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Abstract. At CRYPTO’22, Ranea, Vandersmissen, and Preneel proposed a new way
to design white-box implementations of ARX-based ciphers using so-called implicit
functions and quadratic-affine encodings. They suggest the Speck block-cipher as an
example target.
In this work, we describe practical attacks on the construction. For the implementation
without one of the external encodings, we describe a simple algebraic key recovery
attack. If both external encodings are used (the main scenario suggested by the
authors), we propose optimization and inversion attacks, followed by our main result
- a multiple-step round decomposition attack and a decomposition-based key recovery
attack.
Our attacks only use the white-box round functions as oracles and do not rely on
their description. We implemented and verified experimentally attacks on white-box
instances of Speck-32/64 and Speck-64/128. We conclude that a single ARX-round is
too weak to be used as a white-box round.
Keywords: White-box cryptography · Cryptanalysis · Algebraic attacks · Decom-
position attacks

1 Introduction
Cryptanalysis of cryptographic primitives is usually done in the black-box model, where an
attacker can query some oracle to obtain plaintext/ciphertext pairs, but without having
direct access to the internal computations done by the oracle (still knowing which primitive
is implemented obviously). While this model is nice from a theoretical point of view, in
practice, cryptographic algorithms are deployed in a more hostile environment, where
an attacker has some access to the hardware/software implementing these cryptographic
primitives. This can for example lead to the attacker being able to examine execution
time, power consumption, etc. which lead to side-channel attacks or the so-called gray-box
attack model. However, one can go further and consider the white-box model, where the
attacker actually has direct access and control to the (software) implementation of some
cryptographic primitive, meaning that they can actually read and/or modify the code,
make some partial executions, etc. This is a much stronger model, giving a lot of power to
the attacker, but it remains relevant in contexts like DRM (Digital Rights Management)
and mobile payments [AABM20,ABF+20].

Starting with the works of Chow, Eisen, Johnson and van Oorschot [CEJv03,CEJvO03]
in 2002 (also called “the CEJO framework”), several proposals were made to give a white-
box implementation of cryptographic primitives, typically of the AES and DES block
ciphers [LN05,XL09,BCH16,RP20]. However, all of these proposals to "white-box" AES
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Table 1: Summary of attacks proposed in this paper. The branch size is denoted by n.
Complexity is computed assuming encodings from [RVP22]. Target depends on round
encodings: A for affine encodings, Q for sparse quadratic-affine encodings. Key recovery
attacks were experimentally verified on instances with n = 16, 32. Optimization and
inversion attacks were experimentally verified on affine-encoded instances. Time does not
include the cost to compute the queries (data), which typically require at least O(n3) time
(depends on the implementation).
Attack Target Ref. Time Data Comment
Algebraic key
recovery

A Sec.4 O(n3) O(n) No external encoding (any side)Q Sec.4 O(n6) O(n2)

Round oracle
optimization

A Sec.5.5 O(n6) O(n2) Computes bilinear implicit
function

Q Sec.5.5 O(n9) O(n3) Computes quadratic-affine
implicit function

Round oracle
inversion

A Sec.5.5 O(n6) O(n2) Requires existence of bilinear
implicit function

Q Sec.5.5 O(n6) O(n2) Heuristic, several bits have to be
guessed

Round
decomposition

A Sec.6 O(n4) O(n3)
Total query time is at least
O(n6), dominating the time
complexity.

Q Sec.7 O(n6) O(n2) Recovers quadratic encoding.
Decomposition-
based key
recovery

AQ Sec.8 O(n6) O(n3)
Requires several consecutive
decomposed rounds to recover
the master key.

ended up falling to practical attacks [BGEC04,MGH09], and thus the problem of providing
a secure white-box implementation of AES remains open.

Observing that proposals for an AES white-box failed, Ranea, Vandersmissen, and
Preneel [VRP22, RVP22] looked at providing a white-box implementation of a totally
different structure, namely the Speck cipher, which is an ARX Feistel Network. In [VRP22],
the authors first protected the implementation using affine self-equivalences of modular
addition but showed that this approach is insecure. The consequent design in [RVP22]
relies on the use of so-called implicit functions, which describe the graph of the function in
an implicit way, allowing the computation of a function by solving of a linear system of
equations. This allows to use affine-quadratic self-equivalences of the modular addition
in order to create quadratic encodings of the round inputs, which is a much stronger
protection than affine self-equivalences. They also insist on the necessity of using external
encodings, which are “simple” functions composed with the implementation, adding more
security at the cost of altering the functionality. As their construction is rather different
that the earlier white-box AES proposals, previous white-box cryptanalysis techniques are
rather hard if not impossible to apply to their scheme.

Our contribution In this paper, we describe several attacks on their construction. Our
attacks are summarized in Table 1. Proof-of-concept implementation is available at

https://github.com/cryptolu/implicit_ARX_whitebox_cryptanalysis

First, we consider the case when one of the external encodings is omitted. Although the
authors or [RVP22] insist that external encodings are crucial, they also suggest that even

https://github.com/cryptolu/implicit_ARX_whitebox_cryptanalysis
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without external encodings their implementations are less vulnerable than, for example,
designs of [CEJv03,RP20]. Furthermore, it is important to evaluate whether the new design
contributes towards security against generic attacks such as the differential computation
analysis (DCA) [BHMT16] or the algebraic attack (also known as Linear Decoding Analysis,
LDA) [GPRW20,BU18], which are only applicable in the “pure” white-box setting without
external encodings. In this setting, we show a practical degree-2 algebraic key-recovery
attack on the white-box implementation of Speck proposed in [RVP22]. To the best of our
knowledge, this is the first application of the algebraic attack to an ARX primitive.

Then, we focus on the setting with both external encodings. Typical attacks in this
setting focus on decomposing round functions and analyzing interactions between them in
order to recover the key (for example, the BGE attack [BGEC04] on the original proposal
in [CEJv03]). Here, we describe algebraic and differential tools for analyzing the modular
addition, including an algorithm for affine-equivalence of a quadratic Boolean function to
a sum of a few monomials, black-box relation interpolation. We then show how algebraic
relations of modular addition (described for example in [CD08]) can be used to optimize a
white-box round oracle (effectively stripping the obfuscation of its implicit function by
high-degree graph automorphisms), or to invert it (at a certain cost). We move on to
the main result of our work - practical decomposition and key recovery attacks. We start
by developing a decomposition method for an affine-encoded modular addition. We then
show how a quadratic-affine encoding can be decomposed and reduced to the affine case.
Finally, we show how to use round decompositions to perform full key recovery.

Our attacks were implemented and verified in practice on white-box instances of
Speck32-64 and Speck64-128 generated by the code provided by the authors of [RVP22].

We remark that we only attack ARX-based white-box implementations, the implicit
functions framework itself is still an interesting design tool (although our optimization
and inversion techniques are quite generic and potentially threaten other round functions).
Yet, it requires a round function with a simple quasilinear implicit function, a large set
of quadratic-affine self-equivalences and graph automorphisms. So far, there are no such
known round function candidates other than an ARX round.

2 Preliminaries and Notations
We use the 0-based big-endian notation for words, namely x = (xn−1, . . . , x0), where xn−1
is the most significant bit and x0 is the least significant bit. The i-th unit vector ei is such
that it’s i-indexed bit is equal to one and other bits are equal to zero (its dimension should
be clear from the context). The inner product between two n-bit vectors x, y is denoted
by 〈x, y〉 =

∑n−1
i=0 xiyi.

We focus on two-branch ARX-based implementations. We use n to denote the word
size and N = 2n to denote the block size. The addition modulo 2n is denoted by �, the
addition in Fn2 (XOR) is denoted by ⊕ or just +. We call the mapping

S : (Fn2 )2 → (Fn2 )2 : (x, y) 7→ (x� y, y)

a bijective modular addition (called “permuted addition” in [RVP22], which we find
ambiguous). A white-box round oracle or its modification is denoted by O : FN2 → FN2 .
The notation ∆O denotes a randomized map FN2 → FN2 , mapping a given ∆X ∈ FN2 to
O(x)⊕O(x⊕∆X) for a fresh random x

$←− FN2 .
Each Boolean function f : Fn2 → F2 can be expressed in the algebraic normal form

(ANF): f(x) =
∑
u∈Fn

2
λu(x), where λu ∈ F2 are the ANF coefficients. The algebraic

degree of f is the maximum Hamming weight of u with λu = 1. The algebraic degree of
F : Fn2 → Fn2 is defined to be the maximum algebraic degree amount its output coordinates.
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3 Implicit Encodings of ARX Primitives
Let Ek = E

(r)
k ◦E

(r−1)
k ◦· · ·◦E(1)

k be an encryption function, where each E(i)
k represents the

round function, depending on the key k in some way. For better clarity, we will drop the k
from the notation of the round functions E(i). The main goal of white-box encryption is
to provide encoded round functions E(i) such that one cannot recover information about
the key when only provided access to each E(i), while also preserving the property that

E
(r) ◦ E(r−1) ◦ · · · ◦ E(1) = Ek.

In practice, external encodings are necessary for security reasons, and thus the resulting
white-box implementation would not be functionally equivalent to Ek, but to an encoded
version of Ek, i.e.

E
(r) ◦ E(r−1) ◦ · · · ◦ E(1) = Oext ◦ Ek ◦ Iext,

where Oext and Iext are the external encodings, and depend on how the encoded round
functions E(i) are built.

In practice, these encoded round function E(i) are built as O(i) ◦ E(i) ◦ I(i) where I(i)

(resp. O(i)) is the input (resp. output) encoding, and a white-box proposal describes how
to build these encodings, as well as how to implement the resulting encoded round function.
So far, to satisfy the property that the resulting implementation must result in the original
encryption function, encodings were built such that I(i+1) =

(
O(i))−1, thus encodings in

consecutive rounds cancel out and we only end up with I(1) and O(r) as the input and
output external encodings, respectively. This ends up leading to the cancellation rule

E
(i+1) ◦ E(i) = O(i+1) ◦ E(i+1) ◦ E(i) ◦ I(i)

for two consecutive rounds. However, the authors of [RVP22] proposed a way to generate
encoded round functions satisfying the cancellation rule over 3 rounds (and not over 2
rounds):

E
(i+1) ◦ E(i) ◦ E(i−1) = O(i+1) ◦ E(i+1) ◦ E(i) ◦ E(i−1) ◦ I(i−1)

Their method is described below.

3.1 Description
The proposal from [RVP22] mainly relies on the notion of self-equivalence to provide
encoded round functions.

Definition 1. For a function F , we say that a pair of invertible functions (A,B) is a
self-equivalence of F if we have F = B ◦F ◦A. If A and B are linear (resp. affine), we say
that (A,B) is a linear (resp. affine) self-equivalence. If A is affine and B is quadratic, we
say that (A,B) is an affine-quadratic self-equivalence.

In the context of white-box encryption for ARX ciphers, the authors focus on the
bijective modular addition, i.e. F (x, y) = S(x, y) = (x � y, y), which is at the core of
many ARX ciphers, and provide a way to obtain affine-quadratic self-equivalences for this
function. By doing so, for a round function E(i) = L(i) ◦S where S is the bijective modular
addition and L(i) is an cipher’s affine mapping containing the round-key, they generate
encoded round functions as follows.

For each round function E(i), one picks a random invertible affine mapping C(i+1) as
well as an affine-quadratic self-equivalence (A(i), B(i)) of E(i), and the encodings for the
round function E(i) are defined as

(I(i), O(i)) =
(
A(i) ◦B(i−1) ◦ (C(i))−1, C(i+1)

)
.
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Figure 1: Cancellation of encodings for two consecutive rounds [RVP22]
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Figure 2: Internal structure of a single white-box ARX round with quadratic-affine
encodings in the framework of [RVP22]. The quadratic encoding Q(i) is composed as
Q(i) = A(i) ◦ L(i−1) ◦B(i−1) ◦ (C(i))−1, and the encoding C(i) is affine.

For external encodings, I(1) is built as A(1) ◦B(0) with A(1) defined as above and B(0) a
random invertible quadratic mapping1, and O(r) = C(r+1) with C(r+1) a random invertible
affine mapping. Especially, the input encoding of a round is quadratic, while the output
encoding is affine. Notice that these encodings do not satisfy I(i+1) =

(
O(i))−1, however

they still allow to obtain an encoded encryption function, using the fact that

E(i) = B(i) ◦
(
C(i+1)

)−1
◦ C(i+1) ◦ E(i) ◦A(i).

