). These
two activation functions share close relationships. We have previously discussed
the sigmoid function and noted that it requires an appropriate cost function to be
compatible with gradient-based learning. Interestingly, when it is necessary to use
a sigmoidal activation function, the hyperbolic tangent function generally outper-
forms the logistic sigmoid.
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Example ReLU

When ReLU activation function is applied to the matrix of the weights, every
negative value is removed and replaced with 0. For example, the matrix A
below

A =


34 11 −7 26
12 −79 −51 93
−1 48 66 81
153 −11 21 −37
43 −84 62 14


is transformed into

ReLU(A) =


34 11 0 26
12 0 0 93
0 48 66 81

153 0 21 0
43 0 62 14



2.2.3 Backpropagation

Backpropagation is a fundamental step for the optimization of gradient-based learn-
ing. It is an application of the chain rule from calculus, which efficiently computes
gradients (first-order partial derivatives) of a loss function with respect to the pa-
rameters of the network. These gradients are then used in conjunction with an op-
timization algorithm, such as stochastic gradient descent, to update the model’s pa-
rameters and minimize the loss function. Backpropagation works in two main steps:
forward pass and backward pass. During the forward pass, the input data is passed
through the NN, layer by layer, transforming it into intermediate activations using a
combination of linear transformations and non-linear activation functions. The out-
put of the last layer produces the network’s predictions. The loss function is then
computed. The goal is to minimize this loss function by adjusting the parameters
of the neural network. The backward pass, where the backpropagation comes into
play, computes the gradients of the loss function with respect to each parameter
of the network. The process starts with calculating the gradient of the loss func-
tion with respect to the output layer’s activations. This gradient is then propagated
backward through the network, from the last layer to the first, by successively ap-
plying the chain rule to compute the gradients with respect to the parameters and
activations of each layer. The key insight of backpropagation is that the gradient of
the loss function with respect to a layer’s input can be computed using the gradi-
ent with respect to its output, thus avoiding redundant calculations and making the
computation efficient. Once the gradients have been computed for all the parame-
ters, they are used to update the weights and biases in the network according to an
optimization algorithm. The most common optimization method is stochastic gra-
dient descent (SGD), which adjusts the parameters by taking a step in the opposite
direction of the gradients, scaled by a learning rate. In practice, the backpropagation
algorithm is performed iteratively over mini-batches of data, enabling the model to
learn from multiple examples before updating the parameters. This approach, called
mini-batch gradient descent, strikes a balance between computational efficiency and
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the quality of the gradient estimates. The entire process of forward pass, backward
pass, and parameter updates is repeated for multiple epochs until the model con-
verges to a solution with minimized loss.

2.3 Weight Initialization

DL training algorithms have an iterative nature and require the user to specify an ini-
tial point from which to begin the iterations. The choice of weight initialization can
greatly affect the outcome of the training process. If the initial point is unstable, the
algorithm may encounter numerical difficulties and fail altogether. Even when the
algorithm does converge, the initial point can determine how quickly it converges
and whether it converges to a point with high or low cost. Additionally, the initial
point can have a significant impact on the generalization error of the model.

Currently, initialization strategies for DL models are simple and heuristic. How-
ever, designing improved strategies is challenging because the optimization of NNs
is not yet well understood. Many initialization strategies aim to achieve certain
properties when the network is first initialized, but it is unclear which of these prop-
erties are preserved during the training process. Additionally, some initial points
may be beneficial for optimization but detrimental for generalization. Our under-
standing of how the initial point affects generalization is limited, offering little guid-
ance on how to select the best initial point.

The only property that is known with certainty is that the initial parameters must
"break symmetry" between different units. If two hidden units are connected to the
same inputs, they must have different initial parameters in order to compute dif-
ferent functions. This is achieved by randomly initializing the parameters from a
high-entropy distribution as it is computationally cheaper and unlikely to assign any
units to compute the same function. Typically, NNs are almost always initialized to
values drawn from a Gaussian or uniform distribution. The scale of the initial dis-
tribution can have a large effect on both the optimization procedure and the ability
of the network to generalize. While the choice of Gaussian or uniform distribution
does not seem to matter much but it has not been extensively studied.

Example Random Weight Initialization

Random weight initialization with small values from a high-entropy distribu-
tion. The value of the entropy is a function of the piece-wise entropy and of
the size of the matrix. Usually, for DNN, the latter is a very big number.

W =



0.65 0.68 0.49 0.5 0.38 0.42 0.68 0.48 0.73 0.49
0.54 0.32 0.58 0.53 0.46 0.34 0.36 0.54 0.33 0.5
0.65 0.52 0.52 0.52 0.59 0.51 0.6 0.47 0.63 0.72
0.57 0.5 0.52 0.41 0.45 0.39 0.55 0.62 0.54 0.52
0.4 0.4 0.51 0.73 0.47 0.63 0.77 0.28 0.77 0.48

0.61 0.53 0.69 0.52 0.49 0.68 0.59 0.57 0.69 0.32
0.2 0.6 0.43 0.73 0.54 0.52 0.44 0.36 0.44 0.45
0.3 0.53 0.68 0.65 0.67 0.53 0.56 0.35 0.66 0.49
0.6 0.5 0.56 0.44 0.69 0.48 0.59 0.6 0.64 0.44

0.54 0.6 0.44 0.46 0.52 0.73 0.39 0.23 0.52 0.53
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2.4 Optimization

Optimization involves finding the maximum or minimum value of a function, f (x),
by changing the value of x. Minimization is the most commonly used method
and maximization can be achieved by minimizing the negative of the function, i.e.
− f (x). The function being optimized is referred to as the objective, cost, loss, or error
function. The first derivative, f ′(x), of a function, y = f (x), where x and y are real
numbers, represents the slope of the function at a specific point, x. In other words, it
specifies how to scale a small change in the input in order to obtain the correspond-
ing change in the output: f (x + ϵ) ≈ f (x) + ϵ f ′(x). The derivative is therefore use-
ful for minimizing a function because it tells us how to change x in order to make a
small improvement in y. For example, we know that f (x – ϵsign( f ′(x))) is less than
f (x) for small enough ϵ. We can thus reduce f (x) by moving x in small steps with
the opposite sign of the derivative. This technique is called gradient descent.

When f ′(x) = 0, the derivative provides no information about which direction to
move therefore such points where this happens are called critical points or station-
ary points. Points where f (x) is lower than all neighboring points are called local
minima, consequently, it is not possible to decrease the function by making infinites-
imal steps. A local maximum is a point where f (x) is higher than at all neighboring
points, so it is not possible to increase f (x) by making infinitesimal steps. Some
critical points are neither maxima nor minima. These are known as saddle points.
The lowest value of f (x) is called a global minimum. There can be one or many
global minima for a function. Local minima may not be globally optimal. In DL,
optimizing functions with multiple local minima and saddle points in flat regions is
challenging (i.e. the one in Figure 2.5), especially in high-dimensional input. Hence,
often a low value of f is sought rather than the absolute minimum.

FIGURE 2.5: Optimization algorithms may fail to find a global min-
imum when there are multiple local minima or plateaus present. In
the context of DL, we generally accept such solutions even though
they are not truly minimal, as long as they correspond to significantly

low values of the cost function.
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To solve this issue, gradient descent looks for the best solution (rather the most
acceptable, it is not in fact the true best solution) by proposing an update rule

x′ = x− η▽x f (x) (2.1)

where ▽x f (x) is the vector containing all the partial derivatives, the gradient of
f , and η is the learning rate, a positive scalar determining the size of the step (as we
often minimize functions with multiple inputs, we have to use the concept of partial
derivatives). There are several ways to initialize the step size, a popular approach is
to set it to a small constant but there are approaches that evaluate different values of
η and choose the one that results in the smallest loss function value. The step size
must be sufficiently small to prevent surpassing the minimum and ascending the
loss landscape in areas with prominent positive curvature. Often, this implies that
the step size is inadequate for making substantial advancements in other directions
with lower curvature. Addressing this problem can be achieved by utilizing data
from the Hessian matrix to direct the search. In the following section, we will dis-
cover that second-order techniques are crucial for determining the appropriate step
size, as the second derivative provides insight into the expected performance of a
gradient descent step.

2.5 Beyond Gradient Descent

In multiple dimensions, there is a different second derivative for each direction at a
single point. Therefore, it can happen that, in one direction the derivative rapidly
increases, while in another direction, it increases slowly. Gradient descent is un-
aware of this change in the derivative that multiple dimensions can cause during
training, this makes also difficult to choose a good step size and can result in over-
shooting the minimum and therefore never converging. This issue can be solved
by using information from the second-order derivatives to guide the search. In DL,
second-order derivatives play a crucial role in optimization algorithms and can be
collected together into a matrix called the Hessian matrix which can be considered
the Jacobian of the gradient (The Jacobian is the matrix composed of all the partial
derivatives of a multivariable function). These algorithms use the second-order in-
formation of the loss function, which is the function that measures the difference
between the model’s predicted output and the true output, to update the model’s
parameters. This allows for more efficient optimization, as the second-order infor-
mation provides a better approximation of the local curvature of the loss function,
compared to using only first-order derivatives. The Hessian matrix is a square ma-
trix of second-order partial derivatives of a scalar-valued function, and it provides
information about the curvature of a function at a specific point. The eigenvalues of
the Hessian matrix can be used to determine whether the point is a local maximum,
minimum, or saddle point. In DL, the Hessian matrix is typically computed for the
parameters of the model, rather than for the input data. One of the key advantages
of using second-order derivatives is that they can help to escape from poor local
minima as second-order information can provide more insight into the loss land-
scape, and can help the optimization algorithm to find a better solution. Another
advantage of using second-order derivatives in DL is that they can help to improve
the stability of the optimization process. This is because second-order information
can be used to adjust the step size of the optimization algorithm, which can help to
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prevent overshooting or undershooting the optimal solution. In addition, the Hes-
sian can be used to analyze the generalization properties of NNs. The eigenvalues
of the Hessian can indicate whether a network is overfitting or underfitting, and
the distribution of eigenvalues can provide insight into the expressivity of the net-
work. Researchers have also used the Hessian to identify areas of the network that
are sensitive to small changes in the input, which can lead to new methods for in-
terpretability and robustness. In this work, we explore the potential of second-order
methods in DL, focusing on weight initialization and optimization, and showing
how Hessian information can improve upon previous research on these two crucial
tasks.

Example Jacobian

The formula for the Jacobian matrix is the following

f (x1, x2, . . . , xn) = ( f1, f2, . . . , fm)

J f =


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
...

. . .
...

∂ fm
∂x1

∂ fm
∂x2

. . . ∂ fm
∂xn


The Jacobian matrix is very expensive to calculate, its dimensions are deter-
mined by the number of output variables m and the number of input variables
n.
Now, if we want to find the Jacobian matrix at the point (1,2) of the following
function:

f (x, y) = (x4 + 3y2x, 5y2 − 2xy + 1)

We calculate all the first-order partial derivatives of the function:

∂ f1

∂x
= 4x3 + 3y2

∂ f1

∂y
= 6yx

∂ f2

∂x
= −2y

∂ f2

∂y
= 10y + 2x

Now we apply the formula for the Jacobian:

J f =

[
∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

]
=

[
4x3 + 3y2 6yx
−2y 10y + 2x

]
Once we have found the expression, we evaluated it at point (1,2):

J f (1, 2) =
[

4 · 13 + 3 · 22 6 · 2 · 1
−2 · 2 10 · 2− 2 · 1

]
=

[
16 12
−4 1018

]
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Example Hessian

The formula for the Hessian matrix is the following

H f =


∂2 f
∂2x1

∂2 f
∂x1∂x2

. . . ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂2x2

. . . ∂2 f
∂x2∂xn

...
...

. . .
...

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

. . . ∂2 f
∂2xn


The Hessian matrix will always be a square matrix, with dimensions equal to
the number of variables of the function. Therefore, its computation is gener-
ally more expensive than that of the Jacobian matrix, as the number of ele-
ments in the Hessian grows quadratically with the number of variables. If we
want to find the Hessian matrix at the point (1,0) of the following function:

f (x, y) = (y4 + x3 + 3x2 + 4y2 − 4xy− 5y + 8)

We calculate all the first-order partial derivatives of the function:

∂ f
∂x

= 3x2 + 6x− 4y

∂ f
∂y

= 4y3 + 8y− 4x− 5

Once we have obtained the first derivatives, we need to calculate all the
second-order partial d derivatives of the function:

∂2 f
∂2x

= 6x + 6

∂2 f
∂2y

= 12y2 + 8

∂2 f
∂x∂y

= −4

Now we are able to find the Hessian matrix using the formula:

H f (x, y) =

 ∂2 f
∂2x

∂2 f
∂x∂y

∂2 f
∂y∂x

∂2 f
∂2y

 =

[
6x + 6 −4
−4 12y2 + 8

]
So the Hessian matrix evaluated at the point (1,0) is:

H f (1, 0) =
[

6 · 1 + 6 −4
−4 8

]
=

[
12 −4
−4 8

]
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Chapter 3

Background and Related Work

In this chapter, we are going to provide the technical background and overview of
the related work on second-order methods for DL.

The optimization algorithms commonly used in DL are versatile but lack guaran-
tees due to the complexity of functions used, unlike other fields where optimization
algorithms are tailored to specific (limited) function families. In this section, while
discussing the most common practices and the previous works, we are going to ex-
plain the source of this deficiency.
Initialization Based on Variance Flow Analysis. Glorot and Bengio, 2010 pro-
posed a framework for balancing the trade-off between representational power and
generalization in NNs. Representational power refers to the ability of a NN to accu-
rately model the input data, while generalization refers to the ability of the network
to make accurate predictions on unseen data. The proposed framework aims to
balance this trade-off by estimating the variance at different layers of the NN. By
estimating the variance at different layers, the framework can identify where the
network has the most representational power and where it is overfitting the train-
ing data. The approach is based on the assumption that the activation functions
used in the network, which introduce non-linearity, approximately behave like the
identity function around zero i.e., f (u) ≈ u for small u. This means that the acti-
vation functions do not have a significant impact on the variance of the network’s
outputs when the inputs are close to zero. By using this assumption, the framework
can identify the layer where the activation function starts to have a significant im-
pact on the variance of the network’s outputs and use this information to balance
the trade-off between representational power and generalization. This approach has
been generalized to other nearly linear functions in follow-up works (He et al., 2015;
Xu, Huang, and Li, 2016). This means that the framework can be applied to a wider
range of activation functions and has expanded the applicability of the framework
to a wider range of NN architectures. By linearization, we then obtain:

z(k+1)
i ≈ ∑

j=1...dk

W(k)
i,j · z

(k)
j + bk

i (3.1)

In the forward pass, we require Var[z(k+1)] ≈ Var[z(k)] to maintain the magnitude
of inputs until the last layer. In the backward pass, we compute the gradients by
recursively applying the chain rule

∂
z(k)i

L = ∑
j=1...dk+1

∂
z(k+1)

j
L · ∂

z(k)i
z(k+1)

j (3.2)

≈ ∑
j=1...dk+1

∂
z(k+1)

j
L ·W(k)

j,i (3.3)
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while we aim to keep their magnitude, i.e., Var [∂z(k−1) L] ≈ Var [∂z(k) L].
Looking at Equations 3.1 and 3.2, we see that the weights W(k) interact with

the previous layer during the forward pass and with the following layer during
the backward pass. The first action is multiplying along the input dimension dk,
while the second action is multiplying along the output dimension dk+1. One can
prove that, in general, taking the dot-product with an independently centered random
matrix along dimension d scales the variance by the factor d (Glorot and Bengio,
2010; Xu, Huang, and Li, 2016). Thus, to balance the two actions during the forward
and backward pass, one usually chooses the W(k) as i.i.d. samples from a normal
distribution N(µ, σ2) with mean µ = 0 and standard deviation

σ[W(k)] =

√
2

dk + dk+1
. (3.4)

Variance-based initialization schemes (Arpit, Campos, and Bengio, 2019; Glorot
and Bengio, 2010; He et al., 2015; Hendrycks and Gimpel, 2016; Xu, Huang, and
Li, 2016), however, implicitly assume independence of weight gradients across lay-
ers. This is not true already in first pass, since back-propagated gradients depend on
weights used during the forward pass and also on the input data. More specifically,
during the forward pass, the input data is transformed by the network’s weights,
which produces a prediction. Then, during the backpropagation step, the gradient
of the loss function with respect to the weights is computed and used to update the
weights. However, this gradient depends not only on the current weights but also
on the input data that was used during the forward pass. Therefore, the gradient of
the loss function with respect to the weights is not entirely independent across lay-
ers. This means that variance-based initialization schemes may not provide optimal
initializations, especially for DNN with many layers.
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Example dependency of weight gradients across layers

Consider a regression setting with two layers and a linear activation function,
such that

L = (z− t)2, z = W2W1x.

Note that

∂zL = 2(z− t) = −2(W2W1 − t)

depends on both W2 and W1. To see correlations with the input vector, con-
sider a one-dimensional regression

L = (z− t)2,

where
z = Wx.

From Equation 5 in Glorot and Bengio, 2010, we should have

Var[∂WL] = Var[∂Wz] ·Var[∂zL]

for W with unit variance, but this gives

Var[2(Wx− t)x] = Var[x] ·Var[2(Wx− t)].

Not only two sides can be a factor away but also the target t can be correlated
to the input x.

In addition to this lack of correlations, the above kinds of variance analysis do
not reveal any correlations between different variables, which could provide impor-
tant insights into how the optimization is behaving. Additionally, the methods only
provide qualitative insights, meaning that they do not directly connect the variance
estimation to the underlying optimization problem. Therefore, it is not possible to
get more quantitative insights, such as estimating the step size, from these first-order
methods. Estimating the step size would be useful because it would provide more
precise control over the optimization process. This could help to improve the stabil-
ity and efficiency of the optimization algorithm, but first-order methods are not able
to provide this information.
Other First-Order Approximations. To address the aforementioned lack of guar-
antees in DL, we sometimes restrict ourselves to functions that are either Lipschitz
continuous or have Lipschitz continuous derivatives. The stability of the lineariza-
tion in 3.1 has also been studied using the Lipschitz property as the sensitivity metric
(Szegedy et al., 2013; Virmaux and Scaman, 2018) as well as mean-field theory to inves-
tigate the dynamic of the forward-pass for very deep networks in Xiao et al., 2018.
This property is useful because it allows quantifying the gradient descent assump-
tion that a small change in the input will have a small change in the output. The
Lipschitz continuity is a fairly weak constraint and many optimization problems in
DL can be made Lipschitz continuous without major modifications.

Some generalizations to the classical schemes discussed above have been also
proposed. For example Balduzzi et al., 2017 generalizes the variance analyses to
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ResNets, while Bachlechner et al., 2020 introduces extra parameters at the activation
layers.
Adaptive First Order Methods. Adaptive first-order methods are a class of opti-
mization techniques that are commonly used to train DL models. These methods
adapt the learning rate during the training process to improve the convergence of
the model. Adaptive first-order methods have been shown to be computationally
efficient and have been used successfully in many DL tasks. These methods can im-
prove the performance of the model and can also help to prevent the model from
getting stuck in suboptimal solutions. There are multiple variations, but these meth-
ods can be represented using the following general update formula:

Wt+1 = Wt − ηt
mt

vt
(3.5)

where ηt is the learning rate, and mt and vt denote the so-called first and sec-
ond moment terms, respectively. AdaGrad, RMSProp, and Adam are very popular
adaptive learning rate optimization algorithms commonly used in training DNNs.
The AdaGrad algorithm (Duchi, Hazan, and Singer, 2011) adjusts the learning rate
for each parameter based on the historical gradient of the loss. The parameters with
larger gradient values have a larger decrease in learning rate, whereas the param-
eters with smaller gradient values have a smaller decrease in learning rate. This
results in faster convergence in the gentler slopes of the parameter space. How-
ever, when used to train DNNs, AdaGrad can suffer from a premature decrease in
learning rate due to the accumulation of squared gradients from the beginning of
training.

The RMSProp algorithm (Tieleman and Hinton, 2012) improves upon AdaGrad
by replacing the accumulation of squared gradients with an exponential weighted
moving average. This allows RMSProp to converge more rapidly after finding a con-
vex structure in the non-convex optimization problem of training NNs. The moving
average introduces a new hyperparameter, ρ, which controls the length scale of the
average. Empirically, RMSProp has proven to be an effective optimization algorithm
for DNNs.

Adam, short for Adaptive Moment Estimation (Kingma and Ba, 2015), is a vari-
ant of RMSProp and momentum, with some important differences. Unlike RM-
SProp, Adam incorporates momentum directly into its first-order moment estimate
(with exponential weighting) of the gradient. Adam also includes bias corrections
to its estimates of both the first-order and second-order moments, while RMSProp
only includes an estimate of the second-order moment without a correction factor.
Adam is generally considered to be robust to hyperparameter choices, although the
learning rate may need to be adjusted from the default value.

In summary, AdaGrad, RMSProp, and Adam are three popular optimization
algorithms used in DL, with each algorithm offering its own strengths and weak-
nesses. The choice of algorithm will depend on the specific task at hand and the
desired trade-off between convergence speed and optimization performance.

Despite all these attempts, learning non-use-case specific models has been shown
to be a challenging task as it is still not clear which optimizer should work for a new
task as even the choice of the optimizer has effectively become a hyperparameter.
To address this challenge, many attempts have been made to understand the source
of the use-case specificity that distinguishes DL problems. Researchers have sought
to identify the factors that make certain problems more challenging than others and
to develop methods for improving the generalization performance of DL models.
To this date, second-order optimization methods have been partially shown to be
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effective in some cases but have not been sufficiently investigated in the context of
learning and optimization.
Hessian Approaches to Neural Nets. Considering the Hessian is ubiquitous in the
field of optimization (Salvatier, Wiecki, and Fonnesbeck, 2016), and has been also
applied in the context of DNNs (Dauphin and Schoenholz, 2019; Ghorbani, Krish-
nan, and Xiao, 2019; Sagun et al., 2017). Since the exact calculation of the Hessian
is not feasible for larger networks (which is quadratic in the total, usually already
large, number of parameters), efficient approximation schemes have been proposed.

