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ABSTRACT
We applied state-space modelling technique to estimate the cog-
nitive workload of a speech-in-noise (SIN) recall task, based on
participants’ oculo-motor responses to speech signals. We esti-
mated common latent attention levels in 15 time bins and observed
temporal changes between pupillary dilations and saccade frequen-
cies, given that the both conditions were independent. We also
compared two speech type factors (natural vs. synthetic) and three
levels of signal-to-noise (-1dB, -3dB, and -5dB) using the estimated
parameter distribution. The comparison of experimental factors pro-
vided us with insights into differences in participants’ processing
of spoken information during a SIN recall task.

CCS CONCEPTS
•Human-centered computing→ Laboratory experiments; Em-
pirical studies in HCI .
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1 INTRODUCTION
Since pupillary changes can be used as indices of task-evoked cog-
nitive load [Beatty 1982; Zekveld et al. 2010], pupillometry has
recently been applied to evaluation of text-to-speech (TTS) sys-
tems [Govender and King 2018; Govender et al. 2019; Winn et al.
2018]. We applied this technique to measure differences in cogni-
tive workload between natural and synthetic speech (see [Dubiel
et al. 2021b] for detailed analysis of the results). In this study, in
addition to pupil dilations, saccade frequencies were also analysed
as another index of mental workload. Since the characteristics of
both indices are different, here, their relationships are analysed
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and discussed separately. The purpose of the current analysis is
to extract the latent level of attention or mental workload during
the experimental task. These levels have been estimated based on
observed oculo-motor indices. In particular, the analysis focuses
on exploring causal relationships of these responses, following the
method outlined in [Nakayama and Hayakawa 2021].

Recently, several statistical modelling techniques were proposed
to estimate users’ latent activity level in cognitive tasks. One exam-
ple of such technique is Bayesian modelling [Okano and Nakayama
2022; Ueno and Nakayama 2021] which can potentially be applied
to estimate latent temporal changes of mental attention level from
observed oculo-motor indices. The benefit of Bayesian modelling is
that it allows for hierarchical decomposition of temporal data com-
ponents and account for their individual contributions. For instance,
in [Ueno and Nakayama 2021] hierarchical Bayesian modelling was
applied to estimate stimulus detection response and microsaccade
frequency in a dual detection task. This technique was also used
to assess the relationship between temporal changes of individual
ocular-motor metrics on cognitive workload during figure counting
task [Okano and Nakayama 2022].

Here, we examine the feasibility of applying Bayesian modelling
to a speech-in-noise (SIN) recall task, based on the experimental
results discussed in [Dubiel et al. 2021a]. Specifically, we focus on
the analysis of two types of speech (natural vs. synthetic) and three
levels of signal-to-noise (-1dB, -3dB, and -5dB).

In sum, in this paper, we addresses the following two topics:
(1) The feasibility of extracting temporal attention levels us-

ing pupillary changes and saccade frequencies during a SIN
recall task by applying Bayesian modelling [Lee 2011] .

(2) Correspondingly, based on the modelling results, we discuss
the impact of experimental factors on estimated participants’
attention.

Contrary to previous relevant work which explored modelling
users’ cognitive workload in visual perception and reasoning tasks
[Okano and Nakayama 2022; Ueno and Nakayama 2021], here we
focus on an auditory task. We decided to apply Bayesian mod-
elling technique to a SIN recall task because it involves the use
of working memory which requires attention, concentration and
effort [Pichora-Fuller 2007; Rabbitt 1968; Rönnberg et al. 2013].
Specifically, as stipulated by The Ease of Language Understanding
framework [Rönnberg et al. 2013], identifying speech masked by
noise requires development and deliberate allocation of additional
cognitive resources to encode the degraded speech, and match it
with the listener’s internal language representation.

Here, we seek to gain a better understanding of how different
types of speech and levels of sound individually affect allocation of
effort required for listening to and recalling speech samples.

https://doi.org/10.1145/3588015.3589665
https://creativecommons.org/licenses/by-nc-sa/4.0/
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2 EXPERIMENT SUMMARY
Below we provide a brief overview of the experimental procedure
(please see [Dubiel et al. 2021a] for a more detailed explanation).

