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Time-optimal control of driven oscillators by variational circuit learning
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The simulation of quantum dynamics on a digital quantum computer with parametrized circuits has
widespread applications in fundamental and applied physics and chemistry. In this context, using the hybrid
quantum-classical algorithm, combining classical optimizers and quantum computers, is a competitive strategy
for solving specific problems. We put forward its use for optimal quantum control. We simulate the wave-packet
expansion of a trapped quantum particle on a quantum device with a finite number of qubits. We then use circuit
learning based on gradient descent to work out the intrinsic connection between the control phase transition
and the quantum speed limit imposed by unitary dynamics. We further discuss the robustness of our method
against errors and demonstrate the absence of barren plateaus in the circuit. The combination of digital quantum
simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
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I. INTRODUCTION

Following the vision by Feynman [1], quantum simulation
has acquired a potentially disruptive role in the development
of contemporary science and technology, given the prospects
of harnessing the advantage of using a quantum computer
(QC) for specific applications. In recent decades, quantum
simulation has been used to probe the dynamics of con-
densed matter systems [2,3], for quantum chemistry [4,5],
and as a testbed for nonequilibrium statistical mechanics, e.g.,
in studying thermalization and nonequilibrium behavior of
many-body systems [6,7]. Quantum simulation is also ex-
pected to impact high-energy physics, given the potential to
facilitate the study of lattice gauge theories [8] and gauge-
gravity duality [9,10], among other examples.

The use of a digital quantum simulator (DQS) based on
the gate model offers a prominent approach in current noisy
intermediate-scale quantum (NISQ) devices [11] and has
gained relevance with theoretical and experimental progress
[3,12,13]. In particular, DQS can be used to implement vari-
ational quantum algorithms (VQAs), under development for
quantum optimization [14], quantum machine learning [15],
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quantum control [16], and quantum simulation [17–20]. Their
formulation generally approximates the continuous time evo-
lution by discrete, finite Trotter steps [21–24] implemented
by a sequence of quantum gates, with controlled accuracy,
in principle. However, balancing the number of Trotter steps
and imperfections of quantum circuits in experiments is
still a fundamental challenge. In this sense, various opti-
mization scenarios aim at quantum error mitigation [25–27]
for achieving a good precision of the quantum simulation
with limited quantum resources. Among those, the machine-
learning-enhanced optimization protocol [28–31] utilizes a
feedback loop between the quantum device and a classical
optimizer. This approach is particularly useful in the field
of hybrid quantum algorithms [32,33] with current quantum
hardware. Nonetheless, solving the quantum optimal control
problem by VQAs in a NISQ device is still an open challenge
[16], but recent efforts have made significant strides [34]. In
particular, we are intrigued by the promising approach of com-
bining digital quantum simulation with hybrid circuit learning
for tackling optimal control of molecular dynamics [35,36].

In this work, we propose a circuit learning scheme based
on gradient descent (GD) for time-optimal quantum control,
with a specific focus on the case of a quantum particle trapped
in time-varying parabolic potential. This system is particularly
relevant to shortcuts to adiabaticity for trapped ions and cold
atoms, with potential implications in quantum speed limit,
quantum optimal control, and quantum thermodynamics [37].
We use a qubit register and encode the spatial wave func-
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tion using the basis of n-qubit states. We then reproduce the
exact state evolution on a designed quantum circuit using a
digital algorithm [35,38]. We optimize the control function
to achieve maximum-fidelity control by using the GD-based
circuit learning. We further unveil the connection between
a control phase transition and the quantum speed limit, i.e.,
the minimum time for a quantum state to evolve into a dis-
tinguishable state under a given dynamics. We demonstrate
that the fidelity-based GD method avoids a large number of
measurements by comparison to the reinforcement learning
protocol [39] and show how it can be accelerated by choosing
different quantum quantities as the cost function.

In the following two sections, we introduce the quantum
algorithm for the circuit realization of a quadratic Hamilto-
nian and discuss the time-dependent harmonic oscillator as
an example. We then explore a fidelity-based GD method
for maximum-fidelity control in a nonequilibrium expansion
process and characterize the efficiency through various cost
functions. The relation of the quantum speed limit to the
control phase transition is then discussed. Finally, we establish
the fault tolerance of our method against the quantum errors in
experiments and also address the problem of barren plateaus
in the parametrized circuit.

II. PRELIMINARIES AND NOTATION

A. Time-dependent quantum harmonic oscillator

We exemplify our approach by considering the time-
dependent harmonic oscillator (TDHO), described by the
Hamiltonian

H (t ) = p̂2

2m
+ 1

2
mω2(t )[x̂ − x0(t )]2, (1)

where ω(t ) and x0(t ) are tunable and represent the trap fre-
quency and the location of the trap center, respectively. The
TDHO is an ideal model for benchmarking quantum control
algorithms since its dynamics admits exact closed-form so-
lutions. In particular, we focus on the case with x0(t ) = 0
and look for the expansion of the wave packet induced by a
modulation of the trap frequency ω(t ) from an initial value
ω0 to a final one ω f . This model has many applications,
including the cooling of a particle in an optical trap [40,41],
mechanical resonators [42], and tunable transmon supercon-
ducting qubits [43]. The ground state of H (0) evolves into the
time-dependent Gaussian state [40]