Newton’s method (Nocedal and Wright, 2006) is the most widely used second-
order optimization technique. It is based on second-order Taylor series expansion
to improve an objective function. This involves two steps: updating the inverse of
the Hessian and adjusting the network parameters. However, Newton’s method
only works well when the Hessian is positive definite, and is not suitable for non-
convex objective functions in DL, as they often have challenging features such as
saddle points. Additionally, training large NNs using Newton’s method is com-
putationally demanding, limiting its practical use to smaller networks. The Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) (Broyden, 1970; Fletcher, 1970; Goldfarb,
1970; Shanno, 1970) algorithm attempts to bring some of the advantages of New-
ton’s method without the computational burden. However, also this method has
to store the inverse of the Hessian matrix, making it impractical for most modern
DL models. A memory-cost-efficient version of BFGS (the Limited Memory BFGS
or L-BFGS Liu and Nocedal, 1989) that avoids storing the complete inverse Hessian
exists. Like BFGS, L-BFGS uses an estimate of the inverse of the Hessian matrix, but
where BFGS stores a dense nxn approximation to the inverse Hessian (where n is the
number of variables in the problem), L-BFGS stores only a few vectors that represent
the approximation implicitly.

Block-diagonal approximations of the Hessian tensor were considered in TONGA
(Le Roux et al., 2008 and Martens and Grosse, 2015), but were not extensively eval-
uated (very small networks, not-real world, visual not a quantitative comparison).

Some Hessian characteristics such as the eigenvalues or the trace (Ghorbani,
Krishnan, and Xiao, 2019, Jacot, Gabriel, and Hongler, 2020), have been proposed.
However, these are simplified and do not give insights into the Hessian tensor struc-
ture (such as extracting the diagonal or the block). Furthermore, these approxi-
mations are probabilistic with no clear guarantee on the error. Finally, Yao et al.,
2021 proposed a new approach for approximating the calculation of the diagonal of
the Hessian matrix. The approach utilizes techniques from random linear algebra,
which are a set of mathematical techniques used to solve problems involving large,
non-convex, and high-dimensional data sets. Despite the use of this new approach,
the results obtained were not found to be any better than those obtained using previ-
ous state-of-the-art methods but just comparable. This suggests that while the pro-
posed approach may have some potential, it may not be as effective as other existing
methods for approximating the diagonal of the Hessian matrix.
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Chapter 4

Approximated Chain Rule for
Hessian Backpropagation

The chain rule is a fundamental concept in calculus that is used to calculate the
derivative of composite functions. It is a powerful tool for optimizing complex func-
tions and is essential for training ML models. In ML, it is used to calculate the gra-
dient of a complex function, which is used in the optimization process to update
the model’s parameters. In this context, the chain rule is often referred to as the
backpropagation algorithm. The backpropagation algorithm is used to calculate the
gradient of the loss function with respect to the parameters. It starts by calculat-
ing the derivative of the loss function with respect to the model’s output. Then, it
calculates the derivative of the model’s output with respect to the model’s parame-
ters. The final step is to multiply the two derivatives to get the gradient of the loss
function with respect to the parameters.

DWL(z, t) = DWz • DzL(z, t) (4.1)

First-order methods have been successfully utilized to optimize NNs for years
now. This method is relatively simple to implement, but it has some limitations.
One of the main limitations is that it only takes into account the slope of the func-
tion, without considering the entire loss landscape of the optimization problem. This
means that first-order methods may converge to a suboptimal solution. In this work
of thesis, we are going to present a new second-order-based approximated chain
rule, a more powerful tool for calculating the gradient of a multi-variable function.
This method takes into account the entire landscape of the loss function and there-
fore is more accurate in determining the direction of the steepest increase. Addition-
ally, the second-order information is more robust to the presence of local minima
and maxima, as it can distinguish between them and the global optimum.

We are going to show two applications of our Hessian approximated chain rule:
(i) weight initialization and (ii) optimizer’s update rule.

Before presenting our new chain rule, we need to introduce some more notation.
Let z(k) be the input of the k-th layer. Let A(k) = Du(k)z(k+1) be the derivative of
the forward activation at the k-th layer, with respect to the output before activation
u(k) = W(k) · z(k) + b(k). Let Bk+1 = Dz(k+1)z(n) be the output derivative backpropa-
gated to the input of the (k + 1)-th layer. Let Hz = D2

z L(z, t) be the loss Hessian with
respect to the predicted value z. Finally, let HW = D2

WL(z(n), t) be the loss Hessian
with respect to the weights W.

The Hessian of a loss function is a matrix that describes the curvature of a func-
tion over its domain. In general, the Hessian of a simple loss function has nice prop-
erties, such as being positive definite, which makes it easy to optimize. However,
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when a neural network is used to reparameterize the problem, the dependency of
the output z on the weights W becomes more complex, which can make the Hessian
difficult to analyze. One important question that arises when using NNs is how the
dependency of the network output on the weights affects the loss curvature. This
is because the Hessian of the loss function can change significantly depending on
the specific architecture and parameters of the NN. For example, if the network is
over-parameterized, the Hessian can be ill-conditioned, which can make optimiza-
tion difficult. On the other hand, if the network is under-parameterized, the Hessian
can be too simple, which can make optimization easy but can lead to overfitting.
Therefore, when using NNs, it is important to carefully analyze the properties of the
Hessian and how they are affected by the specific architecture and parameters of the
network. This can help to choose an appropriate optimization algorithm, prevent
overfitting, and ensure that the network is able to generalize well to unseen data.

We introduce a novel approximation of the chain rule for backpropagation,
which uses second-order derivatives to enhance the efficiency and perfor-
mance of gradient-based optimization in DL.

D2
WL(z, t)︸ ︷︷ ︸

reparameterized Hessian

= D2
z L(z, t) • DWz • DWz︸ ︷︷ ︸

linearization effect

+ DzL(z, t) • D2
Wz︸ ︷︷ ︸

curvature effect

(4.2)

where bullets denote tensor dot-products along the appropriate dimensions. This
is more subtle than traditional backpropagation of first derivatives because both
first- and second-order effects have to be captured.

4.1 Revisited Weight Initialization Scheme

We now present and discuss a new weight-initialization scheme by applying our
Hessian chain rule across the (hidden) layers k = 0 . . . n − 1 of a NN. In general,
for training NNs, variants of gradient-descent (as described in Robbins, 1951) are
applied in order to update the model parameters W iteratively towards the gradient
g = DWL of the loss function. In order to quantify this decrease, we need first to
consider the second-order Taylor series approximation to the function f (x) around the
current point x(0):

f (x) ≈ f (x(0)) + (x− x(0))Tg +
1
2
(x− x(0))TH(x− x(0)).

Substituting this into our approximation, we obtain,

L(W− γg) ≈ L(W)− γ gT · g + γ2

2
gT ·H · g

where · stands for the matrix (or more generally tensor) dot product. There are three
terms here: the original value of the loss of the weights, the expected improvement
due to the gradient, and the correction we must apply to account for the Hessian.
The maximal step size γ∗ guarantees that the decrease equals γ∗ = ∥H∥−1 (Good-
fellow, Bengio, and Courville, 2016) where ∥H∥ is the Hessian norm, i.e., its maxi-
mal eigenvalue. In other words, if we want to train with a constant step size, then
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we need to control the norm of the Hessian. We therefore propose the following
paradigm:

Good weight initialization controls the Hessian: we initialize the weights
W(k) such that ∥HW(k)∥ ≈ 1.

Moreover, we only make the following mild assumption about the loss functions,
which requires the activation function to be nearly linear around 0:

Admissible activation functions: the loss function must satisfy f (0) = 0 and
f ′′(0) = 0. We note that this condition holds for all standard activation
functions, such as linear, sigmoid, tanh or ReLU.

Finally, our techniques aim to approximate the global curvature of weights up to
leading terms. These approximations are accurate under the following mild assump-
tion:

Relatively small inputs: we have ∥z(k)∥ ⩽ c for all layers k, for a small
constant c (e.g., c = 0.5).

Note that the latter is necessary to ensure the stability of the forward pass and is
implicitly assumed so also in the variance flow analyses.

From 4.2 we derive,

Theorem 1 (Approximated Hessian chain rule for neural networks). With no-
tation as above, the loss Hessian HW(k) with respect to the weights W(k) satisfies

HW(k) [g, g] ≈ vT ·Hz · v with v = B(k) · A(k) · g · F(k) (4.3)

where products are standard matrix products. More precisely, the approximation
holds up to a third-order error term ∼ f ′′′c3 · ∥g∥2 where f ′′′ is the bound on the
third derivative of the activation functions and c is the bound on the inputs x. The
leading term then is of order ∼ c2 · ∥g∥2.

This theorem in its essence states that the only Hessian that is needed is the Hes-
sian of the output layer, which is D2

z L(z, t) in our approximated chain rule 4.2.

We observe the following important properties.

Remark 1 (Beyond block-diagonal Hessian). The approximation above computes the
main blocks of the Hessian, namely Hessians with respect to each layer. In practice, the
cross-layer components are of smaller order and can be omitted (Botev, Ritter, and Barber,
2017). However, our approximation extends to this case by using two different v’s instead of
one.

Remark 2 (Low computational complexity). Computing the Hessian approximation is
of cost comparable to backpropagation. The only Hessian we need is the final loss/output
Hessian, which is usually small (K2 for the classification of K classes).

Remark 3 (Beyond MLP model). We formulated the result for densely-connected net-
works but the approximation holds in general with v = DW(k)z(n) • g (as we will see in
empirical evaluation).

Remark 4 (Perfect approximation for ReLU networks). We have exact equality for ac-
tivations with f ′′ = 0 such as variants of ReLU (see Section 4.3.3).
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Remark 5 (Good approximation up to leading terms). Regardless of the activation func-
tion, the error term is of smaller order (under our assumption of bounded inputs).

Remark 1 involves a hidden constant which we demonstrate to be small in prac-
tice (see our experiments in section 7.5).

4.1.1 Approximation via Jacobian Products

From the previous subsection, we are left with the linearization effect of the chain
rule. The linearization effect refers to the ability to approximate a non-linear func-
tion using a linear function, which can make the calculation of derivatives simpler.
By factorizing the linearization effect of the chain rule, we can further simplify the
problem of controlling the products of the hidden layers’ Jacobians. This means that by
breaking down the chain rule into simpler components, it becomes easier to under-
stand and control the impact of the hidden layers on the overall function.

Theorem 2 (Hessian factorized into Jacobians). Up to third-order terms in z(i), we can
factorize v from Theorem 1 into

v ≈ J(n−1) · . . . J(k+1) · A · g · J(k−1) · . . . J(0) · z(0) (4.4)

where Jk = Dz(k)z
(k+1) is the derivative of the output with respect to the input at the k-th

layer. In particular, the Hessian’s dominant eigenvalue scales by a factor of at most ∥v∥2,
where it holds that:

∥v∥ ⩽ ∥ J(n−1) · . . . · J(k+1)︸ ︷︷ ︸
backward product

∥ · ∥A∥ · ∥ J(k−1) · . . . · J(0)∥︸ ︷︷ ︸
forward product

· ∥z(0)∥ (4.5)

The norm of the matrix product ∥Jk . . . J1∥ then is computed as the maximum
of the vector norm ∥Jk · · · J1 · v∥ over vectors v with unit norm. Given this result,
a good weight initialization thus aims to make the backward and forward products
having a norm close to 1.

Remark 6 (Connection to products of random matrices). Note that our problem closely
resembles the problem of random matrix products (Kargin et al., 2010). This is because
Jacobians for smooth activation functions are simply random-weight matrices.

Remark 7 (Connection to spectral norms). Further, it is possible to estimate the prod-
uct of random matrices by the product of their spectral norms. In particular, the spectral
norm of a random m × n matrix with zero-mean and unit-variance entries is 1√

m+
√

n on
average (Silverstein, 1994). For the Gaussian case, this can be found precisely by Wishart
matrices (Edelman, 1988). This however is overly pessimistic for long products, for similar
reasons as overestimating of Lipschitz constants (Szegedy et al., 2013; Virmaux and Scaman,
2018).

4.2 Second-order Optimizer

The idea behind our second-order optimizer is to enable efficient and systematic
training of NNs as learning non-use-case specific models has been shown to be a
challenging task in DL and even the choice of the optimizer has become a hyper-
parameter. For example, SGD with momentum is typically used in Computer Vi-
sion; Adam is used for training transformer models for NLP; and Adagrad is used
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for Recommendation Systems. Many attempts have been made to justify and un-
derstand the source of use-case specificity that distinguishes DL problems. To this
date, second-order optimization methods have been partially shown to be effective
in some cases but have not been sufficiently investigated in the context of learning
and optimization.

4.2.1 What is the Problem with SGD?

If we look at what happens when training with SGD, we have a loss function and we
are trying to do descent but what actually happens is that it uses the same learning
rate across all the layers of a NN. The problem is that not all the layers have the
same loss landscape. One way to look at this is if, with the network in figure 4.1,
we wanted to fit the family of quadratic functions (let’s not forget that in ML the
optimization algorithm tries to fit in the best possible way a family of functions, this
problem has been formalized as a problem of minimum. For this example we have
the quadratic family of functions). The last layer looks like y = x2, the 4th layer has
a loss landscape of y = 4x2 and the first layer has y = 0.1x2. If we have a flat loss
landscape, like in 0.1x2, we want to take a bigger step size because the gradient is
small and if we use the same step size when we have a sharper loss landscape, as in
4x2, this is going to be suboptimal. SGD does not see this in fact, at the origin, the
first derivative of y = x2, y = 4x2, y = 0.1x2 is all the same: 0. So the concept behind
our second-order optimizer is to have a learning process that adapts depending on
the loss landscape of every layer.

FIGURE 4.1: Different functions of the same family across NN layers

Let’s recall the general update formula,

Wt+1 = Wt − η∆Wt (4.6)

we can read this formula as the next parameter is equal to the old parameter
minus the learning rate times the direction. This direction for first-order methods
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is the gradient. What second-order methods do, is to normalize these curvature
differences through the Hessian information.

4.2.2 AdaPrHess: Adaptive Approximated Hessian

Adam is an attempt to fix SGD’s problems by developing an Adaptive Moment Es-
timation optimizer. Adam combines the ideas of momentum and adaptive learning
rate to improve the stability and speed of convergence of the NNs. If momentum
can be seen as a ball running down a slope, Adam behaves like a heavy ball with
friction which prefers flat minima in the error surface. Adaptive learning rates, on
the other hand, help the algorithm to adjust the step size automatically based on the
characteristics of the error surface. Adam’s update formula is

Wt+1 = Wt − ηt
mt

vt
(4.7)

where mt and vt are decaying averages of past and past squared gradients

mt =
(1− β1)∑t

i=1 βt−i
1 gi

(1− βt
1)

vt =

√
(1− β2)∑t

i=1 βt−i
1 g2

i
(1− βt

2)

They represent the first moment (the mean) and the second moment (the uncen-
tered variance) of the gradients, hence the name of the method. Even if Adam is a
great attempt to address the issue with SGD, the problem remains the same as the
nature of the information exploited does not change: first-order derivates.

We propose AdaPrHess, an optimizer that uses second-order information
in the update rule. We calculate mt and vt as follows:

mt =
(1− β1)∑t

i=1 βt−i
1 gi

(1− βt
1)

vt =

√
(1− β2)∑t

i=1 βt−i
1 d2

i

(1− βt
2)

The first momentum is as before, compute the momentum gradient. In the sec-
ond momentum, the denominator vt, we are using the diagonal of the Hessian in-
stead of the gradient, referred to as d2

i . This small difference has a powerful effect
as we dynamically incorporated both kinds of knowledge in order to approximate
the loss function: gradient and Hessian. Utilizing this information improves the effi-
ciency of the optimization process and helps converge to a solution more rapidly as
the second-order derivatives are used to determine the nature of a critical point, such
as whether it is a local maximum, local minimum, or a saddle point (an example of
this concept is illustrated in Figure 4.2).
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FIGURE 4.2: The trajectory of our AdaPrHess compared with the tra-
ditional gradient descent. Gradient descent converges very slowly
whereas AdaPrHess converges to the optimum way more quickly be-

cause of the directional second-order derivative

4.3 Relationship to Popular Activation Functions

We next discuss the relationship of our Hessian-based weight initialization scheme
to a number of previous schemes, namely smooth activations, dropout, and ReLU (Glo-
rot and Bengio, 2010, Hendrycks and Gimpel, 2016 Krizhevsky, Sutskever, and Hin-
ton, 2012).

4.3.1 Smooth Activations

We first formulate the following lemma.

Lemma 1 (Dot-product by random matrices). Let W be a random matrix of shape [n, m],
with zero-mean entries and a variance of σ2. Let z, z′ be independent vectors of shape [m]
and [n], respectively. It then holds that:

E∥W · z∥2 = nσ2 · E∥z∥2 (4.8)

E∥z′ ·W∥2 = mσ2 · E∥z′∥2 (4.9)

Using this, we can estimate the growth of the Jacobian products in Theorem 2 as
follows.

Corollary 1 (Smooth activations). Consider activation functions such that f ′(0) = 1.
Then J(k) ≈W(k) (up to leading terms) and the norm of the forward product is stable when

Var[W(k)] =
1

dk+1
, (4.10)
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while the norm of the backward product is stable when

Var[W(k)] =
1
dk

. (4.11)

As a compromise, we can choose Var[W(k)] = 2
dk+1+dk

.

Note that we exploit the fact that (up to leading terms) Jacobians of smooth acti-
vation functions are independent from any other components.

4.3.2 Dropouts

Dropouts (i.e., inactive neurons) can be described by a randomized function fp which,
for a certain dropout probability p, multiplies the input by B1−p · 1

1−p , where B1−p

is a Bernoulli random variable with parameter 1− p. The Jacobian then is precisely
given by:

J = W = diag(B1, . . . , Bd), Bi ∼ Bern(1− p) (4.12)

When multiplying from left or right, this scales the norm square by (1 − p)−2 ·
E[Bern(1− p)]2 = 1− p. Thus, we obtain the following corollary.

Corollary 2 (Initialization for dropout). Let 1− p be the keep rate of a dropout. Let σ2

be the initialization variance without dropouts, then it should be corrected as:

σ′ = σ/
√

1− p (4.13)

This corresponds to the analysis in Hendrycks and Gimpel, 2016, except that they
suggested a different correction factor for the backpropagation phase.

4.3.3 ReLU

Rectified Linear Unit (ReLU) (Krizhevsky, Sutskever, and Hinton, 2012) is a non-
linear activation function given by f (u) = max(u, 0). Consider a layer such that
z′ = f (u), u = W · z, where W is zero-centered with a variance of σ2 and again of
shape [n, m], while z is of shape m. We then have J = Dzz′ = diag( f ′(u)) ·W.

For the forward product, we therefore consider J · z = diag( f ′(u)) · u. This scales
the norm of u by 1

2 when u is symmetric and zero-centered, which is true when also
W is symmetric and zero-centered. The norm of z is thus changed by nσ2

2 .
For the backward product, on the other hand, we have to consider v · J · J, where

J is the Jacobian product for the subsequent layers and possibly depends on u. How-
ever, if the next layer is initialized with i.i.d. samples, the output distribution only
depends on the number of active neurons r = #{i : ui = 1}. Conditioned on this in-
formation, the following layers are independent from J. Given r, the squared back-
ward product norm thus changes by the factor r/n · mσ2. Since E[r] = n/2, the
scaling factor is mσ2

2 .

Corollary 3 (ReLU intialization). The initialization variance σ2 in the presence of ReLU
should thus be corrected as:

σ′ =
σ√
2

(4.14)

We remark that similar techniques can also be used to derive formulas for weighted
ReLU (Arpit, Campos, and Bengio, 2019).
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FIGURE 4.3: Behaviour of activation functions around 0

4.4 Experiments

We conducted the following experiments to support our theoretical findings stated
in the previous sections. To cover a broad and diverse range of experiments, we
trained our models on the MNIST, FashionMNIST, CIFAR10, Google SVHN, and
Flowers image datasets and the Tiny Shakespeare dataset.
Implementation. All models were coded in Python using the Tensorflow 2.4 li-
brary (A. et al., 2015) .
Hessian Calculation. The Tensorflow API (in the release 2.4.0, used for the exper-
iments) does not have good support for Hessian calculations. The default imple-
mentation under tf.hessians is not compatible with fused operations, which are
operations that are combined together for more efficient computation. This means
that certain loss functions, such as the sparse cross-entropy used in classification,
cannot be used as described in GitHub, 2019a. Additionally, the evaluation of Hes-
sian products is not allowed without creating the entire Hessian, which can cause
memory issues. This is problematic because creating the entire Hessian requires
a lot of memory, especially for large datasets. Batch mode is also not supported,
which means that the default implementation does not allow for calculating gradi-
ents for multiple samples at once. Parallel computation of components for Jacobians
has only recently been added (Agarwal, 2019), but it does not work when combin-
ing higher-order derivatives as discussed in the issue GitHub, 2019b. This means
that efficient calculation of higher-order derivatives is not possible at the moment.
Therefore, when implementing an approximation, a hybrid solution of expressing
Hessians as a composition of sequential gradients followed by parallelized compu-
tation of the Jacobians is used. This approach allows for a more efficient calculation
of Hessians. The fast Hessian-vector algorithm is utilized, this algorithm is an effi-
cient way to compute the action of the Hessian of a scalar-valued function on a given
vector. Using this algorithm makes it possible to approximate the Hessian without
calculating it explicitly, which can save both time and memory.
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4.4.1 Correlations between Loss and Layer Gradients

In the variance analysis one assumes (Glorot and Bengio, 2010; He et al., 2015; Xu,
Huang, and Li, 2016; Hendrycks and Gimpel, 2016) that the gradient components
of the chain rule in 3.2 are independent, and each has i.i.d. entries. As previously
argued, we expect the gradient of the loss with respect to the output ∂L

∂z(n)
and the

layer-to-layer gradients ∂z(i)
z(i−1) to be correlated. We therefore prepared an experiment

to demonstrate these correlations based on a simple 3-layer NN with Glorot’s initial-
ization scheme over the MNIST dataset. We re-ran the initialization a large number
of times and used Pearson’s r correlation test to estimate the dependencies, each using
different random seeds. Our findings confirm (i) very significant correlations among
components of the loss gradient, as well as (ii) significant correlations between the
loss/output gradient and the output/layer gradients. The experiment is summa-
rized in Table 4.1.

#Samples Tested Gradients Dependencies Test Result
104 Loss/Output 10/10 times avg. p-value ≈ 10−5

(diff. components) (strong evidence)
105 Loss/Output6 9/10 times avg. p-value ≈ 2 · 10−2

vs. Output6/Output5 (strong evidence)

TABLE 4.1: Correlations among the components of the backpropa-
gation equation for a simple 3-layer NN. Dependencies tested with

Pearson’s r at 95% significance, using 10 seeds each.