Speech stimuli consisted of forty travel-related speech samples
that were selected from Japanese speech corpus of Saruwatari-
lab., the University of Tokyo (JSUT) 1. The selected samples were
sampled at 48kHz and synthesised using a Japanese TTS system
based on statistical parametric speech synthesis framework [Zen
et al. 2013]. The selected samples were then mixed with a speech-
shaped-noise at three levels of signal-to-noise (i.e., -1dB, -3dB, -5dB).

The experimental procedure is presented in Figure 1. Participants
were asked to look at the black cross on a grey background, listen
to speech samples (one at the time) and repeat the words that they
heard when the cross changed its colour to red. Presentation of
each stimuli consisted of five phases (calibration (1), listening (2),
retention (3), recall (4) and relax (5)). Masking speech-shaped-noise
was present until the recall phase. Participants were randomly as-
signed into one of three signal-to-noise levels and listened to blocks
of stimuli (natural and synthetic) presented in a random order. The
recall attempt was considered as successful only if the whole ut-
terance was repeated correctly. Participants’ eye movements were
measured using an eye-tracker (nac:ACTUS, sampling rate = 60Hz).
The tracked data for both eyes was processed as a repeated measure
for each participant.

3s Speech sound

Recall (4s)

8s

8s

With

Noise

Phase 1 (2s)

Phase 2

Phase 3 (2s)

Phase 4

Phase 5 (4s)

Figure 1: An overview of the experimental procedure.

The experiment involved sixteen native Japanese speakers (14
males and 2 females) with no self-reported hearing problems. The
participants were aged between 21 and 25 years (mean = 22.5).
All subjects attended a briefing session before the experiment and
provided their consent in order to participate.

2.1 Recall accuracy
The recall accuracy was evaluated by a member of the research
team who listened to participants’ responses and classified them
into ‘correct’ and ‘incorrect’ categories. The result indicated that
the recall accuracy was significantly lower for synthetic speech
than for natural speech at every signal-to-noise level except -3dB.
In the current paper, the analysis provided in the subsection 2.2
and subsection 2.3 is based on the correct recall responses.

2.2 Pupil sizes
Temporal changes of pupil sizes for natural and synthetic speech
stimuli are summarised in Figure 2. The pupil size is standardised
1https://sites.google.com/site/shinnosuketakamichi/publication/jsut

individually based on the mean of pupil sizes from phase-1. As
can be seen, pupil size increases until phase-3 and decreases from
thereon until phase-5. The observed pupillary changes are in line
with the results of the previous studies [Ahmed et al. 2023; Beatty
1982; Kahneman and Beatty 1966], where similar behaviour was
observed during memorisation tasks.

Natural:

Synthetic:
-1dB -3dB -5dB

Figure 2: Pupillary changes for 5 experimental phases.

2.3 Saccade frequency
Eye movements were classified into fixations and saccades using
a 40deg/sec. threshold [Ebisawa and Sugiura 1998]. Features of
both saccades and fixations were summarised for every phase. The
overall occurrence rate of saccades is summarised in Figure 3. Here,
saccade occurrence rate corresponds to the proportion of a phase
that contains saccades. Saccade occurrence decreasesmonotonically
from phase-1 to phase-3, while subjects memorise and retain the
speech stimuli. After phase-3, saccade occurrences increase rapidly
and stay high towards the end of the trial. Since the retention of
information requires a high level of concentration [Andrewes 2015],
saccade eye movements are suppressed in the middle of the trial
while participants try to memorise what they heard. As can be
observed, during phase-3, there are some differences between the
conditions.
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Figure 3: Rates of saccade occurrence
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3 STATE-SPACE MODELLING PROCEDURE
The participants’ cognitive behaviour is presented as a temporal
attention level which contains a latent temporal sensing level using
a Bayesian modelling technique [Haaf and Rounder 2017; Lee 2011],
since the observation data is limited to a certain number of partici-
pants. In the following, we present two types of models of temporal
changes for pupil size and saccade frequency (i.e., state models and
observation models). We hypothesise that all factors in the models
contribute independently to cognitive load of the participants. In
particular, the attention levels are represent using two variables
such as, 𝐴𝑡𝑡𝑛 as overall changes including experimental factors,
and 𝑆_𝑙𝑒𝑣𝑒𝑙 as a temporal change during a task.