�(t, x) =
( mω0

π h̄b2

)1/4
exp

[
− i

2

∫ t

0

h̄ω0

b2
dt ′

]

× exp

[
im

2h̄

(
ḃ

b
+ i

ω0

b2

)
x2

]
, (2)

where the time-dependent scaling factor b(t ) > 0 character-
izes the width of the wave packet and satisfies the auxiliary
equation

b̈ + ω2(t )b = ω2
0

b3
. (3)

A primary numerical solver of quantum dynamics is the
so-called split-operator method (SOM), also known as the
split time propagation scheme [44]. For the sake of conve-
nience, one usually sets dimensionless variables based on

physical units of energy ε = h̄ω0, length bHO = √
h̄/mω0, and

time τ = 1/ω0. In a classical computer, one defines an N-
dimensional vector as �(r) for encoding the amplitude of the
wave function on the space grid r = [x0, x1, . . . , xN−1]. Note
that the kinetic energy operator T̂ = p̂2/2 and the potential
operator V̂ = ω2(t )x̂2/2 do not commute. Thus the following
approximation stands for small dt with an error O(dt3):

e−iH dt ≈ e− i
2 V̂ dt e−iT̂ dt e− i

2 V̂ dt , (4)

evolving the wave function in a Trotter step. A common trick
in implementing this method uses forward and inverse Fourier
transforms to change the representation of the quantum state
between the real space r and momentum space k, in which the
kinetic energy operator becomes diagonal in k, simplifying
the numerical calculation.

B. Time-optimal control

The frictionless expansion of quantum particles trapped in
a time-varying harmonic trap can be formulated as a time-
optimal control problem by minimizing the time of the process
t f [40,45–48]. It follows from Pontryagin’s maximum princi-
ple that the control Hamiltonian for all t ∈ [0, t f ] takes the
form [45]

Hc[x1, x2, p1, p2] = p1x2 + p2

x3
1

− p2x1u(t ), (5)

where the state x1 = b, x2 = ḃ/ω0, and the controller u(t ) =
ω2(t )/ω2

0 are governed by the Ermakov equation (3). Here,
p1 and p2 are the conjugate momentum of x1 and x2, respec-
tively. Substituting the control Hamiltonian into the canonical
equation leads to the cost equations

ṗ1 =
(

u + 3

x4
1

)
p2, (6)

ṗ2 = −p1. (7)

If the controller is bounded as δ1 � u(t ) � δ2, the time-
optimal control has a bang-bang form, i.e., it is a piecewise
function and constant in each interval. For a specific problem
with b(0) = 1 and b(t f ) = √

ω0/ω f = γ , consider the feasi-
ble three-jump protocol

u(t ) =

⎧⎪⎪⎨
⎪⎪⎩

1, t = 0,

δ1, 0 < t � t1,
δ2, t1 < t < t1 + t2,
1/γ 4, t = topt

f = t1 + t2,

(8)

where the switching time t1 and the optimal operation time
topt

f = t1 + t2 can be calculated by integrating the Ermakov
equation (3) by using boundary conditions. This yields the
closed-form exact time-optimal driving protocol u(t ) with

t1 = 1√
δ1

sinh−1

√
δ1(γ 2 − 1)(γ 2δ2 − 1)

(δ1 − δ2)γ 2(1 − δ1)
,

t2 = 1√
δ2

sin−1

√
δ2(γ 2 − 1)(1 − γ 2δ1)

(δ1 − δ2)(1 − γ 4δ2)
. (9)
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C. Quantum speed limit

Quantum speed limits (QSLs) provide fundamental upper
bounds on the speed of quantum evolution [49]. They have
widespread applications ranging from quantum metrology to
optimal control [50–52]. QSLs are formulated by choosing a
notion of distance between quantum states and identifying a
maximum speed of evolution. For isolated systems described
by a time-independent Hamiltonian, two seminal results are
known. The Mandelstam-Tamm QSL determines the maxi-
mum speed of evolution in terms of the energy dispersion
[53], while the Margolus-Levitin bound uses the mean energy
above the ground state instead [54]. The interplay of these
bounds has recently been demonstrated in a trapped system
made of ultracold atoms that are suddenly quenched [55]. For
a generic driven system, only an analog of the Mandelstam-
Tamm bound is known [56–58].

Consider the quantum unitary dynamics generated by a
time-dependent Hamiltonian according to the Schrödinger
equation. The distance between the initial state and the time-
dependent state in projective Hilbert space can be quantified
by the Bures angle

L(ψ0, ψt ) = arccos(|〈ψ0|ψt 〉|) ∈ [0, π/2]. (10)

The minimum time scale required to sweep a given Bures
angle is lower bounded by

τQSL = 1


E
L(ψ0, ψt ), (11)

where the speed of evolution is set by the time-averaged
energy dispersion


E = 1

t

∫ t

0
ds

√
〈ψs|Ĥ (s)2|ψs〉 − 〈ψs|Ĥ (s)|ψs〉2. (12)

The QSL τQSL is thus approached by maximizing the energy
dispersion at all times. In control protocols for wave-packet
expansion, we consider the evolution of the ground state of
the trap with initial trapping frequency ω0 to the ground state
of the trap with final frequency ω f . Provided that the control
protocol, specified by u(t ), has unit efficiency in preparing the
target state, the Bures angle is fixed, and the corresponding
QSL reads

τQSL = h̄


E

√
2γ

1 + γ 2
. (13)

We note that τQSL should be distinguished from the minimum
time topt

f in the preceding time-optimal control with the trap
frequency bounded.