Figure 1 illustrates how the encodings of 2 consecutive rounds cancel each others and
Figure 2 depicts the structure of one white-box round, which is one of our main attack
targets.

Note that this gives the construction of the encoded round functions, but not their
implementation. Indeed, one still needs an efficient way to evaluate these encoded round
functions, without exposing the key material “hidden” inside. To this end, the authors
of [RVP22] used the concept of implicit functions and quasilinear functions.

Definition 2 ( [RVP22]). Let F be an n-bit function. A (2n,m)-bit function P is called
an implicit function of F if it satisfies

P (x, y) = 0⇔ y = F (x)
1The authors of [RVP22] do not propose a method of sampling a random invertible quadratic mapping,

and their implementation does not perform it as well.
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Definition 3 ( [RVP22]). A (2n,m)-bit implicit function P is quasilinear if for all x ∈ Fn2 ,
the (n,m)-bit function y 7→ P (x, y) is affine.

Thus, to obtain an efficient implementation of the encoded round function E(i), the
authors of [RVP22] show a way to compute a quasilinear implicit function of E(i). Then,
for a given input value x, since the function y 7→ P (x, y) is affine, one simply solve the
resulting affine system P (x, y) = 0 to compute the corresponding y = E

(i)(x). We refer
the reader to [RVP22] for more details on how these quasilinear implicit functions are
computed.

In Appendix A, we describe technical details on how we used the implementation
of [RVP22] to generate instances of the Speck block cipher that we attacked.

4 Algebraic Cryptanalysis of Implicit White-box ARX Schemes
with only one External Encoding

In [RVP22] in Section 4.2, the author made the conjecture that their implicit framework
may be less vulnerable than previous constructions when the external encodings are trivial,
with the following statement:

While not the focus of this work, it is worth mentioning that this type of implicit
implementations with trivial external encodings seems less vulnerable than
CEJO or self-equivalences implementations with trivial external encodings.

In this section, we will show that without external encodings (more specifically, without
either the input or the output external encoding), we can easily recover the round keys,
and thus deduce the master key. Note that this is similar to the algebraic attack of
[BU18,GPRW20] against implementations protected by a linear masking scheme. We
start by explaining in details how to attack this construction when the output external
encoding is trivial (i.e. no output external encoding), and briefly show how to do a similar
attack when the input external encoding is trivial later. In essence, both attacks analyze
intermediate states between rounds (which are protected by secret encodings) occurring
in encryptions of random plaintexts. This bears similarity to gray-box-style differential
computational analysis [BHMT16], with the difference that we perform algebraic analysis
instead of correlation analysis.

4.1 When the output external encoding is trivial

Using the construction presented in the previous section, in general we end up with an
encoded version of the encryption function E, that is E = Oex ◦ E ◦ Iex where Oex and
Iex are the external encodings. Considering the case where we have no output external
encodings means that when generating the encodings, we want to enforce that Oex is the
identity function. Taking a closer look at the encoded encryption function, we can observe
that we get

E = Oex ◦ E ◦ Iex =
(
C(r+1) ◦

(
B(r)

)−1
)
◦ E ◦

(
B(0) ◦

(
C(1)

)−1
)
.
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Figure 3: Structure of the function where we aim at recovering k in the case with no
output external encoding

Thus we want Oex =
(
C(r+1) ◦

(
B(r))−1) = Id, and we can deduce that the last round

function is of the form

E
(r) = C(r+1) ◦ E(r) ◦A(r) ◦B(r−1) ◦

(
C(r)

)−1

= C(r+1) ◦
(
B(r)

)−1
◦B(r) ◦ E(r) ◦A(r) ◦B(r−1) ◦

(
C(r)

)−1

= B(r) ◦ E(r) ◦A(r) ◦B(r−1) ◦
(
C(r)

)−1
since C(r+1) ◦

(
B(r)

)−1
= Id

= E(r) ◦B(r−1) ◦
(
C(r)

)−1
since B(r) ◦ E(r) ◦A(r) = E(r)

= E(r) ◦Q

where Q is some quadratic function, unknown from the attacker. Moreover, since we are
in the context of white-box cryptography, we can choose any x and query the value of
F (x) = E

(r)(x) =
(
E(r) ◦Q

)
(x). Note that E(r) still depends on some (unknown) round

key, which we aim at recovering. Focusing on the case of white-box implementations of
the Speck cipher, we can further write this function with the structure depicted in Figure
3, where G is an invertible function known by the attacker (in this specific case for Speck,
only an XOR from the left branch to the right branch, and a bitwise rotation of the right
branch), and we aim at recovering k.

Now assume that we are somehow able to recover the round key in E(r) (which we
will show next), it turns out that recovering the round key of the previous round E(r−1)

leads to a very similar structure. Indeed, knowing the key used in E(r), we can now
compute

(
E(r))−1 (x) for any x of our choosing. Moreover, using the cancellation between

encodings, notice that
E

(r) ◦ E(r−1) = E(r) ◦ E(r−1) ◦Q′

for some quadratic function Q′. Since we know the key used in E(r), the function
F ′ = E

(r) ◦E(r−1) can also be represented with the structure in Figure 3, and assuming we
can recover the key in E(r−1), we can continue to go further and further until we recovered
enough key information. Thus, our main focus will be to show how to recover the key
from a function F with the structure given in Figure 3.

The general idea is that for a given input x = (xN−1, . . . , x1, x0) (x0 being the LSB),
we can write the vector

x̃ = (x0x1, x0x2, . . . , x0xN−1, x1x2, . . . , x0, x1, . . . , xN−1, 1)
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i.e. a vector of length L = N(N − 1)/2 + N + 1 containing all products between 2
coordinates as well as all coordinates themselves (and the constant 1). Then, since Q is a
degree 2 function, Q(x) can be computed as some (unknown) linear combinations of x̃, i.e.
Q(x) = Mx̃ for some unknown matrix M . Note that this matrix M is the same for any
input x, since it essentially defines the ANF of Q. Knowing this, recovering k is a rather
simple process. One first generate L+ ε inputs xi, compute their corresponding x̃i as well
as yi = G−1(F (xi)) (since G is known). By guessing the first (i.e. lowest significant) bit
k0 of k, we can then compute zi1 (lowest significant bit of the left half of Q(xi)) using yi
through the modular addition. According to our previous observation, if this key guess is
correct, then for every i, we must have zi0 = M0x̃

i for some 1×L matrix M0 (which is the
first row of M), i.e.(

z1
0 z2

0 z3
0 · · · zL0

)
= M0.

(
x̃1 x̃2 x̃3 · · · x̃L

)
.

In other words, if the guess on k0 is correct, the vector z0 = (z1
0 , z

2
0 , z

3
0 , . . . , z

L
0 ) must belong

to the column space of the matrix X̃ built with x̃i as columns, which can be efficiently
done by precomputing a parity-check matrix for this space when generating the inputs
x. Once the value of k0 is determined, we can then do a similar process, guessing k1 and
using our knowledge of k0 to compute zi1 through modular substraction, and so on until
we recovered k.

In practice, for some guesses on kj , both values could lead to the vector zj to belong to
the column space of X̃. In this case, we just keep the resulting candidates and try each of
them for the next guess. If one candidate for kjkj−1 . . . k0 leads to zj+1 not being in the
column space of X̃ for both values of kj+1, then this candidate kjkj−1 . . . k0 was actually
incorrect and we can eliminate it. Thankfully, this behaves nicely for the modular addition,
as after each guess of kj , we are almost always left with only 2 candidates for the next
guess.

We thus apply this procedure to F = E(r) ◦ Q, recovering (two) candidates for the
round key used in E(r). Then for each of these candidates, we continue as described
previously, now applying the procedure to F ′ = E(r) ◦ E(r−1) ◦Q′ to recover candidates
for the round key used in E(r−1). Again, in practice we get 2 candidates for the round key
in E(r), but one of them gets eliminated when trying to recover the key in F ′. Thus we
end up with 2 candidates for the round key of E(r−1) (and now only one for E(r)), and we
can keep going back further and further into the rounds until we recovered enough key
material to recover the master key. For Speck specifically, at worst the master key is of
length 4n, so we need to recover the round key for 4 consecutive rounds. Since we would
end up with 2 candidates for the 4th round (starting from the end), we can apply this
procedure for the 5 last rounds, thus uniquely recovering the value of the round keys used
in the last 4 rounds, which allows us to determine the master key using the key-schedule.

Note that this last step is the only time where we use the key-schedule, so technically,
if one were to use independent round keys instead, we could continue up to the very first
round and thus obtain 2 candidates for the whole set of (independent) round keys, meaning
that adding more rounds with independent round keys only increase the time complexity
linearly with the number of rounds added.

The complexity of recovering candidates for the round key of a single round can be
determined as follow. We first generate L+ε = O(n2) inputs x, compute the corresponding
x̃ and generate a parity-check matrix H for the resulting space, which requires about O(n6)
operations. Note that this is only done once overall, even when recovering round keys on
multiple rounds. Next we query the oracle to obtain y = G−1(F (x)), so O(n2) queries
to the oracle and calls to G−1. Then for each guess of kj , we compute zj and check if it
belongs to the column space of X̃ using the parity check matrix H, i.e. computing the
product H × zj which takes O(n4) operations, which we thus need to do at least n times
(once for each bit of the key k), for a total of O(n5) operations in this step. Note that



Alex Biryukov, Baptiste Lambin and Aleksei Udovenko 105

this assumes that we are only left with one candidate after each key guess. In practice,
we are almost left with only 2 candidates after each guess, which only adds a constant
factor. Thus overall, the complexity for one round is about O(n6) bit-operations (i.e.
linear algebra with matrices and vectors in F2) and O(n2) calls to the oracle. From our
experiments, the calls to the oracles are the dominant part of this algorithm, even using a
pre-compiled shared C-library to make queries (which is much faster than using the native
Python implementation given by the authors of [RVP22]). For example, for Speck32 (i.e.
n = 16), to recover the round keys over the last 5 rounds (which allow to uniquely get the
round keys of the last 4 rounds and thus recover the master key), our implementation in
SageMath runs in about 79 seconds, but with 67 seconds spent in the oracle calls, thus
only 12 seconds spent on actual computations.

4.2 When the input external encoding is trivial
We now consider the case where the input external encoding is trivial. Recall that our
encoded cipher can be written as

E = Oex ◦ E ◦ Iex =
(
C(r+1) ◦

(
B(r)

)−1
)
◦ E ◦

(
B(0) ◦

(
C(1)

)−1
)
.

Thus if the input external encoding Iex is trivial, we have B(0) ◦
(
C(1))−1 = Id. Taking a

closer look at the first encoded round function, we can see that is has the following form

E
(1) = C(2) ◦ E(1) ◦A(1) ◦B(0) ◦

(
C(1)

)−1

= C(2) ◦ E(1) ◦A(1) since B(0) ◦
(
C(1)

)−1
= Id

Moreover, note that A(1) is part of some affine-quadratic self-equivalence for E(1), meaning
that the exists some quadratic function B(1) such that

B(1) ◦ E(1) ◦A(1) = E(1).

Thus we can write the following, remembering that C(2) is some invertible affine map:

E
(1) = C(2) ◦ E(1) ◦A(1)

⇔
(
C(2)

)−1
◦ E(1) = E(1) ◦A(1)

⇔ B(1) ◦
(
C(2)

)−1
◦ E(1) = B(1) ◦ E(1) ◦A(1)

⇔ Q ◦ E(1) = E(1)

for some quadratic function Q.
Thus, as we can query the oracle for some input x to get y = F (x) with F = E

(1) for the
first round, we know that there is some quadratic function Q such that z = Q(y) = E(1)(x).
The general framework of these queries is give in Figure 4.

Thus the general idea of the previous attack in the case where there is no output
external encoding can be used in a similar way. One would generate a set of inputs xi and
compute the corresponding yi = F (xi) as well as their corresponding degree 2 vectors ỹi.
Then we know that for the correct value of k, we could compute zi and have the relation
zi = Mỹi for some matrix M representing the ANF of Q. However, if we naively use this
approach as before, guessing bits of k one by one, we would not filter any value for k as
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G (known)

Q (unknown)
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z
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Figure 4: Structure of the function where we aim at recovering k in the case with no input
external encoding

there is no non-linear map between the addition of the key and z. Thus, we need to be a
bit smarter, and actually consider a slightly more complicated case.

