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Abstract—Cyber security for 5G and Beyond (5GB) network slicing is

drawing much attention due to the increase of complex and dangerous

cyber-attacks that could target the critical components of network slic-

ing, such as radio access and core network. This paper proposes a new

cyber defense approach based on two-layer Federated Learning (FL) to

protect 5GB network slicing from the most dangerous network attacks

and a mean-field game to safeguard the FL-enabled defense system

from poisoning attacks. Our proposed distributed defense systems co-

operate, intending to detect internal and external attacks targeting the

critical components of 5GB network slicing and detecting infected parts

in the 5GB defense system. Our experimental results show that our co-

operative defense systems exhibit high accuracy detection rates against

network attacks, namely (distributed) denial of service and botnets while

being robust against poisoning attacks and requiring a few overheads

generated by defense systems. To the best of our knowledge, we are the

first to propose lightweight and accurate cooperative defense systems

based on two-layer FL and non-cooperative games to enhance security

against attackers in 5GB network slicing.

Index Terms—5G and Beyond; Network slicing; Security; Privacy; Fed-

erated learning; Mean field game;

1 INTRODUCTION

Network slicing is one of the key enablers of the fifth gen-
eration and Beyond (5GB) networks [1]. This new paradigm
allows the creation of logical networks on shared physi-
cal infrastructure to decrease the end-to-end latency while
considering the network constraints such as bandwidth
and packet loss. This is achieved by integrating several
technologies, mainly Software-Defined Networking (SDN),
Network Function Virtualization (NFV), and Multi-Access
Edge Computing (MEC). More specifically, SDN and NFV
work together to enable several network slice services,
while MECs place these services closer to the end users
for decreasing latency [2]. The 3rd Generation Partner-
ship Project (3GPP) standards define several 5GB services
provided by network slicing, including Enhanced Mobile
Broadband (eMBB), Ultra-Reliable Low-Latency Communi-
cation (URLLC), and Massive Machine-Type Communica-

tion (mMTC) [3]. However, various security threats come
with advantages offered by network slicing [4]. Breaking
network services becomes easier with network slicing since
attackers only target slice software components to get ser-
vices broken. Thus, securing the network slicing is manda-
tory, and failure to achieve this will disturb the acceptance
of network slicing in 5GB networks.

Over the past few years, various attack detection tech-
niques based on cooperative Machine Learning (ML) ap-
proaches have been proposed to secure the 4/5G net-
works [5–9]. These approaches leverage popular coopera-
tive ML, such as deep and reinforcement learning algo-
rithms, to detect known and zero-day attacks. Although
these approaches exhibit high attack detection accuracy,
they suffer from many overhead and privacy issues. Indeed,
a huge amount of relevant training data is exchanged be-
tween the learning nodes, causing high computation and
communication overheads during the training process. In
addition, sharing datasets between learning nodes causes
critical privacy issues in case of personal data leakage. To
cope with these issues, a cooperative Federated Learning
(FL) approach has been proposed. In the FL approach,
distributed and centralized nodes running ML algorithms
exchange between each other only the parameters of ML
models, which drastically reduces communication overhead
in training global models, as well as lowering privacy
risks [10]. However, the FL-based defense systems should
be carefully designed to handle the design requirement of
5GB network slicing, such as isolation, elasticity, and end-
to-end optimization [11]. On the other hand, these systems
could be hacked by attackers (such as the poisoning attack)
to alter the training models used by the defense systems and
hence lead these systems to provide false judgments against
the monitored target, i.e., the malicious target is a legitimate
node and vice versa [12].

To this end, this paper proposes a cooperative defense
approach based on an FL approach carefully tailored to 5GB
network slicing for securing the main slices’ elements, such



as gNodeB, edge servers, and the core network functions.
Specifically, distributed and hierarchical defense systems
cooperate during the training and detection processes to
detect the (Distributed) Denial of Service (DDoS) and Botnet
attacks targeting the 5GB network slicing. Moreover, we
propose a new security game model based on a mean-field
approach to detect accurately the malicious defense systems
infected by poisoning attacks. Our experimentation results
show that cooperative defense systems based on the FL
paradigm and mean-field game achieve a high level of effi-
ciency and robustness against DDoS, Botnet, and poisoning
attacks.

The main contributions of this paper can then be sum-
marized as follows:

• We propose a two-layer FL-based architecture for de-
tecting the most advanced network attacks targeting
5GB network slicing attacks while keeping security
overhead low. The first FL layer consists of defense
systems activated at gNodeB nodes as FL clients
and defense systems activated at edge servers as FL
servers, while the second layer consists of defense
systems activated at edge servers as FL clients and
defense systems activated at Access and Mobility
Management Function (AMF) as an FL server to
aggregate the global training model.

• We formulate a new security model based on mean
field games to detect malicious defense systems
launching poisoning attacks.

• We evaluate the detection of our defense systems
in training to detect DDoS and Botnet 5GB slicing
attacks and in deployment to detect the same attack,
under-poisoning attacks, and time overhead.

The rest of this research work is organized as follows.
Section 2 summarizes the current research works and high-
light their advantages and weakness. Section 3 describes
our proposed trusted 5GB network slicing defense systems
based on two-layer FL architecture and mean-field game
mechanisms. The performance evaluation results are pre-
sented in Section 4. A conclusion is given in Section 5.

2 RELATED WORK

2.1 Cyber security systems based on cooperative ma-

chine learning algorithms

In [13], Liu et al. developed a secure FL algorithm based on
a blockchain system to secure the communication between
the distributed and centralized nodes to prevent external
threats from executing an attack against the FL. In addition,
they proposed a privacy detection technique to prevent the
malicious distributed nodes from overhearing the sensitive
communication exchanged between the legitimate nodes. In
their simulation results, the proposed secure system can de-
tect attacks targeting the messages exchanged between the
cooperative nodes, improving the FL’s security. In [14], Chai
et al. aimed to combine the FL algorithm and blockchain
system to secure the communication between the vehicles
in the internet of vehicles network. The authors developed
a new FL algorithm based on a non-cooperative game.
This solution models the interaction between the security
systems and attackers to get reliable and secure knowledge

sharing that is used during the training process by the cen-
tralized and distributed nodes. Simulation results show that
almost all attacks targeting knowledge sharing are detected
by combining the FL algorithm and blockchain-enabled
system. However, the drawback of the works [13, 14] is
that the proposed secure systems cannot detect the internal
threats that launch attacks against the centralized node.
Therefore, when the attackers infect the centralized node,
the training data shared between the cooperative nodes will
be altered, and hence the accuracy of attack detection will
be decreased promptly. In [15], Vinayakumar et al. proposed
an intrusion detection framework based on a hierarchical
deep neural network algorithm. The proposed detection
framework is equipped with network and host Intrusion
Detection Systems (IDSs) (N-IDS, H-IDS) to monitor and
detect the attacks targeting the network and distributed
devices. N-IDS and H-IDS hierarchically cooperate during
training and detection, aiming to exchange relevant train-
ing data and enhance the attack detection rate over time.
The performance of a detection framework is evaluated
under various attack data sets. According to their simu-
lation results, the framework exhibits a high classification
accuracy and true positive rate against network and host
attacks while reacting promptly against the detected attacks.
Nguten et al. [16] proposed a distributed and coopera-
tive anomaly detection framework to detect cyber-attacks
targeting Internet of Things (IoT) devices. The detection
framework relies on an unsupervised learning algorithm
to build normal behavior during the training process. In
the detection process, the proposed unsupervised learning
algorithm aims to detect any deviation from that normal
behavior to determine a new category of attacks. In the
simulation results, almost of attacks targeting IoT devices
are detected. The major weakness of the works [15, 16]
is that the distributed detection systems deployed within
the network are assumed to be trusted nodes. However, in
a real case, these detection systems could be hacked and
infected by the attackers, and hence they could provide false
detection.