Here, the parameters are defined as, 𝐴𝑡𝑡𝑛: Temporal Attention
levels over the observation as a source for ocular responses (pupil
size/saccade rate) which is noted in a summation of following fac-
tors, 𝑆_𝑙𝑒𝑣𝑒𝑙 : latent temporal sensing level during the task as a
temporal state model, 𝑟𝐼𝐷 : a factor of individuals, 𝑉𝑜𝑖𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 :
two-dimensional factor of Natural/Synthetic voices, 𝑆𝑜𝑢𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 :
three-dimensional factor of Sound levels (i.e., -1dB, -3dB, -5dB),
𝑟𝑃𝑁 : 10-dimensional factor of presentation order (1∼10),𝑚𝑢𝑛𝑜𝑖𝑠𝑒 :
attention level (𝐴𝑡𝑡𝑛) with an observation noise. Independent pa-
rameters are hypothesised to follow a normal distribution.

The model presentation consists of state models and observation
models that generate both temporal pupil size and saccade fre-
quency using the temporal attention level (𝐴𝑡𝑡𝑛) driven by latent
temporal sensing level (𝑆_𝑙𝑒𝑣𝑒𝑙 ), as shown in following equations.

• Common attention level

𝐴𝑡𝑡𝑛 = 𝑖𝑛𝑣_𝑙𝑜𝑔𝑖𝑡 (𝑆_𝑙𝑒𝑣𝑒𝑙 + 𝑟𝐼𝐷)
+𝑉𝑜𝑖𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 + 𝑆𝑜𝑢𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 + 𝑟𝑃𝑁 (1)

State Model:

𝑆_𝑙𝑒𝑣𝑒𝑙𝑖 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙 (𝑆_𝑙𝑒𝑣𝑒𝑙𝑖−1, 𝜎𝑠 )
• Pupil Diameter

Observation Model:

𝑃𝑢𝑝𝑖𝑙𝑠𝑖𝑧𝑒 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙 (𝐴𝑡𝑡𝑛, 𝜎𝑝 )
• Saccade frequency

_ = 𝑒𝑥𝑝 (𝑚𝑢𝑛𝑜𝑖𝑠𝑒 )
Observation Model:

𝑚𝑢𝑛𝑜𝑖𝑠𝑒 ∼ 𝑛𝑜𝑟𝑚𝑎𝑙 (𝐴𝑡𝑡𝑛, 𝜎𝑛𝑜𝑖𝑠𝑒 )
𝑁𝑆𝑎𝑐𝑡𝑖𝑚𝑒𝑠 ∼ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(_)

In order to extract all the parameters in the above equations,
the observed temporal data (i.e.,pupillary changes and saccade
frequencies) was applied to a sampling technique of Markov Chain
Monte Carlo (MCMC) procedure [Haaf and Rounder 2017; Lee 2011]
with R and Stan packages. The converged models were obtained
with 2000 steps with 500 burn-in lengths sampling in four chains
using a fitness index such as 𝑅 and Watanabe-Akaike Information
Criterion (WAIC) [Watanabe and Opper 2010]. The number of latent
temporal sensing levels during the task was controlled for both
pupil and saccade indices. The following results are based on a
converged solution is obtained at 15 temporal time bins as a result
of sampling.

4 RESULT
4.1 Temporal change of attention sensing level
The estimated attention sensing parameters (𝑆_𝐿𝑒𝑣𝑒𝑙 ) in 15 tempo-
ral changes are illustrated with parameter distribution with 1500
samplings in Figure 4 for pupil size (Fig 4 (a)) and for saccades (Fig
4 (b)). The small horizontal ticks indicate the mean of the distri-
bution and the painted (maroon) regions correspond to the 95%
confidence intervals (CI).