Notice that if we consider the first two (encoded) rounds instead of only the first one,
we actually end up with a very similar structure. Indeed, when the input external encoding
is trivial, the first two encoded rounds can be written as

E
(2) ◦ E(1) =

[
C(3) ◦ E(2) ◦A(2) ◦B(1) ◦

(
C(2)

)−1
]
◦
[
C(2) ◦ E(1) ◦A(1)

]
= C(3) ◦ E(2) ◦A(2) ◦B(1) ◦ E(1) ◦A(1)

= C(3) ◦ E(2) ◦A(2) ◦ E(1) since B(1) ◦ E(1) ◦A(1) = E(1)

Thus, using the facts that C(3) is an invertible mapping and that we have some
quadratic function B(2) such that

B(2) ◦ E(2) ◦A(2) = E(2),

we can write

E
(2) ◦ E(1) = C(3) ◦ E(2) ◦A(2) ◦ E(1)

⇔
(
C(3)

)−1
◦ E(2) ◦ E(1) = E(2) ◦A(2) ◦ E(1)

⇔ B(2) ◦
(
C(3)

)−1
◦ E(2) ◦ E(1) = B(2) ◦ E(2) ◦A(2) ◦ E(1)

⇔ Q ◦ E(2) ◦ E(1) = E(2) ◦ E(1)

for some (unknown) quadratic function Q.
Now if we rewrite the structure of this function as before, we get what is depicted in

Figure 5 (note that the key of the second round is just considered as part of the quadratic
function Q).

By doing so, we now have a non-linear operation (the modular addition) between the
key addition and z, which allows us to filter out wrong key guesses in a similar way as
before. More precisely, we first aim at computing the LSB zi0 of zi for each input xi
according to some key guesses. Note that due to now having the right shift operation by
α, computing this bit of zi now requires to guess 2 bits of k (bit 0 and bit α). As before,
if this key guess is correct, then we know that there must be some matrix M0 such that(

z1
0 z2

0 z3
0 · · · zL0

)
= M0.

(
ỹ1 ỹ2 ỹ3 · · · ỹL

)
,
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Figure 5: Structure of the function where we aim at recovering k in the case with no input
external encoding when considering 2 consecutive rounds.

i.e. the vector z0 = (z1
0 , z

2
0 , z

3
0 , . . . , z

L
0 ) must belong to the column space of the matrix

Ỹ built with the ỹi as columns, which we can again efficiently do by precomputing a
parity-check matrix for this space when generating the ỹi. The whole process is then
essentially the same as in the previous attack, except that we now guess bits of k two by
two (until there is some overlap between previously made guesses, if any). As before, it is
worth noting that in practice, after having made the j-th guess (so guessing kj and kj+α),
we are not always left with a single candidate. Unlike the previous case where we were
left with only two guesses most of the time, here we are most of the time left with 16
candidates (only 4 after the first guess on k0 and kα obviously), which thankfully shrinks
down to only 4 candidates for a given round key at the end of a given round (i.e. we get 4
candidates for the round key of the first round). Thankfully, when recovering the round
key for the next round, only one among these 4 candidates allows us to get candidates
for the next round key. For example, after the first round we get 4 candidates for the
value of the corresponding round key k(1), but once we iterate the attack over the second
round, we still end up with only 4 candidates overall for the round keys (k(1), k(2)), but
among these 4 candidates, the value of k(1) does not change (i.e. we recover the exact
value of the round key k(1)). Thus again, to recover enough key material to obtain the
whole 4n bit master key, we only need to iterate the attack over 5 rounds, which in practice
takes about 146 seconds total, including 72 seconds spent in the oracle calls. Note that
the theoretical complexity of the attack is essentially the same as before, except that the
constants hidden in the big-O notations are a bit larger due to needing to query one more
round each time, and having to do a few more computations (both because we need to
simulate 2 consecutive rounds as well as having more candidates left after each guess).

5 Tools for Analyzing the Modular Addition
In this section, we recall existing analyses of modular addition, and derive new tools which
will be used in our decomposition attacks.

5.1 Differential properties of modular addition
Differential transitions through addition modulo 2n and their probabilities were character-
ized by Lipmaa and Moriai [LM01].
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Lemma 1 ( [LM01, Lemma 3]). The probability of a differential transition (α, β) → γ
through modular addition is nonzero if and only if

αi ⊕ βi ⊕ γi =
{

0 if (i = 0) ,
βi−1 if (i ≥ 1) ∧ (αi−1 = βi−1 = γi−1) .

(1)

Theorem 1 ( [LM01, Algorithm 2]). If differential transition (α, β)→ γ through modular
addition has nonzero probability, then the probability is equal to 2−n+l+1, where

l = | {i ∈ {0, . . . , n− 2} : αi = βi = γi} | . (2)

5.2 Affine equivalence of a Boolean function to a sum of quadratic
independent monomials

We consider the following problem.

Problem 1. Let f : Fn2 → F2 be a quadratic Boolean function given by its ANF. Find a
bijective linear map A : Fn2 → Fn2 and an affine map α such that

(f ◦A)(x) = x0x1 ⊕ x2x3 ⊕ . . .⊕ x2k−2x2k−1 ⊕ α(x),

for a nonnegative integer k, or show that such A,α, k do not exist.

For small values of k, this problem can be solved efficiently using linear structures.

Definition 4 (Linear Structure). Let f : Fn2 → F2 be a Boolean function. A vector a ∈ Fn2
is called a linear structure of f if x 7→ f(x) + f(x+ a) is constant.

Linear structures of a Boolean function form a vector space. For a quadratic Boolean
function, it can be computed as a kernel of the indicator matrix of the quadratic terms in
the ANF (i.e., the matrix M such that Mi,j = 1 if and only if the ANF of f(x) contains
the monomial xixj).

Let V be the vector space of linear structures of the function f from Problem 1. Then,
the orthogonal complement of V , denoted V ⊥ is the vector space spanned the (affine
images) of the variables of the monomials, that is,

V ⊥ = span 〈A0, A1, . . . , A2k−1〉.

For small k, recovering the correct basis A0, A1, . . . of the vector space V ⊥ can be done by
an exhaustive search, testing that f + 〈A0, x〉 · 〈A1, x〉+ . . . is affine. This is sufficient for
the purpose of this work, as we shall only attack the problem with k = 1 and k = 2 (i.e.,
the case of at most two quadratic monomials). The time complexity of this method (for
fixed k) is given by computing the space of linear structures and its complement, which
can be done in O(n3).

5.3 Equations describing the modular addition

Courtois and Debraize [CD08] studied algebraic descriptions of modular addition (for
analyzing the SNOW 2.0 cipher).
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Proposition 1 ( [CD08, Sect.3.1,3.2]). The n-bit addition z = x� y is fully described by
the following n equations:

z0 = x0 + y0,

z1 = x1 + y1 + x0y0,

z2 = x2 + y2 + x1 + y1 + x1y1 + x1z1 + y1z1,
...
zi = xi + yi + xi−1 + yi−1 + xi−1yi−1 + xi−1zi−1 + yi−1zi−1,
...
zn−1 = xn−1 + yn−1 + xn−2 + yn−2 + xn−2yn−2 + xn−2zn−2 + yn−2zn−2.

Furthermore, there are in total 6n− 2 quadratic and 1 linear equations that can be derived
from these base n equations.

We slightly reformulate these relations in terms of Z = S(X), simplifying the analysis.
This comes at the cost of increasing the number of equations, which is insignificant for our
attacks. The following proposition characterizes all bilinear input/output relations of the
bijective modular addition S.

Proposition 2. For 8 ≤ n ≤ 64, there exist exactly (n2 + 7n+ 6)/2 linearly independent
Boolean polynomials Ei(X,Z) in variables X0, . . . , XN−1, Z0, . . . , ZN−1 and of degree 1 in
X and Z separately such that Ei(X,Z) = 0 for all i and for all Z = S(X), i.e., for all
X = (x, y) and Z = (x� y, y). These equations completely describe S.

Proof. Experimental computation by interpolation (see Subsection 5.4). The quadratic
explosion comes from the relations yiỹj = yj ỹi for i < j, where X = (x, y), Z = (z, ỹ). The
completeness follows from the completeness of relations from Proposition 1 and from the
relations yi = ỹi, both of which have to be included in the set of relations.

Remark 1. Compared to the quadratic relations on triples (x, y, z = x� y), the bilinear
relations on X,Z from the proposition are more redundant, due to the equality of the right
halves of X and Z (25% more monomials and O(n2) relations instead of O(n)). However,
this simplifies analysis and presentation due to the simple equation form and does not
noticeably affect the complexities.

5.4 Black-box relation interpolation (affine encodings)
In this section, we describe the powerful tool of black-box relation interpolation, which
will be actively used in our attacks, and has many consequences for the white-box implicit
framework in general. Although we describe it in the example of bijective modular addition,
we only use the fact that it has a low-degree implicit function. We first consider the case of
affine encodings, which itself is a step in our attack, and later we will consider an extension
of this technique to quadratic-affine encodings.

Consider the bijective modular addition S composed with (unknown) affine encodings
A,B:

S̃ = B ◦ S ◦A.

Clearly, all input/output pairs (X,Z) of S̃ satisfy the relations

Ẽi(X,Z) := Ei(A(X), B−1(Z)) = 0

for all the relations Ei of S. It is easy to verify that all Ẽi are also bilinear. It follows that
the number and the degrees of the relations do not change under affine encodings.
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Given black-box access to S̃, the vector space of these relations (i.e., some basis of it)
can be reconstructed by generic interpolation. Let

Ẽ(X,Z) =
N−1∑
j=0

N−1∑
k=0

λXZj,k XjZk +
N−1∑
j=0

λXj Xj +
N−1∑
k=0

λZk Zk + λ0, (3)

where λ-variables denote the m coefficients, m = N2 +2N+1. Let (X(t), Z(t)) be a random
input/output pair of S̃. The equation (3) applied to this pair, that is, Ẽ(X(t), Z(t)) = 0
can be viewed as a linear equation on the unknown λ-coefficients. A sufficiently large
amount of random samples can be used to construct a linear system of maximum rank
(with overwhelming probability). Since the rank is upper-bounded by the number m of
monomials in X,Z (equal to the number of unknown λ-coefficients), the amount of m+ ε
samples (for some positive integer ε) would result in system of a maximum possible rank
with probability 1− 2−ε, under natural randomization assumptions.
Remark 2. It is not strictly necessary to sample inputs uniformly at random. In particular,
in the attack on quadratic encodings (Subsection 7.3), we will only use inputs with certain
quadratic monomials equal to zero. While such undersampling may not invalidate one of
the right equations Ẽ(X,Z) = 0, it may (but not necessarily) introduce extra relations,
which only hold on the sampled space, which require a special care to be detected and
removed from the recovered vector space of relations.

Time complexity The main step of the interpolation is solving the linear system in m
variables and equations (time complexity O(m3) = O(n6)). The query complexity is equal
to m + ε, and the queries in the implementation of [RVP22] are effectively performed
in total time O(mn3) = O(n6). Here we assume that the dominating step of implicit
computations is the solution of the resulting linear system (which is true if the degree of
the implicit function is not very high).

5.5 Optimization and inversion attacks
In this section, we describe direct applications and extensions of black-box relation
interpolation.

Inversion of addition with affine encodings The interpolated space of bilinear relations
{E(i)(X,Z) = 0}i can be viewed as an implicit function for the S̃ function (since these
relations completely describe the function). Furthermore, it is quasilinear in both directions,
allowing efficient inversion of the function. More precisely, the preimage X of a given
output Z = S̃(X) can be computed by substituting the value of Z into the equation system
{E(i)(X,Z) = 0}i, and solving the resulting linear system for X. This is the same as the
principle of implicit white-box implementations [RVP22].

Effectively, the black-box interpolation and implicit inversion breaks the one-wayness
property of the implicit white-box ARX implementations with affine encodings. It also
covers other functions with bilinear implicit functions, such as the finite field inverse
function used in the AES block cipher.