2.2 Attack detection framework based on AI systems to

protect the 5G core and access networks

In [17], Wang et al. focused on detecting spoofing attacks
targeting the radio access network of 5G architecture. The
authors proposed a rule-based detection technique that re-
lies on Euclidean distance to identify the spoofing devices
targeting wireless communication. In their simulation, the
authors proved that the accuracy detection against the pro-
posed technique’s spoofing attacks outperforms the current
detection techniques. However, the rule-based detection
technique cannot detect unknown spoofing attacks as the
related attack signatures are not defined in the detection
technique. In [18], Abdulqadder et al. proposed a new attack
detection and prediction framework against the sophisti-
cated attacks targeting the Software-Defined Networking
(SDN), Network Function Virtualization (NFV), and edge
computing of 5G architecture. The proposed detection and
prediction technique relies on game theory, reinforcement
learning algorithm, and Shannon entropy method to iden-
tify spoofing, overloading, Denial of Service (DoS), and hi-
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jacking attacks. The network simulator NS3 is used to evalu-
ate the performance of their framework. According to their
simulation results, almost of all attacks are detected with
high accuracy, i.e., high detection and low false-positive
rates. However, the detection and prediction framework
could require a high computation overhead to achieve this
high level of security, which may not be suitable for the real-
time use cases such as 5G network slicing for vehicular ad-
hoc networks as the attacks should be detected promptly,
i.e., with a low computation overhead. In [8], Sedjelmaci
developed a new reinforcement learning algorithm adapted
to the 5G core network to detect the DoS and botnet attacks.
The author proposed a cooperative defense system based
on the reinforcement learning algorithm to prevent the
occurrence of collaborative and distributed DoS and botnet
attacks. According to its simulation results, the accuracy
protection rate is high; specifically when the number of
DoS and botnets increases. In [19], Hachimi et al. focused
on securing the 5G radio access network against jamming
attacks. They developed an intrusion detection framework
based on supervised Deep Learning (DL) and support vec-
tor machine algorithms to accurately detect attacks that jam
the 5G wireless communication while considering the false
positive rate. According to their experimental results, almost
all jamming attacks are detected with low false positive and
false negative rates. The weakness of the works [8, 19] is
the authors did not consider the fact that the attackers could
infect the distributed attack detection/prediction systems.
Hence, a high false-positive could be generated.

In Table 1, we assess the research works cited above
based on the following criteria: attack detection rate, false-
positive rate, computation overhead, and privacy preser-
vation. The rating medium, low and high are defined as
follows: Attacks detection rates between [45%, 70% [, [70% ,
80%[ and [80%, 100%[ are categorized respectively as Low,
Medium, and High. False positive rates between [3%, 8%[ ,
[8% , 18%[ and [18%, 30%[ are categorized respectively as
Low, Medium and High. In this research work, we aim to
circumvent the main issues cited above and propose a novel
defense system relying on a trust-based two-layer federated
learning algorithm to secure the 5G network slicing while
considering the issues of false positive rates and computa-
tion overhead.

3 COOPERATIVE DEFENSE SYSTEMS BASED ON A

TRUSTED FEDERATED LEARNING ALGORITHM

Cooperative machine learning algorithms are classified into
two techniques: centralized and distributed learning algo-
rithms. In a centralized learning algorithm, the distributed
nodes send their training data to the centralized node.
This latter aggregates the training data of distributed nodes
with its local training data. Then a global training model
will be shared with cooperative nodes, i.e., centralized and
distributed nodes. However, the major weakness of the
centralized learning approach is the lack of data privacy and
high communication overhead that the cooperative nodes
could generate during the training process [20]. In a dis-
tributed learning algorithm, the centralized and distributed
nodes cooperatively learn a shared training global model
while keeping the training data at each node locally. The FL

belongs to distributed learning as the most suitable learning
algorithm that ensures the privacy of training data and
guarantees a low communication overhead at each coopera-
tive node [21]. The first subsection presents our hierarchical
defense systems for 5GB network slicing based on a two-
layer FL architecture against DDoS and Botnet attacks. In the
second subsection, we focus on securing the defense system
against poisoning attacks that aim to target the training data
of the cooperative defense systems to lead them to provide
false decisions.

3.1 Hierarchical defense systems based on a federated

learning algorithm in 5G network slicing

As illustrated in Figure 1, we have three kinds of attack
defense systems: First-Attacks Defense System (F-ADS),
Second-Attacks Defense System (S-ADS), and Third-Attacks
Defense System (T-ADS) that are deployed at gNodeB,
edge server, and Access and Mobility Management Func-
tion (AMF) respectively. These defense systems cooperate
to protect the 5G network slicing from external attacks
(i.e., targeting wireless communication) and internal attacks
(i.e., targeting the edge and core network functions). F-
ADS monitors the link between the user equipment and
gNodeB to detect malicious user equipment that targets
wireless communication and gNodeB. S-ADS monitors the
communication link between gNodeB and the edge server
to detect the malicious gNodeB that hacks the wireless
communication and edge server. T-ADS protects the AMF
and legitimate edge servers from malicious edge servers.
Specifically, T-ADS is activated at AMF since it is the first
core network function that communicates with gNodeB and
has a link with other 5G core network functions such as
Session Management Function (SMF), Network Slice Selec-
tion Function (NSSF), Policy Control Function (PCF), and
Unified Data Management (UDM). The security of 5G core
network function is mandatory due to the sensitive data that
they manage. Thereby, the cooperation detection process
between F-ADS, S-ADS, and T-ADS prevents the execution
of attacks targeting the core network. Hence, AMF, SMF,
UDM, and PCF security are hardened.