D. Fidelity susceptibility

Generally, the final state ρ f = |� f (x)〉〈� f (x)| upon com-
pletion of a control protocol at t = t f differs from the target
state ρtar = |�tar (x)〉〈�tar (x)| one wishes to prepare. Let us
consider the fidelity F between these two states

F (ρtar, ρ f ) = [Tr(
√√

ρtarρ f
√

ρtar )]
2, (14)

where Tr(·) denotes the trace operation [59].

The fidelity susceptibility χ f quantifies the fidelity response
to a slight change of driving parameter [60–62]. For a func-
tional Hamiltonian H ( ft ) parametrized by ft , let |�0( ft )〉 be
the ground state. We assume ft to be a function of time and
consider a variation on the control function ft → ft + δ f ,
where δ f → 0 is small enough to apply perturbation theory.
As a result, the perturbed ground state is |�0( f + δ f )〉. The
fidelity susceptibility, without loss of generality, is defined as

χ f ≡ −2 ln(Fδ f )

δ f
, (15)

where the fidelity Fδ f = F [ρ0( f ), ρ0( f + δ f )]. The fidelity
susceptibility quantifies the sensitivity of the fidelity to vari-
ations of the control functions. In other words, the fidelity
susceptibility can be used as a cost function to accelerate
the convergence of the optimization process. For the sake of
simplicity, we assume that δ f → 0 is a time-independent real
value.

E. Quantum circuit realization

Next, we present the algorithm for the circuit realization
of quadratic Hamiltonians using a finite set of elementary
quantum gates. We focus on DQS of the continuous-variables
system and encode a wave packet onto an n-qubit register.
Quantum states of this register can be described in binary
notation

|〉 =
2n−1∑
i=0

ci|i〉, (16)

using the computational basis |i〉 = |qn−1〉 ⊗ · · · ⊗ |q1〉 ⊗
|q0〉, with q0, q1, . . . , qn−1 ∈ {0, 1}, and the corresponding
amplitudes ci normalized as

∑2n−1
i=0 |ci|2 ≡ 1. To solve the

time-dependent Schrödinger equation on a quantum computer
with an n-qubit register, we discretize the continuous variables
associated with the spatial coordinate x and time t and subse-
quently map the coordinate space x into the Hilbert space of
n qubits. Specifically, the compact continuous spatial domain
x ∈ [−L, L] is approximated by a lattice of 2n points spaced
by a constant interval dx = L/(2n−1 − 1). A wave packet can
be encoded in the state of the n-qubit register as

|〉 =
2n−1∑
i=0

�(xi )|i〉 (17)

= �(x0)|0 · · · 0〉 + · · · + �(x2n−1)|1 · · · 1〉, (18)

which reproduces the vectorized wave function for the fol-
lowing quantum analog of the SOM in the Hilbert space. As
in numerical discretization methods, this encoding of �(r)
provides, in principle, satisfactory accuracy when the lattice
length dx is much smaller than any characteristic length scale
of the wave packet. The preparation of arbitrary initial qubit
states |〉 based on the initialized wave packet �(r) can be
approached by the variational quantum eigensolver (VQE)

|̃〉 =
p∏

i=1

⎡
⎣n−1∏

q=0

(U q,i )UENT

⎤
⎦|+〉⊗n, (19)
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FIG. 1. Circuit realization of time-evolution operator for a quadratic Hamiltonian as defined by Eq. (22). The single phase gate and Pauli-X
gate are schematically represented by the symbols R(·), X , and the corresponding control gates are shown by vertical lines with black circles.

where |+〉 = 1√
2
(|0〉 + |1〉) is a single-qubit state, the unitary

U q,i(θ ) = Rq,i
z (θq,i

1 )Rq,i
x (θq,i

2 )Rq,i
z (θq,i

3 ) is a universal single-
qubit gate, and UENT represents CNOT gates that entangle the
neighboring qubits with periodic boundary conditions. In this
way, an approximated initial state |̃〉 is prepared by optimiz-
ing 3pn parameters to minimize the cost function. Here we
would like to clarify that VQE is indeed used to prepare the
initial states (18) and the Ansatz defined by Eq. (19) incor-
porates the effective Hamiltonian to the parametrized unitary
operator U q,i(θ ). Of course, there exist other efficient methods
to load the states with Gaussian and other distributions on a
quantum register; see examples in Refs. [63,64].

Next, consider the digital quantum simulation aimed at
reproducing an equivalent SOM. The dynamics of the wave
packet is described by

(t + dt ) ≈ e−iH (t )dt(t ), (20)

where e−iH dt is the time-evolution operator for the time
step dt .