4.4.2 Hessian at Initialization and Convergence

Activation Initialization Loss after 2 Epochs
ReLU Hessian-driven stddev (1) 0.181294
ReLU He Normal 0.307550
ReLU Orthogonal 0.373200
tanh Glorot 0.356311
tanh Orthogonal 0.375280

TABLE 4.2: Our initialization approach compared with other meth-
ods. The architecture is a 3-layer network trained on MNIST data.

In this experiment, we compare a) the initialization approach using Theorem
1, picking the weights according to the Hessian values, and b) different standard
deviations.

The model is a dense 3-layer network on MNIST, with layers of 128, 128 and 10
output units, respectively. We train for two epochs, using SGD with a learning_rate
= 0.1. Our approach gives much better results for the loss after 2 training epochs,
as depicted in Table 4.2.

To make the experiment more challenging, we trained a model with ResNet18
on Cifar-10 with 10 output units on the last dense layer. We train for 10 epochs, us-
ing SGD with a learning_rate = 0.01, activation function set to SeLU (except for
the last dense layer), and initializer set to random normal distribution (with different
standard deviations). The estimation of the Hessians is evaluated on 5 convolutional
layers and on the last dense layer. It is possible to look at the Hessian values and
make the right choice on which standard deviation to use. This is possible because
the Hessian carries second-order information that captures the loss landscape’s com-
plexity. More detailed results of this setup, including the estimated Hessians and
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the loss after different steps, are presented in Figure 4.4. The initial Hessian values
are evaluated on the normalized gradients, and weights are re-randomized to ob-
tain the density plots. Compared to our approach, other schemes are underestimat-
ing the weights. The Hessian values explode or vanish for bad standard deviation

FIGURE 4.4: Hessian at initialization (distributions under initializa-
tion randomness) compared with the training loss progress.

whereas for good standard deviations the density plots are almost aligned (concen-
trated between 100 and 101). To summarize, our approach gives a diagnostic tool
that provides guidance on how to tune the initialization schemes and allows faster
convergence.

4.4.3 Good Initializers Nearly Stabilize the Hessian

In this experiment, we demonstrate that under popular initialization schemes, Hes-
sian norms are relatively small at the initialization and during training, and also
when estimated on batches. However, often for some of the layers, Hessian norms
are significantly smaller than 1, which signals that there is still room for improvement
(as discussed in the previous section) for these schemes. To illustrate this claim, we
use the LeNet5 architecture on the CIFAR10 dataset (depicted in Figure 4.5) and Ef-
ficientNet architecture for other datasets: FashionMNIST (Xiao, Rasul, and Vollgraf,
2017) and SVHN (all shown in Figure 4.6), using tanh as activation functions and
Glorot initialization scheme. The reported Hessians’ values are evaluated on nor-
malized gradients, as before.
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FIGURE 4.5: Hessian and loss values during training (batch esti-
mates).

FIGURE 4.6: Hessian norm during training.

4.4.4 Error in Hessian Approximation

Theorem 1 shows that, up to terms of smaller orders, the curvature effect can be
neglected. Below, we experimentally verify that the constant under the O() term is
indeed small. We estimated a) the relative error in Theorem 1 at initialization, using
several initialization restarts, as shown in Figure 4.7 and b) the relative error in 1
during training (computed on the batch), shown in Figure 4.8 For the first experi-
ment, we used both ResNet and EfficientNet architectures on MNIST, CIFAR10 and
Flowers dataset.

For the second experiment, we used ResNet, EfficientNet and a simplified ver-
sion of GoogleNet on CIFAR10. We trained the models for 5 epochs. For both exper-
iments, we sampled 5 layers (4 convolutional and 1 dense) to show how the Hessian
changes (with respect to the error and the iterations), the models are initialized with
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FIGURE 4.7: Our Hessian approximation at initialization.

SeLU activation function and with random distribution. The Hessian was evalu-
ated on the corresponding gradients. We find that the approximation is accurate at
initialization, and works remarkably well during training on small batches (the rel-
ative error smaller than a small constant ensures that we capture the right order of
magnitude).

4.4.5 Training with the Hessian

In this experiment, we show the benefits of plugging our Hessian approximation
into a new update rule based on Adam (Kingma and Ba, 2015). We trained a Word2Vec1

model using the Tiny Shakespeare dataset (Karpathy, 2015) in three settings: (1) us-
ing SGD; (2) using the standard Adam optimizer; (3) using Adam adapted with our
novel Hessian approximation.

The Tiny Shakespeare dataset (Karpathy, 2015) is composed of 40,000 lines of
varied Shakespeare plays. We chose it due to its limited size, which should impact
the convergence of such a high-dimensional problem and make it more challeng-
ing. Thus, this limitation should accentuate the difference of how different opti-
mizers estimate the global curvature of the loss landscape. We used 85% of the
dataset for training and 15% for validation of the model. For the SGD setting, we

1https://www.tensorflow.org/tutorials/text/word2vec

https://www.tensorflow.org/tutorials/text/word2vec
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FIGURE 4.8: Our Hessian approximation during training.

used learning_rate = 0.1. Regarding the Adam based settings, we used mostly
the same hyperparameters on both of them: CategoricalCrossentropy to calcu-
late the loss, mini_batch_size = 512, learning_rate = 0.001, beta_1 = 0.99 and
beta_2 = 0.999. Differently, we used epsilon = 1e-4 for our setting, while we
used epsilon = 1e-7 for standard Adam. The increase in the epsilon for our set-
ting was simply to avoid gradient vanishing, which seems to happen at different
values due to the Hessian approximation. We note that all the values of the other
hyperparameters are the standard ones for Adam when using TensorFlow.

Figure 4.9 illustrates the results of our experiments. We can compare the dif-
ference of the validation loss when using different optimizers, with respect to the
number of epochs used to train the Word2Vec models. There are two results that we
would like to highlight: (1) our Adam adaptation achieved a smaller validation loss
during the whole training; (2) our Adam adaptation was impacted less by overfitting
than Adam and SGD.

Considering the computational time to train the Word2Vec model, our approach
took 38% longer than Adam and was over 4 times faster than SGD. It took 229s to
reach minimum validation loss (3 epochs), while Adam took 165s (3 epochs), and
SGD took 999s (333 epochs). Those results are indications that the Hessian approx-
imation may improve standard Adam convergence in exchange for some compu-
tational efficiency. However, we note that the complexity of using our Hessian ap-
proximation still is orders of magnitude smaller than using the exact Hessian. Even
so, it is still possible to observe the benefits of the second-order derivatives when
comparing SGD, standard Adam, and our approach with respect to the validation
loss curves.
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FIGURE 4.9: Comparison of SGD, standard Adam, and our Adam
adapted with the Hessian approximation.

4.5 Final Remarks

We discussed how to approximate Hessians of loss functions for NNs, and devised
how to use them to gain better insights into weight initialization and optimization
of NNs. The main theoretical finding is our approximated chain rule for Hessian
backpropagation which goes beyond first-order derivatives and is able to capture
second-order effects. Besides our theoretical results, we provide a detailed empir-
ical validation of these ideas, which demonstrates that (i) considering the Hessian
norm leads to faster convergence of the learning loss than existing initialization
schemes under various activation functions, (ii) we can plug Hessian information
into Adam’s update rule with remarkable results and (iii) our approximation of the
chain rule allows for fast computations without a noticeable impact on the training
time.





51

Part III

Improved Bounds for Random
Embeddings
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Chapter 5

Introduction

We now move on to the next part of this thesis, discussing improved performance
of random embeddings. While we have been exploring second-order methods to
optimize model parameters and potentially speed up convergence in DL, another
fascinating area of research that complements these techniques is random embed-
dings. As we shift our focus from calculating second-order derivatives to discover-
ing alternative approaches, random embeddings offer a way to reduce the dimen-
sionality and complexity of data in DL models. By leveraging random projections
and preserving essential structure within the data, these embeddings allow for more
efficient training and improved generalization in various tasks, such as classifica-
tion and clustering. In the following discussion, we will delve into the theoretical
properties of random embeddings and detail on how we improved their bounds.

5.1 Dimensionality Reduction

Dimensionality reduction is a technique used in ML and data analysis to reduce the
number of variables (features or dimensions) in a high-dimensional dataset. The
goal is to identify a lower-dimensional subspace that still retains the important in-
formation present in the original dataset. This is accomplished by projecting the
data points from the high dimensional space to the lower dimensional space in such
a way that the maximum amount of information is preserved.

The main benefits of dimensionality reduction include reduced computational
cost, improved visualization of the data, and improved performance of DL algo-
rithms. It can also help in identifying patterns and relationships in the data that
might not be easily noticeable in the high dimensional space. An example of this
concept is shown in Figure 5.1, where we project 3d data down to a 2d plane. The
2d approximation is quite good since most points lie close to this subspace. The un-
derlying idea behind this technique is to recognize that even though the data may
seem to have a large number of dimensions, there could actually be only a limited
number of factors that contribute to the variability of the data. In other words, there
may only be a few latent variables that explain most of the variation in the data. For
instance, when modeling the appearance of facial images, there might be only a few
factors that describe most of the variability in the data. These factors could include
lighting conditions, the pose of the face, the identity of the person, and so on.

There are several techniques for dimensionality reduction, including random
embeddings, principal component analysis (PCA), singular value decomposition
(SVD), and many more. The choice of technique depends on the specific require-
ments of the problem and the type of data being analyzed. A computationally simple
method of dimensionality reduction that does not introduce significant distortion in
the dataset would be thus desirable.
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Random embeddings are a powerful tool widely used in many fields to reduce
the dimensions of the input data in a computationally feasible way. This technique
projects high-dimensional data into a lower-dimensional space using a random ma-
trix while approximately preserving the main characteristics of the original data.

FIGURE 5.1: An example of dimensionality reduction. A set of points
embedded in 3d can be represented in 2d with minimal loss of infor-

mation.

This Part III studies the theoretical properties of random embeddings and their
application to several classes of optimization problems and it will provide a deeper
understanding of the technique and its potential applications. Specifically, we ad-
dress two topics related to random embeddings. First, we analyze and improve
upon the guarantees for sparse random embeddings. We show that our bounds are
explicit as opposed to the asymptotic guarantees provided in the previous state of
the art. Our bounds are guaranteed to be sharper by significant constants across a
wide range of data-driven parameters, including dimensionality, sparsity, and dis-
persion of the data. This means that our approach can be used to generate random
embeddings that are more accurate and efficient than traditional methods. We em-
pirically demonstrate that our bounds significantly outperform prior works on a
wide range of real-world datasets, such as collections of images, text documents
represented as bags of words, and text sequences vectorized by neural embeddings.
Behind our numerical improvements are techniques of broader interest, which im-
prove upon key steps of previous analysis in terms of tighter estimates for certain
types of quadratic chaos, establishing extreme properties of sparse linear forms, and
improvements on bounds for the estimation of sums of independent random vari-
ables. Second, we revisit the performance of Rademacher random embeddings and
establish novel statistical guarantees that are numerically sharp and non-oblivious
with respect to the input data. More specifically, our result is the Schur-concavity
property of Rademacher random embeddings with respect to the inputs. This offers
a novel geometric perspective on the performance of random projections while im-
proving quantitatively on bounds from previous works. This means that our meth-
ods can provide better statistical guarantees than traditional methods, even when
working with non-oblivious data. This non-oblivious analysis is a novelty compared
to the techniques from the previous work and bridges the frequently observed gap
between theory and practice.

We start by doing an example and show how random embeddings can be used
as a dimensionality reduction tool and then delve deeper into the technical details of
our research and the results we have obtained. This includes a detailed explanation
of the mathematical foundations of our methods, as well as numerical experiments
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that demonstrate the efficacy of our approach in addressing the curse of dimension-
ality in numerical optimization.

Example Random Embeddings

Let’s examine the example below. Suppose we have the matrices as follows: X
is a 10× 10 matrix representing our input data. The random matrix A serves
as our random embedding with sparsity s = 0.66, and has dimensions 10× 3.
Lastly, our projected data is of dimensions 10× 3.
It is evident that the final projected matrix has significantly lower dimensions
than the original matrix X: 10 × 10 compared to 10 × 3. If we were to in-
crease the input data matrix by 3 or 4 orders of magnitude, the advantages
of random embeddings become even more apparent. Although this example
is simplistic, it effectively conveys the core concept: random embeddings of-
fer a powerful approach for handling high-dimensional data by reducing its
dimensions while preserving the essential features.

X =



6 4 5 1 8 1 7 5 6 8
4 5 6 8 0 2 0 1 7 2
0 5 0 7 7 0 0 8 8 5
1 8 2 4 5 5 3 2 4 1
0 1 4 1 8 7 5 5 4 1
4 6 2 4 8 7 2 6 3 4
3 1 8 4 7 4 2 5 1 6
5 1 6 2 7 3 3 0 6 0
4 5 3 2 4 3 8 7 1 1
4 1 4 2 1 8 1 4 7 3



AT =

0 0 1 0 1 0 0 1 1 1
0 1 0 0 0 1 1 0 0 0
1 0 1 0 0 0 0 0 1 0



ATX =



32 12 17
16 7 17
28 5 8
14 16 7
22 13 8
23 15 9
27 7 12
19 7 17
16 16 8
19 10 15



Next, we are going to describe the most used dimensionality reduction tech-
niques: random embeddings, principal component analysis (PCA) and singular value
decomposition (SVD).
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5.2 Methods for Dimensionality Reduction

5.2.1 Random Embeddings

This technique is based on the Johnson-Lindenstrauss lemma, which states that any
high-dimensional data can be embedded in a lower-dimensional space while ap-
proximately preserving the pairwise distances between the points. This lemma pro-
vides a theoretical foundation for the technique and makes it more reliable. By show-
ing that it is possible to approximate the Euclidean distances between data points in
a lower-dimensional space, it provides a way to embed high-dimensional data in
a computationally feasible way. We are going to discuss further this lemma in the
next chapter, at the moment this intuition is sufficient to describe random embed-
ding with the following notation,

XRand.Emb.
d×n = Ad×mXm×n

given that Xm×n is the original data that we want to project, Ad×m is the random
matrix used for the projection and XRand.Emb.

d×n represents the projected data to a d-
dimensional subspace. Random embeddings (also known as random projections)
can be faster and more effective than most dimensionality reduction techniques.
Looking at the time complexity, it is O(ndm) when projecting on a subspace of size
d (and even faster if the matrix is sparse).

5.2.2 Principal Components Analysis

Like random embeddings, also PCA defines a projection from a high-dimensional
space into a low-dimensional space picking a small set of "direction" vectors that
can be used as a basis to explain the data in the low-dimensional space. The major
difference is that PCA is trying hard to pick the best basis vectors by looking for
directions in which the original data varies the most (as the first principal compo-
nent can equivalently be defined as a direction that maximizes the variance of the
projected data) while random embeddings are picking the directions randomly.

XPCA = EigenmatrixX

For PCA the "directions" are the eigenvectors of the data covariance matrix
Eigenmatrix{XXT}, then if dimensionality reduction of the given dataset is desired,
the data can be projected onto a subspace spanned by the most important eigenvec-
tors. When working with very high dimensional data, PCA can become slow with
time complexity of O(n2×m+ n3) on a matrix of size m× n. PCA maintains the best
possible projection, however, if you want to explore variability in order to gain sta-
bility and precision from aggregation, there is only one set of principal components
(i.e., only one best possible projection) and PCA cannot be used in this situation.
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Example PCA

Given the initial multi-dimensional array:

X =

1 2 3
4 5 6
7 8 9


1. Standardize the data (mean = 0, standard deviation = 1):
Calculate the mean for each column:

µ1 =
1 + 4 + 7

3
= 4, µ2 =

2 + 5 + 8
3

= 5, µ3 =
3 + 6 + 9

3
= 6

Subtract the mean from each value in the corresponding column and divide
by the standard deviation (std) for each column:

σ1 = 2.45, σ2 = 2.45, σ3 = 2.45

Xstd =

−1.22 −1.22 −1.22
0.00 0.00 0.00
1.22 1.22 1.22


2. Compute the covariance matrix:

Covmatrix =

0.75 0.75 0.75
0.75 0.75 0.75
0.75 0.75 0.75


3. Calculate the eigenvalues and eigenvectors of the covariance matrix:
Eigenvalues: λ1 = 2.25, λ2 = 0, λ3 = 0

Eigenvectors: v1 =

0.577
0.577
0.577

 , v2 =

−0.707
0.000
0.707

 , v3 =

 0.408
−0.816
0.408


4. Sort the eigenvalues in descending order and select the d eigenvectors
corresponding to the d largest eigenvalues. Since we want to reduce the di-
mensions to 2, we will choose the eigenvectors corresponding to the 2 largest
eigenvalues (λ1 and λ2):

Eigenmatrix =

0.577 −0.707
0.577 0.000
0.577 0.707


5. Project the standardized data onto the new eigenspace (multiply the stan-
dardized data with the eigenvector matrix):

Xprojected =

−2.11 −0.87
0.00 0.00
2.11 0.87


By applying PCA, we have reduced the dimensions of the original 3x3 array
to a 3x2 array:

Xprojected =

−2.11 −0.87
0.00 0.00
2.11 0.87
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5.2.3 Singular Value Decomposition

A closely related method to PCA is SVD,

Xm×n = Um×mSm×nVT
n×n

where U is an orthogonal matrix whose columns are orthonormal eigenvectors
of XXT, S is a diagonal matrix containing the square roots of the eigenvalues of U
and V and VT is the transpose of an orthogonal matrix whose rows are orthonormal
eigenvectors of XTX. However, by reducing S to its d largest singular values, we
may achieve the desired dimensionality reduction also for U and VT:

Xm×n ≈ Um×dSd×dVT
d×n

Using SVD, the dimensionality of the data can be reduced by projecting the data
onto the reduced-dimensional space VT

d corresponding to the d largest singular val-
ues:

XSVD = VT
d×nX

Like PCA, SVD is expensive to compute. It is more efficient (even if still expen-
sive) for sparse data, as the time complexity becomes dependent on the c non-zero
entries per column O(c× m× n), which is why it is used for text processing docu-
ments in NLP use cases.
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Example SVD

Let’s perform SVD on the same 3x3 multi-dimensional array we used for the
PCA example. Given the initial multi-dimensional array:

X =

1 2 3
4 5 6
7 8 9


1. Perform SVD on X:

U =

−0.215 0.884 0.415
−0.520 0.240 −0.823
−0.826 −0.404 0.408



S =

16.848 0.000 0.000
0.000 1.528 0.000
0.000 0.000 0.000



VT =

−0.479 −0.576 −0.674
0.776 0.076 −0.624
0.408 −0.816 0.408


2. Reduce dimensions by selecting the d largest singular values (d=2 in our
case) and their corresponding columns in U and VT:

Ud =

−0.215 0.884
−0.520 0.240
−0.826 −0.404


Sd =

[
16.848 0.000
0.000 1.528

]

VT
d =

[
−0.479 −0.576 −0.674
0.776 0.076 −0.624

]
3. Reconstruct the matrix X with reduced dimensions by multiplying Ud,
Sd, and VT

d :

Xreduced = Ud × Sd ×VT
d =

−0.846 1.945 1.111
−4.683 4.946 4.111
−8.520 7.946 7.111


Keep in mind that this reconstructed matrix is an approximation of the origi-
nal matrix with reduced dimensions.
4. Project the original data onto the reduced-dimensional space by multi-
plying the original matrix X by the reduced VT

d :

Xprojected = X×VT
d =

−2.689 1.483
−6.142 0.444
−9.594 −0.594


By applying SVD, we’ve reduced the dimensions of the original 3x3 array to
a 3x2 array:

Xprojected =

−2.689 1.483
−6.142 0.444
−9.594 −0.594
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Although PCA and SVD are powerful dimensionality reduction techniques, they
can be computationally expensive, particularly when dealing with large, high di-
mensional datasets. This computational burden often poses challenges for real-
world applications that require fast and efficient data processing. However, there
exist numerical approximations that alleviate this burden by providing approximate
solutions, without calculating PCA or SVD exactly. These approximate methods,
such as Randomized PCA and Randomized SVD, utilize randomized algorithms to
significantly reduce computational complexity while still preserving the essential
structure of the data. By employing these approximations, one can achieve substan-
tial speedup and memory efficiency in comparison to the traditional PCA and SVD
techniques, making them more feasible for large-scale data analysis tasks. In light
of these challenges and the potential benefits of randomized algorithms, we inves-
tigated random embeddings as an alternative approach for dimensionality reduc-
tion. The next chapter will introduce the background and state-of-the-art of random
embeddings, providing a comprehensive overview of this promising technique for
efficient data processing and analysis.



61

Chapter 6

Background and Related Work

The seminal result of Johnson and Lindenstrauss, 1984 states that random linear map-
pings have nearly isometric properties, and hence are well-suited for embeddings:
they nearly preserve distances when projecting high-dimensional data into a lower-
dimensional space. Formally, for an error parameter ϵ > 0, an m× n matrix A appro-
priately sampled (e.g., using appropriately scaled Gaussian entries), and any input
vector x ∈ Rn, it holds that

1− ϵ ⩽ ∥A x∥2/∥x∥2 ⩽ 1 + ϵ with probability 1− δ (6.1)

if the embedding dimension is m = Θ
( 1

ϵ2 log 1
δ

)
.

This bound on the dimension m has been shown to be asymptotically optimal (Jayram
and Woodruff, 2013), while the assumptions made on the Gaussian distribution of
matrix A can be further replaced by the Rademacher distribution, or relaxed even
further by only requiring the sub-Gaussian condition to hold for the construction of
the projection matrix A.

The result is a typical dimension-distortion tradeoff : one aims to minimize m ≪
n, while keeping ϵ and δ possibly small. Smaller dimensions m allow for efficient
processing of large, high-dimensional datasets, while a small distortion guarantees
that analytical tasks can be performed with a similar effect over the embedded data
as it is the case for the original data.