AMF

Slice 1:
Mobile Broadband 

Slice 2:
Critical network

Slice 3:
Internet of things

Edge
server

GnodeB

S-ADS

T-ADS

5G core network functions

5G core network functions

5G core network functions

S-ADS

S-ADS

F-ADS

F-ADS

F-ADS

F-ADS

F-ADS

F-ADS

F-ADS

F-ADS

F-ADS

Fig. 1: Security architecture of 5GB network slicing
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TABLE 1: Comparison among state-of-art attack detection works

Research work Attack detection rate False positive rate Computation overhead Privacy preservation
Liu et al. [13] Medium Low Medium Yes

Chai et al. [14] Medium Low Medium Yes
Vinayakumar et al. [15] High Medium Medium No

Nguten et al. [16] High Medium Medium No
Wang et al. [17] Low Low Low No

Abdulqadder et al. [18] High Low High No
Sedjelmaci [8] High Medium Medium No

Hachimi et al. [19] High Medium Medium No
Our work High Low Low Yes

3.1.1 Two-layer Federated Learning Security Model

As illustrated in Figure 2, F-ADSs, S-ADSs, and T-ADS co-
operatively execute the FL algorithm to detect the attackers
targeting the main segments of network slices, such as radio
access, edge computing, and core network functions. The
architecture we propose consists of two layers. The first
FL layer consists of F-ADSs as FL clients and S-ADS as an
FL server, while the second layer consists of S-ADSs as FL
clients and T-ADS as an FL server to aggregate the global
model. S-ADS and T-ADS provide two different aggregation
results, as illustrated in Figure 2. Specifically, The FL models
trained locally at F-ADS and S-ADS are called the first train-
ing and second training models. Moreover, the FL model
aggregated at the S-ADS using the first training models of
F-ADSs is called the Local training model. Similarly, the FL
model generated at the T-ADS using the second training
model of S-ADSs is called the Global training model. In
our FL security model, each F-ADS and S-ADS have respec-
tively the monitored data’s matrices M i

l = [mi
1, ...,m

i
li
] and

M i′

l′ = [mi′

1 , ...,m
i′

li′
], which are considered as the inputs

matrix of FL algorithm, during the training process. Here,
i and i′ vary respectively from 1, .., S and 1, .., S′, where S
and S′ are the maximum numbers of F-ADSs and S-ADSs
deployed within the 5G network slicing. li is the number of
simple data monitored by F-ADS and li′ is the number of

simple data monitored by S-ADS. M ′i
l = [m′i

1, ...,m
′i
li
] and

M ′i
′

l′ = [m′i
′

1 , ...,m
′i

′

li′
] are respectively the outputs data’s

matrices of F-ADS’ FL and S-ADS’ FL algorithms, δi is the
parameter weight vector of the first training model and δ′i′

is the parameter weight vector of the second training model.
The objective function of the FL algorithm in the training
process at F-ADS, S-ADS, and T-ADS levels are defined in
equations 1 and 2 as in [21, 22]:

argmin
δ

1

L

S
∑

i=1

li
∑

l=1

v(δi,m
i
l,m

′i
l) (1)

δ1 = δ2 = ... = δS = ω

argmin
δ′

1

L′

S′

∑

i′=1

li′
∑

l′=1

v(δ′i′ ,m
i′

l ,m
′i

′

l ) (2)

δ′1 = δ′2 = ... = δ′S′ = ω′

Here L =
∑S

i=1 li and L′ =
∑S′

i′=1 li′ are the total
size of training data used by the F-ADSs and S-ADSs,

respectively. v(δi,m
i
l,m

′i
l) and v(δ′i′ ,m

i′

l ,m
′i

′

l ) are the error
functions and defined as the accurate classification of the

FL; in [21–23], the authors defined a set of error functions
of the FL algorithms. ω is the parameter weight vector of
the Local training model generated by the S-ADS and ω′ is
the parameter weight vector of the Global training model
computed by the T-ADS as shown in Figure 2. To solve
the equation (1) and (2), at each iteration t, each F-ADS
uploads from the S-ADS the parameter weight vector ωt

and runs the gradient algorithm such as Stochastic Gradient
Descent (SGD) [23] to generate the weight vector ω1t+1 and
computes the updated parameter weight, which is defined
as δt+1

i = ω1t+1−ωt. δt+1
i is sent back to S-ADS to compute

the updated parameter ωt+1 by averaging the parameters
weights of F-ADSs, which is computed as shown in equa-
tion 3 [23]. Similarly, Each S-ADS uploads from the T-ADS
the parameter weight vector ω′t and executes the algorithm

SGD to determine the vector ω2t+1. Afterward, δ′
t+1
i′ which

is equal to ω2t+1 − ω′t is sent to T-ADS to determine the
updated parameter weight ω′t+1 as shown in equation 4.

ωt+1 =
S
∑

i=1

liδ
t+1
i

L
(3)

ω′t+1 =
S′

∑

i′=1

li′δ
′t+1
i′

L′
(4)

3.1.2 Hierarchical and distrusted attacks detection

In this research, we focus on protecting 5GB network slicing
from the most dangerous and complex attacks that could
target the 5G, namely the DDoS and Botnet attacks. These
attacks could be launched at radio access and edge server
levels to create a group of devices targeting the main compo-
nents of 5G architecture, such as gNodeB, edge servers, and
5G core network functions. The impact of these attacks can
be catastrophic. Indeed, DDoS and botnet attacks can drop
signaling messages, inject wrong data into messages, and
send many packets to flood the edge servers and AMF for
breaking critical 5GB network slicing services. For example,
malicious gNodeB can generate a high signal strength to
deceive the legitimate user equipment close to the destina-
tion that user equipment is looking for and frequently sends
the unwanted packets to gNodeB and edge servers nodes to
increase the computation overhead at these nodes.

F-ADS agents execute a multi-class DL algorithm for
detecting malicious user equipment and infected gNodeB
that run cyber-attacks. Here, we should mention security
experts periodically intervene to label local data sets of
F-ADS. When the F-ADS detects a suspected attack, an
Anomaly message is forwarded to S-ADS, which includes
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Fig. 2: Hierarchical defense systems based on FL algorithm: federated learning process

the identities of gNodeB and the suspected node targeted
by an attacker, the detection time, and the features related to
the suspected attack. The F-ADS, S-ADS, and T-ADS agents
also use a multi-class DL algorithm for attack detection. This
latter is based on a Deep Neural Network (DNN), where
the network topology and optimal network parameters are
defined in the performance evaluation section. The choice
of this DNN algorithm lies in the fact that it exhibits a
high accuracy classification, specifically when the amount
of training data is important. This is the case with AMF
and edge servers, as these network elements handle a huge
amount of data. It is noted that F-ADS, S-ADS, and T-ADS
classify the new incoming data into normal or attack (s)
according to the Global training model determined during
the training process of the FL algorithm, described in the
previous subsection.