We use the quantum Fourier transform (QFT) as the quan-
tum analog of the inverse discrete Fourier transform, which
is key to the efficient implementation of the SOM. Hence the
wave function |〉 is evolved as

|̃(t + dt )〉 = V (t )dt/2QFTT (t )dt QFT†V (t )dt/2|̃(t )〉,
(21)

where V (t ) and T (t ) are the potential operator and the kinetic-
energy operator in the real space and momentum space,
respectively. In other words, they are both quadratic and their
diagonal elements can be written as

A j j = exp
{−i dt[h( jdx + x0)2 + σ ]

}
, (22)

where other off-diagonal elements are zero. The preliminary
result in Ref. [38] demonstrates that the quadratic Hamil-
tonian can be exactly decomposed into a quantum circuit.
In Fig. 1, we plot the quantum circuit for implementing a
quadratic Hamiltonian in the computational basis for DQS.
The decomposition is verified by the DQS of nonadiabatic
processes in molecular systems [35].

III. FIDELITY-BASED GRADIENT DESCENT

A. Initial state preparation

The first step is to encode the information of the wave
packet into the state of the qubit register. The accuracy of

the preparation of a target state of qubits by VQE depends on
the qubit number n and the parameter depth p; see Eq. (19).
As we know, the depth p and qubit number n exponentially
increase the complexity of VQE, which can lead to challenges
such as the problem of gradient vanishing [65]. In Fig. 2,
we compare the fidelity of state preparation in the coefficient
grid n, p in (a). In (b), without loss of accuracy, we choose
n = 6, p = 4, and present the resulting n-qubits states for
the corresponding density (2) with ω0 = 1. In what follows,
the numerical results are produced by the quantum simula-
tor STATEVECTOR SIMULATOR on the QISKIT platform, which
admits no errors, decoherence, and imperfections at all. We

2 3 4 5

p

3

4

5

6

n

(a)

log10(1 − F )

−5

−4

−3

−2

−1

−4 −2 0 2 4

x

0.00

0.05

0.10

|Ψ
(x

)|2
,|Φ

|2 (b)

FIG. 2. Fidelity of states preparation by VQE as a function of
qubit number n and parameter depth p in (a) and corresponding
probability distribution of qubits ||2 compared with density of wave
function |�(x)|2 in (b), with fidelity F = 0.996 for n = 6 and p = 4.
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will consider the noise of an actual quantum device in the
discussion.

B. Maximum-fidelity control

A parametric optimization problem is usually mapped into
the minimization of a given cost function to find its local min-
imum with the gradient descent (GD) algorithm. The optimal
solution M = {m0, m1, . . . , mi} is obtained by minimizing the
cost value c = J (M ) and can be expressed as

Mopt = min
c

J (M ), (23)

where J (M ) is the cost function. In our case, the control
function is the trap frequency f (t ) = ω2(t ) that is piecewise
on the discrete time t ∈ [0, t f ] involving Nt intervals. Ac-
cordingly, the control tuple f (t ) = { f (0), f (dt ), . . . , f (t f )}
is constrained by δ1 � | f (t )| � δ2, | f (t + dt ) − f (t )| � 
 f
and the boundary conditions f (0) = 1 and f (t f ) = 0.01 are
considered for trap expansion with ω f /ω0 = 1/10. Then, we
optimize ω-dependent parameters M = {θ3(ω)}t in the cir-
cuit shown in Fig. 1 by minimizing the loss value which
can be generated by the measurements on the qubits at t =
t f . Here, we exploit three different cost functions: the infi-
delity (IF) (1 − F ), the fidelity susceptibility (FS) χ f , and
the Bures angle (BA) L(ψt , ψtar ). For simplicity, we initial-
ize the controller f (t ) with a linear dependence of the form
f (t ) = (ω2

f − ω2
0 )(t/t f ) + ω2

0. This yields a parametric con-
strained minimization problem in this case. We exemplify
the optimization process of finding maximum-fidelity policy
for different cost functions in Fig. 3 by using the optimizer
SLSQP [66] based on the SCIPY [67] platform. To this end,
we assign the total time t f = topt

f calculated in (9) and use
the GD method to minimize the cost function for obtain-
ing the maximum-fidelity control function. In Fig. 3, we
present infidelities versus the GD iteration when using each
cost function. The control with maximum fidelity is obtained
with their convergence. One can see that the learning rate
of FS outperforms the others with the same optimizer in (a)
and we compare the FS-based GD with various coefficients:
δ f = [10−4, 10−3, 10−2, 10−1, 100] in (b). Because the great-
est convergent rate of the optimization process arises when
δ f � 10−3, we employ the FS χ f as the cost function with the
coefficient δ f = 10−3 to design the maximum fidelity policy
in the GD algorithm. It is worth emphasizing that reducing the
training iteration is equivalent to decreasing the accumulation
of operation errors. As a result, we can improve the accuracy
of DQS with the same quantum volume.

By considering the trade-off between the complexity and
accuracy of digitized circuits, we analyze the fidelity achieved
by the maximum-fidelity policy for different numbers of
Trotter steps Nt and the constraints on control step 
 f .
Trotter steps Nt and the constraints on control step 
 f de-
termine the depth of the circuit and the continuity of the
control function, respectively. In Fig. 4, we present the fi-
delity density as a function of Nt and 
 f in (a) and show
the maximum-fidelity control protocols for various Nt and

 f , where the counter curves corresponding to the fidelity
F = 0.999, 0.99 are marked. In addition, in Fig. 4(b), the
results from circuit learning are compared with the optimal-
time protocol t f = topt

f produced by bang-bang control (8).