Optimization of the white-box oracle The interpolated system of bilinear equations can
be also used to make the white-box round oracle more efficient: even though the white-box
implementation uses the same principle of implicit computation, the system of X − Z
relations there is much more heavier, due to high degree of polynomials in X (used to
obfuscate the implicit representation), while in our case the degree in X is 1, leading to
more efficient computations.
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An optimized implementation of forward/inverse computation using an implicit bilinear
function is described in Appendix B. For the reference, on a laptop with an Intel(R)
Core(TM) i7-1185G7 3.00GHz CPU, one forward or inverse query after the precomputations
takes respectively 10, 35, 100 microseconds for affine-encoded bijective modular addition on
word sizes n = 16, 32, 64. The precomputations excluding query timings take respectively
2 seconds, 35 seconds, 7 minutes.

Extension to quadratic-affine encodings The interpolation method naturally generalizes
to the case of quadratic-affine encodings. Consider the set of bilinear relations Ẽ(X,Z) = 0
satisfied by the affine-encoded bijective modular addition. Substituting X with the
quadratic function Q(W ) of the input in the quadratic-affine case, we obtain the relations
Ê(W,Z) = Ẽ(Q(W ), Z) = 0, where Ẽ is bilinear. It is sufficient to extend the original
bilinear monomial basis by monomials of shape XiXjZk, in order to cover possible
monomials of these new relations Êi. The time complexity thus grows to O(m3) = O(n9),
whereas only O(n3) queries are needed.

This method can be used to optimize the oracle, simplifying the implicit function to
a quadratic-affine one. However, this method is not directly applicable inversion of the
function, because it is not quasilinear in the input variable X̂. In general, we can not expect
an efficient solution, as it effectively would perform inversion of a general quadratic map
Q, which is a hard problem from the area of multivariate-quadratic (MQ) cryptography
(see e.g. [KPG99]).

In practice, the quadratic encoding used in the implementation of [RVP22] is very
sparse. In fact, experimentally, interpolating the protected quadratic-affine encoded in
the bilinear basis for n = 16 still yielded a large number of equations (around 130 bilinear
equations in the quadratic-affine case compared to 187 bilinear equations in the affine
case). While these equations do not allow unique inversion, they determine the input
up to 4-6 bits on average, which can be checked exhaustively using the original forward
oracle. This technique thus allows quite straightforward inversion of the round oracle in
the sparse-quadratic-affine case (strongest setting proposed by [RVP22]), at least for the
case of n = 16 and for the hardcoded encoding shapes in the implementation of [RVP22].
Its generalization for larger n is yet unclear.

6 Black-box Decomposition of an ARX Round with Affine
Encodings

In this section, we describe a decomposition attack against a bijective modular addition
with secret affine encodings. The attack only requires a black-box access to the primitive,
the implicit representation given in the white-box framework of [RVP22] is not required
(other than to implement the oracle calls). In particular, this breaks the implicit ARX
framework with affine self-equivalences (with an extra key recovery step following the
decomposition of two consecutive rounds, described in Section 8). Note that a sole
inversion of the rounds can be done using interpolated relations (Subsection 5.4) without
any decomposition required. Furthermore, it is worth to first optimize the oracle using the
optimization method from Subsection 5.5 and Appendix B, since oracle calls take a large
fraction of the attack’s time. The attack then can be performed “offline”, that is, without
calls to the actual white-box oracle, which can in principle be unnecessarily slow.

In the following, we consider the map S̃ = B ◦ S ◦ A, which is the bijective modular
addition with affine encodings A,B (see Figure 6).

Iterative decomposition process The decomposition process consists of many iterations
of finding parts of the outward affine maps. The recovered parts can be abstracted away in



112 Cryptanalysis of ARX-based White-box Implementations

A (affine)

B (affine)

X

Z

n n

N

N

Figure 6: Bijective modular addition S̃ = B ◦ S ◦A with encodings A,B : FN2 → FN2 .

the following way. We use O : FN2 → FN2 to denote the oracle function in the current step.
Initially, we start with O = S̃ implementing an affine-encoded bijective modular addition.
Assume that we found affine “projection” maps πX , πZ such that for all Z = O(X), we
have πX(X) and πZ(Z) agree on n least significant bits. Then, we can set new target
oracle

O′ = πZ ◦O ◦ π−1
X .

It is such that O′(x, z) = (y, z), i.e., it captures the property of the discovered projection
maps. Now, it is sufficient to decompose O′, which should be easier as it is more structured.
Indeed, if O′ = B′ ◦ S ◦A′, then the original O can be decomposed as

O = π−1
Z ◦O

′ ◦ πX = (π−1
Z ◦B

′) ◦ S ◦ (A′ ◦ πX).

Note that the nesting decompositions does not result in a query slowdown, as we can
always store a single layer of the accumulated projections maps, i.e., projection maps
relative to the original oracle and not to the previous oracle.

High-level overview of the attack The decomposition procedure consists of several
stages.

1. Location and alignment of the n+ 1 linear bits in the output and their subspace in
the input (the full right branch of the addition and the least significant bit of the
left branch).

2. Bit-by-bit triangularization of the affine encodings using differential rank-based
procedure, inspired by a similar approach from [DFLM18] applied to the ASA
structure (affine-encoded layer of S-boxes).

3. Recovery of the outer triangular linear maps using differential properties of modular
addition.

4. Recovery of the three Feistel affine maps (affine maps in the two outer Feistel XORs of
the right branch to the left branch, and an affine map applied to the right summand),
based on a bit-by-bit search of images of the maps under a fixed right-hand side and
combination of linearly independent images.

5. Correction of the first carry bit expression.
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The main procedure returns one of the possible decompositions; any other decomposition
can be obtained by applying a certain affine self-equivalence of the bijective modular
addition. A symbolic expression of such self-equivalences allows to combine candidate
decompositions of two consecutive rounds and align them to match the original cipher’s
linear layer, yielding information about the involved subkey between the two rounds
(conditioned on sufficient diffusion of the cipher’s linear map). This step will be described
in Section 8.

6.1 Locating linear bits
Let z = x� y. The first bit of modular addition is linear: z0 = x0 ⊕ y0. In the bijective
modular addition (x, y) 7→ (x � y, y), the whole right branch is given in the output.
Therefore, bijective modular addition has n+ 1 output bits which are linear functions of
the input bits. It is also easy to verify that the other n − 1 output bits have degree at
least 2 (more precisely, the output bit zi has degree i+ 1 when i ≤ n− 2 and degree n− 1
when i = n− 1) . The secret affine encodings only change the bases of the corresponding
input and output affine (n+ 1)-dimensional subspaces.

Identifying the linear outputs can be done easily by searching for linear relations on the
graph of the function, that is, on the concatenated inputs and outputs. To cover possible
constants addition in the affine encodings, it is sufficient to add the 1 constant to each
sample. The procedure is described in more details in Algorithm 1 and the resulting oracle
structure after applying the projections is illustrated in Figure 7. Its complexity is O(n3)
time and O(n) queries (here, queries dominate as one query cost is at least O(n3) even
after optimization).

Algorithm 1 Recovering input/output matching affine subspaces
Input: oracle O implementing bijective modular addition with affine encodings
Output: affine maps πx, πz such that O′ = πz ◦O ◦ π−1

x is such that O′(x||y) = (z||y) for
all (x, y) ∈ Fn−1

2 × Fn+1
2 , with z ∈ Fn−1

2
1: for i ∈ {0, . . . , N + ε− 1} do
2: x(i) $←− FN2
3: y(i) ← O(x(i))
4: v(i) ← (x(i)||y(i)||1)
5: end for
6: V ← matrix with rows {v(i)}i
7: B ← basis(kerV ) so that V ×B = 0
8: (πx, πz, cy)← BT , where πx, πz ∈ F(n+1)×N

2 , cy ∈ F(n+1)×1
2

9: return πx, π⊕(0n−1||cTy )

6.2 Triangularization of the outer affine maps (left branches)
We will now use the method from [DFLM18] to partially recover the outer affine maps on
the left branch. The idea is to query a fixed random input difference on the left branch
and no difference on the right branch (possible due to the previous step), and to compute
the dimension of the space of the observed output differences. This relies on the following
differential property of modular addition.

Proposition 3. Let ∆x = (. . . || 0k),∆y = 0n. Let Z denote the set of all possible output
differences ∆z of z = x� y. Then, rankZ ≤ n− k. Furthermore, if rankZ = n− k, then
(∆x)k = (∆z)k = 1, i.e., ∆x and ∆z both have shape (. . . || 1 || 0k).
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Figure 7: Remaining oracle structure after applying the recovered projections. Here,
A1, A2, A3, B1, B2 are unknown affine maps, c1 is first carry bit of the original n-bit
addition, expressible as c1(y) = 〈α, y〉 · 〈β, y〉 for some α, β ∈ Fn+1

2 .

Proof. Follows from the fact that k-bit LSB zero difference in ∆x,∆y always leads to k-bit
LSB zero difference in ∆z; the first active difference bit stays active.

Remark 3. Note that the converse is not true in general: a non-full rank does not guarantee
that the k-indexed bit is zero. Furthermore, for some sparse differences, reaching full rank
requires an exponential number of samples (for example, consider the difference (0n−1 || 1),
propagating to (1 || . . .) with probability 2−(n−2)).

This proposition guarantees that, on a input difference with k least significant zero
bits, a full-rank space of output differences implies that the input difference and all output
differences have the k-indexed bit equal to 1. This provides information about the outer
affine map B2 on the left branch. In particular, one set of differences is sufficient to recover
the partial map from the n− k most significant bits to the k-indexed bit in the output. In
the input, since the same difference was used, the obtained information is limited. However,
now we can sample n+ ε random input differences (with k zero least significant bits on the
left branch) and use the recovered linear map for the output difference to determine the
k-indexed difference bit (since the first (possibly) active bit is the same in the input and
in the output difference). In fact, it is not necessary to sample random input differences,
it is sufficient to query each of the n− 1− k unit differences.

Note that at step k, we only learn the linear projection of the n− 1− k active most
significant bits to the current least significant bit (i.e., the one indexed n+ 1 + k in the full
input, or indexed k in the left (n− 1)-bit branch). The other bits of the projection are not
learnt since they are set to zero in the samples’ differences. Thus, the outer linear maps on
the left branch are recovered only up to a lower triangular matrix (see Figure 8). These
unknown bits correspond to possible XORs from lower bits to upper bits. The missing
parts are recovered in the next step.

Complexity of this step is O(n4) time (solving n− 2 linear systems) and O(n2) samples
(assuming the rank saturates in O(n) samples on average).
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Algorithm 2 Triangularization of the outer maps on the left branch
Input: oracle O implementing bijective modular addition with partially recovered affine
encodings (Subsection 6.1)
Output: affine maps πx, πz such that O′ = πz ◦O ◦ π−1

x matches structure from Figure 8
with lower triangular T1, T2
Complexity: O(n2) queries, O(n4) time
1: O0 ← O
2: for k ∈ {0, . . . , n− 2} do
3: repeat
4: ∆x $←− (∗n−1−k || 0n+1+k)
5: Z ←

{
∆Ok(∆x)

∣∣∣ n+ ε times
}

6: until rankZ = n− 1− k
7: solve Z × α = (1, . . . , 1)T for α = (∗n−1−k || 0n+1+k)
8: πz ← a linear map such that (πz(z))n+1+k = 〈α, z〉, (πz(z))i = zi for i > n+ 1 + k
9: β ←

(
πz(∆Ok(ei))n+1+k | n+ 1 + k ≤ i < 2n

)
|| 0n+1+k

10: πx ← a linear map such that (πx(x))n+1+k = 〈β, x〉, (πx(x))i = xi for i > n+ 1 + k
11: Ok+1 ← πz ◦O ◦ π−1

x

12: end for
13: return On−1

x y

z y

T1

T2

A1

A2

A3

c1

n− 1 n+ 1

n− 1

n− 1

n− 1

Figure 8: Remaining oracle structure after the triangularization of the outer maps on the
left branches by Algorithm 2. Here, A1, A2, A3, T1, T2 are unknown affine maps, T1 and
T2 having linear part of a lower triangular shape, c1 is first carry bit of the original n-bit
addition, expressible as c1(y) = 〈α, y〉 · 〈β, y〉 for some α, β ∈ Fn+1

2 .
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6.3 Recovery of the outer affine maps (left branches)
At this step, we will recover the triangular affine maps on the left branch. The idea is to
use differential properties of the modular addition.