As indicated in the previous subsection, S-ADS monitors
the behaviors of gNodeB nodes (located within its area)
and edge servers (where the S-ADS is activated). In case an
attack is detected at the edge server or/and gNodeB nodes,
S-ADS executes a reaction action by informing the cyber
defense center managed by the security experts to take a
mitigation decision. The security experts analyze the attack
information sent by S-ADS and make a final decision. In
case when security experts confirm the attack, the malicious
gNodeB or/and the infected edge server are removed from
the network. The DL algorithm executed by S-ADS could
categorize the target node as anomalous, i.e., it could be
a malicious or legitimate node. Hence, S-ADS sends T-ADS
an Attack message for further detection. The Attack message
includes the identities of suspected gNodeB and edge server
nodes, attack features, and detection time.

S-ADS analyzes the Anomaly message to verify whether

the attack detected by F-ADS is valid or misclassified. S-
ADS assigns a reputation value to each F-ADS, which is

calculated asRF−ADS =
R

F−ADS
+

−R
F−ADS
−

NF−ADS , whereRF−ADS
+

and RF−ADS
−

are the number of time that S-ADS agrees and
does not agree on the attacks detection provided by F-ADS,
respectively. NF−ADS is the number of F-DASs interacting
with S-ADS. The reputation value varies over time. How-
ever, the F-ADS is reported as malicious, and its detection
judgment will not be considered when its reputation value is
below a certain threshold during a specific time, defined by
the security expert. As indicated in the previous subsection,
the primary purpose of T-ADS is to protect the AMF and
edge server from internal attacks. This is achieved by using
a robust multi-class DL algorithm that monitors the traffic
from edge servers and locally monitors the behavior of
AMF. T-ADS blacklists the malicious edge server infected
by the internal attacks. If an attack is detected at AMF, the
T-ADS interacts with the cyber defense center for the final
detection and decision-making toward the suspected AMF.
In addition, T-ADS analyzes the Attack message sent by S-
ADS to verify whether the detected anomaly is an attack.
Similarly, T-ADS computes the reputation value related to
each S-ADS that interacts with them, which is defined as

RS−ADS =
R

S−ADS
+

−R
S−ADS
−

NS−ADS . This reputation value is used
as an entry feature for the DL algorithm to assess the
trust level of S-ADS when the Attack message is sent. S-
ADS is detected as a malicious agent when the value of its
reputation is below a certain threshold (defined by a security
expert). The thresholds for judging the F-ADS and S-ADS
as malicious agents can vary depending on the security
level the security experts seek. For example, a high false
positive rate could be generated when the threshold is high.
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However, the attack detection rate will be very low when
the threshold is low. Hence, security experts should ensure
a trade-off between the false positive rate and the attack
detection rate when they select the threshold. To prevent
the passive attack from overhearing the security messages
(Anomaly and Attack messages) exchanged between F-
ADS, S-ADS, and T-ADS, the security mechanism based on
Elliptic Curve Cryptography [24] is used to encrypt these
security messages. The pseudocode of cooperative attack
detection is shown in Algorithm 1.

Algorithm 1: Cooperative attacks detection process

1 Begin (at t=0) ;
2 F-ADS, S-ADS, and T-ADS monitor their

neighborhood areas. ;
3 Classify the new incoming features according to the

FL Global training model (with parameter ω′t+1
). ;

4 if (F-ADS detects an attack) then
5 Forwards Anomaly message to S-ADS.;
6 if (RF−ADS > 0.5 & S-ADS confirms the attack)

then
7 Reaction is executed by S-ADS;
8 else
9 if (S-ADS does not confirm the attack) then

10 RF−ADS is decreased ;
11 else

12 if (RF−ADS < 0.5) then
13 F-ADS is removed;
14 end
15 end
16 end
17 end
18 if (S-ADS detects attack/anomaly) then
19 S-ADS executes reaction action against an attack,

and an Attack message is forwarded to T-ADS
for anomaly checking.;

20 if (RS−ADS > 0.5 & T-ADS detects new attack)
then

21 RS−ADS is increased and T-ADS interacts
with security experts against the detected
attack. ;

22 else
23 if (T-ADS does not confirm the attack) then

24 RS−ADS is decreased ;
25 else

26 if (RS−ADS) < 0.5) then
27 S-ADS is removed ;
28 end
29 end
30 end
31 end

3.2 Trusted security systems based on a mean field

game

The defense systems, F-ADS, S-ADS, and T-ADS could
be infected by the attackers. Hence, these defense systems
could provide false judgments against the legitimate target,
i.e., the legitimate monitored target is malicious and vice

versa. As explained by the authors in [20], in an FL ap-
proach, it is hard for the malicious nodes (e.g., malicious F-
ADS, S-ADS, and T-ADS agents) to provide a false training
model (e.g., first and second training models) without being
detected by the defense systems. However, security experts
from Stanford University [22] developed a new kind of
threat against FL algorithm named poisoning attack that
the malicious defense systems could execute to send fake
training models to centralized defense systems, e.g., S-ADS
and T-ADS. To execute the poisoning attack at F-ADS and
S-ADS, for instance, the malicious F-ADS and S-ADS agents
attempt first to determine the parameters ωt+1 of the Local

training model and ω′t+1
of the Global training model

respectively. However, the non-legitimate defense systems
can’t get the current values of the parameters, ωt+1 and

ω′t+1
, due to the private nature of the FL approach. In

this case, the malicious F-ADS and S-ADS agents estimate

respectively the values of parameters ωt+1φ and ω′t+1φ
,

which are equal respectively to f(ϑt) and f(ϑ′
t
) [22], where

ϑt and ϑ′
t

are the information related to the training models
that the malicious F-ADS and S-ADS agents have at time t,
respectively. The function f used to determine the estimated
parameters is defined in [22]. Based on the obtained pa-

rameters ωt+1φ and ω′t+1φ
, the defense system injects fake

training models that are not detected by the FL algorithm
and hence wrong Local and Global training models will
be generated respectively at legitimate F-ADS and S-ADS.
Therefore, malicious defense systems could provide false
judgments against legitimate targets without being detected
by F-ADSs, S-ADSs, and T-ADS. To detect accurately the
malicious defense systems that run the poisoning attack, a
new security model based on a mean field game is proposed.
The mean field game theory is a useful mathematical tool
that models the interactions between a large number of
players and determines the optimal decisions of the players,
e.g., the attackers attack or stay in idle mode, and defense
systems react or stay in idle mode. In this subsection, we
first define the proposed security model based on a mean
field game. Afterward, we present the best responses of
the competitive players, i.e., the defense systems attempt
to secure the network, and the malicious defense systems
launch the poisoning attacks against the FL algorithms
executed by the legitimate F-ADSs, S-ADSs, and T-ADS. In
the end, we prove the existence of an equilibrium between
the competitive players and propose a detection process
algorithm against the poisoning attack.