0 0.5k 5k

iteration

10−4

10−3

10−2

10−1

100

1
−

F

(a)

BA

FS

IF

0 0.5k 5k

iteration

10−4

10−3

10−2

10−1

100

1
−

F

(b)

δf = 100

δf = 10−1

δf = 10−2

δf = 10−3

δf = 10−4

FIG. 3. (a) Infidelity 1 − F as a function of the training iteration
using three different loss functions: fidelity susceptibility (FS) with
δ f = 0.01, infidelity (IF), and Bures angle (BA). (b) The infidelity
as a function of the iteration step for different δ f is compared when
the fidelity susceptibility (FS) is taken as a loss function. Parameters:
Nt = 50, ω f = 0.1, n = 6, p = 4, δ1 = 10−6, δ2 = 1, and t f = 3.152.

The higher accuracy of DQS requires the larger Trotter step
Nt and higher computation complexity. On the other hand,
the control function becomes smoother when 
 f → 0, with
increasing the Trotter step and circuit complexity. In this
context, we choose Nt = 50 and 
 f = 1 in the following
calculations.

C. Control phase transition at quantum speed limit

In the previous section, we described an efficient GD-based
hybrid algorithm to find the maximum-fidelity control in a
quantum device by considering the loss function J , Trotter
step Nt , and step length 
 f . Next, we shall prove the control
phase transition (CPT) appears at the critical point due to the
QSL. The use of optimal control to reach the QSL in quantum
state manipulation has been discussed in [50]. However, the
authors in [50] intended to find maximum fidelity control by
reducing infidelity, which is a highly time-consuming task.
This can be improved by introducing the fidelity suscepti-
bility χ , as we have shown in the previous section. In the
space of protocols, the control phase transition is associated
with abrupt changes in an optimal control function, satisfying
given constraints as the duration of the process is varied [39].
In detail, our control protocol landscape typically has two
phases: the overconstrained phase and the correlated phase.
The former phase represents the convex landscape of control
protocols, while the latter phase corresponds to the case where
the landscape has various local minimums. For a constrained
optimization problem, we perform the algorithm by initializ-
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Δf
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30
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70
N

t
(a)

log10(1 − F )

-3

-2

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

0.0 0.2 0.4 0.6 0.8 1.0

t/tf

0.0

0.2

0.4

0.6

0.8

1.0

1.2

f
(t

)

)b( )b( )b( )b(
Nt = 20, Δf = 0.1

Nt = 50, Δf = 0.1

Nt = 20, Δf = 1

Nt = 50, Δf = 1

FIG. 4. (a) Fidelity as a function of 
 f and Nt with total time
t f = 3.152. The two dashed contour curves refer to F = 0.99, 0.999
and are labeled by −2, −3, respectively. In (b), we present the trained
fidelity-optimal controls compared to the bang-bang control (solid
gray line). The fidelity takes values F = 0.84, 0.98, 0.998, 0.9998
in the four cases illustrated in the legend from top to bottom. Other
parameters are chosen as in Fig. 3.

ing M randomly generated protocols f α (t ) for a given time t f .
Then, to better understand the protocol correlation, we define
the order parameter as [39,68,69],

q(t f ) = 1

16Nt

Nt∑
j=1

[ f ( j dt ) − f ( j dt )]2, (24)

where f (t ) = M−1 ∑M
α=1 f α (t ). The overconstrained phase,

where q(t f ) = 0, contains a unique protocol. In this sense,
the CPT point in the total time space corresponds to the time
t f that satisfies q(t f < t ′

f ) = 0 and q(t f > t ′
f ) �= 0. In partic-

ular, the maximum-fidelity control function is unique when
t � topt. It is expected that the QSL can be reached at the point
of CPT.

In practice, we consider the expansion process: from ini-
tial state ψ0 (ω0 = 1) to target states ψtar (ω f = 0.1) with
constraint δ1 = 10−6, δ2 = 1 by assuming ω2(t ) > 0, and
subsequently generate the maximum-fidelity control sequence
f (t ) for t f ∈ [2, 5], where other parameters are the same as
those in Fig. 3. Consequently, we present the control phase
diagram in Fig. 5(a) and illustrate several control functions
of selected t f compared with the optimal bang-bang control
(8). To be specific, we also calculate the protocol correlation
q(t f ) in Fig. 5(b), for t f ∈ [2, 5], using the maximum-fidelity
algorithm with 30 random initializations of f (t ). The con-
trol function is suddenly converted to a non-bang-bang-typed

FIG. 5. (a) Control phase diagram, with the fidelity-optimal con-
trol sequence f (t ) = ω2(t ) as a function of t/t f for different t f ∈
[2, 5]. (b) The order parameter versus the total time t f is presented.
Red dashed lines in (a) and (b) indicate the optimal time topt

f = 3.152.
Other parameters are chosen as in Fig. 3.

phase, also known as the correlated phase, at the transition
point t f ≈ topt

f , i.e., the control phase transition point. In ad-
dition, we note that there exists only one solution of the
maximum-fidelity control function when t f � topt

f for fulfill-
ing the requirement of time-energy bound (11). Here, we
confirm the minimum time tmin

f when the maximum fidelity is
larger than 0.999 and compare the result for different Nt in (a)
of Fig. 6. It is evident in Fig. 6(b) that the accuracy of optimal
time produced by circuit learning essentially depends on the
Nt and we set Nt = 50 for the criteria of log10(1 − F ) ∼ −4
in the following calculations.