Initially, the attention sensing levels appear to be a common
factor for both pupil dilation and saccades in Figure 4 ((a) and (b)).
However, since later on these two conditions begin to diverge,
another estimation is made by using the pupil response to vertically
reflect wave-forms, transformed as (2 - 𝑃𝑢𝑝𝑖𝑙𝑠𝑖𝑧𝑒 ) in Figure 4 (c).

As can be observed, the local minima of attention sensing lev-
els are almost synchronised. This modified response is used for
the following analysis. Here, “𝑆_𝐿𝑒𝑣𝑒𝑙” indicates the “remaining
level of available attention resource”. During the task, the avail-
able attention resources are reduced by the cognitive workload.
In Figure 4 ((b) and (c)), the attention resource decreases due to
increase of latent cognitive workload in the middle of session, and
then increases at the end of the trial. Although the estimated level
from both pupil and saccade responses shows a local peak in the
middle, the overall trend of temporal changes differs between the
two metrics. On the other hand, as illustrated in Figure 4 (c), the
attention sensing level is minimised during the phase-2 of the ob-
servation. The cognitive workload is then released after the speech
sample has been committed to a participant’s memory.

4.2 Speech sound factor
The estimated parameters for speech sound factor 𝑉𝑜𝑖𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟
are illustrated with parameter distribution in Figure 5 for pupils
(Fig.5 (a)) size and saccades (Fig.5 (b)). Although there is little differ-
ence between means for pupil size, there is a substantial difference
in saccades between natural and synthetic speech condition. We
posit that the estimated distribution may correspond to the different
impact of these two speech factors. The second, slightly smaller,
peak in pupil size may indicate interaction between the factor of
sound levels, which will be discussed in the following section.

4.3 Sound level factor
The distributions of the parameter 𝑆𝑜𝑢𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 are illustrated in
Figure 5 for pupil size (Fig.5 (c)) and saccade frequency (Fig.5 (d)).
For pupil size, means are gradually shifted to larger values as the
signal-to-noise ratio decreases. Therefore, it could be postulated
that the level of soundmay contribute the attention sensing level. As
for the 𝑉𝑜𝑖𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 , secondary peaks can also be observed (albeit
at a lower scale) — potentially indicating interaction between the
two factors (i.e., speech type and sound level). For saccade rates,
the mean level for -1dB is larger than the other two levels, while
for the levels of -3dB and -5dB differences are marginal. Since the
distributions for three levels are biased, the effect of individual
sound levels will be examined closely in the following section.
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Figure 4: Distributions of the estimated “Latent attention sensing level (𝑆_𝑙𝑒𝑣𝑒𝑙)” using different ocular indices.
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Figure 5: Summary of ocular responses for speech type factor (a,b) and noise level factor(c,d)

4.4 Hybrid model
As shown in Figure 4 (b) and (c), the estimated levels of latent
attention sensing are slightly different and are both affected by
the observed metrics. We applied another model to estimate the
common level of attention sensing for both metrics with a higher
precision. The iteration required 6000 steps and 500 burn-in step
samplings to extract the same 15 bins. Distributions of the latent

sensing levels in 5500 samples over the 15 bins are displayed using
the same format as in Figure 6. The mean levels of the distributions
show the temporal change, where the lowest bin is located around
the middle of the trial (around time bin 6) which could be influenced
by the task workload. This indicates that the estimated distributions
reflect the overall workload instead of two types of estimated levels
such as Figure 4 (a) and (b).
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We also estimated other parameters in Equation 1 for the pro-
posed hybrid model. The distributions for𝑉𝑜𝑖𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 are shifted
in two conditions (i.e., natural and synthetic) , and the distributions
for 𝑆𝑜𝑢𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 are shifted in three conditions (i.e., -1dB, -3dB, and
-5dB). The sensing metric of oculo-motor indices for differentials of
factors indicates the dominance on the parameter estimation in a
hybrid model. The detailed analysis using the estimated attention
levels is presented in section 5.
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Figure 6: Distribution of the estimated “Attention sensing lev-
els (𝑆_𝑙𝑒𝑣𝑒𝑙)” based on both pupil size and saccade frequency.
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Figure 7: Estimated “Attention levels (𝐴𝑡𝑡𝑛)” based on both
pupil size and saccade frequency — summarised for both
types of speech.