3.2.1 Security game model

The security model is modeled as an N + M mean field
game, where N is the number of trusted defense systems
and M is the number of malicious defense systems infected
by the poisoning attack. In this security game, we assume
that we have N trusted defense systems, where the security
expert frequently monitors their detection process to ensure
that the attackers do not infect these systems. ψ1

i and ψ2
j

are respectively the trusted and malicious detection players,
where i = 1, . . . , N and j = 1, . . . ,M . S1 = s11, . . . , s

1
k and

A1 = A1
1, . . . , A

1
l are respectively the states and strategies

of player ψ1
i . S1 corresponds to the monitoring states of

player ψ1
i against suspected players ψ2

j , i.e., activating the

6



monitoring process or switching to the idle mode. The
strategies A1 are the reactions of player ψ1

i against the
suspected players ψ2

j , i.e., ψ2
j are detected as attackers that

carry out a poisoning attack. It is noted that the suspected
players are the defense systems that could be acting as
malicious agents (by executing poisoning attacks) or le-
gitimate systems. S2 = s21, . . . , s

2
k′ and A2 = A2

1, . . . , A
2
l′

are respectively the states and strategies of player ψ2
j . S2

corresponds to the attack states of player ψ2
j against players

ψ1
i , i.e., activating the attack process or staying in idle mode.

A2 are the poisoning attacks executed by player ψ2
j . u1i is the

payoff of the player ψ1
i , which is computed as α.X − β.Y ,

in which X is the number of poisoning attacks (executed by
ψ2
j ) detected by the players ψ1

i and Y is the false detection
rate against the legitimate players ψ1

i . α and β ∈ ]0,1] are
the weights parameters. The payoff u2j of player ψ2

j is equal
to −u1i . The average payoffs of the players ψ1

i and ψ2
j in

the mean-field game were defined respectively as U1(t) (see
equation 5) and U2(t)(see equation 6).

U1(t) = (U1
1 (t), . . . , U

1
l (t)) (5)

U2(t) = (U2
1 (t), . . . , U

2
l′(t)) (6)

Where, U1
l (t) =

(
∑N

i=1 u
1
i (t))

N
and, U2

l′(t) =
(
∑M

j=1 u
2
j (t))

M

We define ρ1(a1|b1, c1) and ρ2(a2|b2, c2) as the transition
probabilities of players, ψ1

i and ψ2
j , respectively as shown in

equations 7 and 8.

ρ1(a1|b1, c1) = P (u1i (t+ 1) = a1|u1i (t) = b1, A1
i (t) = c1)

(7)
Where a1, b1 ∈ S1 and c1 ∈ A1.

ρ2(a2|b2, c2) = P (u2j (t+ 1) = a2|u2j (t) = b2, A2
j (t) = c2)

(8)
Where a2, b2 ∈ S2 and c2 ∈ A2.

The utility function of the player ψ1
i is de-

fined as φ1(u1i (t), A
1
i (t), S

1
i (t), U

1(t), U2(t)) and
φ2(u2j (t), A

2
j (t), S

2
j (t), U

2(t), U1(t)) is the utility function
for player ψ2

j . The average payoff U2(t) impacts the utility
function φ1 since when the malicious players (ψ2

j ) are not
detected accurately, U2(t) increases rapidly and hence leads
to the decrease of U1(t) and φ1. Similarly, U1(t) impacts the
utility function φ2, specifically when almost all malicious
players ψ2

j are detected accurately.

3.2.2 Best response of players in the mean-field game

The best responses of players ψ1
i and ψ2

j correspond to the
maximization of their respective utility functions, φ1 and φ2,
as shown in the mean-field equation system, in equations 9
and 10.

φ∗1(u1i (t), U
1(t), U2(t)) = max

A1
i (t)∈A1,S1

i (t)∈S1

φ1(u1i (t),

A1
i (t), S

1
i (t), U

1(t), U2(t))
(9)

φ∗2(u2j (t), U
2(t), U1(t)) = max

A2
j (t)∈A2,S

2j (t)∈S2)
φ2(u2j (t),

A2
j (t), S

2
j (t), U

2(t), U1(t))
(10)

From equations 9 and 10, it is apparent that to determine
the best responses, the players should estimate the expected
values of the average payoffs U2(t) and U1(t), in addition to
their respective payoffs’ values, u1i (t) and u2j (t). However,
the computation of functions U2(t) and U1(t) are very
difficult and require a high computation overhead for the
defense system to determine the values of these functions,
especially when the number of players ψ1

i and ψ2
j is high,

i.e., N and M → ∞. This is mainly due to the scalability of
5G network slicing, as it is not easy for the defense systems
to promptly determine the value of U2(t) when the number
of edge servers is high. Therefore, to overcome the compu-
tation overhead, the average payoffs U2(t) and U1(t) are
approximated to the functions ξ1 and ξ2 as demonstrated in
Theorem 1. ξ1 and ξ2 are defined as limiting processes [25].

Theorem 1. A∗1 = A1
1, . . . , A

1
l1 and A∗2 = A2

1, . . . , A
2
l2

are respectively the optimal strategies spaces of the players, ψ1
i

and ψ2
j ; where states i

′

= 1, . . . , l1 ∈ S1 and states j
′

=
1, . . . , l2 ∈ S2. ξ1 = (ξ11 , . . . , ξ

1
l1) and ξ2 = (ξ21 , . . . , ξ

2
l2).

When N and M → ∞ the average payoffs U2(t) and U1(t) are
equal respectively to equations 11 and 12.

U1(t) =
l1
∑

i
′=1

ξ1
i
′ .ρ1(1|i

′

, A∗1), ...,
l1
∑

i
′=1

ξ1
i
′ .ρ1(l1|i

′

, A∗1) (11)

U2(t) =
l2
∑

j
′=1

ξ2
j
′ .ρ2(1|j

′

, A∗2), . . . ,
l2
∑

j
′=1

ξ2
j
′ .ρ2(l2|j

′

, A∗2),

(12)

Proof. u1i (t) and u1i (t+1) are conditionally independent for
i = 1 to N . Similarly, u2j (t) and u2j (t + 1) are conditionally

independent for j = 1 to M . At states i
′

= l1 and j
′

= l2,
the optimal payoffs u∗1i (t) and u∗2j (t) (with the related
strategies spaces, A∗1 and A∗2 ) are determined by the
players ψ1

i and ψ2
j with transition probabilities equal respec-

tively to ρ1(l1|i
′

, A∗1) and ρ2(l2|j
′

, A∗2). The probabilities

ρ1(l1|i
′

, A∗1) and ρ2(l2|j
′

, A∗2)are considered respectively
as one of N.U1(t) and M.U2(t) distributions. Thus, the
conditional means E1 and E2 of the players ψ1

i and ψ2
j are

defined in equations 13 and 14.