We emphasize that the time-optimal driving obtained here
differs from the QSL but is closely related to it. Specifi-
cally, the time-optimal driving is bounded in terms of the
trap frequency by contrast to the QSL, which is bounded in
terms of the time-averaged standard deviation of the energy;
see Eq. (13). The former is a weaker and more conservative
bound, as the energy fluctuations can be upper bounded in
terms of the frequency. In Fig. 6(d), we display the energy dis-
persion of maximum-fidelity control and compare it with the
corresponding time-optimal driving. The energy dispersion
becomes consistently unique when t f � topt

f before the point
of CPT. Moreover, the energy dispersion for the maximum
fidelity control is slightly smaller than in the time-optimal
bang-bang control with bounded trap frequency. In this sense,
one can approach the QSL in time-optimal driving when an
additional energy cost is allowed by relaxing the trap fre-
quency bound.
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FIG. 6. (a) Logarithm of the infidelity log10(1 − F ) as a function of t f , Nt . The solid line is included as a reference in (a) and corresponds to
the optimal bang-bang control with topt

f = 3.152. (b) The trained fidelity-optimal controls for different values of the total time t f are compared

with the optimal bang-bang control (thick gray line). (c) The corresponding time-averaged energy dispersion 
E for maximum-fidelity control.
Parameters agree with those in Fig. 3.

IV. DISCUSSION

A significant source of discussion is the robustness of
VQAs in an environment with stochastic perturbations. In a
real quantum computer with NISQ hardware, imperfections
are unavoidably induced as a result of a finite number of
measurements and a noisy environment. As emphasized, the
previous results are produced by the quantum simulator STAT-
EVECTOR SIMULATOR in the QISKIT platform, with no errors,
decoherence, and imperfections at all. In this section, we
implement our method in a noise-associated quantum de-
vice simulated by QASM SIMULATOR with Nm measurement
shots. The performance of the GD algorithm depends on the
tolerance of the optimizer to errors. Thus we shall balance
the GD induced by noise and the parameter variance in a
training landscape. Let us recall the definition of noise in the
framework of quantum information processing. In general, the
n-qubits register is coupled with an environment ε, leading to
the nonunitary evolution of the system. Initially, we assume
the density operators of the register ρ(t0) = ρ0 and the envi-
ronment to be decoupled so that the composite state is given
by the tensor product ρ ⊗ ε. For any global unitary operator
U describing the dynamics of the composite state, the reduced
evolution of the register reads

ρ(t ) = Tr{U [ρ(t0) ⊗ ε]U †} ≡ ξ (ρ0). (25)

This superoperator ξ (·) can be implemented for simulating a
noise model in a quantum circuit. The noisy quantum channel
describes the nonunitary evolution of the time-varying density
state in the Kraus representation

ρ(t ) =
∑

k

Ekρ(t0)E†
k , (26)

where Ek satisfy the trace-preserving condition
∑

k EkE†
k = 1.

Since we perform the measurement on the qubits register only
at t = t f , imperfections induced by any kind of noise result
in fluctuations of the measurement accuracy. In this sense, we
shall primarily consider the bit-flip error of measurements in
a real quantum computer. Assume the system’s noise flips |0〉
and |1〉 with probability β. The superoperator for this bit flip

noise can be expressed as

ξBF (ρ) = (1 − β )ρ + βXρX, (27)

where the corresponding Kraus operators are
{√1 − βI,

√
βX }, in terms of the identity I and the Pauli

operator X .
Next, we discuss whether the barren plateau [65] phe-

nomenon occurs here. The barren plateau refers to the fact
that the gradient of an observable vanishes exponentially as a
function of qubits number in a training landscape of VQAs.
It has been widely studied in various Ansätze of deep circuits
[70]. In general, the gradient of an objective function is calcu-
lated by means of the parameter-shift rule [71,72], expressed
as ∂θk J = 1

2 [J (θk + π
2 ) − J (θk − π

2 )] for an arbitrary trainable
parameter θk in the circuit. In this sense, we define the average
of the absolute gradient over Nr random initializations

|∂θk J| =
Nr∑

i=1

1

2Nr

∣∣∣Ji

(
θk + π

2

)
− Ji

(
θk − π

2

)∣∣∣. (28)

Since these three objective functions we proposed in the
previous section all involve the fidelity, we provide here nu-
merical analysis of the average gradients of the fidelity F .
Essentially, the probability distribution of qubit states obeys
a statistical precision of order 1/