5 EVALUATION FOR ESTIMATED ATTENTION
LEVELS

As shown in Equation 1, the attention level is calculated using the
estimated parameters including individual factor (𝑟𝐼𝐷) and stimulus
presentation order factor (𝑟𝑃𝑁 ). Plausible attention levels (𝐴𝑡𝑡𝑛)
are generated for the sampled data using the trained model. The

estimated attention level indicate “remaining attention resources”
as well as the sensing level.

Means of the attention levels are calculated across the 15 bins
for two speech conditions respectively. The results are summarised
in Figure 7. The horizontal axis represents time bin, and the vertical
axis represents the level of “remaining” attention. All plots are
presented with the 95% confidence interval. As shown in Figure 7,
there are two local minima which may indicate the end of the
listening phase (around bin 6), and the beginning of recall (around
bin 11). The difference between two speech types is tested using
“Cohen’s d”, and the category of the effect size (S,M,L) [Anderson
et al. 2017] is indicated for each bin in the top part of the graph.
As can be seen in Figure 7 all differences between the two speech
sound factors amount to a small effect size, with synthetic speech
consistently leading to a higher reduction in the attention level.
The exact values of Cohens’d and [2 (Eta2̂) are presented in Table 1.

Means of the attention levels for three sound levels are sum-
marised in Figure 8 using the same format as in Figure 7. Means
for the sound levels are illustrated from left to right for the -1dB,
-3dB, and -5dB conditions. The “remaining” attention level is low-
est for -1dB as the least noisy condition. Since the noise has been
present during the first half of session, the difference is reduced in
the second half. The attention levels for three SIN conditions are
tested with One-way ANOVA, and the difference is tested using
[2 as effect size, and the contribution level (S,M,L) of test factor is
extracted. Based on benchmarks suggested by Cohen [Cohen 2013],
we use the following thresholds to refer to effect sizes; small (d =
0.2), medium (d = 0.5), and large (d ≥ 0.8). The effect size symbols
are displayed in the top of graph such as “M-M” for two speech
types.

The pairs of the first three bins and the last two bins in Figure 8
show a medium effect (M-M), and all the remaining pairs show
a small effect (S-S). During the mid-stage of the task, the atten-
tion level is reduced by cognitive demands the task. Therefore, the
ranges of three SIN levels are reduced, while the differences are
large at the beginning and end of the session. The result shows the
same levels of fluctuation between the two types of speech over
the entire session.

6 DISCUSSION
The latent attention level during the SIN listening task is defined
as a simple hierarchical model that involves several experimental
factors, specified in Equation 1. In the current study, we examined
the changes in latent attention level based on pupillary responses
and saccade frequencies. We proposed two models for temporal
changes (i.e., state model and observational model) and validated
them for the observed oculo-motor responses. We also examined a
hybrid model that combined the two constituent models mentioned
above.

It should be noted that convergence of parameter estimation of
predictive models depends on the number of sampling iterations
and the number of time bins that represent temporal changes with
time resolution. In particular, the larger the number of time bins
and higher the complexity of model, the longer duration and larger
number of iterations is required. We observed that the convergence
time of parameter estimation gradually increased with the number
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Table 1: Comparison of effect sizes for synthetic and natural speech. Note: ‘*’ indicates p < .05 , ‘**’ indicates p < .01, ‘***’ indicates
p < .001

Comparison of Natural vs. Synthetic Speech

Time bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Cohen’s d 0.37 0.36 0.35 0.34 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.34 0.35
t (df = 312) 3.29** 3.19** 3.06** 2.98** 2.89** 2.87** 2.86** 2.83** 2.88** 2.81** 2.81** 2.84** 2.88** 3.00** 3.09**