E1(t) =
l1
∑

i
′=1

u1i′ .ρ
1(1|i

′

, A∗1), . . . ,
l1
∑

i
′=1

u1i′ .ρ
1(l1|i

′

, A∗1)

(13)

E2(t) =
l2
∑

j
′=1

u2j′ .ρ
2(1|j

′

, A∗2), . . . ,
l2
∑

j
′=1

u2j′ .ρ
2(l2|j

′

, A∗2)

(14)
The subtractions of U1 (t) with E1 (t) and U2 (t) with

E2 (t) are equal to zero when N and M → ∞. Thus,
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the solutions of equations 11 and 12 are verified. From
equations 13 and 14, we get equations 15 and 16.

ρ∗1(A∗1) =







ρ1(1|1, A∗1) ... ρ1(l1|1, A∗1)
...

. . .
...

ρ1(1|l1, A∗1) ... ρ1(l1|l1, A∗1)






(15)

ρ∗2(A∗2) =







ρ2(1|1, A∗2) ... ρ2(l2|1, A∗2)
...

. . .
...

ρ2(1|l2, A∗2) ... ρ2(l2|l2, A∗2)






(16)

The average optimal payoffs U∗1 (t) and U∗2(t) of the
players ψ1

i and ψ2
j when N and M → ∞ are equal respec-

tively to equations 17and 18.

U∗1(t) =
l

∑

i
′=1

1ξ1
i
′ .ρ∗1(A∗1) (17)

U∗2(t) =
l2
∑

j
′=1

ξ2
j
′ .ρ∗2(A∗2) (18)

From equations 9 and 10, the best responses of players
ψ1
i and ψ2

j are formulated as in equations 19 and 20.

φ∗1(u1i (t), U
∗1(t), U∗2(t)) = max

(A∗1

i′
(t)∈A∗1,S∗1

i (t)∈S∗1)
φ1(u1i (t),

A∗1
i
′ (t), S∗1

i (t), U∗1(t), U∗2(t))
(19)

φ∗2(u2j (t), U
∗2(t), U∗1(t)) = max

A∗2

j′
(t)∈A∗2,S∗2

j (t)∈S∗2

φ2(u2j (t),

A∗2
j
′ (t), S∗2

j (t), U∗2(t), U∗1(t))
(20)

3.2.3 Mean-field equilibrium in the security game

The equilibrium in a mean-field game, named Nash-Mean
Field Equilibrium (MFE), is the approximation of Nash
equilibrium in a non-cooperative game when the number
of competitive players is large. Determining a Nash equi-
librium in a mean-field game requires a high computation
overhead. The major advantage that Mean Field Game
(MFG) offers is the simplification of the equilibrium’s com-
putability at a large scale game, i.e., the number of players is
large, and hence a low computation overhead is required for
the player, e.g. defense system to determine the equilibrium.
Such approximation of Nash equilibria works in two phases.
First the optimization of the game with N and M players,
then the passage to the limit with N and M → ∞.

Theorem 2. The strategies’ couple (A∗1
i′ (t), A

∗2
j′ (t)) and the

average payoffs’ couple (U∗1(t), U∗2(t)) constitute the MFE.

Proof. According to [26] MFE exists if: (A∗1
i′ (t), A

∗2
j′ (t)) is

an optimal strategies’ couple given (U∗1(t), U∗2(t)) and
the average payoffs’ couple (U1(t), U2(t)) is a steady state
distribution of (A∗1

i′ (t), A
∗2
j′ (t)). The utility functions φ1 and

φ2 can respectively be expressed in equations 21 and 22 as:

φ1(u1i (t), A
1
i (t), S

1
i (t), ξ

1(t), ξ2(t)) =fi(u
1
i (t), A

1
i (t), S

1
i (t))

+ ξ1(t).
N
∑

i=1

u1i

− ξ2(t).
M
∑

j=1

u2j

(21)

φ2(u2j (t), A
2
j (t), S

2
j (t), ξ

2(t), ξ1(t)) =gj(u
2
j (t), A

2
j (t), S

2
j (t))

+ ξ2(t).
M
∑

j=1

u2j

− ξ1(t).
N
∑

i=1

u1i

(22)

The poisoning attacks could target several defense sys-
tems and the legitimate defense systems could detect at the
same time the poisoning attacks, so the payoff of players ψ1

i

and ψ2
j are computed as

∑N
i=1 u

1
i and

∑M
j=1 u

2
j , respectively.

To solve the mean field equation systems, equations 9
and 10 and equations 21 and 22, we use the dynamic pro-
gramming method. From equations 9 and 21, the strategies
of players ψ1

i are obtained as A1
i (t) = A1

i′(t) = A1
1, . . . , A

1
l1,

where i
′

= 1, . . . , l1. Similarly, from Eqs. (10) and (22), the
strategies of players ψ2

j are obtained as A2
j (t) = A2

j′(t) =

A2
1, . . . , A

2
l2, where j

′

= 1, . . . , l2. Therefore, the strategies
(A∗1

i′ (t), A
∗2
j′ (t)) are the optimal strategies’ couple of play-

ers ψ1
i and ψ2

j given the average payoffs’ couple (U∗1(t),
U∗2(t)). This latter is approximated to (ξ1(t), ξ2(t)).

From equations 17 and 18, the average optimal payoffs
could be expressed as shown in equations 23 and 24, as
∑l1

i
′=1 ξ

1
i
′ and

∑l2
j
′=1 ξ

2
j
′ are the approximations of U∗1(t)

and U∗2(t), respectively.

U∗1(t) = U∗1(t).ρ∗1(A∗1) (23)

U∗2(t) = U∗2(t).ρ∗2(A∗2) (24)

Therefore, we claim that U∗1(t) is a steady state distri-
bution of A∗1

i′ (t) and U∗2(t) is a steady state distribution of
A∗2

j′ (t).

As a conclusion, the MFE exists, and when this equi-
librium is reached the optimal strategies of players ψ1

i and
ψ2
j are defined respectively as A1

1, . . . , A
1
l1 and A2

1, . . . , A
2
l2.

F-ADSs, S-ADSs, and T-ADS categorize the suspected ψ2
j

as a malicious defense system executing a poisoning attack
when MFE is reached, i.e., U1(t) = U∗1(t) and U2(t) =
U∗2(t), and u2j (t) = max

Y
(β.Y − α.X) = u∗2j (t). The pseu-

docode of the detection process against poisoning attack
based on a mean field game is illustrated in Algorithm 2
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Algorithm 2: Poisoning attack detection process

1 Begin (at t=0);
2 repeat
3 Players ψ1

i (legitimate defense systems) compute
their u1i (t);

4 if (u1i (t) > 0) then

5 Each players ψ1
i computes

∑l1
i
′=1 ξ

1
i
′ and

estimates
∑l2

j
′=1 ξ

2
j
′ . ;

6 if (
∑l1

i
′=1 ξ

1
i
′ > 0 and

∑l2
j
′=1 ξ

2
j
′ > 0) then

7 ψ2
j is suspected to carry out a poisoning
attack;

8 if (ξ1(t) = ξ∗1(t) and ξ2(t) = ξ∗2(t)) then
9 Players ψ1

i compute u2j (t) ;
10 if (u2j (t) = max

Y
(β.Y − α.X)) then

11 Player ψ2
j is a malicious defense

system that carries out a
poisoning attack;

12 end
13 end
14 end
15 end
16 until the end of the mean-field security game;

4 PERFORMANCE EVALUATION

This section evaluates the performance of our defense sys-
tems against 5GB network slicing attacks. We first evaluate
the performance of our FL collaborative training model.
We then deploy the model and evaluate attack detection
accuracy and overhead while considering poisoning attacks
based on mean field algorithms.