√
Nm and the fidelity de-

fined in Eq. (14) meets the same criteria. The derivative of
an observable with respect to an arbitrary trainable θk in the
circuit is a linear function of the gradient with respect to the
corresponding control parameter fk = f (k) at kth Trotter step:
∂ fk J = 2c · ∂θk J , with c being a real number. Thus the gradient
of the objective function with respect to the control parameter
f (t ) shares the analytic expression in Eq. (28); see also the
detail in Appendix A. Also, we calculate the average gradient
Eq. (28) over Nr = 50 random initialization of f (t ) for various
qubit number n, while the Trotter step is taken as a polynomial
function as Nt = ploy(n). In Fig. 7(a), we demonstrate that
the barren plateau is avoided for the average gradient of a
correlating parameter θk . The main reason for the absence of
barren plateau is the reduction of the Ansatz’s expressibility,
due to the strong correlation of parameter θk depending on
the controller f (t ) in our method, a common feature with the
recent work in Ref. [73]. In this regard, we set measurement
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FIG. 7. (a) Average gradient |∂θk J| as a function of the qubit
number n and number of layers given by the polynomial function
Nt = 5 × n. (b) Infidelities as a function of the training iteration
for values of the noise strength β = 0, 0.02, 0.04, 0.06 based on the
SPSA optimizer. Other parameters are equal to those in Fig. 3.

shots Nm = 8192 for statistical accuracy and energy saving by
considering the gradient magnitudes, as shown in Fig. 7(a).
Moreover, we apply the optimizer of simultaneous perturba-
tion stochastic approximation (SPSA), which is widely used for
solving an optimization problem with statistical noise [74,75].
In Fig. 7(b), we present the infidelity as a function of the train-
ing iteration for β = 0, 0.02, 0.04, 0.06, where the infidelity
for the noise-free case (β = 0) is convergent to ∼ 10−2, which
obeys the criteria of ∼ 1/

√
Nm. Moreover, the performance of

SPSA is compared with various optimizers in Appendix B.
Let us discuss the circuit complexity in terms of the qubits

number n and the number of Trotter steps Nt . The whole
circuit consists of Nt circuit units that simulate each uni-
tary operation Û (dt ) = e−iH dt , as depicted in Fig. 1. In the
absence of θ1 and θ2, the gate number of each circuit unit,
including the potential operator V (dt ) and the kinetic-energy
operator T (dt ) in real space and momentum space, is Nunit ∼
2n2. In addition, the operation of QFT and iQFT requires
∼ n2/2 control-phase gates. Consequently, the total number
of gates for our Ansatz is proportional to a quadratic function
of n, yielding 5Nt n2/2. To find the minimal-time control on
the QC with reasonable precision, one can increase the qubit
number n and Trotter step Nt , with exponentially enlarged
Hilbert space. But this leads to the quadratic size increase
in circuit complexity. Recently, alternative methods inspired
by the Grover-Rudolph algorithm [76] are worked out for the
quantum state preparation, which are expected to reduce its
complexity in this direction.

Then, we discuss the control problem beyond the quadratic
Hamiltonian on which we have focused. For our case study,

one can introduce perturbations of the trap, e.g., a time-
independent anharmonicity involving an operator x4, which
is no longer quadratic. Although its exact decomposition into
quantum circuits does not exist, one can still approximate
the evolution block with arbitrary precision by the Solovay-
Kitaev algorithm [77], placing it in the block of Vdt/2 before
or after the evolution of the quadratic Hamiltonian since it
commutes with the harmonic potential operator. Alternatively,
it is possible to explore the application of enhanced shortcuts
to adiabaticity (eSTA) [78–80] in digitized circuit learning,
to optimize the parameters of a quantum circuit while con-
sidering anharmonic perturbations. The eSTA method, with
its ability to improve the performance of quantum control
protocols by accounting for the full system representation,
can potentially enhance the optimization process in digitized
circuit learning. However, it is important to note that the
specific implementation details and feasibility of integrating
eSTA into digitized circuit learning would require further
research and exploration. The effectiveness of eSTA in this
domain would depend on factors such as the complexity of
the quantum circuit, the nature of the optimization problem,
and the specific characteristics of the system being controlled.

Finally, it is also worth noting that our proposed method is
not limited to the harmonic and even anharmonic oscillators.
For instance, it can be extended to interacting spin chains,
solving time-optimal problems of state transfer [81], where
the quantum advantage of gate-based quantum circuits can be
leveraged compared to conventional Krotov algorithms based
on classical computers [50,82]. Additionally, our approach
can be converted into pulse-level optimization based on actual
experimental setups, making it practical for implementation in
quantum hardware [16,83].

V. CONCLUSION

To sum up, we propose the GD-based circuit learning to
find the time-optimal control problem, the driving of a quan-
tum particle trapped in a time-varying harmonic potential,
and figure out its quantum speed limit in relation to the con-
trol phase transition. First, we have constructed the digitized
quantum circuit of a time-dependent harmonic oscillator using
a finite n-qubit register. Second, we have demonstrated that
the learning rate of circuit optimization can be accelerated by
considering various physical quantities, such as the infidelity,
Bures angle, and fidelity susceptibility, as cost functions, thus
reducing training iteration. Third, we have established the
relation between control phase transition and quantum speed
limit. Finally, we have established the error tolerance of our
method by considering the presence of measurement errors in
a quantum computer. The absence of a barren plateau is fur-
ther justified in our Ansatz, enabling the application of VQAs
for a class of tasks that is not affected by the fundamental
limitations of NISQ devices. As a heuristic example, we have
demonstrated that quantum control can be efficiently simu-
lated and optimized using a NISQ device by combining digital
quantum simulation and hybrid circuit learning. Numerical
experiments prove that barren plateaus are avoided in the
framework. Together with [34–36,83], the use of variational
quantum circuits, combining classical optimizers and machine
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learning, will emerge as a new paradigm for quantum optimal
control.
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APPENDIX A: PARAMETER-SHIFT RULE