Proposition 4. Let z = x� y be an n-bit modular addition, n ≥ 3. Set

∆y = 0, ∆x1 = e0 = (0, 0, 0, . . . , 0, 1), ∆x2 = e0 ⊕ en−2 = (0, 1, 0, . . . , 0, 1).

Then, the most probable transitions with input differences (∆x1,∆y) and (∆x2,∆y) re-
spectively are described by

Pr[(∆x1,∆y) �−→ ∆z] =


1/2, ∆z = (0, . . . , 0, 0, 1) = ∆x1,

1/4, ∆z = (0, . . . , 0, 1, 1),
≤ 1/4, otherwise . . .

(4)

Pr[(∆x2,∆y) �−→ ∆z] =


1/4, ∆z = (0, 1, . . . , 0, 1) = ∆x2,

1/4, ∆z = (1, 1, . . . , 0, 1) = ∆x2,

≤ 1/4, otherwise . . .
(5)

Proof. Follows from the Lipmaa-Moriai theorem by direct computation.

Note that ∆x1 propagates to a difference with the largest probability 1/2, while ∆x2
propagates only with probabilities at most 1/4. Assume that we control n − 2 least
significant bits. Then, we can distinguish ∆x1 and ∆x2 by sampling output differences
and distinguishing the best probability 1/2 from 1/4 respectively.

Diagonals recovery In the application to the lower triangular map recovery, we consider
truncated modular addition, starting from bit k and ending at bit k + w − 1. Thus, the
value n in theorem is set to a smaller “window” w. The described technique allows to
decide whether the current active least significant bit is added to the more significant bit
w − 2 positions ahead, assuming such elementary XOR operations were already recovered
for distances less than w. In this way, we recover the lower triangular map diagonal-
by-diagonal, starting from the one adjacent to the main diagonal containing the largest
number of unknowns (after the main diagonal which has to be all-1). The procedure is
described more formally in Algorithm 3. Its complexity is O(n3) time and queries. Again,
queries dominate in practice with total time O(n6).

Bottom row recovery Note however that this method does not recover the linear map
added to the most significant bit (the bottom row of the lower triangular matrix). This is
because it distinguishes (0, 0, . . .) from (0, 1, . . .), and thus requires the single 0-bit padding
at the most significant bit, while recovering the penultimate significant bit.

Recall that the most significant bit is differentially linear, meaning that a single-bit
difference to in this bit propagates with probability 1 to itself. Therefore, tα ◦ S ◦ tα = S,
where tα : X 7→ X ⊕ 〈α,X〉 · eN−1 for some α ∈ FN2 , αN−1 = 0, i.e., tα adds a linear
function of the input to the most significant bit. Therefore, S ◦ tα = tα ◦ S, and we can
set the bottom row of the input matrix T1 arbitrarily, and recover only the bottom row of
the output matrix T2. Here, we use the following differential property of a unit difference.

Lemma 2. Let (∆ei, 0) �−→ ∆z be a differential transition through the n-bit addition,
i ≤ n− 2. Then, (∆z)i+1 = 0 implies that ∆z = ei.

We can use the lemma in the following way. If we observe a differential transition
(∆ei, 0) �−→ ∆z with (∆z)i+1 = 0, then the most significant bit of ∆z will be equal to 1 if
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Algorithm 3 Recovering outer lower triangular matrices
Input: oracle O implementing bijective modular addition with partially recovered affine
encodings (Subsection 6.1, Subsection 6.2)
Output: modified oracle O′ that matches the structure from Figure 8 with T1, T2 being
identity matrices with extra unknown coefficients in the bottom rows only.
1: O3 ← O
2: for w ∈ {3, . . . , n− 1} do
3: M1 ← identity (n− 1)× (n− 1) matrix
4: M2 ← identity (n− 1)× (n− 1) matrix
5: for i ∈ {0, . . . , n− w − 1} do
6: ∆x1 ← e2n−w−i
7: ∆x2 ← e2n−w−i ∨ e2n−2−i
8: D1 = {(∆Ow(∆x1))2n−w−i,...,2n−1−i | O(n) times} . w-bit differences
9: D2 = {(∆Ow(∆x2))2n−w−i,...,2n−1−i | O(n) times} . w-bit differences
10: if the most frequent difference ∆Z ∈ D1 occurred ≈ 50% times then
11: (M1)n−2−i,n−w−i ← 0
12: (M2)n−2−i,n−w−i ← (∆Z)w−2−i
13: else if the most frequent difference ∆Z ∈ D2 occurred ≈ 50% times then
14: (M1)n−2−i,n−w−i ← 1
15: (M2)n−2−i,n−w−i ← (∆Z)w−2−i
16: else
17: retry this i
18: end if
19: end for
20: Ow+1 ← diag(M2, Idn−1) ◦Ow ◦ diag(M1, Idn−1)
21: . diag(M, Idn−1) extends the matrix M to N ×N matrix by an identity matrix
22: end for
23: return O′ = On
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Figure 9: The structure of the oracle after recovering the outer linear maps on left branches
completely. Here, A1, A2, A3 are unknown affine maps, c1 is first carry bit of the original
n-bit addition, expressible as c1(y) = 〈α, y〉 · 〈β, y〉 for some α, β ∈ Fn+1

2 .

x

z

n− 1

t1 = A1(y)

t2 = (A2 � c1)(y)

t3 = A3(y)

Figure 10: Structure of the oracle from Figure 9 with a fixed right branch y.

the two partial linear maps effectively add the i-th bit to the most significant bit. Since
we can assume the input partial map to do nothing, we can effectively learn one bit of the
bottom row of the output map. Since the method requires i ≤ n− 4 for the (n− 1)-bit
addition to be effective, one bit of the bottom row can not be recovered in this way, namely,
the one defining the presence of the elementary operation xn−2 ← (xn−2 ⊕ xn−3). This
bit could be guessed, but in fact, its value can be set arbitrarily, affecting only the Feistel
maps recovered in the next subsections.

The remaining structure implemented by the oracle is illustrated in Figure 9.

6.4 Recovery of the Feistel affine maps (right to left XOR and addi-
tion)

The Feistel affine maps can be recovered in the following way. First, we randomly fix the
right branch value y. We obtain a (n− 1)-bit mapping (⊕t3) ◦ (�t2) ◦ (⊕t1) on the left
branch, where t1, t2, t3 ∈ Fn−1

2 are constants depending on the fixed y (see Figure 10).
The following proposition shows that there are exactly 8 solutions for t1, t2, t3 for such an
oracle, given that the least significant bit of t2 is 1 (which happens for 1/2 choices of y).

Proposition 5. Let n ≥ 2, t1, t2, t3 ∈ Fn2 with (t2)0 = 1. Then, all the maps (⊕t′3) ◦
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(�t′2) ◦ (⊕t′1) are equivalent to the map (⊕t3) ◦ (�t2) ◦ (⊕t1) with

t′1 = t1 ⊕ a1 · (1, 0, . . . , 0) ⊕ a3 · (1, . . . , 1), (6)
t′2 = t2 ⊕ (a1 ⊕ a2) · (1, 0, . . . , 0) ⊕ a3 · (1, . . . , 1, 0), (7)
t′3 = t3 ⊕ a2 · (1, 0, . . . , 0) ⊕ a3 · (1, . . . , 1), (8)

(9)

for any a1, a2, a3 ∈ F2. In particular, there are 8 equivalent triples, whenever the least
significant bit of t2 is 1.

Proof. Since the MSB of the modular addition is differentially linear, it is trivial to see
that the maps (⊕t′3) ◦ (�t′2) ◦ (⊕t′1) are all equivalent to the map (⊕t3) ◦ (�t2) ◦ (⊕t1) with

t′1 = t1 ⊕ a1 · (1, 0, . . . , 0),
t′2 = t2 ⊕ (a1 ⊕ a2) · (1, 0, . . . , 0),
t′3 = t3 ⊕ a2 · (1, 0, . . . , 0),

for all a1, a2 ∈ F2. Thus, we only need to focus on the case where a1 = a2 = 0 and a3 = 1.
For some x ∈ F2, denote z = ((⊕t3) ◦ (�t2) ◦ (⊕t1)) (x), i.e. we have

z = [(x⊕ t1)� t2]⊕ t3 ⇔ (z ⊕ t3) = (x⊕ t1)� t2.

Using the fact that

x⊕ (1, . . . , 1) = ¬x = �x� 1 and ¬(x⊕ y) = x⊕ ¬y,

we can deduce

z ⊕ ¬t3 = ¬(z ⊕ t3) = �(z ⊕ t3)� 1
= �(x⊕ t1)� t2 � 1
= ¬(x⊕ t1)� 1� ¬t2 � 1� 1
= (x⊕ ¬t1)� (¬t2 � 1)

Since the LSB of t2 is 1, the LSB of ¬t2 is 0 and thus

(¬t2 � 1) = ¬t2 ⊕ 1 = t2 ⊕ (1, . . . , 1, 0).

In the end, on one hand we have z = [(x⊕ t1)� t2]⊕ t3 , on the other

z = [(x⊕ ¬t1)� (t2 ⊕ (1, . . . , 1, 0))]⊕ ¬t3
= [(x⊕ t1 ⊕ (1, . . . , 1))� (t2 ⊕ (1, . . . , 1, 0))]⊕ (t3 ⊕ (1, . . . , 1))
= [(x⊕ t′1)� t′2]⊕ t′3

Hence [(x⊕ t1)� t2]⊕ t3 = [(x⊕ t′1)� t′2]⊕ t′3 meaning that the two mappings are equal.

Since the proposition works for any n ≥ 2, it follows that there are 8 solutions for
each of the least significant truncations of the function. Therefore, the solutions can be
efficiently recovered in a bit-by-bit search (modulo 2, modulo 4, modulo 8, . . . , modulo
2n−1). We observed experimentally that there are at most 8 solutions at any step. In case
the number of solutions is more than 8 (at any intermediate step), we can choose another
constant for y. The cost of this step is O(n2), assuming O(n) random samples (data) are
sufficient to discard all false-positives. In principle, one can craft a guaranteed number
of O(n) samples by ensuring all possible combinations of bits and carry bits locally at
the current guessing position. In practice, a slightly larger number of random samples is
sufficient for the goal.
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Combining solutions After collecting solution groups for n + 2 independent values of
y (i.e., forming a basis for (n + 1)-dimensional affine map), we can combine them into
the candidates for the maps A1, (A2 � c1), A3. Note that there are 8n+1 candidates in
total. However, we observed experimentally that almost any candidate leads to a correct
decomposition with high probability. Therefore, we select one of the 8 solutions in each
group arbitrarily, and obtain the maps A1, A3 and samples of A2 � c1, which define the
map A2 up to addition/subtraction of 1 (depending on whether c1(y) = 0 or c1(y) = 1,
which we can not compute yet). We denote by B the affine map that agrees with A2 � c1
on the used samples.

Complexity of collecting and combining the n+ 2 solutions is O(n3) time and O(n2)
data.

6.5 Correction of the first carry bit
After removing the linear Feistel maps A1, A3 via projections, we are left with the map

O : Fn−1
2 × Fn+1

2 → Fn−1
2 × Fn+1

2 : (x, y) 7→ (x�B(y)� c′(y), y)

where B : Fn+1
2 → Fn−1

2 is an affine map and c′(y) ∈ {−1, 0, 1} is what we shall call a
pseudocarry. We know that this mapping should be affine-equivalent to

(x, y) 7→ (x� yn+1...,2 � y0y1, y),

where y0y1 is the usual carry function (recall that y contains the two least significant bits
of both operands of the target n-bit addition).

If B is not full-rank, we can randomize it by choosing another solutions for A1, (A2 �
c1), A3 in the previous step. Otherwise, we complete it arbitrarily to an invertible affine
map B′ : Fn+1

2 → Fn+1
2 . Then, using the projections

πx : (x, y) 7→ (x,B′(y)), (10)
πy : (x, y) 7→ (x,B′−1(y)), (11)

we obtain a new oracle O′ = πy ◦O ◦ π−1
x such that

O′ : (x, y) 7→ (x� yn+1,...,2 � c
′(B−1(y))).