4.1 Training results

To evaluate the training performance of our scheme, we
have implemented a two-layer FL architecture with three
network slices using Tensorflow and Keras Python libraries.
Specifically, we set up two configurations. The first config-
uration (Config 1) consists of one T-ADS (layer 2) and two
S-ADSs (layer 1) with three F-ADS each. The second config-
uration (Config 2) consists of one T-ADS and three S-ADSs
with five F-ADS each. We also limited the FL rounds for S-
ADSs and T-ADS to 100. The global models of S-ADSs and
T-ADS were trained on the Google Colab platform using
Compute Engine backend (TPU). The F-ADSs have been
implemented as Tensorflow instances running local models.
For the multi-class classification, we use a DL model. We
selected the CSE-CIC-IDS-2018 dataset [27] to train our DL
model since it adequately covers different types of network
attacks ((D)DoS, Botnet), addressed in this paper. To train
our DL model, we have a dataset containing a total of
208, 186 instances (rows) split as follows (i) 49, 971 instances
are Benign, (ii) 28, 619 instances are Botnet, and (iii) 129, 596
instances are D(DoS) including 34, 300 instances of DDoS
HOIC attack, 28, 809 instances of DDoS LOIC-HTTP attack,
13, 989 instances of DoS SlowHTTPtest attack, 41, 508 in-
stances of DoS GoldenEye attack, and 10, 990 instance of
DoS Slowloris attack.

The dataset initially included 80 features on network
flows. This number became 85 after converting the times-
tamp feature to the date format. We also rescaled the dataset
in the range of [0,1] using MinMaxScaler to speed up the
training process. The dataset was split into training, valida-
tion, and test sub-datasets. Specifically, we have chosen 10%
of the whole dataset as a validation dataset and 10% as a test
dataset. We have also tested two scenarios. The first scenario
is when the data is Independent and Identically Distributed
(IID) over the network slices. The second scenario is the
non-IID, specifically:

• Slice 1 comprises 80% of DoS attacks-GoldenEye.
The remaining 20% is, for slice two in Config 1
and equally shared between slices two and three in
Config 2.

• Slice 2 comprises 80% of DDOS attack-HOIC. The re-
maining 20% is, for slice one in Config 1 and equally
shared between slices one and three in Config 2.

• Slice 3 (applicable only for Config 2) comprises 80%
of DoS Bot attacks. The remaining 20% is equally
shared between slices one and two.

• All the remaining attacks are equally shared over the
slices.

Our model consists of (i) an inputs layer with 84 neuron
nodes, (ii) two hidden layers with 85 and 42 hidden nodes
for each of them, respectively, with a dropout rate set to
0.75, (iii) an output layer with 7 nodes based on one hot
encoding to detect and identify attacks. The ReLU activation
function is used for the hidden nodes, while the softmax
function is used for the output layer. We have used the
Stochastic Gradient Descent (SGD) with a learning rate of
0.01 to calculate local models’ weights. After each round, the
Federated Averaging is used to compute the global model’s
weights. Table 2 lists the hyperparameters of the model.
We note that each F-ADS (FL-client) handles around 11, 103
instances in the training phase. Also, it takes around 2 hours
to train S-ADSs simultaneously and 1 hour to train T-ADS.

TABLE 2: Training parameters of the global model

Parameter Value

The ratio of validation/test
dataset

10%

Learning rate 0.01
Batch size 32
Optimizer SGD
Dropout 0.75
# Rounds 100

We selected accuracy, precision, recall, and F1-score as
evaluation metrics. The training process performance based
on IID and non-IID dataset-splitting for Config 1 is illus-
trated in Figures 3a and Figures 3b. The accuracy and loss
values versus the number of rounds are shown in Figure 3a
(a) (3b (a)) and Figure 3a (b) (3b (b)), respectively. Figure 3a
(b) (3b (b)) also compares the loss values at T-ADS with
those at S-ADS 1 and S-ADS 2, respectively. It can be
observed that the loss decreases as the number of rounds
increases in general. Moreover, it can be seen that the loss
at T-ADS drops rapidly since the first rounds and reaches
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the lowest values compared with S-ADSs (1 and 2). Further-
more, it can be seen in Figure 3a (a) (3b (a)) that all S-ADSs
(1,2) achieve above 87% accuracy at the end of training. It
can also be seen that S-ADS 2 (S-ADS 1 in 3b (a)) performs
better than the other S-ADS. This is because of the quality of
data used by the two F-ADSs connected to the S-ADS 2 (S-
ADS 1 in 3b (a)), which results in building good local models
and then having a good global model at S-ADS 2 (S-ADS 1
in 3b (a)) at the first aggregation phase. Moreover, it can be
seen that T-ADS performs better than all S-ADSs (1, 2) since
at the second aggregation stage, T-ADS uses all models built
at S-ADSs to build the global model achieved above 97% at
the end of the training stage. Figures 3c and Figures 3d show
the performance evaluation of the training process based on
IID and non-IID dataset-splitting. Figure 3c (a) ( 3d (a)) and
Figure 3c (b) ( 3d (b)) show the obtained accuracy values
and loss values, respectively, versus the number of rounds.
Figure 3c (b) ( 3d (b)) compares the loss values at T-ADS
with those at S-ADS 1, S-ADS 2, and S-ADS 3, respectively.
As a general observation, we can see that the loss decreases
as the number of rounds increases. In addition, we can see
that loss at T-ADS quickly decreases since the first rounds
and achieves the lowest values compared with S-ADSs (1,
2, and 3). On the other hand, we can see in Figure 3c
(a) ( 3d (a)) that all S-ADSs (1,2,3) achieve at least 87% (
91% in 3d (a)) accuracy at the end of training. We can also
see that S-ADS 2 (S-ADS 1 in 3d (a)) outperforms the two
other S-ADSs. This is due to the quality of data used by
the five F-ADSs connected to the S-ADS 2 (S-ADS 1 in 3d
(a)), which leads to building good local models and then
having a good global model at S-ADS 2 (S-ADS 1 in 3d (a))
at the first aggregation phase. Moreover, we can see that
T-ADS outperforms all S-ADSs (1, 2, 3) since at the second
aggregation stage, T-ADS exploits all models built at S-ADSs
to build the global model achieved more than 97% at the end
of the training stage.