Natural sound level for one-way ANOVA

Time bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eta^2 0.1 0.09 0.07 0.05 0.04 0.04 0.04 0.04 0.05 0.04 0.03 0.04 0.05 0.06 0.08
F (df=1,153) 17.84*** 14.41*** 11.18** 8.74*** 6.49* 5.82* 5.74* 6.47* 7.32** 5.89* 5.47* 5.80* 7.95** 8.91* 12.48***

Synthetic sound level for one-way ANOVA

Time bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Eta^2 0.1 0.08 0.07 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.05 0.06 0.08
F (df=1,158) 18.33*** 14.62*** 11.59*** 7.97** 7.16** 5.87* 6.23* 6.27* 6.55* 5.80* 5.52* 5.92* 7.80** 9.79** 13***

of time bins. Also the duration increased when the hybrid model
was introduced: the iteration required 2000 MCMC steps for the
composite model, and 6000 steps for the hybrid model to converge.
The calculation duration for the hybrid model took three times
longer than for each composite model. When the number of time
bins was extended from 15 to 20 in (as illustrated in Figure 6), the
duration increases 2.5 times. Therefore, representational ability of
the model depends on the convergence availability and calculation
duration. During the calculation for the hybrid model, pupil size
was transformed to a flipped temporal change. When the original
responses of pupil size were introduced, most of the estimated
sensing levels were flattened indicating that two types of responses:

pupil size and saccade frequency may be conflicted. To ensure high
robustness the developed model needs to be able to accept various
types of signal sources, thus a more flexible model description is
required.

Estimated attention levels are summarised in Figure 7, there are
significant differences in the levels between the two speech sounds
(i.e, natural and synthetic). The differences between the speech
types remain constant over the course of the session. As shown
in Equation 1, speech category (𝑉𝑜𝑖𝑐𝑒_𝑓 𝑎𝑐𝑡𝑜𝑟 ) is represent as a con-
stant bias that may affect the overall attention levels. On the other
hand, since contribution of noise level changes during the session
as shown in Figure 8, the factor (𝑆𝑜𝑢𝑛𝑑_𝑙𝑒𝑣𝑒𝑙) may have a simple
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bias towards the attention levels. In the Equation 1, all factors are
represented as a linear summation. Although there is a possibility
that described factors may interact with other unaccounted for fac-
tors, in the current analysis such plausible additional factors have
been ignored. A more appropriate expression in a model equation
should allow for flexible representation of reactions of oculo-motor
indices in response to the experimental task workload. Such an
expansion of the model will be a subject of our follow-up study.

Nonetheless, regardless of its apparent limitations, our proposed
modelling technique can estimate latent attention levels during
tasks that require focus and allocation of cognitive resources (such
as SIN listening task). This technique can help to better understand
the individual speech and non-speech (noise) factors on cognitive
load induced by speech interfaces. For instance, since augmenta-
tive and assistive communication devices that feature speech have
strong potential to increase social involvement of individuals with
physical disabilities and complex information needs, it is important
to better understand the cognitive implications that such devices
have on users [McNaughton et al. 2019].

7 LIMITATIONS
We are mindful that our study is subject to several limitations.
Firstly, given that our experimental data was labelled by only one
person could have introduced an implicit bias. Secondly, since all of
the participants were young adults with no self-reported hearing
problems, our findings may not generalise to different age groups
and users with different levels of hearing impairment. Therefore, in
order to address these limitations, the future research should include
more varied participant samples and involve multiple annotators
to further improve the ecological validity.

8 SUMMARY
In this work, we estimated latent participants’ attention levels using
a statistical modelling technique with the MCMC sampling in order
to extract internal information processing and mental workload
during a speech-in-noise recall task. The observed oculo-motor
indices used as cognitive load metrics were pupil sizes and saccade
frequencies. Our proposed technique provides a way to model indi-
vidual contributions of different sound factors (i.e., speech type and
level of noise) and indicate their respective contributions towards
cognitive workload in the SIN recall task.
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