The next step is to correct the pseudocarry sign. We observed that the preimages of
−1 under c′ ◦B−1 are described by an affine map τ : Fn+1

2 → F2, that is, τ(y) = 1 if and
only if c′(B−1(y)) = −1. Thus, we can correct the sign by adding the function τ to the
least significant bit of y (and cancelling it in the output). If such map happens to be
non-invertible, we can re-randomize the state in the previous step. As a result, we obtain
an oracle O′′ mapping

(x, y) 7→ (x� yn+1,...,2 � c
′′(y),

where c′′(y) ∈ {0, 1} is a quadratic map. Such c′′ has to be extended affine-equivalent to a
quadratic monomial, i.e., have shape c′′(y) = α(y) ·β(y)⊕γ(y). Using the linear structures
method Subsection 5.2, we can find affine maps α, β, γ decomposing c′′.

Removing the affine part Note that α(y) · β(y) matches the expected shape y0 · y1, but
the addition of γ(y) breaks this structure. In order to remove γ, we use the following
property of the addition.

Proposition 6. Let z = x� y be an n-bit addition. Then, ¬z = ¬x� ¬y � 1.

Proof. Follows from the “two’s complement”: ¬z = −z − 1.
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Figure 11: Bijective modular addition O = A ◦ S ◦Q with quadratic input encoding Q
and affine output encoding A, Q : FN2 → FN2 .

Note that bitwise complement ¬ can be replaced by addition of f(y) · (1, . . . , 1) to
all inputs and outputs, where f(y) is an arbitrary function of y. This requires that
y ⊕ f(y) · (1, . . . , 1) is an invertible map. In a way, this applies the previous proposition
selectively, only on inputs with f(y) = 1.

Proposition 7. Consider the setting from the text above. Let σ(x, y) be an affine map
such that

σi(x, y) =


β(y), i = 0,
y2+i−1 ⊕ γ(y), 1 ≤ i ≤ n− 1,
α(y)⊕ β(y), i = n,

xi ⊕ γ(y), n+ 1 < i < N.

If it is invertible, then, σ ◦O′′ ◦ σ−1 implements (x, y) 7→ (x� y, y) for x, y ∈ Fn2 .

Using this proposition, we can finally obtain the bijective modular addition, and the
final decomposition can be reconstructed by composing all the used projection maps.
Similarly to previous steps, if the map is not invertible, we can randomize choices done in
the previous steps and repeat.

The total complexity of the first carry bit correction is dominated by linear algebra and
linear structure computation steps, taking O(n3) time, and O(n2) samples for verifications
and ANF computations.

Total decomposition complexity The final complexity of decomposing an affine-encoded
bijective modular addition is dominated by the steps described in Subsection 6.2 and
Subsection 6.3 (triangularization and recovery of triangle maps) due to O(n3) queries used
in both. The former one has dominating pure computational time of O(n4).

7 Black-box Decomposition of an ARX Round with (Sparse)
Quadratic-Affine Encodings

We now move on to the main cryptanalysis target - bijective modular addition with
quadratic-affine encodings as suggested by [RVP22]. Again, we are going to only use the
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white-box round oracle, and ignore its implementation. Therefore, our attack is independent
of graph automorphisms, which are used to obfuscate the implicit implementation of rounds.

Observations on encodings generated by the method of [RVP22] The quadratic input
encoding of the round can not be chosen arbitrarily (except the external input encoding). It
has to come from an affine-quadratic self-equivalence. More precisely, the quadratic input
encoding is the quadratic part of the self-equivalence, pre-composed with a random affine
map, and followed by the cipher’s linear layer. Although the authors of [RVP22] found a
large number of possible affine-quadratic self-equivalences, the structure of quadratic parts
of them is very restricted.

Proposition 8. Let A,Q : FN2 → FN2 be an affine-quadratic self-equivalence of bijective
modular addition S and assume n ≥ 4. Then, there exist at least n linearly independent
linear combinations of outputs of Q that have degree 1.

Proof. We have Q ◦S ◦A = S. Let z = x� y, Z = X �Y correspond respectively to inner
and outer variables, such that (x, y) = A(X,Y ) and (Z, Y ) = Q(z, y). Let A2 be a part of
A−1 such that

(X0||Y ) = A2(x, y) = A2(z � y, y).

Furthermore, let Q2 be a part of Q such that

(Z0||Y ) = Q2(z, y).

Recall that the LSB Z0 is equal to X0⊕Y0. Denote by B the affine map (X0||Y ) 7→ (Z0||Y ).
We have

B(A2(z � y, y)) = (Z0||Y ) = Q2(z, y).

That is, the part Q2(z, y) of the quadratic encoding Q can be computed by an affine map
applied to (z � y, y). Note that z � y has exactly one quadratic output bit. It follows
that Q2 has at most 1 quadratic output bit, and the other n bits are linear (note that Q2
outputs n+ 1 bits).

This proposition proves that there all affine-quadratic self-equivalences of bijective
modular addition have at least n linear outputs, meaning that only at most half of the
output of Q can be quadratic (up to affine equivalence). In practice, we studied the
encodings generated by the method of [RVP22] (which are chosen in a very restricted
shape). We observed that the outputs of Q have at most 3 independent quadratic functions.
Furthermore, up to affine equivalence, these functions consist of only 1 or 2 quadratic
monomials (i.e., we count a function 〈α, x〉 · 〈β, x〉 as one monomial). While the variability
of Q is very high, as claimed by the authors, this is only due to the variability of the linear
combinations in the involved monomials. We conclude that the quadratic self-equivalences
of bijective modular addition have very sparse quadratic part and set to exploit this
weakness. Note that already the decomposition of the affine-affine encoded bijective
modular addition is a nontrivial task (as can be seen from Section 6), and adding just
a few (unknown) quadratic monomials significantly adds up to the complexity of the
decomposition process.

High-level overview of the attack The procedure consists of several steps. The main
high-level idea is to catch the unknown quadratic monomials among the quadratic outputs
of the bijective modular addition (which appear due to the cipher’s linear map mixing the
outputs of Q to the right branch, which is present among linear combinations of output
bits), and use algebraic relations from Subsection 5.4 to recover Q. The overall plan is
thus as follows.



Alex Biryukov, Baptiste Lambin and Aleksei Udovenko 123

1. Locate quadratic output bits (up to addition of linear output bits), by using the
zero-sum property over 3-dimensional spaces.

2. Decompose each possible linear combination of quadratic output bits into a quadratic
monomial or a sum of two monomials (up to addition of linear terms), when possible.

3. Using inputs to the recovered monomials as the basis for the quadratic terms in
the quadratic input encoding (this is an assumption based on the used shape of
encodings), perform black-box interpolation of affine-encoded bijective modular
addition on a subset of samples not triggering any quadratic monomials.

4. A composition of the encryption oracle with the system-based inversion results
in the output of the quadratic encoding (because the system captures the affine-
encoded addition only). Thus, the quadratic encoding can be easily evaluated and
reconstructed.

5. The quadratic encoding can be inverted by computing a Gröbner basis in lexicographic
monomial order. (In general, inversion of quadratic maps is a hard problem, so
we can’t hope for a generic robust solution.) Due to sparseness, the Gröbner basis
method works very well in practice. Note that the inverse of the quadratic encoding
does not have to be quadratic, it can have much higher degree.

6. As a result, we can invert the quadratic encoding on any input, and pass it to
the original oracle, effectively stripping the quadratic encoding, and leaving the
affine-encoded bijective modular addition, which can be decomposed as described in
Section 6.

7.1 Locating quadratic output bits
The first step is to recover the linear combinations of output bits that are quadratic
functions of the input bits. This can be done efficiently using the fact that any quadratic
function sums to zero over any 3-dimensional affine subspace. To exploit it, let us compute
multiple such sums over random 3-dimensional subspaces of the oracle function. Each such
sum is an N -bit vector and the zero-sum linear combinations of these vectors form the
vector space of output bits that have degree at most 2. Since we can recover the linear bits
using the method from Subsection 6.1, we are interested in output bits of degree precisely
2. To filter out the output linear bits, we can simply remove them from the output. In this
way, we can not lose a possible quadratic output, since adding a linear function can not
change the degree of a quadratic function. The procedure is summarised in Algorithm 4.
Its time complexity is O(n3) and data complexity is O(n).

Algorithm 4 Recovering output quadratic bits
Input: oracle O implementing bijective modular addition with quadratic-affine encodings,

with output linear bits removed
Output: linear map πq : FN2 → Ft2 such that πq ◦O has all its output linear combinations

having degree 2
1: for i ∈ {0, . . . , N + ε = 1} do
2: X

$←− random 3-dimensional affine subspace of FN2
3: v(i) ←

⊕
x∈X O(x)

4: end for
5: V ← matrix with rows {v(i)}i
6: B ← basis(kerV ) so that V ×B = 0
7: return πq : x 7→ B × x
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7.2 Decomposition of quadratic outputs into 1 or 2 quadratic mono-
mials

The ANFs of the recovered quadratic bits can be recovered in O(N2) queries and time
by using the fact that the coefficient λi,j of the monomial xixj in a Boolean function f
is given by f(ei ⊕ ej)⊕ f(ei)⊕ f(ej)⊕ f(0). Alternatively, the same amount of random
queries can be used (e.g., from a common data pool shared between steps), with a generic
linear algebraic interpolation step costing O(N6) time.

After the first step, based on experimental data, we obtain 2-4 quadratic output bits
(i.e., πq ◦O is a quadratic map FN2 → Ft2 with 2 ≤ t ≤ 4), independently of the word size
n. Compared on the previous observation that Q has at most 3 independent quadratic
outputs, we may obtain an extra quadratic output which is the second least significant bit
z1 = x1 + y1 + x0y0. The second step consists in finding affine equivalent representation of
the map πq ◦O consisting of quadratic functions with 1 or 2 quadratic monomials each.
That is, we search for affine maps B,A such that each output bit of B ◦πq ◦O ◦A contains
at most 2 quadratic monomials. Note that the restriction to 2 monomials is artificial
(based on the currently observed encodings) and a potentially new encoding with a few
more monomials can still be attacked with the same method.

The motivation for this step comes from experimental observation of used quadratic
encodings in the implementation of [RVP22], which only have a few distinct quadratic
monomials (up to affine equivalence). The goal is thus to catch these quadratic monomials
in the output bits of the oracle. This is in particular possible due to the cipher’s linear layer
mixing these quadratic monomials into the linear right branch of the modular addition,
which in turn leaks the monomials in the output of the oracle.

The step’s goal can be straightforwardly achieved by enumerating all linear combinations
(at most 15 if t ≤ 4) of πq ◦ O and attempting to apply the monomial decomposition
method based on linear structures from Subsection 5.2. Then, we choose an arbitrary
linearly independent subset of the successfully decomposed linear combinations which
defines the output linear map B described above; the input linear map A maps the space of
linear combinations of input bits involved in the quadratic monomials to single input bits.
For example, if monomials (x1 + x2 + x5)(x3 + x4), (x3 + x4, x7), (x1 + x2 + x5 + x7, x8)
are chosen, we map (x1 + x2 + x5), (x3 + x4), (x7), (x8) to four distinct input bits (we use
the fact that x1 + x2 + x5 + x7 is expressible as a sum of new bits).

The time complexity of this step is dominated by computing the 2t − 1 linear structure
spaces, which is done in O(2tn3) time (here, enumeration of candidates of 2 monomials
among 4 linear functions takes an extra but constant time factor). The ANF computation
requires O(n2) queries.

7.3 Algebraic recovery of a sparse quadratic encoding
The next goal is to recover the quadratic encoding, more precisely, its quadratic part.
Since the monomials themselves were recovered in the previous step, it is only missing to
know where each monomial is added.