Over the past years, variants of the aforementioned Johnson-Lindenstrauss Lemma
have found important applications to text mining and image processing (Bingham
and Mannila, 2001), approximate nearest-neighbor search (Ailon and Chazelle, 2006;
Indyk and Motwani, 1998), approximation algorithms for clustering high-dimensional
data (Makarychev, Makarychev, and Razenshteyn, 2019), speeding up computations
in linear algebra (Nelson and Nguyên, 2013; Sarlos, 2006; Clarkson and Woodruff,
2017), analyzing graphs (Frankl and Maehara, 1988; Linial, London, and Rabinovich,
1995), and even to hypothesis testing (Lopes, Jacob, and Wainwright, 2011; Shi, Lu,
and Song, 2020) and privacy (Blocki et al., 2012; Kenthapadi et al., 2013). It is also
worth mentioning, from a theoretical perspective, the importance of understand-
ing Hilbert spaces in functional analysis (Johnson and Naor, 2010). Finally, we note
that, while 6.1 gives high-probability guarantees for the sampled matrix, it is also
possible to find the concrete matrix A which (surely) satisfies this inequality in ran-
domized polynomial time (Dasgupta and Gupta, 1999) or by means of derandom-
ization (Kane and Nelson, 2010). The focus of this paper is on linear sparse random
embeddings, where A in 6.1 has at most s non-zero entries in each column, which al-
lows for faster computation of the embedded vectors. This setup has been covered
by a substantial line of recent research (Ailon and Chazelle, 2006; Kane and Nelson,
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2014; Li, Hastie, and Church, 2006), which established that, for the optimal dimen-
sion m, one may set s = Θ(m ϵ), thereby gaining a factor of ϵ in matrix sparsity1.
This can be further improved by exploiting structural properties of the input data: as
shown in recent works (Kane and Nelson, 2014; Freksen, Kamma, and Larsen, 2018;
Freksen, Kamma, and Larsen, 2019), with v ≜ ∥x∥∞/∥x∥2, one may set the sparsity
to

s = Θ

(
v2

ϵ
max

(
log

1
δ

,
log2 1

δ

log 1
ϵ )

))
(6.2)

while keeping the optimal choice of dimension m = Θ
( 1

ϵ2 log 1
δ

)
. This shows that

a better sparsity s is feasible when the data-dependent parameter v is small. The
parameter v should thus be understood as the dispersion of the input vector x, i.e., v is
small when the components of x are of comparable magnitude, and it is larger when
there are dominating components. Empirically, random embeddings work much
better than predicted by their theoretical bounds. The main goal of this work thus
is to bridge this frequently observed gap between theory and practice and thereby
develop both robust and provable guarantees for sparse random embeddings.

Recent state-of-the-art analyses (Freksen, Kamma, and Larsen, 2018; Freksen,
Kamma, and Larsen, 2019) provide only asymptotic bounds which tend to disguise
dependencies on rather large constants (Freksen, Kamma, and Larsen, 2018). In
practice, they often yield trivial results which however limits their usability. More-
over, real-data evaluations from prior works are mostly of qualitative nature: they
analyze trends in parameter tradeoffs (Freksen, Kamma, and Larsen, 2019) rather
than provable guarantees. Regarding the dispersion measure v = ∥x∥∞/∥x∥2, which
is the key ingredient of recent improvements, no study has evaluated its typical be-
havior on real-world data to our knowledge so far. The typical value of the disper-
sion v may also depend on the type of the data (text, images, etc.), which in turn
makes the findings harder to generalize.

To date, the literature offers no satisfactory treatment of this prevalent gap be-
tween provable and practically meaningful guarantees. Some authors (Freksen,
Kamma, and Larsen, 2018; V. and W., 2011) suggested that very good empirical per-
formance may be an evidence for small constants, but it may well be the case that
sparse random embeddings work better than predicted by the underlying theory
due to other data properties, not present in any of the analyses. Indeed, while one
can expect a low data dispersion to help increasing sparsity, the proposed dispersion
measure v is very crude and does not capture this aspect well in a quantitative sense.
Theory of sparse random embeddings. Our work improves directly upon Frek-
sen, Kamma, and Larsen, 2018 (case s = 1) and Freksen, Kamma, and Larsen, 2019
(general s). These works determine the relation between sparsity and data disper-
sion, thereby building on a long line of earlier works on variants of the Johnson-
Lindenstrauss Lemma (Ailon and Chazelle, 2006; Kane and Nelson, 2014; Li, Hastie,
and Church, 2006). The provided bounds, albeit proven to be asymptotically opti-
mal, suffer from a lack of explicit constants which cannot be easily extracted from the
previous estimates.
Empirical evaluation of random embeddings. The good empirical performance
of random linear embeddings, including sparse variants, has been confirmed many

1One may in fact further reduce the sparsity s by a factor of B > 1, however at the cost of increasing
the dimension m by a factor of 2Θ(B) (i.e., exponentially).



Chapter 6. Background and Related Work 63

times (Bingham and Mannila, 2001; V. and W., 2011). These works point out the gap
between provable and observed performance, which we are addressing in this work.
Estimation of quadratic chaos. Technically speaking, the analysis of errors in ran-
dom projections can be reduced to the more general problem of estimating quadratic
forms of random variables, also called quadratic chaos. The literature offers a variety
of tools, from variants of the well-known Hanson-Wright Lemma (Hanson, 1971;
Zhou, 2019) to more specialized bounds (Boucheron et al., 2005). However, they
would produce worse constants than our direct approach.
Embeddings of large collections/subspaces. Orthogonal to obtaining bounds for a
single vector x is the question of how to extend such bounds to hold simultaneously
for all x from a finite collection or an entire subspace of input data. This can be done
by a black-box reduction using ϵ-net arguments and is solved by a reduction to the
single vector case by means of ϵ-net arguments. Such bounds can be also obtained
in our case.
Rademacher random projections. As recently Burr, Gao, and Knoll, 2018 showed,
Rademacher random projections are asymptotically dimension-optimal with exact con-
stant; this result improves upon a previous suboptimal bound of Kane and Nelson,
2014. The statistical performance of Rademacher projections is superior to the sparse
ones. Furthermore, the theoretical bounds for Rademacher random projections are
much better than those available for sparse analogues (Cohen, Jayram, and Nelson,
2018). The best, prior to this paper, analysis of

Φk,j =
1√
m

rk,i, rk,i ∼I ID {−1,+1}. (6.3)

is given by Achlioptas, 2003. It is worth noting that Rademacher projections are also
superior to their Gaussian counterparts; indeed, we know that they are dominated
by the gaussian-based projections (Achlioptas, 2003). The relation of statistical per-
formance and input structure has not been understood in-depth yet; as for concep-
tually similar research, we note that recent results show that for sparse data one can
improve the sparsity of random projections, gaining in computing time (Freksen,
Kamma, and Larsen, 2019).
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Chapter 7

Robust and Provable Guarantees
for Sparse Random Embeddings

In this chapter, our contribution that focuses on sparse random embeddings is pre-
sented. We show that our bounds are explicit as opposed to the asymptotic guar-
antees provided in the previous state of the art and our bounds are guaranteed to
be sharper by significant constants across a wide range of data-driven parameters,
including dimensionality, sparsity, and dispersion of the data. Our approach can
be used to generate random embeddings that are more accurate and efficient than
traditional methods. We empirically demonstrate that our bounds significantly out-
perform prior works on a wide range of real-world datasets, such as collections of
images, text documents represented as bags-of-words, and text sequences vector-
ized by neural embeddings. Behind our numerical improvements are techniques
of broader interest, which improve upon key steps of previous analysis in terms of
tighter estimates for certain types of quadratic chaos, establishing extreme proper-
ties of sparse linear forms, and improvements on bounds for the estimation of sums
of independent random variables.

7.1 Construction of the Embeddings

Let A be an m× n matrix which is sampled as follows:

(1) Fix a positive integer s ⩽ m, the column sparsity of A.

(2) For each column, select s row positions at random (without replacement), place
±1 uniform-randomly at these positions and 0 at the remaining positions.

(3) Finally, scale all entries of A by 1√
s .

Remark 8 (Alternative Constructions). The above construction of A is as in Freksen,
Kamma, and Larsen, 2018; Freksen, Kamma, and Larsen, 2019, but our analysis works also
when sampling is done with replacement.

To analyze the error obtained from the respective projection of x by A, we define as
in Freksen, Kamma, and Larsen, 2019

E(x) ≜ ∥Ax∥2
2 − ∥x∥2

2 =
m

∑
r=1

∑
1⩽i ̸=j⩽n

Ar,i Ar,j xi xj (7.1)
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which is then analyzed by looking into individual “row” contributions, namely
E(x) = 1

s ∑m
r=1 Er(x) with

Er(x) ≜ s ∑
1⩽i ̸=j⩽n

Ar,i Ar,j xi xj . (7.2)

The goal is to identify conditions, such that PrA[|E(x)| > ϵ∥x∥2
2] ⩽ δ, as this implies

6.1. By scaling, we can assume ∥x∥2 = 1. Throughout the paper, we denote p = s
m .

7.2 Key Techniques for the Analysis

For the following steps, we leverage two techniques which were not used in prior
work, namely (a) careful use of symmetry properties and (b) majorization.

7.2.1 Quadratic Chaos Estimation

Studying the error E(x), due to pairwise terms, requires the estimation of quadratic
forms ∑i ̸=j Zi Zj, with Zi = Ar,i xi. To this end, we develop a useful general inequal-
ity, which reduces the problem to (simpler) linear forms.

Lemma 2. For symmetric and independent random variables Zi and any positive even d,
we have:

∥∑
i ̸=j

Zi Zj∥d ⩽ 4 ∥∑
i

Zi∥2
d (7.3)

Remark 9. The proof establishes more, namely that for a positive integer d (odd or even), we
have ∥∑i ̸=j Zi Zj∥d ⩽ 4 ∥∑i ̸=j ZiZ′j∥d where Z′i are independent copies of Zi.

The constant C = 4 in Lemma 2 can be further improved. For example, it is
easily seen that for d = 2 one may choose C =

√
2. For a general d, the use of

hypercontractive inequalities may give furthers refinements.

7.2.2 Extremal Properties of Linear Chaos

We now move on to deriving bounds for linear forms of symmetric random vari-
ables, which bound quadratic forms. The following lemma gives a geometric insight
into their behavior with respect to the input weights.

Lemma 3. For x ∈ Rn, define S(x) = ∑i xi Yi where Yi ∼i.i.d. Y with Y ∈ {−1, 0, 1}
taking values ±1 each with probability p/2 and 0 with probability 1− p. Then, for every
pair of vectors x, x′, such that (x2

i )i ≻ (x′i
2)i, and positive even integer d, the following

inequality holds:

∥S(x)∥d ⩽ ∥S(x′)∥d (7.4)

The lemma yields the following corollary.

Corollary 4. Let Yi be as in Lemma 3. For v ∈ (0, 1), consider all vectors x ∈ Rn, such
that ∥x∥2 = 1 and ∥x∥∞ = v. Then, ∥∑i xi Yi∥d for an even d > 0 is maximized at x = x∗

where:

x∗i =

{
v i = 1√

1−v2

n−1 i = 2 . . . n
(7.5)
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7.2.3 Estimation of I.I.D. Sums

The techniques outlined above allow us to bound the row-wise error contributions
Er(x). In order to assemble them into a bound on the overall error E(x), we prove
the following lemma.

Lemma 4. Let Z1, . . . , Zm ∼i.i.d. Z, where Z is symmetric, and let d be positive and even.
Then:

∥
m

∑
i=1

Zi∥d ⩽ min
{

t > 0 : E(1 + Z/t)d ⩽ e
d

2m

}
(7.6)

This improves the constant provided in the seminal result of Latala, 1997 by a factor
of e1/2.

7.3 Bounds Based on Error Moments

We first bound the row-wise error contributions Er(x), defined in 7.2, as follows.

Lemma 5. Suppose that ∥x∥2 = 1 and ∥x∥∞ = v, then we have ∥Er(x)∥d ⩽ Tn,p,d(v) for
any positive and even d, where we define

Tn,p,d(v) ≜ 4
( d

2

∑
k=0

(
d
2k

)
pI(k>0) v2k(1− v2)

d−2k
2 · E(B′ − B′′)d−2k

) 2
d

(7.7)

and B′, B′′ ∼i.i.d. 1√
n−1
· Binom(n− 1,

1−
√

1−2p
2 ).

To show this result, we combine Lemma 2 and Lemma 3. When explicitly evalu-
ating ∥∑i x∗i Yi∥d, we thereby arrive at the expression given by 7.7.

The following theorem is the main result of our work.

Theorem 3 (Error Moments). If ∥x∥2 = 1 and ∥x∥∞ = v, then for any positive
even d, we have that

∥E(x)∥d ⩽ s−1 ·Qn,p,d(v),

where Q = Qn,p,d(v) solves the equation

d
2

∑
k=0

(
d
2k

)
(Tn,p,2k(v)/Q)2k = e

d
2m (7.8)

and Tn,p,2k is as in Lemma 5 (with d replaced by 2k).

The detailed proof (see appendix B) starts with E(x) = 1
s ∑m

r=1 Er(x), applies
Lemma 4 with Zr = Er(x), and finally uses Lemma 5 (similarly to Freksen, Kamma,
and Larsen, 2019). The subtle points of the proof are summarized below.
• Correlation of Er(x) for different r: fortunately (due to sampling without replace-

ment), this is a negative dependency. Thus, the same moment bounds as for inde-
pendent random variables can be applied also here (Shao, 2000).



68 Chapter 7. Robust and Provable Guarantees for Sparse Random Embeddings

• Non-symmetric distribution of Er(x): we compare the moments of Er(x) with the
moments of a random variable which is symmetric; this allows for applying mo-
ment bounds for the sums of symmetric random variables. We remark that this
argument also fills a gap in Freksen, Kamma, and Larsen, 2019.

Corollary 5 (Error Confidence). For the error

ϵ = e s−1 ·Qn,p,⌈log(1/δ)⌉(v),

we have Pr[|E(x)| > ϵ] ⩽ 1− δ and (6.1) holds.

The corollary is a direct application of Markov’s inequality Pr[|E(x)| > ϵ] ⩽
(s−1Qn,p,d(v)/ϵ)d.

7.4 Discussion

Remark 10 (Computational Efficiency). The time of evaluating the distortion ϵ in 5 is in

TIME = O(log4(1/δ) log(m log(1/δ))). (7.9)

This is because Tn,p,d(v) can be evaluated with O(d3) operations, utilizing the com-
binatorial formulas for binomial moments. In turn, Qn,p,d(v) inverts a monotone
function which can be computed by bisection in O(log(m d)) steps.

Remark 11 (Comparison to State-of-the-Art). The approach of Freksen, Kamma, and
Larsen, 2019 follows the same roadmap, but the critical steps in that work are estimated in a
weaker way than in our approach, namely:

1. a weaker analogue of our Lemma 2 is used,

2. in place of our sharp Corollary 4, an overestimation of ∥∑i xiYi∥d is obtained,

3. bounds on Er(x) are assembled to bound E(x) via a weaker variant of Latala, 1997,
which is further weaker than our Lemma 4.

Thus, our bounds are guaranteed to be tighter for all parameter regimes.

Remark 12 (Dependency on n). Although our dependency on n is only asymptotically
bounded, we find that—interestingly—it indeed helps improving the bounds on real-world
datasets and use-cases, as shown in the next section.

7.5 Empirical Evaluation

In this section, the present the detailed results of our experimental evaluation. We
implemented the bound provided by Theorem 4 in Python 3.6 and tested it in the
Google Colab environment using an Intel(R) Xeon(R) CPU @ 2.20GHz and the de-
fault RAM configuration of 13GB.

Best Bounds in Prior Works.

To give a clear and fair comparison, we analyze the best constants in the previous
asymptotic analysis (Freksen, Kamma, and Larsen, 2019). The in-depth analysis
gives the value of “optimistic” constants necessary to avoid breaking down the proof
(while the actual constants are likely worse).
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Remark 13 (Optimistic Constants in Prior Works). The bound of Freksen, Kamma, and
Larsen, 2019 uses the better of the following two lemmas (Lemmas D.1 and D.2, respec-
tively):

1. ∥Er(x)∥d ⩽ 2 C1 ·
(

sup1⩽t⩽ d
2

[
dv
t

( p
dv2

) 1
2t

])2

2. ∥Er(x)∥d ⩽ 2 C2 · d
log(1/p) ,

where d is assumed positive and even.

Here, the extra factor of 2 appears as the effect of symmetrization (the random
variable Er(x) must be dominated by a symmetric random variable to conclude the
bound on E(x)). The best constants satisfy C1 ⩾ 4e and C2 ⩾ 8, as it is implied by
the analysis of their proof technique.

7.5.1 Synthetic Benchmark

Setup. The key ingredient of our improvements is the sharper bound on the row-
wise error contributions Er(x) from Lemma 5. In this experiment, we compare this
bound (referred to as Tnew) with its analogue from Freksen, Kamma, and Larsen,
2019 with the “optimistic” constants as discussed in Remark 13 (referred to as Told).
Figures 7.1 and 7.2 illustrate the respective ratios of Tnew and Told with respect to the
error contributions Er(x) for n = 104 and various ranges of d, v and p = s

m . Points
with non-even d are interpolated.
Results. Our bounds are better by up to an order of magnitude across a wide range
of parameters. Therefore, we should expect similar improvements for our bounds
on the overall error E(x) (recall that Er(x) are aggregated into E(x) using Lemma 4).

FIGURE 7.1: Tnew/Told
for n = 104, p = 10−3

FIGURE 7.2: Tnew/Told
for n = 104, v = 10−2

7.5.2 Real-World Datasets

Setup. We next consider various real-world datasets of different content types, sizes
and numbers of features—as summarized in Table 7.1.
Dispersion. Since sparsity s depends on the data-dependent dispersion v, results
obtained in prior work may be of limited applicability in practice when v is not
small. To understand the behavior of v, we evaluate its distribution on our datasets.
We conclude that, indeed, the value of v may be quite large, even when n is big;
in such cases, using a very small sparsity s is not theoretically justified. Density
plots on Figures 7.3, 7.4, 7.5, and 7.6 illustrate the distribution of the dispersion v =
∥x∥∞/∥x∥2 for vectors x = x1 − x2 over all pairs x1, x2 ∈ X from a subsample X
of the dataset. Evaluating the dispersion on pairwise differences corresponds to
the intended usage of random projections: preserving pairwise distances within a
dataset. We used |X | = 250, such that v is estimated based on ≈ 5 · 104 samples.
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Dataset Content Comments
NIPS text 13,000 words
Word2Vec/Wiki text 5M lines / 48M words of English Wikipedia articles
News20 text 20,000 documents / 34,000 words of English news

(Ken, 1995)
MNIST images 60,000 images with 28x28 pixels (LeCun and Cortes,

2010)
CIFAR100 images 60,000 images with 32x32 pixels (Krizhevsky, 2012)
SVHN images 600,000 images with 32x32 pixels (Netzer et al., 2011)
Caltech101 images 9,000 images with 300x200 pixels (Fei-Fei, Fergus, and

Perona, 2004)
Cars images 16,000 images with 500x500 pixels (Deng, Krause, and

Fei-Fei, 2013)
Goodwin040 fluid dynamics 18,000 columns / 18,000 rows (Davis and Hu, 2011)
Mycieliskian17 undir. graph 98,000 columns / 98,000 rows (Davis and Hu, 2011)

TABLE 7.1: Summary of real-world datasets used in our experiments

We generally find that, for each dataset, v is sharply concentrated around a “typical”
value, whose magnitude is data-dependent.

FIGURE 7.3: v on text
data

FIGURE 7.4: v on
sparse-matrix

FIGURE 7.5: v on
small images

FIGURE 7.6: v on large
images

Distortion. The next experiment analyzes the confidence 1− δ as a function of the
distortion ϵ of our and previous bounds. We assume m

n = 0.1, s
m = 0.01. The disper-

sion v is chosen at the typical most likely value for each dataset. The confidence fol-
lows from Theorem 4 by Markov’s inequality. The results are illustrated on 7.7. Our
bounds produce very good results for all datasets with large n, thus outperform-
ing the previous approach by several orders of magnitude in terms of confidence.
Remarkably, we also obtain non-trivial bounds when n is small as opposed to the
bounds from previous works.
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FIGURE 7.7:
Confidence 1 − δ

vs. distortion ϵ
FIGURE 7.8: Sparsity s

vs. distortion ϵ

Sparsity. In this experiment, we evaluate the critical value of distortion ϵ, which
allows for using non-trivial sparsity s < m such that the confidence 1− δ is at least
3
4 . For each dataset, we choose as before its typical value v and fix the dimension
reduction factor m

n = 0.1. The results are summarized in 7.8. Note that, for smaller
values of ϵ, no s < m can work, which produces flat segments s = m. Our bounds
offer a non-trivial sparsity s for much smaller distortions, and quickly achieve s = 1.
Dimensionality. In the last experiment, we evaluate the minimal non-trivial di-
mension m. We again consider a fixed sparsity of s

m = 0.1 and choose the typical
dispersion v for each dataset. Then, for various values of ϵ, we compute the smallest
m which still yields a confidence of 1− δ of 3

4 . The results, illustrated in 7.9, show
that our bounds are better by 10 times or more.
Multiple data points. So far the experiments covered the performance on one input
vector at a time only; the case of multiple data points reduces to the former one
by scaling the confidence accordingly (union bound), where we again compute the
smallest m which still yields a confidence 1− δ of 3

4 over all points. The result shows
the expected logarithmic dependency of the dimensionality m with respect to the
data size, as shown in 7.10.

FIGURE 7.9:
Dimensionality m

vs. distortion

FIGURE 7.10:
Dimensionality m

vs. data size

7.6 Final Remarks

We have developed a framework for sparse random projections that offers provable
guarantees and exhibits significant numerical enhancements over existing methods.
Our superiority compared to previous approaches has been demonstrated across a
diverse range of synthetic and real-world datasets. The intuition underlying our
improved bounds represents a novel contribution, as it enables the generation of
random embeddings that are more accurate and efficient than conventional tech-
niques. Furthermore, the innovative inequalities driving our advancements have
broader implications and are of substantial interest for various statistical inference
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applications. This framework not only advances the state of the art in sparse random
projections but also provides a foundation for further exploration and development
in the field of dimensionality reduction and related applications.
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Chapter 8

Exact Non-Oblivious Performance
of Rademacher Random
Embeddings

In this chapter, we revisit the performance of Rademacher random embeddings and
establish novel statistical guarantees that are numerically sharp and non-oblivious
with respect to the input data. More specifically, our result is the Schur-concavity
property of Rademacher random embeddings with respect to the input data. This of-
fers a novel geometric perspective on the performance of random projections while
improving quantitatively on bounds from previous works. This means that our
methods can provide better statistical guarantees than traditional methods, even
when working with non-oblivious data. This non-oblivious analysis is a novelty
compared to the techniques from the previous work and bridges the frequently ob-
served gap between theory and practice.