One recipe to find the partial derivative of an objec-
tive function J (�) in parametric quantum circuits (PQCs)
is known as the parameter-shift rule [71,72]. In general, the
expectation value of an observable B̂ as a function of a single
parameter θk in a circuit is expressed as J (θk ) = 〈B̂(θk )〉.
We assume a sequence of unitary operations represented as
U (θk ) = ULUk (θk )UR, for which we have

J (θk ) = 〈0|U †
RU †

k (θk )U †
L B̂ULUk (θk )UR|0〉

= 〈z|M(B̂, θk )|z〉, (A1)

where M(B̂, θk ) = U †
k (θk )U †

L B̂ULUk (θk ) and the basis reads
|z〉 = UR|0〉. Consider a unitary operator Uk (θk ) generated by
a Pauli matrix σk as Uk (θk ) = exp(−iθkσk/2). The gradient of
the objective function is defined as

∂θk J (z; θk ) = 〈z|∂θkM(B̂, θk )|z〉
= c[〈z|M(θk + s)|z〉 − 〈z|M(θk − s)|z〉], (A2)

where coefficient c and shift s are independent of θk .
The gradient ∂θkUk (θk ) = − i

2Uk (θk )σk and, inserting it to
(A1), we have [65] ∂θk J = − i

2 〈z|U †
k (θk )[σk, B̂]Uk (θk )|z〉.

The commutation relation, [σk, B̂] = i(U †
k ( π

2 )B̂Uk ( π
2 ) −

U †
k (−π

2 )B̂Uk (−π
2 )), enables us to derive the analytical

gradient as [71,72]

∂θk J = 1

2
〈z|[Uk (θ+

k )B̂Uk (θ+
k ) − U †

k (θ−
k )B̂Uk (θ−

k )
]|z〉

= 1

2
[〈z|M(θ+

k )|z〉 − 〈z|M(θ−
k )|z〉],

FIG. 8. Schematic illustration of a quantum circuit with Trotter
step Nt . Each dashed block denoted in Fig. 1 presents the implemen-
tation of time evolution e−iH (t )dt with quadratic Hamiltonian H (t )
(22). Here, an arbitrary operator U k ( fk ) includes three fk-correlated
variables: θ1( fk ), θ2( fk ), and θ3( fk ). The single-qubit gate with a
yellow shadow is used to calculate the gradient of the objective
function.

with θ±
k = θk ± π/2. The above expression provides an an-

alytical evaluation of the gradient of an objective function
involving Pauli operators.

In Fig. 8, we schematically illustrate the deep circuit of our
method, which is composed of Nt dashed blocks (referring to
Nt Trotter steps). In each unitary operator U k ( fk ), all rotating
parameters (θ1, θ2, θ3) are fk correlated, as detailed in Fig. 1.
Let us now select an arbitrary single-qubit gate R(θk ), with a
gradient obeying the parameter shift rule in Eq. (A3). Accord-
ing to the algorithm in Fig. 1, the rotation θk is correlated with
fk as a linear form: θk = c1 · fk , where c1 is a real number.
Starting with Eq. (A2), we have ∂ fk J = c[J ( fk + s) − J ( fk −
s)] = c[J (θ ′

k + s) − J (θ ′
k − s)], where the gradient is indepen-

dent of the initial angle θ ′
k = θk/c1. Consequently, we find

∂ fk J = 2c · ∂θk J , while the shift fk is s = π/2. Furthermore,

4 5 6 7 8 9 10 11 12 13

n

10−3

10−2

10−1

100

101

102

|c|

(a)

0 0.6k 1.2k

iteration

10−2

10−1

100

1
−

F

(b)

COBY LA

SLSQP

SPSA

BFGS

FIG. 9. (a) Coefficient |c| as a function of qubit number n.
(b) Various training processes for using different optimizers are il-
lustrated. All calculations are proceeded with the parameters β = 0,
Nm = 8192, and others in Fig. 3.

023173-9



TANGYOU HUANG et al. PHYSICAL REVIEW RESEARCH 5, 023173 (2023)

we introduce the notation

|c| =
Nr∑

i=1

1

2Nr

∣∣∣∣∂ fk J

∂θk J

∣∣∣∣, (A3)

where the absolute average value |c| over Nr random initial-
ization. In Fig. 9(a), we calculate the average value |c| with
Nr = 50, which is irrelevant to n.

APPENDIX B: COMPARISONS OF OPTIMIZERS

In Appendix B, we compare the performance of several
classical optimizers for the same optimization task with statis-
tical errors from a finite number of measurements. We choose
widely used optimizers, namely, SLSQP, COBYLA, SPSA, and
BFQS based on the library of QISKIT. In Fig. 9(b), we present
the infidelity as a function of the training iteration by using
various optimizers. The SPSA stands out for its performance in
an optimization task in the presence of bit-flip noise.
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