We recall the setting of Subsection 5.4. Let Z = (B ◦ S)(X) for some affine map B.
Then, X and Z satisfy a set of bilinear relations

Ẽ(X,Z) =
N−1∑
j=0

N−1∑
k=0

λXZj,k XjZk +
N−1∑
j=0

λXj Xj +
N−1∑
k=0

λZk Zk + λ0. (12)

Now, let X = Q(W ), where Q is the quadratic bijective encoding, so that Z = O(W ) =
(B ◦ S ◦Q)(W ). We assume that Q can be expressed as Q(W ) = W + q(W ) up to a linear
map applied to W , where q is a purely quadratic function, i.e., all its output bits contain
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only quadratic monomials, with the ANFs

qj(W ) =
∑

(a<b)∈I2

αja,bWaWb.

where I is the set of indexes of input bits involved in the quadratic monomials of the
output quadratic bits (recovered in the previous step).
Remark 4. While this assumption does not often hold directly, Q may be partially
“randomized” by composing the oracle with a random constant addition, which leads to
generation of new linear terms from quadratic ones (for example, (W0+1)W1 = W0W1+W1).
We found this sufficient for our attacks. Alternatively, we could add a few extra linear
terms/variables to the hypothesized expression of Q to ensure invertability of the linear
part with high probability.

Substituting X by Q(W ) into Equation 12 gives new relations Ê on W,Z:

Ê(X,Z) = Ẽ(Q(W ), Z) = Ẽ(W + q(W ), Z) (13)

=
N−1∑
j=0

N−1∑
k=0

λXZj,k (Wj + qj(W ))Zk +
N−1∑
j=0

λXj (Wj + qj(W )) +
N−1∑
k=0

λZk Zk + λ0 (14)

=
∑

(a<b)∈I2

N−1∑
k=0

λ̂WWZ
a,b,k WaWbZk +

∑
(a<b)∈I2

λ̂WW
a,b WaWb (15)

+
N−1∑
j=0

N−1∑
k=0

λXZj,k WjZk +
N−1∑
j=0

λXj Wj +
N−1∑
k=0

λZk Zk + λ0. (16)

The new coefficients λ̂WWZ
a,b,k , λ̂WW

a,b of monomials WaWbZk,WaWb are functions of the
coefficients λXZj,k , λXj and the coefficients αja,b of the coordinate functions qj of q:

λ̂WWZ
a,b,k =

N−1∑
j=0

λXZj,k · α
j
a,b, λ̂WW

a,b =
N−1∑
j=0

λXj · α
j
a,b. (17)

Essentially, the monomial basis for the relations is expanded by the terms WaWbZk
and WaWb, the number of which is O(|I|2N), which can be much less compared to N3

from the general quadratic encoding case. Experimentally, the size of I is at most 7 for
the quadratic encodings used in [RVP22].

These relations can be directly interpolated in a black-box way as described in Sub-
section 5.4. Note that black-box interpolation only recovers the full vector space of all
relations, so that we can only obtain linear combinations of all relations. It is easy to see
that any linear combination of relations Ẽ(i) still follows the same structure.

However, another problem is that other relations may appear, not following the structure
described above. They may appear due to expanded monomial basis and presence of the
quadratic encoding interacting with the modular addition. There can be at most

(|I|
2
)

extra such relations (21 if |I| ≤ 7), depending on the quadratic encoding used, in the
implementation of [RVP22].

We resolve this problem in the following way.

1. First, we interpolate relations in the bilinear basis (1,W,Z,WZ), but using only
samples satisfying WaWb = 0 for all pairs (a, b) ∈ I2. On these samples, we have
Ẽ(W,Z) = Ê(W,Z) since the terms quadratic in W are equal to zero. As a result,
we directly obtain some relations of the bijective modular addition without the
quadratic part of the quadratic encoding, plus possibly a few extra relations (in the
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same basis). Note that the relations are all linearly mixed together as we can only
interpolate the vector space that they span. The time and data complexities of this
step are respectively O(n6) and O(n2).

2. Second, we aim to remove the extra relations from the system, in order to obtain a pure
system of relations of the bijective modular addition (up to affine encodings). The
idea is to choose random input/output pairs (W (t), Z(t)), for which the interpolation-
based inversion fails to determine a unique preimage (if this does not happen, it
must be that we invert the bijective modular addition, leading to recovery of Q).
Furthermore, we require that all inputs W (t) share the bits indexed by I. Then, the
“good” relations can be fixed by replacing W (t) with W (t) + q(W (t)), which is a linear
function on the coefficients αja,b since W (t) is known. Among the “bad” relations,
on the other hand, there must exist at least one that is not satisfied by the correct
solution (otherwise, the inversion must have succeeded). We introduce an “error”
variable ε(i) per each relation Ê(i) in the system, leading to linear equations of the
form

Ê(i)
(
W (t) + q(W (t)), Z(t)

)
+ ε(i) = 0,

which are equations on the coefficients of q and all error variables ε(i) (since W,Z
are known). By solving this linear system with a sufficient number of samples, we
find which relations are erroneous on this input/output set. Then, we can add one
of the erroneous relations to all other erroneous relations to cancel the error (i.e.,
canceling the original mixed-in erroneous relations). This step removes one unwanted
relation from the system. After repeating this step a sufficient number of times (i.e.,
the number of extra relations), we obtain a clear system of relations for the affinely
encoded bijective modular addition B ◦ S.
Assuming constant number of erroneous relations, the time complexity is O(n6)
(solving the linear system of size O(n2) relations), while the data complexity is
negligible.

3. Finally, we can use the system to invert the bijective modular addition part from
the oracle (using its bilinearity, as in Subsection 5.5), which allows to compute
X = Q(W ) as X = ((B ◦ S)−1 ◦ O)(W ) = ((B ◦ S)−1 ◦ (B ◦ S ◦ Q))(W ) = Q(W ).
Then, we can obtain the ANF of Q in O(n2) such queries (each costs O(n3)) using
standard methods. This costs O(n5) time in total for this step.

We remark that the system of linear equations from step may have more than 1 solution
due to possible quadratic-affine self-equivalences of the addition. In practice, we observe 2
possible solutions per added equation, which produces a small amount of candidates to
test.

7.4 Inversion of quadratic encoding
In general, the problem of inverting a function given by quadratic polynomials is considered
to be hard. In particular, multivariate quadratic (MQ) cryptography relies on hardness of
this problem (a prominent example is the unbalanced oil and vinegar scheme [KPG99]).
If a white-box implementation uses a generic quadratic function as an external input
encoding, it can not be easily inverted. Thus, a white-box designer in principle may use
an MQ public-key encryption scheme as an external encoding and it won’t be breakable or
invertible. This would be of course not a white-box achievement. This discussion can be
seen as an argument against external encodings being a reasonable assumption.

From the general hardness it follows that we have to use a particular shape of the
quadratic function if we want to invert it. The case of quadratic encodings from [RVP22]
is very sparse (only a few distinct quadratic monomials are used. In most cases, an inverse
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function can be computed by hands. Yet, due to several different shapes of the encoding,
automating the ad-hoc process is not a straightforward and clean solution. To that end, we
resort to use a generic algebraic method based on Gröbner basis (for detailed description,
we refer e.g. to [CLO10]). It performs very well on sparse encodings, removing the need
of manual work, and at the same time, this approach is the best known way to approach
inversion of a generic quadratic encoding. Thus, it covers both the sparse encodings used
in the white-box implementation that we attack and potential dense encodings in the case
described in the previous paragraph.

The first method is to encode the inversion problem for each target output y = Q(x),
where Q is the quadratic function. This is done by considering the ideal

I = 〈y0 −Q0(x), . . . , yN−1 −QN−1(x)〉 (18)

of the polynomial ring F2[x0, . . . , xN−1] (the target output y is a known constant). The
goal is to compute the associated variety (i.e., the solution set), which can be done through
Gröbner basis computations. If Q is bijective (as should be in the white-box setting), the
variety should contains the only solution corresponding to y = Q(x).

The second method is to compute the polynomial representation of the inverse function
Q−1 (here, we allow the polynomial of yi to also use variables yj for all j > i). The
advantage is that it requires to compute a Gröbner basis only once for a given function Q,
and inversion of a given output is done simply by evaluating the computed polynomials.
The disadvantage of the method is that the polynomial representation of Q−1 may be not
compact, especially in the case of denseQ. To achieve the goal, we use an ideal I ′ of the same
shape as the ideal I from (18), but over the polynomial ring F2[x0, . . . , xN−1, y0, . . . , yN−1].
That is, we consider x to be a vector of variables. Then, we compute the Gröbner basis
of this ideal in lexicographic order (using x0 > . . . > xN−1 > y0 > . . . yN−1). If Q is
invertible, this results in the sequence of polynomials

xN−1 − fN−1(y0, . . . , yN−1), (19)
xN−2 − fN−2(xN−1, y0, . . . , yN−1), (20)
... (21)
x0 − f0(x1, . . . , xN−1, y0, . . . , yN−1), (22)

yielding the desired polynomials fi to compute x = Q−1(y).
When attacking the implementation of [RVP22], we used the second method which

showed to be very efficient for the sparse quadratic encodings used. It takes negligible time
compared to other steps of the attack and requires no manual work. We conclude that
the time complexity of the black-box decomposition attack is dominated by the algebraic
recovery of the quadratic encoding Q, which requires O(n6) time and O(n2) queries.

This concludes the decomposition and inversion attack on the implicit ARX-based white-
box scheme of [RVP22]. In the next section, we show how to use the obtained decomposition
and inversion method to fully recover (most of) round subkeys and, ultimately, the master
key of the underlying Speck cipher.

8 Combining Round Decompositions for Full Key Recovery
in the case of Speck Cipher

In this section, we describe how to chain several consecutive round decompositions and
extract the round subkeys in-between, allowing full master key recovery in the case of
white-box Speck cipher implementation. More precisely, for a Speck version withW master
key words, it is sufficient to chain W + 1 consecutive round decompositions to obtain at
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most 22W master key candidates. An extra decomposed round can be used to narrow down
this small set of candidates to the unique correct one. This attack relies on properties of
the Speck linear layer, sparsity of affine self-equivalences of bijective modular addition, and
the key schedule of Speck. This method is an extension of the technique from [VRP22] to
include quadratic self-equivalences.
Remark 5. In practice, two consecutive round decompositions narrow down possible
encodings to only a few candidates, which allow to decompose all consequent rounds in a
much simpler way, since one side of encoding is given from the previous round.

The initial setting for this section is as follows. We are given a chain of maps
F (1), F (2), . . . , F (r), each being either a bijective modular addition, an affine map, or
a quadratic map, such that F (r) ◦ . . . ◦ F (1) is affine-equivalent to an r′-round Speck:

F (r) ◦ . . . ◦ F (1) = C ′ ◦ E(r′) ◦ . . . ◦ E(1) ◦ C

for some affine bijections C,C ′ : FN2 → FN2 . We also require that the quadratic maps arise
from affine-quadratic self-equivalences as in the implicit white-box proposal.

The procedure consists of two steps:

1. Eliminating quadratic self-equivalence maps by using the affine-encoded addition
inversion technique based on interpolation (Subsection 5.4).

2. Finding symbolically affine self-equivalences of bijective modular addition layers
which resolve the intermediate linear maps into the Speck linear layer.

8.1 Eliminating quadratic self-equivalences
By combining all affine maps with quadratic maps, we obtain a sequence of alternating
bijective modular addition S and quadratic maps Q(i) (note that here Q’s are different
than those from the previous section, as they include an affine map from the previous
round):

S ◦Q(r) ◦ S ◦ . . . ◦ S ◦Q(1).

The quadratic maps have structure Q(i) = A(i+1) ◦ L ◦ B(i), where A(i+1) is the affine
part of self-equivalence from the next modular addition, B(i) is the quadratic part of
self-equivalence from the previous modular addition, L is the cipher’s linear layer2 (see
Section 3 and Figure 1). We have

Q(i) ◦ S = A(i+1) ◦ L ◦B(i) ◦ S = A(i+1) ◦ L ◦ S ◦A(i).

In other words, the function Q(i) ◦S is affine-equivalent to S. Note that we have two-sided
affine equivalence because A(i+1) is unknown, as we recover these maps up to a composition
with canceling affine encodings. Yet, we can run the affine-equivalence attack from Section 6
on Q(i) ◦ S to recover A(i+1) ◦ L and A(i), up to affine self-equivalences of S. Effectively,
this approach allows to propagate the quadratic parts of affine-quadratic self-equivalences
through the addition into affine maps.
Remark 6. This step can be performed already after detaching the quadratic encoding
by the attack from Section 7, and attaching it to the previous round with its quadratic
encoding also detached. This means that there is no need to perform the affine-encoding
decomposition of the remaining part of the current round separately, but instead it should
be done when composed together with the next round’s input quadratic encoding. Thus,
we only need one call to the attack from Section 6 per round.