8.1 Main Result

In the following result, we provide the promised numerically sharp, non-oblivious
and geometrically insightful bounds for Rademacher random projections. In the
(particularly interesting) case of sparse input, we obtain more explicit formulas in-
volving binomial distributions.
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Theorem 4 (Sharp Moment Bounds for Rademacher Random Projections). Let
Φ be sampled according to the Rademacher scheme, and define the distortion as

E(x) ≜
∥Φx∥2

∥x∥2 − 1. (8.1)

Then the following holds true:

(a) E(x) has moments that are Schur-concave polynomials in (x2
i )

(b) E(x) is moment-dominated by E∗ defined as

E∗ =
1
m

m

∑
i=1

(Z2
i − 1) (8.2)

where Zi are standardized binomial r.v.s.:

Zi ∼I ID B− EB√
Var[B]

, B ∼ Binom

(
∥x∥0,

1
2

)
. (8.3)

Equivalently,

EE(x)q ⩽ EEq
∗ (8.4)

holds for q = 2, 3, . . . with equality when all components of the input x are
equal.

We briefly overview the proof of Theorem 4 (see Equation 8.1): it starts by a re-
duction to the dimension m = 1, and writing the distortion as a Rademacher chaos
of order 2; we then find extreme values of its moments geometrically, by means of
Schur optimization. Finally, these extreme values can be found explicitly and effi-
ciently by linking them to binomial moments.

8.2 Proving Schur Convexity

We present a useful framework for proving Schur convexity properties. It makes
repeated use of few auxiliary facts to eventually reduce the task to a 2-dimensional
problem. This is often easier than the classical approach of evaluating derivative
tests.

Lemma 6. The class of non-negative Schur-convex (or concave) functions forms a semi-
ring.

Lemma 7. A multivariate function is Schur-convex (respectively, Schur-concave) if and
only if it is symmetric and Schur-convex (respectively, Schur-concave) with respect to each
pair of variables.

To demonstrate the usefulness of these facts, we sketch an alternative proof of
a refined version of celebrated Khintchine’s Inequality, due to Efron. This refine-
ment plays an important role in statistics, namely in proving properties of popular
Student-t tests.
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Distortion E(x) = ∥Φx∥2
2 − ∥x∥2

2

Distortion E(x) = ∥Φx∥2
2 − ∥x∥2

2 for m = 1

Rademacher chaos: E(x) = ∑i ̸=j xixjrirj for m = 1

Flat vectors x yield heaviest moments/tail bounds

Explicit formula for Rademacher chaos on flat vectors

averaging IID

rewritting

Robin-Hood (Schur) optimization

combinatorial identities

FIGURE 8.1: The proof roadmap for Theorem 4.

Corollary 6 (Refined Khintchine Inequality Efron, 1968). The mapping

x → E(∑
i

xiri)
q

is a Schur-concave function of (x2
i ). As a consequence for σ = ∥x∥2 we have

E(
n

∑
i=1

xiri)
q ⩽ E

(
σ√
n

n

∑
i=1

ri

)q

⩽ ENorm(0, σ2)q.

Proof. The symmetry with respect to (xi) is obvious. Applying the multinomial ex-
pansion to (∑i xiri)

q, taking the expectation and using the symmetry of Rademacher
random variables, we conclude that E(∑i xiri)

q is polynomial in variables (x2
i ). By

Lemma 7, it suffices to prove the Schur-concavity property for x2
1, x2

2. By the binomial
formula and the independence of r1, r2 from (ri)i>2, we see that

E(∑
i

xiri)
q = ∑

k

(
q
k

)
E(∑

i>2
xiri)

q−k · E(x1r1 + x2r2)
k

is a combination of expressions E(x1r1 + x2r2)k with coefficients ck = (q
k)E(∑i>2 xiri)

q−k

that are independent of x1, x2 and non-negative due to the symmetry of ri. By
Lemma 6, it suffices to prove that Fk ≜ E(x1r1 + x2r2)k is a Schur-concave function
of x2

1, x2
2. Define

Gk ≜ E(x1r1 + x2r2)
kx1x2r1r2

By
(x1r1 + x2r2)

k = (x1r1 + x2r2)
k−2(x2

1 + x2
2 + 2x1x2r1r2)
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we have
Fk = (x2

1 + x2
2)Fk−2 + 2Gk−2

and
Gk = (x2

1 + x2
2)Gk−2 + 2x2

1x2
2Fk−2.

Since x2
1 + x2

2 and x2
1x2

2 are both Schur-concave in x2
1, x2

2, the Schur-concavity property
of Fk, Gk is proven when it is proven for k := k − 2. By mathematical induction, it
suffices to realize that F0 = 1, F1 = 0, G1 = 1, G2 = x2

1x2
2 are Schur-concave in x2

1, x2
2.

Let 1n be the vector of n ones. The first inequality follows then by

∑n
i=1 x2

i
n

· 1n ≺ (x2
1, . . . , x2

n),

and is clearly sharp. Since 1
n+1 1n+1 ≺ 1

n 1n and the Schur-concavity implies that
E(∑n

i=1 ri/
√

n)q increases with n, the second inequality follows by the CLT.

8.3 Rademacher Chaoses

Of independent interests are the techniques used in this work. The first result an-
alyzes the quadratic Rademacher chaos geometrically. It is similar in the spirit of
the results of Efron, 1968 and Eaton, 1970, which however concern only a first-order
Rademacher chaos.

Theorem 5 (Schur-concavity of Rademacher chaoses). Let (ri) be a sequence of inde-
pendent Rademacher random variables. Then the Rademacher chaos moment

Rq(x) ≜ E

(
∑
i ̸=j

xixjrirj

)q

(8.5)

is a Schur-concave function of (x2
i ) for every positive integer q.

The second result is a recipe for explicitly computing the extreme moment val-
ues:

Theorem 6 (Extreme Moments of Rademacher Chaos). For any x and k = ∥x∥0 the
following holds:

Rq(x) ⩽ Rq(x∗), x∗ =
(
∥x∥2√

K
, . . . ,

∥x∥2√
K

)
︸ ︷︷ ︸

K times

, (8.6)

and furthermore the explicit value of this bound equals

Rq(x∗) = ∥x∥2q
2 · EB̄(B̄2 − 1)q, (8.7)

where B̄ = B−K/2√
K/4

standardizes the symmetric binomial distribution with k trials B.

8.4 Numerical Comparison

The presented result is numerically optimal and captures input sparsity. It should be
compared against the bounds from Achlioptas, 2001 and the no-go result from Burr,
Gao, and Knoll, 2018, as illustrated in Table 8.1. To see that our bounds are better
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Author Result

Burr, Gao, and Knoll, 2018 maxx P[|E(x)| > ϵ] ⩾ 2 exp
(
−mϵ2(1+o(1))

4 )
)

when m≫ ϵ−2, n≫ 1

Achlioptas, 2001 P[|E(x)| > ϵ] ⩽ 2 exp
(
−mϵ2

4

(
1− 2

3 ϵ
))

this paper E(x) ≺m
∑m

i=1 Z2
i −1

m , Zi ∼I ID B−EB√
Var[B

, B ∼ Binom
(
∥x∥0, 1

2

)
TABLE 8.1: Bounds from this work from Theorem 4 compared with
the best prior bounds (Achlioptas, 2001) and the sharp no-go re-
sults (Burr, Gao, and Knoll, 2018). Our bounds imply those from
prior work by "normal majorization" arguments (see the supplemen-

tary material).

than those in Achlioptas, 2001, it suffices to use the Gaussian majorization argument
to obtain a weaker bound

E(x) ≺m
∑m

i=1(N2
i − 1)

m
where Ni are independent standard normal random variables, and use known sub-
gamma tail bounds for chi-square distributions (for example, those developed in the
monograph on concentration inequalities (Boucheron, Lugosi, and Bousquet, 2003)).

To validate our findings, we performed the following experiments on both syn-
thetic and real-world datasets.

8.4.1 Synthetic Dataset

Figures 8.2 and 8.3 demonstrate numerical improvements. In Figure 8.2 we can no-
tice that the more spread-out the input (controlled by sparsity ∥x∥0), the more dis-
torted the projected output (captured by Rq(x), the Rademacher chaos moment).
Utilizing the input dispersion improves probability bounds by orders of magnitude.
Note: for normalization purposes, we assume ∥x∥2 = 1. In Figure 8.3 capturing
input-sparsity (ℓ = ∥x∥0) improves the bounds on Rademacher random projections,
as demonstrated by distortion probability tails, the input sparsity is the key: random
projections are seen less distorted when input data is sparse.

FIGURE 8.2: The
input dispersion

improves bounds.

FIGURE 8.3:
Capturing input-

sparsity (ℓ = ∥x∥0).
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8.4.2 Real-world Datasets

Our results are validated with experiments performed on real-world datasets from
the SuiteSparse Matrix Collection (formerly the University of Florida Sparse Ma-
trix Collection) available at https://sparse.tamu.edu/. For these experiments, we
selected matrices from ML datasets. In figure 8.4 the distortion measured w.r.t. the
density of the embeddings shows that sparse data result in better bounds and proves
that Rademacher projections are superior to sparse ones. In Figure 8.5 measuring the
distortion tail probability on real-world datasets confirms our theoretical findings:
capturing the input sparsity improves the bounds on Rademacher random projec-
tions. The datasets, from left to right, are displayed from the most sparse (mnist) to
the least one (glass).

FIGURE 8.4: The
distortion measured

w.r.t. the density

FIGURE 8.5: The dis-
tortion tail probability
on real-world datasets

8.5 Final Remarks

We revisited the performance of Rademacher random projections, connecting the
statistical guarantees with the input structure: for spreadness and, a special case,
sparsity. The main result of this paper proves Schur-concavity properties, which
makes the bounds numerically sharp and data aware (non-obliviuos) while giving
a geometric perspective to the performance of the projections. We benchmarked
our bounds both theoretically and empirically by measuring the distortion of the
projected vectors against the original input data. As a result, dense projections are
preferred, and they work incredibly well with sparse input data. We believe that our
findings are of broader interest for a variety of statistical-inference applications.

https://sparse.tamu.edu/
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Relation Extraction
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Chapter 9

Introduction

Open Information Extraction (OpenIE) is a specific approach to IE that aims to iden-
tify and extract relations and their corresponding arguments from text without rely-
ing on predefined schemas or domain-specific templates. OpenIE has a wide range
of applications, including but not limited to knowledge base construction, text ana-
lytics, question answering (QA), and semantic search. It can be used to automatically
construct and expand large-scale knowledge bases, such as knowledge graphs, by
extracting structured information from vast amounts of unstructured text. OpenIE
aids in transforming unstructured text into structured data, facilitating advanced an-
alytics and visualization for better decision-making. Key aspects of OpenIE include
named entity recognition (NER), named entity disambiguation (NED), relation ex-
traction (RE), co-reference resolution, scalability, and knowledge representation.

NER is a fundamental task in OpenIE that involves identifying and classifying
named entities, such as people, organizations, locations, and dates, within the text.
NER is crucial for understanding the context and extracting relationships between
entities. NED is the process of resolving the ambiguity surrounding named enti-
ties, especially when they have multiple possible meanings or referents. This task
helps ensure the correct interpretation of entities and their relationships in the text.
Co-reference resolution is the process of identifying and linking different textual ex-
pressions that refer to the same entity or concept. This task is essential for accurately
understanding and connecting relationships between entities, even when they are
mentioned in different parts of the text.

RE is a technique that focuses on structuring natural-language text by detecting
potential semantic connections between two or more real-world concepts, typically
referred to as "entities". Relations are assumed to fall into predefined categories and
to hold between entities of specific types. This process is vital for understanding
the relationships and context within a given text and plays a crucial role in various
IE tasks. For example, the SPOUSE relation may exist between two entities of type
"Person", while instances of the CEO relation would link entities of type "Person"
and "Organization", respectively. These relations allow for a more structured repre-
sentation of the information within the text, making it easier to analyze and query.

Being a sub-discipline of IE, extracting labeled relations can also help boost the
performance of various IE downstream tasks, such as knowledge-base population
(KBP) (Trisedya et al., 2019; Gardner and Mitchell, 2015) and QA (Wang et al., 2012;
Xu et al., 2016). In the context of KBP, RE serves as a vital component in the auto-
matic construction and expansion of knowledge bases. By identifying and categoriz-
ing the relationships between entities, RE enables the enrichment of existing knowl-
edge bases with new facts and connections. This process significantly contributes
to the development of large-scale knowledge graphs and semantic networks, which
are essential for various AI applications, such as semantic search and recommen-
dation systems. For QA systems, RE is crucial for providing relevant and accurate
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answers to users’ queries. By understanding the relationships between entities in a
text, QA systems can efficiently retrieve the most pertinent information to address a
specific question. This capability is particularly important when dealing with com-
plex queries that involve multiple entities and relationships, as it enables the system
to provide a more comprehensive and contextually accurate response.

In Part IV of this thesis, we conduct a comprehensive analysis of different de-
sign combinations for the task of RE. Our main focus is on integrating OpenIE with
two types of embeddings, namely context-free and context-sensitive, to examine
the strengths and limitations of each combination. Our primary hypothesis is that
OpenIE can enhance even context-sensitive language models like BERT by breaking
down complex sentences into multiple clauses, each representing the target relation
more precisely than the original sentence. Our objective is to make significant ad-
vancements in Web-scale RE. To achieve this, we utilize the OpenIE approach to
model and classify relational phrases, taking advantage of shorter clauses that more
accurately capture the target relation compared to potentially lengthy and compli-
cated input sentences. We employ distant supervision to transfer labels from an-
notated corpora to OpenIE extractions, thereby minimizing manual labeling efforts
needed for training and fine-tuning the underlying models. Additionally, we ex-
plore few-shot training, which can further decrease the amount of labeled training
examples to fewer than 20 per relation, while still delivering satisfactory results
in many instances. Our detailed experiments are conducted on two annotated RE
corpora, KnowledgeNet (Mesquita et al., 2019) and FewRel (Han et al., 2018), using
Wikidata as a backend knowledge base (KB) in conjunction with various state-of-
the-art (both context-free and context-sensitive) language models. These models in-
clude a basic Word2Vec model with annotated and disambiguated Named Entities
(NEs), BERT, RoBERTa, AlBERT, SETFIT, and their “distilled” versions. The results
show that many of our combined approaches significantly improve upon the best-
known results for both KnowledgeNet and FewRel, demonstrating the potential of
our method for advancing the field of RE.
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Background and Related Work

Distant Supervision vs. Few-Shot Learning. Extracting labeled relations from pre-
viously unseen domains usually requires large amounts of training data. Manually
annotated corpora are relatively small due to the amount of work involved in their
construction. To this end, distant supervision (Mintz et al., 2009) may help to alleviate
the manual labeling effort but training data, which may serve as the basis for distant
supervision, is only available for relations covered by an already-existing KB such
as Yago (Suchanek, Kasneci, and Weikum, 2007), DBpedia (Lehmann et al., 2015) or
Wikidata (Vrandečić and Krötzsch, 2014). To overcome this limitation, Gashteovski
et al., 2020 manually evaluates the semantics of alignments between OpenIE triples
and the facts in DBpedia. Distant supervision is used as a first step to compare
facts that have the same (or at least similar) arguments. We, in contrast, use dis-
tant supervision to transfer the labels from the annotated corpora to the OpenIE
extractions, thereby creating an annotated set of clauses which can then be used for
training. Moreover, for cold-start KBP settings (KBP, 2017), few-shot learning (Wang
et al., 2021b) has recently evolved as an interesting alternative to distant supervi-
sion. In few-shot-training for KBP (or more classical tasks like text classification),
an underlying language model such as BERT or SBERT (Devlin et al., 2019; Reimers
and Gurevych, 2019) is augmented by an additional prediction layer for the given
labeling task which is then retrained by very few samples. Here, often 20–50 ex-
amples for each label are sufficient to achieve decent results. However, all of these
approaches for KBP focus on labeling and training trade-offs for the given input text,
while other–perhaps more obvious—options, namely to exploit syntactic and other
structural clues based on OpenIE, NER and NED, are at least as promising as these
training aspects in order to further improve prediction accuracy. These additional
bits and pieces of information can be integrated into the learning process to develop
more accurate and efficient models for extracting relevant information from textual
data. For example, incorporating syntactic parsing, entity recognition, and disam-
biguation could provide a more comprehensive understanding of the relationships
between entities and the context in which they appear. This enriched information
may help improve the overall performance of RE tasks and further advance the ca-
pabilities of ML models in understanding and processing natural language. By ex-
ploring both distant supervision and few-shot learning techniques and integrating
additional structural information from OpenIE, NER, and NED, there is potential to
develop more robust and accurate models for extracting valuable insights from un-
structured textual data. This will, in turn, contribute to the broader field of IE and
NLP.
Domain-Oriented vs. Open Information Extraction. OpenIE (Carlson et al., 2010;
Etzioni et al., 2004; Banko et al., 2007; Fader, Soderland, and Etzioni, 2011) expresses
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an alternative text-structuring paradigm compared to the more classical, domain-
oriented IE techniques (Trisedya et al., 2019; Gardner and Mitchell, 2015): it trans-
forms sentences into a set of 〈arguments – relational phrase〉 tuples without labeling
the relational phrases explicitly or requiring its arguments to be of particular en-
tity types. Consider, for instance, the sentence: “In 2008 Bridget Harrison married
Dimitri Doganis”. From an RE perspective, it would be represented as: 〈Bridget Har-
rison; SPOUSE; Dimitri Doganis〉. Its OpenIE1 counterpart would decompose the
input sentence into two tuples: 〈Bridget Harrison; married; Dimitri Doganis〉 and
〈Bridget Harrison; married Dimitri Doganis In; 2008〉. Intuitively, the two repre-
sentations capture the same semantic message of a marriage relationship between
Bridget Harrison and Dimitri Doganis. Furthermore, OpenIE produces additional
informative tuples describing, e.g., temporal or collocational aspects of the relation
via adverbial phrases, which however may not necessarily have a corresponding
canonicalized form. Importantly, OpenIE extracts relational phrases along with the
original sentences’ arguments, thus structuring the input text without loss of infor-
mation. All these characteristics make OpenIE a useful intermediate representation
for a number of downstream IE tasks that impose further structuring or normaliza-
tion (Mausam, 2016; Martínez-Rodríguez, López-Arévalo, and Ríos-Alvarado, 2018;
Lockard, Shiralkar, and Dong, 2019). Moreover, OpenIE’s adaptability proves par-
ticularly advantageous when applied to large-scale, diverse datasets where domain-
specific knowledge may be limited or hard to define. Its ability to handle ambiguity
and provide richer contextual information is crucial for complex tasks, leading to
more robust and accurate IE.
Word Embeddings vs. Language Models. In the past few years, word embeddings
(Bojanowski et al., 2017; Mikolov et al., 2013; Pennington, Socher, and Manning,
2014) found their applications and proved to be efficient in a wide range of IE tasks.
Word embeddings represent text as dense vectors in a continuous vector space. Tra-
ditional word embeddings, such as Word2Vec (Mikolov et al., 2013) and FastText
(Bojanowski et al., 2017), are lightweight and conveniently fast at training and in-
ference time. However, being static (each word in the corpus is represented by the
same vector, regardless of its context), these embeddings have limited ability to cap-
ture a word’s changing meaning with respect to different contexts. On the contrary,
recently trained, large-scale language models (LMs), such as BERT (Devlin et al., 2019),
ELMO (Peters et al., 2018) or GPT-3 (Radford et al., 2019), extend the approach by
generating dynamic embeddings, where each word’s representation depends on its
surrounding context, thus pinning down particular meanings of polysemic words
and entire phrases. Despite the differences, both types of embeddings allow to
quantitatively express semantic similarities between words and phrases based on
the closeness of their respective vectors in the vector space. Furthermore, other lin-
guistic components such as syntactic dependency trees or OpenIE-style tuples can
be used to train or fine-tune various embedding models with positive impact on
more advanced IE tasks such as text comprehension, similarity and analogy (Levy
and Goldberg, 2014; Stanovsky, Dagan, and Mausam, 2015), semantic role labeling
(SRL) (Marcheggiani et al., 2017), as well as RE and QA (Sachan et al., 2021).

1Based on OpenIE 5.1: https://github.com/dair-iitd/OpenIE-standalone

https://github.com/dair-iitd/OpenIE-standalone
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Chapter 11

Enriching Relation Extraction with
OpenIE

In this chapter, we present our three principal strategies for classifying relational
paraphrases (and entire clauses) obtained from OpenIE into canonical relations over
a predefined KB schema. We next provide a brief overview of the three approaches,
before we describe them in more detail in the following sections.

Didier Bellens was a Belgian businessman. Until 15 November 2013, he was the CEO of 

Belgacom, the leading telecommunications company of Belgium. He was married and 

had three children. He died on 28 February 2016.Didier Bellens
(Q2523237)

Belgium
(Q31)

Belgacom
(Q15872980)

15 November 2013
(Q3039153)

OpenIE

NED

COREF

Didier Bellens was a Belgian businessman he was the CEO of Belgacom He died on 28 February 2016
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Didier Bellens was a Belgian businessman. Until 15 November 2013, he was the CEO 
of Belgacom, the leading telecommunications company of Belgium. He was married
and had three children. He died on 28 February 2016.
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ORGANIZATION DATE
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FIGURE 11.1: System overview.

Fine-Tuning Language Models. Our primary strategy for achieving this goal in-
volves developing a dedicated RE model by training it on a corpus of annotated
sentences. Subsequently, we will utilize this RE model to accurately predict the re-
lations present within previously unseen sentences and clauses. To accomplish this,
we begin by employing a large-scale, pretrained LM, such as BERT or one of its
variants, which has demonstrated remarkable performance in various NLP tasks.
We then augment the BERT model with an additional classification layer, enabling
us to fine-tune the model specifically for the RE classification task. The fine-tuning
process essentially involves adapting the pretrained model to better identify and
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classify relations among entities in a given context. BERT, being a general-purpose
and context-sensitive LM, has been trained on an extensive dataset comprising bil-
lions of input sentences, thereby providing a robust foundation for our RE model.
By leveraging BERT’s comprehensive pretraining, we anticipate that our approach
will yield remarkable results in RE tasks, even with a relatively small amount of an-
notated sentences required for fine-tuning the classification layer. This is primarily
due to BERT’s inherent ability to understand complex language patterns and depen-
dencies, which enables it to adapt and learn the nuances of semantic meaning more
efficiently.