TABLE 3: Attack detection results

Scenario Model Accuracy Precision Recall F1-score

Config 1
(IID)

S-ADS 1 0.90 0.93 0.83 0.86
S-ADS 2 0.95 0.96 0.93 0.94
T-ADS 0.97 0.97 0.96 0.96

Config 1
(non-IID)

S-ADS 1 0.92 0.94 0.90 0.91
S-ADS 2 0.91 0.94 0.88 0.89
T-ADS 0.97 0.97 0.96 0.96

Config 2
(IID)

S-ADS 1 0.87 0.78 0.78 0.77
S-ADS 2 0.95 0.95 0.92 0.93
S-ADS 3 0.89 0.78 0.78 0.78
T-ADS 0.97 0.97 0.96 0.96

Config 2
(non-IID)

S-ADS 1 0.96 0.96 0.94 0.95
S-ADS 2 0.94 0.95 0.91 0.92
S-ADS 3 0.91 0.95 0.88 0.90
T-ADS 0.97 0.97 0.96 0.96

Table 3 gives performance measures of both of the two
configurations (Config 1 and Config 2) for all S-ADSs to-
gether with T-ADS on the test dataset for IID and non-IID
splitting methods. As we can see, for both configurations, T-
ADS outperforms all S-ADSs, achieving 97% and 96% accu-
racy and F1-score, respectively, similarly in both cases (IID
and non-IID). These results demonstrate how effectively
our scheme recognizes attack occurrences that haven’t been
observed previously.

4.2 Detection and overhead results

F-ADS, S-ADS, and T-ADS are executed at gNodeB, edge
server, and AMF levels. In our case study, the number of
attack defense systems deployed within the network equals
six F-ADS agents, two S-ADS agents, and one T-ADS agent.
To execute the poisoning attacks, we are inspired by the
work in [22]. We consider a set of malicious devices that
target the training models of FL by modifying their training
vectors and labels. The main metrics that are used in the
evaluation process are defined as follows:

• Accuracy Detection Rate (ADR): is the number of
attacks detected minus the number of false detection
generated by the defense systems, i.e., false positive
and false negative rates. The average accuracy de-

tection rate is computed as A =
(
∑S

i=1
(αx.Di−βx.Fi))
(S.TL) ,

where Di and Fi are respectively the attack detection
and false detection rates generated by the defense
system i, S is the number of defense systems and TL
is the total number of attacks. Here, αx and βx ∈ ]0,1]
are the weight factors of detection and βx=1-αx. The
value of αx depends on the severity of the detected
attack. In this study, we assume that the poisoning
attack is a more severe threat than (D)DoS and bot-
net, where αx=1 for poisoning attack detection while
for (D)DoS and botnet attacks’ detection αx is equal
respectively to 0,7 and 0,5.

• Time Overhead (TO): is defined as the required time
of the defense systems to detect the (D)DoS, botnet,
and poisoning attacks accurately. The average time

overhead is computed as O =
∑S

i=1
Oi)

S.TL
, where Oi is

the time overhead the defense system i generates.

4.2.1 Accuracy detection

Figures 4 and 5 show respectively results of accuracy de-
tection against the (D)DoS, botnet, and poisoning attacks of
our cooperative defense systems while comparing with two
relevant state-of-the-art works [8, 13] exhibit.

15 25 30 40
 (%)
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ADR
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)

Poisoning
[13]
[8]
Our framework

Fig. 5: Accuracy detection rates in the presence of poisoning
attacks

Figure 5 shows results of accuracy detection against
poisoning attacks. We define ϑ as the percentage of the
information (training vectors and labels) modified by the
attackers, where ϑ varies from 5%, 10%,20%, and 25%.
As we can see, our proposed cooperative defense system
exhibits a high accuracy in detecting poisoning attacks com-
pared to related works. Figure 4 shows results of accuracy
detection against (D)DoS and botnet network attacks. Here,
we vary the amount of malicious traffic instigated by the
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Fig. 3: Model performance in the training phase
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Fig. 4: Accuracy detection rates in the presence of a) (D)DoS and b) Botnet

(D)DoS and botnet attacks from 15% to 40% of the total
traffic. As illustrated in Figures 4 and 5, even though the
accuracy detection rates of all works are high when (D)DoS
and botnet attacks occur, the accuracy detection rates of
the related works [8, 13] are low under poisoning attacks
as compared to our cooperative systems. These results are
achieved for the following reasons: (i) Cooperative attack
detection process executed by F-ADSs, S-ADSs, and T-
ADS aims to monitor the main elements of network slicing
to detect internal and external attacks while minimizing
the false positive rates. More specifically, applying a two-
layer FL algorithm in the cyber detection process gradu-
ally reduces misclassifications errors generated from false
positives and false negatives, and (ii) in complementary,
the proposed poisoning attack detection algorithm based
on a non-cooperative game identifies the malicious defense
systems that exhibit false detections against the legitimate
monitored target, i.e., detect the normal targets as attackers
and vice versa. Specifically, as explained in subsection 3.2,
the poisoning attack could infect the training vectors and
labels of the ML algorithm executed by the defense sys-
tem, leading this system to perform a malicious action. As
demonstrated in Theorem 2, when the equilibrium MFE is
reached, almost all malicious defense systems are detected.

Hence, the internal poisoning attack executed within the
malicious defense system is detected. The optimum accu-
racy detection rates of (D)DoS, botnet, and poisoning attacks
correspond to the tradeoff between high detection rates and
low false positive rates.

4.2.2 Overhead

As shown in Figure 6, we evaluate the time overhead
generated by our proposed cooperative defense systems
while comparing it with related works [8, 13] by injecting
the (D)DoS, botnet, and poisoning attacks. Here, we vary
the amount of malicious traffic instigated by (D)DoS, botnet,
and poisoning attacks from 15% to 40% of the total traffic.
As shown in Figure 6, when the malicious traffic increases,
our defense systems require low time to detect the malicious
traffic accurately. However, even in a worst-case (i.e., 40%
of traffic is malicious), the cooperative defense systems
require a low time overhead to secure the network. From
Figure 6, when the number of malicious traffic increases,
our cooperative defense systems and the solution in [8]
require low time overheads during the detection process
compared to the solution in [13]. The low time overhead that
our cooperative defense systems require to detect accurately
(D)DoS, botnet, and poisoning attacks is mainly due to the
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cooperation security process achieved between the different
defense systems, namely F-ADSs, S-ADSs, and T-ADS.
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Fig. 6: Generated time overhead

5 CONCLUSION

In this research article, we have proposed trusted cooper-
ative defense systems based on a two-layer FL and mean-
field game to protect the 5G and beyond network slicing
from the most dangerous attacks, such as DDoS and bot-
net, and enable robustness against poisoning attacks. Our
experimental results show high accuracy detection against
network and poisoning attacks, while low overhead is gen-
erated in training and deployment. As future work, we
will further address the impact of non-IID on detecting
poisoning attacks.
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