2Note that here we define self-equivalences with respect to the bijective modular addition, and not to
to the full round function.
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The complexity of this step is dominated by the decomposition of affine-encoded
bijective modular addition (Section 6), which is O(n4) time and O(n3) queries. Note
that the bilinear relations are already obtained during the process of quadratic encoding
recovery (Subsection 7.3), therefore, the precomputation step is not needed and we can do
optimized queries “offline” (without calling the actual white-box oracle anymore), so that
the optimal effective time complexity of O(n6) is reached.

8.2 Aligning affine-self equivalences to match the cipher’s linear layer
After eliminating quadratic maps, we are left with alternating bijective modular additions
and affine maps. This problem was already solved in [VRP22] using Gröbner basis. Here
we propose an alternative technique based solely on linear algebra.

We know that the affine maps should be equal to the cipher’s linear layer and
key/constant additions. However, the affine maps are recovered up to affine self-equivalences
of the surrounding additions. Thus, we need to solve the following equation (considering
only the linear part):

L = U ◦ C ◦ V, (23)

where U is the unknown input linear part of an affine self-equivalence of S, V is the
unknown output linear part of (another) affine self-equivalence of S, C is a known linear
map, L is the (known) cipher’s linear map. By rewriting it as

L ◦ V −1 − U ◦ C = 0 (24)

we get a linear equation on entries of the matrices of V −1 and U . However, the solution is
not unique: from (23) it is clear that for every bijective V there exists a satisfying matrix U .
Therefore, we need to add constraints of U, V being linear parts of affine self-equivalences
of bijective modular addition. This can be done by enforcing the shape of the matrix of
the linear part of an affine self-equivalence, established in [RVP22], which we parameterize
in more details, based on experiments using our decomposition attack:

U =



1
t1 1

. . .
1

t2 c · · · c t3 t4 c · · · c t5

a1 b2
a2 b3 1
...

...
. . .

an−1 bn−1 1
an d · · · d t6 bn d · · · d t7



,

where the rulers divide the N ×N matrix into four n× n matrices. In addition, V and
V −1 have the same shape.

Putting these parameterized matrices into (24), we get a linear system on the undeter-
mined entries, which experimentally always has a unique solution.

After the linear layer between the two additions is modified using recovered U, V maps
into the cipher’s linear layer, the linear parts of self-equivalences are fixed, and we are left
with the constant parts. First, we recover all possible input/output constant additions
that make the current oracles into precise bijective modular addition. This can be done
efficiently in a bit-by-bit manner. Note that the round key in Speck is XORed right after
the addition, so we extract the subkey as the output constant of the addition.
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The recovered constants are defined up to additions in the most significant bits.
Furthermore, a specific of our decomposition technique (ignored possible XORs from bit
n− 2 to n− 1 in the first step) makes the (n− 2)-nd bit of the addition undetermined. As
a result, we recover the subkey excluding 2 most significant bits, which are negligible to
search even for 4 rounds at once. Four consecutive round keys allow to easily undo the key
schedule and recover the master key.

9 Experimental Evaluation
We implemented the full key recovery attack on an implicit white-box implementation
of Speck32/64 and Speck64/128, generated using strongest parameters we could compile
(affine-quadratic self-equivalences, degree-4 graph automorphisms, see Appendix A). All
experiments were done on an Intel(R) Core(TM) i7-1185G7 3.00GHz CPU on a laptop
(single core or parallel round decompositions distributed across cores). We remark that
the implementation is a proof-of-concept and many optimizations are possible. The
implementation is available at

https://github.com/cryptolu/implicit_ARX_whitebox_cryptanalysis

For Speck32/64 (n = 16), one white-box round call takes about 6 milliseconds. For
comparison, an affine-encoded optimized oracle takes 15-20 microseconds (available after
removing the quadratic encoding and interpolation). In about 30 minutes, we successfully
decomposed all 20 rounds of a white-box instance (which we did to ensure that all rounds
are susceptible to our methods). We skipped the first round as it (in principle) may have
full MQ-like quadratic external encoding, it is unnecessary for key recovery. On average,
each round decomposition takes 1.5 minutes. The unique master key candidate matches
all the intermediate subkey candidates (taking into account the Speck’s key schedule).

For Speck64/128 (n = 32), one white-box round call takes about 320 milliseconds.
For comparison, an affine-encoded optimized oracle requires 45-50 microseconds. One
decomposition attempt takes about 40-60 minutes (repeated attempts are needed when
certain matrices occurring in the process are non-invertible, although only a part of the
process is repeated). We decomposed the first 10 rounds (skipping the very first one with
a possible external encoding), and recovered the unique master key candidate matching all
the subkeys.

10 Conclusions
We would like to draw several conclusions from our work.

Algebraic attacks without one external encoding As current designs in the implicit
function framework do not offer new kinds of encodings, they do not offer new protections
against gray-box-like attacks in the pure white-box setting (without external encodings).
In particular, quadratic encodings are defeated by a quadratic algebraic attack.

Implicit function framework Our generic interpolation-based optimization attack mini-
mizes the degrees of the implicit functions describing a round function. Although the cost
may be high (e.g., O(n9) in the quadratic-affine encodings case), it is polynomial in the
size of descriptions of the function (unless compression methods would be discovered in
the future). This attack questions/limits the utility of obfuscation techniques for implicit
functions (such as graph automorphisms). We remark that the implicit function framework
itself remains a very interesting tool for implementing round functions and embedding
encodings at a small cost, yet it currently lacks fitting primitives. We hope for more future
work in this direction.

https://github.com/cryptolu/implicit_ARX_whitebox_cryptanalysis
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Implicit bilinear inversion Our inversion attack shows that round functions with bilinear
implicit functions can not be used with affine encodings, and even quadratic-affine encodings
require special care. Of course, the attack only targets the non-invertibility security goal
(not claimed by [RVP22] but worth studying in general).

ARX-based round function Our main decomposition attacks show that an ARX round
with single modular addition has many weaknesses. As mentioned above, it has a bilinear
implicit function. Its quadratic self-equivalences (at least, the ones discovered by [RVP22])
are extremely sparse (only a few distinct monomials, up to affine equivalence).

Possible countermeasures As our attacks rely on the isolation and black-box access to
each round (as is common in white-box attacks in the presence of external encodings).
Code obfuscation can potentially prevent the attack by deterring a human reverse-engineer.
An alternative direction is searching for cubic or denser quadratic self-equivalences of the
bijective modular addition.
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A Generating Instances of White-box Speck
The authors of [RVP22] provided a Python/Sagemath [Sag22] implementation to generate
instances of the Speck block cipher with their white-box construction, more specifically
they provide direct support for Speck32/64, Speck64/128 and Speck128/256. Their
implementation allows one to generate white-box instances of the Speck block cipher with
different parameters, and thus we will quickly describe the most relevant ones as well as
which ones we used, keeping in mind that our attacks are targeted to the most generic
cases in their framework.

The first set of parameters allows to set several parts of the encodings as trivial, namely
the affine part of the encodings, the quadratic part, the affine-quadratic equivalences used
and the external encodings. As our goal is to provide generic attacks on their framework,
the choice here is rather simple. The affine part and quadratic part of the encodings,
as well as the affine-quadratic self equivalence relations, are all chosen as non-trivial.
External encodings will be disabled (i.e. set to trivial) only in Section 4, and enabled (i.e.
non-trivial) in the rest of the paper.

The second set of parameters influences the concrete white-box implementation, more
specifically how the implicit functions are generated. At some point in the generation,
graph automorphisms are needed (we refer the reader to the original paper for their role),
which can be set to trivial with one parameter. It is a bit unclear how this influence the
resulting instance, but to provide the most generic instances, we kept these as non-trivial.
Note that it does seem to severely slow down the time needed to generate the white-box
instance. A second parameter allows one to use so-called "redundant perturbations" in
the instance based on the work of [BCD06]. The authors do not provide details about
how this functionality works, however from our understanding, they only affect the actual
implementation (i.e. resulting code) and not the resulting encoded round function. This
means that assuming every other parameters are the same (i.e. same key, same encodings,
same affine-quadratic equivalences etc.) for one instance E without these perturbations,
and one other instance E′ with these perturbations, we should always have E(x) = E

′(x),
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as the perturbations seems to only influence how the encoded round function are evaluated
on a given input, not the actual result3. As such, we chose to disable these perturbations.

Finally, as stated in the previous section, encoded round function are implemented
as implicit functions, which, in the author’s implementation, can be of degree 2, 3 or
4 depending on some parameters. From the authors (Section 6, bottom of page 24
in [RVP22]), an implicit function of degree 2 implies that no quadratic encodings are used,
only affine encodings and affine self-equivalences. As we aim at attacking the generic case
where the encodings are quadratic, this is not something we want so we do not allow degree
2 implicit functions. When the degree of implicit functions is set to either 3 or 4, quadratic
encodings and affine-quadratic self-equivalences are used, however as stated by the authors,
degree 3 implicit functions implies to choose carefully which quadratic functions are used,
and as such might not be as generic as we would like. An additional parameters allows to
enforce that every implicit function (i.e. encoded round function) is of the chosen degree.
However, when we tried to enforce every implicit function to be of degree 4 (as it should be
the most generic case), the generation of white-box instances failed and we were not able
to fix their code to make it work. As such, for every instance we generated, we enforced
the degree to be at least 3 and at most 4, which results in some encoded rounds to be of
degree 3 and others to be of degree 4. As we will see in later sections, we were able to
recover the round key of every round (both degree 3 and 4) without having to consider
this degree, so we do not expect this to have any influence on our attacks.

Finally, a small implementation detail for our attacks. The authors’ tool allows to
generate instances and either use them directly in Python/Sagemath, or export them
to some C code. While all our attacks are implemented in Python/Sagemath, using the
direct Sagemath evaluation of encoded rounds turned out to be extremely slow. Thus our
solution was to export the generated instance into C code, and then compile this C code
into a shared library, which we can use from Python/Sagemath using the ctypes Python
library. This proved to be a huge improvement for running our attacks, as a very large
part of the time complexity (in practice) is due to the rather slow calls to the oracle (even
with this shared library).

B Optimized Implementation of Implicit Bilinear Functions
Let a function F (X) = Z be given implicitly by

P : FN2 × FN2 → Fm2 : (X,Z) 7→
∑
i,j

λXZi,j XiZj ⊕
∑
i

λXi Xi ⊕
∑
i

λZi Zi ⊕ λ,

where each λ-coefficient belongs to Fm2 . It can be rewritten as

P (X,Z) =
N−1∑
i=0

Xi · (
N−1∑
j=0

λXZi,j Zj ⊕ λXi ) ⊕
∑
i

λZi Zi ⊕ λ (25)

=
N−1∑
i=0

Xi ·A(i) × (Z0, . . . , ZN−1, 1)T ⊕B × (Z0, . . . , ZN−1, 1)T , (26)

=
(
N−1∑
i=0

Xi ·A(i) ⊕B

)
× (Z0, . . . , ZN−1, 1)T . (27)

where A(i), B are m × (N + 1)-bit matrices. Therefore, the solution of P for Z can be
computed as following:

3Checking the source code of their tool, it even seems that these perturbations can result in a failure to
evaluate an encoded round function
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1. Compute the matrix sum C(X) =
∑N−1
i=0 Xi ·A(i) ⊕B.

2. Find the right kernel of C, which should consist of the only nonzero vector (Z0, . . . , ZN−1, 1)
with Z = F (X).

In practice, the matrix sum can be done faster by precomputing and storing w-block
sums

T (Xkw,...,kw+w−1) =
kw+w−1∑
i=kw

Xi ·A(i),

reducing N matrix additions to N/w at the cost of storing 2wN/w matrices. Rows of
the matrices stored as CPU words, allowing efficient Gaussian elimination to recover the
kernel, which is the dominant step of the procedure.

This method is equivalently efficient for computing the inverse of F using the same
implicit function (with swapped roles of variables).

Implemented in C, this method executes 1 query for affine-encoded bijective modular
addition with n = 16 in 20 microseconds on average on a laptop with an Intel(R) Core(TM)
i7-1185G7 3.00GHz CPU.
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