Context-Free Relation Signatures. As an alternative and more straightforward ap-
proach, we also explore the implementation of a context-free baseline for RE us-
ing a clause-based Word2Vec model. This method eliminates the need for anno-
tated sentences during the training phase, making it a more accessible and less
resource-intensive option. To accomplish this, we train the Word2Vec model on a
domain-specific corpus, such as Wikipedia articles, using an unsupervised learning
approach. This enables the model to learn semantic relationships between words
based on their co-occurrence patterns in the text. To apply the Word2Vec model to
RE, we first aggregate individual word vectors to create relation signatures for a pre-
defined set of target relations. Relation signatures essentially capture the semantic
representation of the relations we aim to identify. Next, we employ OpenIE tech-
niques to obtain relational paraphrases from the input text. We then quantitatively
evaluate the vector similarities between the generated relation signatures and the
relational paraphrases obtained from OpenIE. By comparing these similarities, we
can assess the performance of the clause-based Word2Vec model in identifying and
classifying the target relations within the given text. High vector similarity scores
suggest that the Word2Vec model has effectively captured the semantic essence of
the target relations.

Though this method may lack the contextual understanding offered by more
advanced models like BERT, it presents a viable, less complex alternative for RE.
Furthermore, the unsupervised nature of the Word2Vec training process makes it
particularly well-suited for scenarios where access to annotated data is limited or
unavailable. To enhance the performance of this approach, we can consider incor-
porating additional techniques, such as clustering algorithms or dimensionality re-
duction methods, to refine the extraction and classification of relations.
Contextualized Relation Signatures. Our third and final approach integrates the
concepts from the previous two methods by exploring the use of BERT-like models
in a feature-based manner for RE. In this hybrid approach, we harness the power
of contextualized embeddings derived from large-scale pretrained models, such as
BERT, and combine them with a contextualized form of relation signatures. To create
these contextualized relation signatures, we first manually provide a few training
sentences as input for each target relation. These sentences serve as examples that
help the model understand the characteristics and nuances of the target relations.
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Next, we utilize the pretrained BERT-like model to generate contextualized embed-
dings for the words in these input sentences. These embeddings capture the rich
semantic and syntactic information inherent in the text, taking into account the con-
text in which the words appear. Once we have obtained the contextualized embed-
dings, we aggregate them to form relation signatures that are representative of the
target relations in a context-sensitive manner. By combining the strengths of BERT-
like models and the concept of relation signatures, this approach aims to achieve
improved performance in RE tasks. The contextualized embeddings offer a more in-
depth understanding of the text, while the relation signatures provide a systematic
way to represent and identify the target relations.

11.1 Fine-Tuning Language Models for Relation Extraction

In the context-aware approach, we add a single fully connected layer for the classifi-
cation task on top of the last layer of an otherwise task-agnostic pre-trained LM such
as BERT or one of its variants (see below for details). The size of the added layer is
equal to the number of classification labels. Fine-tuning the model then consists of
training the new layer’s weights over a task-specific annotated dataset. For our RE
task, a typical annotated example would consist of (1) an input sentence, (2) the entity
pair corresponding to the sentence’s subject and object, and (3) the target relation as
label. For example, the sentence "After five successful albums and extensive touring,
they disbanded after lead vocalist Sandman died of a heart attack onstage in Palestrina, Italy,
on July 3, 1999." would then be encoded into the clause (amongst others) 〈 {Sand-
man; July 3, 1999}, DATE_OF_DEATH 〉. Note, however, that our approach to the
relation classification differs from the established setup in one important way: while
many works on the topic capitalize on the importance of relational argument (en-
tity) representation (Soares et al., 2019; Zhou and Muhao, 2021; Boros, Moreno, and
Doucet, 2021; Zhang et al., 2019a), we completely exclude entity-related information
(obtained from common NER/NED toolkits) during the training, thereby delegat-
ing the task of extracting the relational argument to the OpenIE step. Therefore,
an adjusted input for tuning the model is reduced to pairs made of (1) input clause
and (2) target relation. This streamlined input structure allows our model to focus on
identifying and classifying relations without being influenced by entity-specific in-
formation. By excluding entity details, we aim to create a more flexible and versatile
RE model that can effectively generalize across various input types and domains.

We utilized a selection of pretrained LMs from the BERT family for fine-tuning
our RE task. Here, we briefly introduce each model and provide the rationale behind
our choices:
• bert-base-uncased (Devlin et al., 2019) is a Bidirectional Encoder Representations

from Transformers (BERT) model consisting of 12 layers of transformers and is
case-insensitive. BERT has become a default "baseline" for numerous NLP tasks
involving general-purpose pretrained models.
• distilbert-base-uncased (Sanh et al., 2020) is a variant of BERT pretrained on the

knowledge distillation principle, which involves transferring knowledge from one
or more large models to a single smaller one. DistilBERT has demonstrated per-
formance nearly on par with the full-size BERT, while using fewer resources and
being faster during training and inference.
• xlnet-base-cased (Yang et al., 2019) is an autoregressive model that improves upon

BERT’s ability to learn semantic dependencies between sentence components. This
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Model Layers Hidden #Parameters
bert-base-uncased 12 768 110M
distilbert-base-uncased 6 768 66M
xlnet-base-cased 12 768 110M
roberta-base 12 768 125M
distillroberta-base 6 768 82M
albert-base-v1 12 768 11M
setfit 12 768 110M

TABLE 11.1: Overview of models used in the context-aware RE set-
ting.

feature may provide an advantage during inference when using a model fine-
tuned on entire sentences to classify OpenIE-style clauses.
• roberta-base (Liu et al., 2019) has been trained on a much larger corpus than BERT

and is further optimized. It also incorporates a dynamic token-masking objective
in the model’s training to enhance its sensitivity and robustness to context. It has
exhibited the highest accuracy (compared to BERT and XLNet) on the Recognizing
Textual Entailment (RTE) task (Liu et al., 2019; Wand et al., 2019), which is closely
related to RE. This motivates our interest in using this model.
• distilroberta-base is a distilled version of the RoBERTa-base model that follows the

same training procedure as DistilBERT. On average, DistilRoBERTa is twice as fast
as Roberta-base. It is primarily aimed at being fine-tuned on tasks that use the
whole sentence (potentially masked) to make decisions, such as sequence classifi-
cation, token classification, or question answering.
• albert-base-v1 (Lan et al., 2020) introduces a sentence-order prediction (SOP) train-

ing objective, primarily focusing on inter-sentence coherence—a property we ex-
pect to benefit from when transferring knowledge learned from entire sentences
to OpenIE clauses.
• setfit (Tunstall et al., 2022) stands for Sentence Transformer Fine-tuning and is

a recent model designed for few-shot text classification. It is trained on a small
number of text pairs (8, to be precise) in a contrastive Siamese manner. The result-
ing model is then employed to generate rich text embeddings, which are used for
training a classification task.

By leveraging the unique strengths of each of these models, we aim to create
a robust and accurate RE system capable of effectively identifying and classifying
relations in various contexts and domains. In doing so, we hope to enhance the
overall performance and versatility of our approach, enabling it to excel in a wide
range of RE tasks.

11.2 Using Context-Free Relation Signatures for Relation Ex-
traction

For the context-free approach, we start from a large dump of English Wikipedia
articles which we process with a pipeline consisting of ClausIE (Corro and Gemulla,
2013) for clause decomposition, Stanford CoreNLP (Manning et al., 2014) and AIDA-
light (Nguyen et al., 2014) for NER and NED, respectively. This pipeline yields an
initial amount of 190 million clauses, from which we distill 13.5M binary relations
of the form 〈subject; relational phrase; object〉 (thereby keeping only clauses that have
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exactly one named entity both as subject and object as well as a verbal phrase as
predicate).

Following (Fader, Soderland, and Etzioni, 2011), we apply regular expressions
on the verbal phrases to identify patterns of the form verb | verb + particle which
should cover ≈ 85% of the verb-based relations in English. To further normalize
the extracted verbal phrases, we use part-of-speech (POS) and lemmatization infor-
mation: for all but passive verbs, we substitute their inflections with the respective
lemma. This way, we are able to distinguish between active and passive voices of
otherwise identical verbs (which usually indicate inverse relations of each other).
After the above cleaning and normalization steps, our overall representation of a
clause is of the form: 〈entity1, verb + particle, entity2 〉 with the additional condition
that entity1 and entity2 should not be equal1.

We next embed the clauses into their word vector representations. Specifically,
we consider two encoding schemes:

(i) by exploiting the compositionality of word vectors:

V⃗verb + V⃗particle

(ii) by creating bigrams of verbs and particles for the most frequent relational para-
phrases in the corpus (e.g., work_at, graduate_from, born_in):

V⃗verb_particle

For the latter bigram-based encoding, we treat bigrams for the prepositional verbs
as additional dictionary entries before a Word2Vec model is trained on the clauses.
This choice is motivated by considering that, particularly for knowledge discovery,
particles (i.e., prepositions) may give a crucial insight on the possible type of the
entities involved in the relation. As we will see in Section 11.5, we leverage both
aforementioned techniques in comparison.

To train the models under (i) and (ii), we use Word2Vec “skip-gram model” im-
plementation provided by the Gensim (Rehurek and Sojka, 2011), with the window
size 2, and negative sampling as loss function.

In this context-free approach, we further aggregate the vector representation of
each target relation by including also synonyms for these relations provided by an
additional backend KB. As an example, let

SP571 = {“date founded”, “date created”, . . . , “established”}

denote the Wikidata2 synonyms provided for the relation P571. Then, the vector for
its corresponding relation signature is computed as follows

V⃗P571 =
1

|SP571| ∑
synonym∈SP571

V⃗synonym

1We found about 5% of clauses in the corpus to represent reflexive relations, i.e., with the subject
and object referring to the same entity. From our observations, we could not derive meaningful KB
facts from these relations. We therefore removed such reflexive relations from the corpus.

2www.wikidata.org

www.wikidata.org
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where we use the artihmetic mean (in analogy to Gensim3’s w2v.most_similar func-
tion to retrieve similar vectors for a set of positive examples) in order to aggregate a
set of such synonyms into a single vector.

Since the target relations considered in our experiments correspond to Wikidata
(Vrandečić and Krötzsch, 2014) properties, we use Wikidata as backend KB and con-
sider the English parts of the “Also known as” sections of the respective properties
as source for the synonymous relational phrases. To leverage our Word2Vec model,
we again normalise the property name and its synonyms by following the steps de-
scribed above (before vectorization). By default, we then use bigrams of verb lem-
mas and their particles for the aggregation of the vectors into relation signatures.
However, if a bigram is not found in the model’s vocabulary, we fall back to our
compositional encoding also for the respective synonyms.

11.3 Using Contextualized Relation Signatures for Relation
Extraction

For our third approach, we further explore the concept of using relation signatures to
represent relations. However, we now generate contextualized relation signatures in a
slightly different manner. We model a relation using a small set of structured natural
language units that convey self-contained meaning, such as sentences or clauses.
Consequently, we modify the procedure of signature generation as follows: for each
relation, (i) 5 units (clauses or sentences) are manually sampled from an underlying
labeled corpus; (ii) units are embedded into a LM 4; (iii) a normalized average of the
embeddings represents the signature for the respective relation label. Analogous
to the context-free approach, during testing, units to be labeled are embedded into
the same model, and the resulting vectors are compared to the vectors of relation
signatures using cosine similarity. Unlike the context-free approach, here, clauses
are not reduced to their relational phrase components but are instead considered as
whole units.

This heuristic is purposefully implemented to resemble few-shot learning tech-
niques in a feature-based manner. It offers two major advantages for our goal of
scaling RE: it requires a minimal amount of additional labeling effort, and it enables
the addition of new target relations on-the-fly. By leveraging these strengths, we
aim to create a more efficient and adaptable RE system that can effectively identify
and classify relations with minimal manual intervention, thereby facilitating a more
scalable and flexible approach.

11.4 Text-Processing Pipeline

Before we apply the methods described above to an actual corpus, we first prepro-
cess the corpus with a typical NLP pipeline consisting of 5 steps: sentence splitting,
tokenization and part of speech tagging5, NER (Schweter and Akbik, 2020) and NED
(Li et al., 2020) (both optional6), coreference resolution (CR) (Joshi et al., 2020) and
OpenIE (Mausam, 2016). Once all the steps are performed, we align the obtained

3https://radimrehurek.com/gensim/
4https://github.com/cyk1337/embedding4bert
5https://spacy.io/
6In the scope of this work we focus on the relational predicates and use named entity recognition

(NER) to ensure that the subject and object entity types are compatible with the backend KB property.

https://radimrehurek.com/gensim/
https://github.com/cyk1337/embedding4bert
https://spacy.io/
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annotations with the original sentences to obtain a corpus representation that is of
the form shown in Figure 11.1.

Since we aim at leveraging OpenIE for RE, a natural choice for tuning a lan-
guage model would be to use a set of labeled clauses as input, where the labels
correspond to the target relations for a given dataset. To the best of our knowledge,
such datasets are not available at clause level. We therefore create one in a distant-
supervision manner as follows: given a sentence from the training corpus with the
relation specified as a pair of 〈subject, object〉 entities and a label, we label the clauses
obtained from that sentence provided that their subject and object correspond to the
subject and object entities from the labeled sentence.

PLACE_OF_BIRTH(Barack Obama, Honolulu)
OpenIE clause: Barack Obama was born in Honolulu
(Barack Obama was born in Honolulu, PLACE_OF_BIRTH)

Note that we can only safely align clauses to labeled relations when the former
correspond to unambiguous extractions with exactly one entity in the subject and
object, respectively.

It is generally believed that a clause’s predicate is the main carrier of the rela-
tion type (Fader, Soderland, and Etzioni, 2011; Farima, Bhutani, and Jagadish, 2022;
Lockard, Shiralkar, and Dong, 2019). We observe though that it is not necessarily
the case. Consider the following clauses: (a) 〈John Deane Spence; was; a British Con-
servative Party politician〉 and (b) 〈Eccles; served as; a Labour Party member of Manch-
ester City Council〉. In these examples, the clause’s object contains both – the cue
of the relation type (Political Affiliation) and the relational argument. In other cases,
the predicate contains both – a relation type indicator and relational argument: (c)〈
he; joined the Communist Party In; 1923.〉 Note that the clause’s object here is irrel-
evant for the relation. These examples show that there is no “consistency” in the
OpenIE format that we could rely on when translating OpenIE extractions to RE.
Gashteovski, Gemulla, and Corro, 2017 addresses the problem of clause normaliza-
tion by applying a series of transformations driven by a morpho-syntactic analysis
of the produced clauses.

On the contrary, we consider the clauses produced by an OpenIE system as po-
tentially noisy relations. This is the reason why we consider each OpenIE extraction
in its entirety, as a short sentence, and use each for the relation prediction individ-
ually. In this way, we exploit an implicit semantic connection between the clause’s
elements that synergically express the relational meaning of a clause. As such, our
approach does not suffer from falling into one of the two extremes as indicated in
(Zhang et al., 2019a): neither performing an instance-level inference relying on em-
bedding for 〈subject, object〉 pairs thus being unable to handle unseen entities; nor
performing a predicate-level mapping thus ignoring background evidence from in-
dividual entities. Rather, we examine to what extent task-agnostic pretrained LMs
are able to transfer learned signals from longer sentences to short facts. We therefore
use a portion of labeled sentences to tune the model and use it for clause classifica-
tion.
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TABLE 11.2: Properties.

Property Entity Type Signature Facts
DATE_OF_BIRTH PER-DATE 761

DATE_OF_DEATH PER-DATE 664
RESIDENCE PER-LOC 664

BIRTHPLACE PER-LOC 1137
NATIONALITY PER-LOC 639
EMPLOYEE_OF PER-ORG 1625
EDUCATED_AT PER-ORG 951

POLITICAL_AFF. PER-ORG 635
/ CHILD_OF PER-PER 888

SPOUSE PER-PER 1338
DATE_FOUNDED ORG-DATE 500
HEADQUARTERS ORG-LOC 880
SUBSIDIARY_OF ORG-ORG 544
FOUNDED_BY ORG-PER 764

CEO ORG-PER 643

11.5 Experiments

In this section, we describe the experiments and datasets we used to evaluate our
proposed methods, which are based on two commonly used RE benchmarks: Knowl-
edgeNet and FewRel. Both collections were preprocessed by our NLP pipeline de-
scribed in section 11.4.
KnowledgeNet (KN) (Mesquita et al., 2019) is a dataset for populating a KB (here:
Wikidata) with facts expressed in natural language on the Web. We selected KN as
our primary benchmark because it provides facts in the form of 〈subject, property,
object〉 triplets as sentence labels. The documents in the first release of KN are either
DBpedia abstracts (i.e., the first paragraph of a Wikipedia page) or short biograph-
ical texts about a person or organization from the Web. 9,073 sentences from 4,991
documents were chosen to be annotated with facts corresponding to 15 properties
about a particular property of interest (see Table 11.2 for the detailed list). In total,
KN comprises 13,425 facts from 15 properties. Only 23% of the facts annotated in
their release are actually present in Wikidata.
FewRel (Han et al., 2018) is a popular benchmark for few-shot RE, consisting of
70,000 sentences over 100 relations (divided in 64 for training and 36 for testing pur-
poses). This dataset is meant to be extremely competitive even for the most ad-
vanced models for RE, and for this reason we employed it also in our work. How-
ever, we did not use FewRel as it was originally conceived in its typical few-shot
setting, but we randomly split the sentences per relation into separate training (75%)
and testing (25%) sets.

11.5.1 Baseline Approaches

We now evaluate the three different approaches of sections 11.1, 11.2, and 11.3. Par-
ticularly, for the fine-tuned BERT models, we created different combinations of train-
ing and testing sets as follows.
• Baseline 1: Clauses + LM. We use OpenIE to extract clauses from sentences. Both

fine-tuning and prediction of the LM were then performed on clauses.
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• Baseline 2: Mixed + LM. Fine-tuning of the LM was performed on sentences,
while prediction was then performed on clauses.
• Baseline 3: Sentences + LM. Both fine-tuning of the LM and inference were per-

formed on sentences.
• Baseline 4: Clauses + W2V. We use OpenIE to extract clauses from sentences.

Context-free relation signatures (as described in section 11.2) based on the simple
Word2Vec model were then used to infer the target relation.
• Baseline 5: Clauses + feature-based BERT. For the feature-based approaches, we

applied the same three combinations as for Baselines 1, 2, and 3. Thus swapping
the fine-tuning phase with the relation signature construction which was generated
by using only 5 randomly drawn samples per relation. For this baseline, both
relation signature construction and inference were performed on clauses.
• Baseline 6: Mixed + feature-based BERT. The relation signature construction was

generated using 5 randomly drawn sentences per relation, while prediction was
performed on clauses.
• Baseline 7: Sentences + feature-based BERT. Both the relation signature construc-

tion and prediction were performed on sentences.

11.5.2 Evaluation

RE inherently resembles a multi-class prediction task. For KN, a particularity of the
benchmark is that sentences may also have multiple labels, i.e., we need to consider
and evaluate a multi-label prediction setting. Moreover, since OpenIE may turn each
input sentence into multiple clauses, we define the following variants of the three
classes of true positives (TPs), false positives (FPs) and false negatives (FNs) needed to
compute precision, recall and F1, and with respect to whether the unit of prediction
is either a sentence or a clause.
Prediction Unit: Sentence. The unit of prediction is a sentence. Under a single-
label prediction setting, TPs, FPs and FNs can be computed in the standard way by
considering also a single (i.e., the “best”) predicted label per sentence. However,
under a multi-label prediction setting, we predict as many labels as were given for the
KN sentence, and then consider how many of the predicted labels also match the
given labels as the TPs (and vice versa for the FPs and FNs).
Prediction Unit: Clause. The unit of prediction is a clause. Under a single-label pre-
diction setting, this means that we also predict one label per clause, but since OpenIE
may extract multiple clauses from the given KN sentence, we then still need to com-
pare multiple labels obtained from the clauses with the single, given label of the KN
sentence. We therefore define the following two variants for TPs and FPs (FNs again
follow similarly): ANY and ALL.

ANY TP: any of the clauses’ labels match the single given label of the KN
sentence.

FP: none of the clauses’ labels match the single given label of the KN
sentence.

ALL TP: all of the clauses’ labels match the single given label of the KN
sentence.

FP: not all of the clauses’ labels match the single given label of the
KN sentence.

However, under a multi-label prediction setting, when using clauses as prediction
unit, ANY and ALL would be too extreme to give a fair estimate of the prediction
quality. We therefore introduce a third variant, UNION, as follows.



94 Chapter 11. Enriching Relation Extraction with OpenIE

TABLE 11.3: The performance of all our approaches using Knowled-
geNet.

Method P R F1
Human 0.88 0.88 0.88
Diffbot Joint Model 0.81 0.81 0.81
KnowledgeNet Baseline 5 (BERT) 0.67 0.69 0.68
Clauses + BERT (ALL) 0.86 0.86 0.86
Clauses + BERT (ANY) 0.90 0.92 0.91
Clauses + BERT (UNION) 0.89 0.89 0.89
Clauses + distillBERT (ALL) 0.86 0.86 0.86
Clauses + distillBERT (ANY) 0.92 0.92 0.92
Clauses + distillBERT (UNION) 0.91 0.91 0.91
Clauses + feature-based-BERT (ALL) 0.86 0.74 0.79
Clauses + feature-based-BERT (ANY) 0.91 0.91 0.91
Clauses + feature-based-BERT (UNION) 0.91 0.87 0.89
Clauses + SETFIT(ANY) 0.85 0.83 0.84
Mixed + BERT (ALL) 0.87 0.75 0.80
Mixed + BERT (ANY) 0.93 0.84 0.89
Mixed + BERT (UNION) 0.91 0.93 0.92
Mixed + distillBERT (ALL) 0.85 0.70 0.77
Mixed + distillBERT (ANY) 0.91 0.80 0.85
Mixed + distillBERT (UNION) 0.90 0.92 0.91
Mixed + feature-based-BERT (ALL) 0.85 0.69 0.76
Mixed + feature-based-BERT (ANY) 0.85 0.83 0.84
Mixed + feature-based-BERT (UNION) 0.88 0.83 0.85
Mixed + SETFIT (ANY) 0.82 0.77 0.79
Sentences + BERT 0.86 0.78 0.82
Sentences + distillBERT 0.87 0.79 0.83
Clauses + Word2Vec (ALL) 0.71 0.62 0.66
Clauses + Word2Vec (ANY) 0.77 0.58 0.67
Clauses + Word2Vec (UNION) 0.83 0.66 0.66

UNION TPs: the union of the clauses’ labels that match the given set of
labels of the KN sentence.

FPs: the union of the clauses’ labels that do not match the given
set of labels of the KN sentence.

That is, under a multi-label prediction setting (both when using sentences and clauses
as prediction units), multiple TPs, FPs and FNs may be produced per KN sentence.
FewRel, on the other hand, is a single-labeled dataset and provides property anno-
tations at the fact level. There, ALL and ANY collapse into the same (standard) case,
while UNION is not present at all. Based on the afore-defined variants of TPs, FPs
and FNs, we then compute precision (P), recall (R) and F1 in the standard way for
both KN and FewRel.

11.5.3 Results

We now present the results of the seven baseline approaches outlined in section
11.5.1. We performed detailed experiments to demonstrate the effectiveness of our
method and show how OpenIE improves RE. We tested multiple pre-trained LMs
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TABLE 11.4: The performance of all our approaches using FewRela.

Method P R F1
ERNIE 0.88 0.88 0.88
DeepEx — — 0.48
Clauses + BERT 0.71 0.71 0.71
Clauses + distillBERT 0.68 0.68 0.68
Clauses + SETFIT 0.68 0.68 0.68
Clauses + roBERTa 0.68 0.68 0.68
Clauses + distillroBERTa 0.66 0.67 0.66
Clauses + feature-based-BERT 0.75 0.59 0.66
Clauses + alBERT 0.65 0.66 0.65
Mixed + BERT 0.66 0.67 0.66
Mixed + distillBERT 0.65 0.66 0.65
Mixed + roBERTa 0.65 0.67 0.65
Mixed + distillroBERTa 0.65 0.67 0.65
Mixed + SETFIT 0.66 0.64 0.65
Mixed + alBERT 0.62 0.63 0.62
Mixed + feature-based-BERT 0.64 0.59 0.61
Sentences + BERT 0.65 0.66 0.65
Sentences + roBERTa 0.65 0.66 0.65
Sentences + distillroBERTa 0.65 0.66 0.65
Sentences + alBERT 0.63 0.65 0.64
Sentences + distillBERT 0.64 0.65 0.64
Sentences + SETFIT 0.64 0.63 0.63
Clauses + Word2Vec 0.61 0.52 0.56

aHere, for SETFIT, a subset of 15 relations is used similar to Tunstall et al., 2022

and report the best results in Tables 11.3 and 11.4. For all the baselines except Base-
line 3 and 7, we consider candidate clauses when their subject and object text spans
overlap with the text spans of the subject and object of the ground truth relations.
For KN7, the results are averaged after performing a 4-fold cross-validation on the 4
folders into which it is divided by default. For FewRel8, we averaged over 10 runs
with random splits (each by dividing the dataset in 75% for training and 25% for test-
ing purposes) to shuffle as much as possible the data and have significant changes
in the distribution of the text during training and testing time.
KN Results. We motivated our choice for the LMs in section 11.1, however, the ex-
perimental results do not suggest a clear suitability of a specific model for all RE set-
tings. We notice that BERT and distillBERT performed best on KN, while RoBERTa
and SETFIT were also useful in some settings applied to FewRel. For KN, our best
baseline (Baseline 1, Clauses + distillBERT) significantly outperforms the previous
work (Diffbot Joint Model and KN Baseline 5, reported on top of Table 11.3). The
most important improvements (also in comparison to our other baselines) are due
to (1) using clauses as a unit of prediction, (2) incorporating clauses during fine-
tuning, and (3) allowing any of the OpenIE clauses to match the single KN label (as
described in the ANY evaluation mode).

7https://github.com/diffbot/knowledge-net
8http://zhuhao.me/fewrel

https://github.com/diffbot/knowledge-net
http://zhuhao.me/fewrel
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FewRel Results. For FewRel, we compare our results against Matching the Blanks
(MTB) (Soares et al., 2019), ERNIE (Zhang et al., 2019b) and DeepEx (Wang et al.,
2021a). Being the board leader on FewRel (with an accuracy of 93.86), Matching the
Blanks classifies the relations relying solely on the text input. It however employs
additional entity markers, which we deliberately omit in favor of taking advantage
of the OpenIE-based sentence decomposition and the LMs ability to interpret the
arguments. While our strategy proves effective for KN, explicit entity markers may
still be lacking for FewRel which represents a much more fine-grained set of 100 re-
lations (compared to the 15 relations of KN). ERNIE is different from MTB and our
system in that it uses knowledge graphs to enrich pre-trained LM. It shows good
performance on FewRel (with an F1-score of 88.32), but the robustness of the sys-
tem may be questioned due to inherent incompleteness of the knowledge graphs
which typically limits the system’s ability to generalize. We, on the other hand,
want to demonstrate how a fast and simple approach can be successful even on
such a competitive dataset while not suffering from unseen relational components.
DeepEx offers an interesting comparative scenario because it formulates the RE task
as an extension to OpenIE. While DeepEx outscores many state of the art OpenIE
systems, we outperform it on the task of RE by large margin, including the few-
shot setting. We attribute this result to the way OpenIE clauses are translated into
relations: DeepEx essentially maps relational phrases from clauses to a knowledge
graph property label or its aliases but does not take the signal from the entire clause
into account. We notice that this approach roughly corresponds to our context-free
“Clauses + Word2Vec” baseline which generally achieves weaker results on both
datasets (especially compromising the recall), as there seem to be a plethora of rela-
tion types, specially in FewRel, that cannot be captured well just by considering the
clauses’ predicates.
Few-Shot Results. Figure 11.2 shows the best performing models in few-shot set-
ting. We notice that for KN, 8 samples are sufficient for feature-based BERT to
achieve about 85% F1-score. The other two models require many more samples yet
do not reach the same result. On the contrary, all the tree models demonstrate sim-
ilar behaviour on FewRel data. BERT has a slight advantage, however, it needs at
least 30 samples to achieve above 50% F1-score. We hypothesize that the overall
number and diversity of relations in FewRel contribute to this phenomenon.
Summary. We clearly notice that the best performances are obtained on the base-
lines where we use OpenIE extractions for inference and fine-tuning the LMs, which
motivates our choice and design for the experiments. Our experiments confirm that
decomposing a sentence into clauses, which are designed to express a compact, more
“focused” unit of information, allows us to distill various aspects of a sentence’s
meaning and to represent it as (a set of) labeled relation instances in a concise man-
ner.

11.6 Final Remarks

We proposed and evaluated a variety of simple and direct strategies to combine
OpenIE with Language Models for the task of Relation Extraction. We explored how
OpenIE may serve as an intermediate way of extracting concise factual informa-
tion from natural-language input sentences, and we combined the obtained clauses
with both context-free and contextual LMs, as both are widely used in research and
known for their strengths and weaknesses. For our experiments, we utilized the
KnowledgeNet dataset with 15 properties as well as the well-known FewRel dataset
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FIGURE 11.2: Change in the F1 score in a FewShot setting.

containing 100 relations. Both datasets use Wikidata as underlying KB, which con-
stitutes a valuable resource as demonstrated by the increased number of scientific
publications and applications both in academia and industry in recent years. We
presented detailed experiments on Word2Vec, BERT, RoBERTa, AlBERT, SETFIT and
their further distilled versions with a range of baselines that achieve up to 92% and
71% of F1 score for KnowledgeNet and FewRel, respectively. In the future, we in-
tend to apply our work also toward various downstreams tasks such as sentiment
analysis, question answering, knowledge base population, and further knowledge
graph aspects.
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Part V

Conclusions
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Chapter 12

Conclusions

This thesis delved into the multifaceted world of DL, examining its intricacies and
complexities from various angles and perspectives. Our exploration covered second-
order methods, random embeddings, and RE, aiming to improve the performance
of DL techniques across different use cases.

In Part II, we focused on the initialization and optimization of neural networks
by introducing a new approximated chain rule for Hessian backpropagation. This
method aimed to facilitate fast and systematic training of NNs, addressing the limi-
tations of traditional empirical heuristics. Our approximated chain rule for Hessian
backpropagation provided a theoretical foundation for the optimization and train-
ing of NNs, demonstrating the superior efficiency of second-order methods across
multiple datasets.

In Part III, we shifted our focus to the analysis of random embeddings, which
serve as a crucial tool for dimensionality reduction in ML and DL algorithms. Our
research yielded improved bounds for sparse random embeddings, outperforming
the previous state of the art and providing robust, provable guarantees for real-
world datasets. Furthermore, our analysis extended to Rademacher random em-
beddings, offering non-oblivious insights into input data.

In Part IV, we ventured into IR, specifically targeting RE. By examining advanced
techniques and tools for extracting and analyzing textual data, we demonstrated
their applicability in real-world scenarios. Our approach combined distant supervi-
sion, few-shot learning, OpenIE, and various LMs to enhance the task of RE, show-
casing the capabilities of these methods in a fast and efficient manner.

In conclusion, this thesis presented a diverse array of approaches and strategies,
each contributing to the enhancement of DL performance across a range of scenar-
ios and applications. By investigating the nuances of DL from multiple angles, we
have provided valuable insights and innovative solutions that can be leveraged by
researchers and practitioners in the field.

For future directions, the following list presents some possibilities that can build
upon and extend our work:

• Second-order methods: As hardware continues to advance at a remarkable
pace, it will be intriguing to investigate the feasibility of calculating the full
Hessian that considers the second partial derivative of the weights matrix
(quadratic with respect to the number of weights per layer). Although cur-
rently infeasible, such advancements could lead to significant improvements
in the training and optimization of neural networks, leveraging the power of
second-order methods more effectively.

• Sparse Random Embeddings: In our research, we introduced the dispersion
parameter, v, which is data-dependent. While our improved bounds were ex-
perimentally tested on a range of datasets with varying values for v, future
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work could involve testing these bounds on an even broader array of datasets
from diverse use cases. By doing so, we can further validate the theoretical
guarantees of our sparse random embeddings and better understand their ap-
plicability across different domains.

• Relation Extraction: A notable challenge in RE is the presence of noisy ex-
tractions from OpenIE. To address this issue, future work could involve im-
plementing an intermediate post-processing step for OpenIE output before in-
putting it into language models for label inference. This additional step would
not only help mitigate noise in the data but also allow for the retention of more
OpenIE extractions, ultimately yielding a larger sample for the relational label-
ing process. By refining the RE pipeline, we can expect to see improvements
in the accuracy and reliability of extracted information from textual data.
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Appendix A

Approximated Chain Rule for
Hessian Backpropagation

A.1 Proof of Hessian Chain Rule

Our goal is to compute the Hessian with respect to the parameters in the layer k. By
the chain rule

DW(k) L(z, t) = Dz(n) L(z, t) • DW(k)z(n) (A.1)

Note that the second tensor is of shape [dn, dk+1, dk] (rank 3!), the contraction is over
the dimension of z(n). Again by the chain and product rules

D2
W(k) L = D2

z(n) L • DW(k′)z(n) • DW(k)z(n)︸ ︷︷ ︸
H1

+ Dz(n) L • D2
W(k)z(n)︸ ︷︷ ︸

H2

(A.2)

In the component H1 the dot-products contract indices z(n) (note that D2 is symmet-
ric and the terms D are same, hence the order of pairing dimensions of W(k) does
not matter). As for the second component H2, it is a product of tensors of rank 1 and
5. In order to further simplify, we are going to show that H2 is negligible compared
to H1. the intuition is as follows: in H1 the contribution comes from gradients DW(k)

while in H2 from second-order derivatives D2
W(k) ; we consider activations such that

f (u) = au + O(u3) and therefore for small u second-derivatives are near zero but
first derivatives are not, and their contributions dominate.

In the analysis below we assume that weights are sufficiently small, and biasses
are zero (or of much smaller variance compared to weights). Let u(k) = W(k) · z(k) +
b(k) be the output before activation at the k-th layer.

Due to A.2, our goal is to evaluate first and second derivatives of z(n) with re-
spect to weights W(k), under the assumption that inputs z(i) are sufficiently small.
Consider how z(k+1) depends on W(k). By the chain rules

DW(k)z(k+1) = Du(k) f (u(k)) • DW(k)u(k) (A.3)

D2
W(k)z(k+1) = D2

u(k) f (u(k)) • DW(k)u(k) • DW(k)u(k) (A.4)

Note that Du(k) f (u(k)) and D2
u(k) f (u(k)) are diagonal tensors because f is applied

element-wise. More precisely[
D2

u(k) f (u(k))
]

i,j,j′
= δi,jδi,j′ · f ′′(u(k)

i ) (A.5)
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where δ·,· is the Kronecker delta which is one where indices match and zero other-
wise. Moreover,[

DW(k)u(k)
]

j,p,q
=

∂

∂W
(k)
p,q

(W(k) · z(k) + b(k))j = δj,p · z(k)q (A.6)

Thus [
D2

W(k)z(k+1)
]

i,p,q,p′,q′
= δi,pδi,p′ · f ′′(u(k)

i ) · z(k)q · z(k)q′ (A.7)

When this tensor acts, as a bi-linear form, on a tensor g = gp,q we therefore obtain[
D2

W(k)z(k+1) • g • g
]

i
= f ′′(u(k)

i )∑
q,q′

z(k)q z(k)q′ gi,qgi,q′ (A.8)

= f ′′(u(k)
i )

(
∑

q
z(k)q gi,q

)2

(A.9)

Since our assumption on activations implies f ′′(u) = O( f ′′′ · u) for real u, we see this
is of order O( f ′′′∥u(k)∥∥z(k)∥2) · ∥g∥2.

Claim 1 (Magnitude of second derivative of weights).

D2
W(k)z(k+1) • g • g = O( f ′′′∥u(k)∥∥z(k)∥2) · ∥g∥2. (A.10)

which is of order O( f ′′′ · c3) where c is the constant from our ’relatively small inputs’ as-
sumption.

Next, observe that the roles of z(k) and W(k) in u(k) are symmetric. Thus we have
a similar result with respect to z(k).

Claim 2 (Magnitude of second derivative of inputs).

D2
z(k)z

(k+1) • g • g = O( f ′′′∥u(k)∥∥W(k)∥2) · ∥g∥2 (A.11)

which is of order O( f ′′′ · c) where c is the constant from our ’relatively small inputs’ as-
sumption.

We need to prove that this propagates to higher-level outputs zi, where i > k.
This is intuitive, considering now that z(i) is a function of z(k+1) with no dependen-
cies on W(k). To prove it formally look at the second-order chain rule

D2
W(k)z(i) = D2

z(k+1)z(i) • DW(k)z(k+1) • DW(k)z(k+1) + Dz(k+1)z(i) • D2
W(k)z(k+1) (A.12)

Now the second term is clearly O( f ′′′c3) by the first claim. As for the first term,
the first tensor is of order O( f ′′′c) while the two others are O( f ′c). The dot-product
gives the bound O( f ′′′c3).

Claim 3. For every i > k it holds D2
W(k)z(i) = O( f ′′c3).

Summing up, we can ignore second-derivatives with respect to weights, and this
is accurate except third-order terms in the magnitude of z(i). In particular, we can
ignore the effect of H2.



A.2. Factorizing the Hessian Quadratic Form 105

A.2 Factorizing the Hessian Quadratic Form

Consider any potential update vector g for weights W(k), it has to be of same shape
as DW(k) L or equivalently W(k), that is [dk+1, dk]. Our goal is to evaluate the hessian
quadratic form on g. Ignoring the smaller part H2 we are left with H1 which gives

D2
W(k) L • g • g = D2

z(n) L • DW(k)z(n) • DW(k)z(n) • g • g (A.13)

where g is contracted on all indices together with W(k). To emphasize this we can
regroup, obtaining

Claim 4 (Hessian quadratic form). The hessian quadratic form for an update g equals

D2
W(k) L • g • g = D2

z(n) L •
(

DW(k)z(n) • g
)
•
(

DW(k)z(n) • g
)

(A.14)

We work further to simplify rank-3 tensors. By the chain rule

DW(k)z(n) • g = Dz(k+1)z(n) • DW(k)z(k+1) • g (A.15)

Let u(k) = W(k) · z(k) + b(k) be the output before activation. By the chain rule

DW(k)z(k+1) = Du(k)z(k+1) • DW(k)u(k) (A.16)

Note that DW(k)u(k) is a third-order tensor of shape [dk+1, dk+1, dk]. Denote its ele-
ments by Mi′,i,j. We have [

DW(k)u(k)
]

i′,i,j
= [i′ = i] · z(k)j (A.17)

and we compute the dot product[
DW(k)u(k) • g

]
i′
= ∑

i,j

[
DW(k)u(k)

]
i′,i,j

gi,j = ∑
j

z(k)j gi′,j (A.18)

which can be expressed compactly in terms of matrix multiplication as

DW(k)u(k) • g = g · z(k) (A.19)

which is a vector of shape [dk+1].
Using this in A.16 we obtain, in terms of matrix products

DW(k)z(k+1) • g = Du(k)z(k+1) ·
(

DW(k)z(k+1) • g
)
= Du(k)z(k+1) · g · z(k) (A.20)

Now, in terms of matrix products, A.15 becomes

DW(k)z(n) • g = Dz(k+1)z(n) · DW(k)z(k+1) · g · z(k) (A.21)

which is a vector of shape [dn]. Finally note that H • v • v = vT · H · v where H is a
symmetric matrix and v is vector. This proves

Claim 5 (Approximated hessian form). For sufficiently small inputs, the hessian quadratic
form can be approximated as

HW(k) [g, g] ≈ vT ·Hz · v (A.22)
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where

v = Dz(k+1)z(n) · DW(k)z(k+1) · g · z(k). (A.23)

This claim implies the first part of Remark 1. The error estimate follows by the
discussion in the previous section.

A.3 Further Factorization

We have seen that the quadratic effects of W(k) can be ignored, thus it is enough to
consider the simplified recursion

z(k+1) ≈ a ·
(
W(k) · z(k) + b(k)

)
(A.24)

for a diagonal matrix a (which captures first-derivatives of activations), or equiva-
lently:

Claim 6 (Second-order recursion for small inputs). For relatively small inputs the hes-
sian can be computed under the simplified recursion

z(k+1) ≈ J(k) · z(k) (A.25)

where Jk = Dz(k)z
(k+1). In particular, the term H2 can be ignored.

We now proceed to further factorize v. By linearization we obtain

z(k) ≈ Dz(k−1)z(k) · z(k−1) = . . . = Dz(k−1)z(k) (A.26)

Moreover, by the chain rule, output gradient facatorizes as

Dz(k+1)z(n) = Dz(n−1)z(n) · z(k−1) · Dz(n−2)z(n−1) · . . . · Dz(k+1)z(k+2) (A.27)

regardless of linearizing assumptions. Combining these two observations gives

Claim 7 (Factorizing under linearization). Up to terms linear in z(i) for i = k− 1, . . . , 1
we have

v ≈ Dz(n−1)z(n) · Dz(n−2)z(n−1) · . . . · Dz(k+1)z(k+2) · A · g
· Dz(k−1)z

(k) · . . . Dz(0)z
(1) · z(0) (A.28)

This proves Equation 4.4.
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Appendix B

Sparse Random Embeddings

B.1 Proof of Theorem 1

Recall that we have E(x) = s−1 ∑m
r=1 Er(x). Let E′r(x) be independent copies of Er(x)

for r = 1 . . . m and define E′′r (x) = E′r(x)σr where σr are iid Rademacher random
variables.

The random variables (Er(x))r are negatively dependent , and thus moments of
their sum are not bigger than if they were independent, that is

∥∑
r

Er(x)∥d ⩽ ∥∑
r

E′r(x)

as observed in Freksen, Kamma, and Larsen, 2019 (see also a more general argument
in Shao, 2000). By the symmetrization

∥∑
r

E′r(x)∥d ⩽ 2∥∑
r

E′′r (x)∥d

This discussion shows that

∥E(x)∥d ⩽ 2s−1∥∑
r

E′′r (x)∥d.

We now apply our bounds from Lemma 4 to the symmetrized and independent
random variables (E′′r (x))r; their even moments are as those of Er(x) and bounded
as in Lemma 5. The result follows (note that we lost the constant 2 which appears in
the theorem, due to symmetrization).

B.2 Analysis of Freksen, Kamma, and Larsen, 2019

B.2.1 Proof of Remark 12

Inspecting the proof we find that best constants are

1. C1 = 2eC where C is a constant which satisfies ( 2d
2d1...2dn

) ⩽ Cd (2d)2d

∏i(2di)
2di

for all

(di)i with sum d such that di ⩽ d/2. Specializing to d1 = d/2, d2 = d/2 and

di = 0 for i > 2 we see that C must satisfy (2d
d ) ⩽ Cd (2d)2d

d2d = Cd22d. But
(2d

d ) = Θ(22d/
√

d) and taking large d we get C ⩾ 1.

2. The proof starts with the bound ∥Er∥1/2
d ⩽ K1/2 + C1 · K−1/2 sup1⩽t⩽d d/t ·

(Kp/d)1/2t for any integer K and C1 ⩾ 2e as in the discussion above. The goal
is to choose K so that the bound becomes

√
C2d/ log(1/p).
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Choosing t = 1
2 log(d/Kp) we see that the bound gives at least R = K1/2 +

2d
K1/2 log(d/Kp) , when 2 ⩽ log(d/Kp) ⩽ 2d; this condition is indeed satisfied:
the right-side follows because p/K < 1, and the left-side follows because
otherwise log(d/Kp) < 2 so the supremum is at t = 1 giving the bound
Ω(
√

d/p), worse than our goal for small p. For the same reason we can as-
sume K ⩽ d. Now by AM-GM inequality we obtain R ⩾ 2

√
2d/ log(d/Kp) ⩾

2
√

2d/ log(1/p).

Thus, the proof implies only C2 ⩾ 8.

B.3 Proof of Lemma 2

Let S = ∑n
i=1 Yi. Then

E|∑
i ̸=j

YiYj|d = E(∑
i

Yi(S−Yi))
d

∑
∥(di)i∥1=d

(
d

d1, . . . , dn

)
E

[
∏

i
Ydi

i (S−Yi)
di

]

We first prove that

E

[
∏

i
Ydi

i (S−Yi)
di

]
⩽ E

[
Sd ∏

i
Ydi

i

]
. (B.1)

We have (S− Yi)
di = ∑di,j

( di
di,1,...,di,n−1

)∏n−1
j ̸=i Y

di,j
j , due to S− Yi = ∑j ̸=i Yj. This can be

written as

(S−Yi)
di = ∑

di,j :di,i=0

(
di

di,1, . . . , di,n

) n

∏
j

Y
di,j
j

We now have

L = E

[
∏

i
Ydi

i (S−Yi)
di

]

= E

∏
i

Ydi
i ∑

di,j :di,i=0

(
di

di,1, . . . di,n

) n

∏
j

Y
di,j
j


= ∑

di,j :di,i=0
E

[
∏

i

(
di

di,1, . . . di,n

)
Ydi

i

n

∏
j

Y
di,j
j

]

All expectations terms are non-negative due to the symmetry of Yi. Thus the whole
sum does not decrease if we ignore the condition di,i = 0 (as this will produce only
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more terms). Therefore

L ⩽ E

∑
di,j

∏
i

(
di

di,1, . . . di,n

)
Ydi

i

n

∏
j

Y
di,j
j


= E

∏
i

Ydi
i

(
∑

j
Yj

)di


= E

[
∏

i
Ydi

i Sd

]

which completes the proof of B.1.
We now claim that Y1, . . . , Yn conditionally on S = s are negatively dependent.

To this end it suffices to establish that E[ϕ(Y1, . . . , Yk)|Y1 + . . . + Yk = s] is non-
decreasing in s for coordinate-wise non-decreasing functions ϕ and k = 1, . . . , n− 1.
Conditioning on Y3 . . . , Yk we see that it suffices to prove that for k = 1, 2. The case
of k = 1 is obvious. For k = 2 we use the observation which states that it suffices to
check that for functions ϕ of one argument; since E[ϕ(Y1)|Y1 +Y2 = s] = Eϕ(s−Y2)
is indeed non-decreasing in s when ϕ is non-decreasing, the result follows.

By the negative dependence we thus obtain

E

[
∏

i
Ydi

i (S−Yi)
di

]
⩽ E

[
Sd
]

E

[
∏

i
Ydi

i

]
(B.2)

which, coupled with the multinomial expansion, finishes the proof.

B.4 Proof of Lemma 3

Proof. It suffices to prove that

u→ E f

(
∑

i
Yiu1/2

i

)

is Schur-concave in u, where f (t) = td. Indeed, we have E(∑i Yixi)
d = E(∑i Yi|xi|)d

(follows by raising to the power of d and applying the multinomial expansion, then
only even powers contribute to the expectation), and the claim follows by denoting
|xi| = ui.

Since g is symmetric it suffices to check the Schur-Ostrowski criterion for u1 and
u2. Let W = ∑i>2 ηiσiu1/2

i , then

∂g
∂u1
− ∂g

∂u2
=

u1/2
2 X1 − u1/2

1 X2

2(u1u2)1/2 · f ′
(

2

∑
i=1

Yiu1/2
i + W

)

Thus it remains to prove that the expectation of

Q ≜ (u1/2
2 X1 − u1/2

1 X2) · f ′
(

2

∑
i=1

Yiu1/2
i + W

)
(B.3)

is negative when u1 < u2. Recall that Yi are symmetric and take three values
{−1, 0, 1}. We condition on two cases: a) X1, X2 ̸= 0 and b) one of X1, X2 is zero.
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In case a) the result reduces to the case of Rademacher variables, solved already by
Eaton. We are left with case b). If X1 = X2 the expression is zero. We further assume
X1 ̸= X2. Consider the two disjoint events: E1 is that X2 = 0 and X1 = ±1 and E2 is
that X1 = 0 and X2 = ±1. Then we have that

E [Q|E1, W] = u1/2
2

(
f ′
(

u1/2
1 + W

)
− f ′

(
−u1/2

1 + W
))

E [Q|E2, W] = −u1/2
1

(
f ′
(

u1/2
2 + W

)
− f ′

(
−u1/2

2 + W
))

For t > 0 we consider the the auxiliary function

gw(t) = t−1 ( f ′ (t + w)− f ′ (−t + w)
)

We have E [Q|E1, W] = (u1u2)1/2gW(u1/2
1 ) and E [Q|E2, W] = −(u1u2)1/2gW(u1/2

2 ),
and therefore E[Q|E1 ∪ E2] = (u1u2)EW [gW(u1/2

1 ) − gW(u1/2
2 )]. If we prove that

gW(t) increases in t, the proof is complete.

Since in our case f (t) = td, we find that gw(t) = d · (w+t)d−1−(w−u)d−1

t . Since d is
even gw(t) = dt−1((w + t)d−1 + (t− w)d−1) = d ·∑0⩽k< d−1

2
( d

2k)t
d−2−2kw2k, indeed is

increasing in t regardless of w.

B.5 Intuitions about Corollary 4

The result follows because x∗ is majorized by every other vector which satisfies the
constraints.

However one may wonder why is not the flat vector x f lat, with all non-zero en-
tries equal to v, the worst case? Observe that already for the case of d = 2 this gives

the norm of
√

v2 p while our construction gives the biggeer value
√

pv2 + p 1−v2

n−1 .

B.6 Proof of Lemma 5

Proof. Due to Lemma 2 applied to Zi ∼ Ar,i · xi and the definition of A, it suffices
to show that ∥∑i xiYi∥d ⩽ Tn,p,d(v). Consider x∗ as in Corollary 4. Define W =
1−v2
√

n−1 ∑n
i=2 Yi. Using the independence and symmetry of Y1 and W, we obtain

∥∑
i

x∗i Yi∥d ⩽ E (Y1v + W)d

=
d/2

∑
k=0

(
d
2k

)
v2kEY2k

1 EWd−2k

Let B1, B2 be Bernoulli with parameter σ such that σ2 + (1− σ2) = 1− p, then Yi ∼
B1 − B2, and thus W ∼ B′ − B′′ where B, B′′ ∼iid Binom(n − 1, σ). Also, we have
EY2k

1 = pI(k>0). We have Tn,p,d(v) ⩽ ∥∑i x∗i Yi∥d, which combined with the bound
above, completes the proof.
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B.7 Proof of Lemma 4

We have

E(∑
i

Zi)
d = ∑

d=(di)i

(
d

d1 . . . dn

)
∏

i
EZdi

i

We need the following

Proposition 1. We have (d−y
x ) ⩽ c · (d

x) for 0 ⩽ x, y, x + y ⩽ d where c = e−
xy
d .

Proof. Note that c satisfies ∏x−1
i=0

(
1− y+i

d+i

)
⩽ c. The left-hand side is at most (1−

y/d)x ⩽ e−yx/d

We conclude that (
d

d1 . . . dn

)
⩽ e−

d
2

k

∏
i=1

(
d
di

)
.

To see this we assume without losing generality that di is sorted in descending order.
Since ( d

d1...dn
) = ( d

d1
)(d−d1

d2
)(d−d1−d2

d3
) . . . by 1 the above holds with constant e−c where

c = d−1 ∑k
1⩽j⩽i⩽d didj ⩾

(∑i di)
2

2d = d/2.
Using the above bound we get

E(∑
i

Zi)
d ⩽ e−d/2 ∑

d=(di)i

∏
i

(
d
di

)
EZdi

i

= e−d/2 ∏
i

∑
k

(
d
k

)
EZk

i

Substituting Zi := Zi/t we obtain

E(t−1 ∑
i

Zi)
d ⩽ e−d/2 ∏

i
∑

k

(
d
k

)
EZk

i /tk

Now if Z1, . . . , Zn ∼iid Z and t is such that (∑k (
d
k)EZk/tk)n = ed/2 we obtain

E(t−1 ∑i Zi)
d ⩽ 1 which is equivalent to ∥∑i Zi∥d ⩽ t.
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Appendix C

Rademacher Random Embeddings

C.1 Proof of Lemma 6

Consider two non-negative functions f , g and inputs x ≺ y. Consider the identity

f (y)g(y) − f (x)g(x) = ( f (y) − f (x)) · g(y) + f (x) · (g(y) − g(x)). (C.1)

If f , g are Schur-convex then f (y) − g(x) ⩾ 0 and g(y) − g(x) ⩾ 0 and the whole
expression is non-negative when f , g are non-negative. This shows that f · g is also
Schur-convex. The claim for Schur-concave functions follows analogously (the ex-
pression is then non-positive).

C.2 Proof of Lemma 7

The proof follows from the fact that x is dominated by y if and only if x can be
produced from y by a sequence of Robin-Hood operations, and the fact that Robin-
Hood operations change only two fixed components of vectors.

C.3 Proof of Theorem 5

Proof. Note that Rq is a polynomial in x2
i with integer coefficients, and thus a well-

defined function of (x2
i ). This follows by applying the multinomial expansion and

noticing that monomials with odd exponents have expectation zero due to the sym-
metry of Rademacher distribution. Rq is obviously symmetric. By Lemma 7 it now
suffices to validate the Schur-concativity for x2

1, x2
2 and any fixed choice of (xi)j>2.

Define the following expressions

P = ∑
i ̸∈{1,2}

xiri

R = ∑
i,j ̸∈{1,2}

xixjrirj,
(C.2)

then our task is to prove the Schur-concativity of the function

Rq ≜ E (P(x1r1 + x2r2) + x1x2r1r2 + R)q , (C.3)

with respect to x2
1, x2

2.
By the multinomial expansion we find that

Rq ≜ ∑
q1+q2+q3=q

(
q

q1, q2, q3

)[
E [Pq1 Rq3 ] E [(x1r1 + x2r2)

q1(x1x2r1r2)
q2 ]

]
, (C.4)
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where we used the independence of r1, r2 on (ri)i>2 and thus also on P, R. Observe
that Pq1 Rq3 is, by definition and our assumption xi ⩾ 0, a polynomial in symmetric
random variables ri with non-negative coefficients. This observation shows that

E [Pq1 Rq3 ] ⩾ 0, (C.5)

and by Lemma 6 it suffices to prove that

F ≜ E [(x1r1 + x2r2)
q1(x1x2r1r2)

q2 ] (C.6)

is Schur-concave as a function of x2
1, x2

2 for any non-negative integers q1, q2.
To see that F is indeed a well-defined function of x2

1, x2
2, note that it equals the

expectation of a polynomial in the symmetric random variables yi = xiri; thus only
monomials with even-degrees contribute, and the result is a polynomial in y2

i = x2
i .

In fact, F equals the sum of even-degree monomials in the expanded polynomial
(x1 + x2)q1(x1x2)q2 .

We next observe that

F =

{
(x1x2)q2 E [(x1r1 + x2r2)q1 ] q2 even
(x1x2)q2−1E [(x1r1 + x2r2)q1 x1x2r1r2] q2 odd

. (C.7)

Note that x1x2 is Schur-concave in non-negative x1, x2; indeed, the identity (x1 +
ϵ)(x2 − ϵ) = x1x2 + ϵ(x2 − x1 − ϵ) shows that Robin-Hood transfers increase the
value. By Lemma 6 we conclude that (x1x2)k is Schur concave in x2

1, x2
2 for non-

negative even k. Thus, by C.7 and Lemma 6, we conclude that it suffices to consider
the case q2 = 1, that is, to prove the Schur-concavity of the following two functions:

Gk ≜ E
[
(x1r1 + x2r2)

k
]

(C.8)

Hk ≜ E
[
(x1r1 + x2r2)

kx1x2r1r2

]
. (C.9)

with respect to x2
1, x2

2 for any non-negative integer k.
Using the identity (x1r1 + x2r2)k = (x1r1 + x2r2)k−2(x2

1 + x2
2 + 2x1x2r1r2), we find

the following recurrence relation

Gk = (x2
1 + x2

2)Gk−2 + 2Hk−2 (C.10)

Hk = 2x2
1x2

2Gk−2 + (x2
1 + x2

2)Hk−1, (C.11)

valid for k ⩾ 2. Since x2
1 + x2

2 and x2
1x2

2 are Schur-concave as functions of x2
1, x2

2, by
Lemma 6 the concavity property proven for k − 2 implies that it is valid also for k.
By induction, it suffices to verify the case k = 0 and k = 1. But we see that

G0 = 1
G1 = 0
H0 = 1

H1 = 2x2
1x2

2

(C.12)

are all Schur-concave as functions of x2
1, x2

2. This completes the proof.
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C.4 Proof of Theorem 6

Without loss of generality, we assume that ∥x∥2 = 1. From Theorem 5 and the fact
that (x2

i ) majorizes (x∗i
2) we obtain

max
∥x∥0⩽K

E

(
∑
i<j

xixirirj

)q

= E

(
∑
i<j

x∗i x∗i rirj

)q

= E

(
1
K ∑

1⩽i<j⩽K
rirj

)q

, (C.13)

Observe that ri = 1− 2bi where (bi) is a sequence of independent Bernoulli ran-
dom variables with parameter 1

2 . Therefore,

E

(
K

∑
i=1

ri

)q

=

=(a) ∑
k∈Z

kq · P
{

K

∑
i=1

ri = k

}

=(b) ∑
k

kq · P
{

K

∑
i=1

bi =
K− k

2

}

=(c)
K

∑
i=0

(K− 2i)q · P
{
Binom

(
K,

1
2

)
= i
}

=(d) 1
2K

K

∑
i=0

(
K
i

)
(K− 2i)q

=(e) 1
2K ∑

i

(
K
i

)
(−K + 2i)q,

(C.14)

where in (a) we use the fact that ∑i ri takes integer values, (b) follows by the identity
ri = 1− 2bi, (c) follows by Binom(K, 1/2) ∼ ∑K

i=1 bi, (d) uses the explicit formula on
the binomial probability mass function, and finally in (e) we substitute i := K − i
and use the symmetry of binomial coefficients (K

i ) = ( K
K−i).

Using the above formula, we further calculate

E

(
∑

1⩽i ̸=j⩽K
rirj

)q

=

=(a) E

( K

∑
i=1

ri

)2

−
K

∑
i=1

r2
i

q

=(b) ∑
j

(
q
j

)
(−K)q−jE

(
K

∑
i=1

ri

)2j

=(c) 1
2K ∑

i,j

(
q
j

)(
K
i

)
(−K + 2i)2j(−K)q−j

=(d) (−K)q

2K ∑
i

(
K
i

)(
1− (−K + 2i)2

K

)q

,

(C.15)

where (a) follows by the square sum completion, (b) follows by the binomial formula
and r2

i = 1, (c) follows directly by C.14, and (d) is obtained by algebraic rearrange-
ments.
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Inserting C.14 into C.13, we arrive at

max
x:∥x∥0⩽K

E

(
∑

1⩽i ̸=j⩽K
xixjrirj

)q

=
1

2K

K

∑
i=0

(
K
i

)(
(−K + 2i)2

K
− 1
)q

. (C.16)

To simplify further, let Z ∼ Binom(K, 1
2 )−

K
2√

K
4

be the standardization of the symmetric

binomial distribution. Denoting i ∼ Binom
(
K, 1

2

)
we have Z2 ∼ (i− K

2 )
2

K
4

= (−K+2i)2

K ,

and we can rewrite C.16 as follows:

max
x:∥x∥0⩽K

E

(
∑

1⩽i ̸=j⩽K
xixjrirj

)q

= EZ
(
Z2 − 1

)q
, (C.17)

which finishes the proof.

C.5 Proof of Theorem 4

We have to prove that for the distortion E(·) defined as in

E(x) ≜
∥Φx∥2

∥x∥2 − 1. (C.18)

the following inequality holds true:

E(x) ⩽ E(y), (y2
i ) ≺ (x2

i ). (C.19)

The proof goes through several reduction steps until Schur-concavity of few simple
functions.

We first observe that it suffices to prove that the moments of the expression

x → ∥Φx∥2 − ∥x∥2, (C.20)

are Schur-concavity with respect to (x2
i ). Indeed, since (y2

i ) ≺ (x2
i ) implies ∥x∥2 =

∑i x2
i = ∑i y2

i = ∥y∥2 we have EE(x)q ⩽ EE(y)q if and only if E(∥Φx∥2 − ∥x∥2)q ⩽
E(∥Φy∥2 − ∥y∥2)q, by the definition of E.

We first prove that the distortion of m-dimensional projections is the average of
m IID distortions of 1-D projections. Observe that

∥Φx∥2 − ∥x∥2 =
m

∑
k=1

(
(Φkx)2 − E(Φkx)2) , (C.21)

where Φk is the k-th row of Φ; this follows by E(Φkx)2 = ∑i x2
i Var[Φk,i] =

1
m∥x∥2.

Furthermore, the summands in (C.21) are independent and identically distributed:

(Φkx)2 − E(Φkx)2 ∼ 1
m ∑

i ̸=j
xixjrirj. (C.22)

Then we note that the Schur-concavity test can be done on the 1-D case. This
follows because, due to the multinomial expansion applied to C.22, the q-th moment
of m-dimensional distortion is a multivariate polynomial in 1-D distortion moments
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of order k ⩽ q, with non-negative coefficients; the distortion moments are them-
selves non-negative, and by Lemma 6 and Theorem 5 we obtain the first part of the
theorem.

Finally, applying Theorem 6 proves the second part.
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Vrandečić, D. and M. Krötzsch (2014). “Wikidata: a free collaborative knowledge-
base.” In: Communications of the ACM.

Wand, A. et al. (2019). “GLUE: A Multi-Task Benchmark and Analysis Platform for
Natural Language Understanding.” In: 7th International Conference on Learning
Representations.

Wang, C. et al. (2012). “Relation extraction and scoring in DeepQA.” In: J. Res. Dev.
Wang, C. et al. (2021a). “Zero-Shot Information Extraction as a Unified Text-to-Triple

Translation.” In: Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing. ACL.

Wang, Y. et al. (2021b). “Generalizing from a Few Examples: A Survey on Few-shot
Learning”. In: ACM Computing Surveys 53(3), pp. 1–34.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-MNIST: a Novel Im-
age Dataset for Benchmarking Machine Learning Algorithms”. In: CoRR abs/1708.07747.
arXiv: 1708.07747.

Xiao, Lechao et al. (2018). “Dynamical Isometry and a Mean Field Theory of CNNs:
How to Train 10, 000-Layer Vanilla Convolutional Neural Networks”. In: ICML,
pp. 5389–5398.

Xu, Bing, Ruitong Huang, and Mu Li (2016). “Revise Saturated Activation Func-
tions”. In: CoRR abs/1602.05980.

Xu, K. et al. (2016). “Enhancing Freebase Question Answering Using Textual Evi-
dence”. In: CoRR.

Yang, Z. et al. (2019). “XLNet: Generalized Autoregressive Pretraining for Language
Understanding.” In: Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019.

Yao, Zhewei et al. (2021). “ADAHESSIAN: An Adaptive Second Order Optimizer for
Machine Learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

Zhang, D. et al. (2019a). “OpenKI: Integrating Open Information Extraction and
Knowledge Bases with Relation Inference.” In: Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies.

Zhang, Z. et al. (2019b). “ERNIE: Enhanced Language Representation with Infor-
mative Entities.” In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. ACL.

Zhou, S. (2019). “Sparse Hanson-Wright inequalities for subgaussian quadratic forms.”
In: Bernoulli Society for Mathematical Statistics and Probability 25.3, pp. 1603–1639.

Zhou, W. and C. Muhao (2021). “An Improved Baseline for Sentence-level Relation
Extraction.” In: CoRR, vol. abs/2102.01373. ACL.

https://arxiv.org/abs/1708.07747

	Acknowledgements
	I Introduction
	Introduction
	Study Context
	Artificial Neural Networks
	Fundamental Problems
	Supervised Learning
	Unsupervised Learning

	Natural Language Processing

	Terminology and Mathematical Concepts
	Tensors, Derivatives and Algebra
	Probability Theory, Combinatorics and Optimization

	Structure of the Thesis


	II Second-order Methods for Deep Learning
	Introduction
	Multilayer Perceptron
	Gradient-based Learning
	Output Units
	Hidden Units
	Backpropagation

	Weight Initialization
	Optimization
	Beyond Gradient Descent

	Background and Related Work
	Approximated Chain Rule for Hessian Backpropagation
	Revisited Weight Initialization Scheme
	Approximation via Jacobian Products

	Second-order Optimizer
	What is the Problem with SGD?
	AdaPrHess: Adaptive Approximated Hessian

	Relationship to Popular Activation Functions
	Smooth Activations
	Dropouts
	ReLU

	Experiments
	Correlations between Loss and Layer Gradients
	Hessian at Initialization and Convergence
	Good Initializers Nearly Stabilize the Hessian
	Error in Hessian Approximation
	Training with the Hessian

	Final Remarks


	III Improved Bounds for Random Embeddings
	Introduction
	Dimensionality Reduction
	Methods for Dimensionality Reduction
	Random Embeddings
	Principal Components Analysis
	Singular Value Decomposition


	Background and Related Work
	Robust and Provable Guarantees for Sparse Random Embeddings
	Construction of the Embeddings
	Key Techniques for the Analysis
	Quadratic Chaos Estimation
	Extremal Properties of Linear Chaos
	Estimation of I.I.D. Sums

	Bounds Based on Error Moments
	Discussion
	Empirical Evaluation
	Best Bounds in Prior Works. 
	Synthetic Benchmark
	Real-World Datasets

	Final Remarks

	Exact Non-Oblivious Performance of Rademacher Random Embeddings
	Main Result
	Proving Schur Convexity
	Rademacher Chaoses
	Numerical Comparison
	Synthetic Dataset
	Real-world Datasets

	Final Remarks


	IV Relation Extraction
	Introduction
	Background and Related Work
	Enriching Relation Extraction with OpenIE
	Fine-Tuning Language Models for Relation Extraction
	Using Context-Free Relation Signatures for Relation Extraction
	Using Contextualized Relation Signatures for Relation Extraction
	Text-Processing Pipeline
	Experiments
	Baseline Approaches
	Evaluation
	Results

	Final Remarks


	V Conclusions
	Conclusions
	Approximated Chain Rule for Hessian Backpropagation
	Proof of Hessian Chain Rule
	Factorizing the Hessian Quadratic Form
	Further Factorization

	Sparse Random Embeddings
	Proof of Theorem 1
	Analysis of jagadeesan2019understanding
	Proof of Remark 12

	Proof of Lemma 2
	Proof of Lemma 3
	Intuitions about Corollary 4
	Proof of Lemma 5
	Proof of Lemma 4

	Rademacher Random Embeddings
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Theorem 5
	Proof of Theorem 6
	Proof of Theorem 4

	Bibliography


