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a b s t r a c t 

Reducing the carbon footprint of global supply chains is a challenge for many companies. Governmen- 

tal emission regulations are increasingly stringent, and consumers are increasingly environmentally con- 

scious. Companies should therefore integrate carbon emissions in their supply chain decision making. In 

this paper, we study the inbound supply mode and inventory management decision making for a com- 

pany that sells an assortment of products. Stochastic demand for each product arrives periodically and 

unmet demand is backlogged. Each product has two distinct supply modes that differ in terms of their 

carbon emissions, speed, and costs. The company needs to decide when to ship how much using which 

supply mode such that total holding, backlog, and procurement costs are minimized while the emissions 

associated with different supply modes across the assortment remains below a target level. We assume 

that shipment decisions for each product are governed by a dual-index policy for which we optimize 

the parameters. We formulate this decision problem as a mixed integer linear program that we solve 

through Dantzig–Wolfe decomposition. We benchmark our decision model against two state-of-the-art 

approaches in a large test-bed based on real-life carbon emissions data. Relative to our decision model, 

the first benchmark lacks the flexibility to dynamically ship products with two supply modes while the 

second benchmark makes supply mode decisions for each product individually. Our computational exper- 

iment shows that our decision model can outperform the first and second benchmark by up to 15 and 

40 percent, respectively, for moderate carbon emission reduction targets. 

© 2023 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The transportation sector has consistently been one of the most 

olluting European sectors for more than a decade now, and it 

s projected to remain so for the foreseeable future ( European 

nvironment Agency, 2020 ). This, unfortunately, appears to be a 

rend that stretches beyond Europe. Recent analysis indicates that 

he G20 countries, currently responsible for 80% of the global 

reenhouse gas (GHG) emissions, will see an increase of 60% in 

heir transportation sector emissions by 2050 ( Vieweg et al., 2018 ). 

rominent global climate targets, such as the ones outlined in the 

aris agreement, will soon become unattainable ( European Envi- 

onment Agency, 2020; United Nations Environment Programme, 

020 ). 

In light of the above, the European Union (EU) recently an- 

ounced the Green Deal, a framework containing climate targets 
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nd policy initiatives that sets the EU on a path to reach carbon 

eutrality by 2050. The Green Deal is legally enshrined in the Eu- 

opean Climate Law, which states that member states are legally 

ommitted to meet the targets, and face penalties in case they do 

ot meet these targets. Being among the most polluting sectors, 

 key part of the Green Deal relates to policy initiatives that im- 

act the transportation sector. For instance, the EU plans to extend 

he European emissions trading scheme (EU ETS) to include both 

oad and maritime transport ( Abnett, 2020; European Commission, 

020 ). Under the ETS, which until now includes only air transport, 

he EU enforces a cap on the total amount of GHG emissions from 

ectors covered by the scheme. The EU also investigates whether 

o increase fossil fuel taxation, thereby effectively raising the price 

f GHG emissions. More and more companies are reducing their 

missions voluntarily as part of their corporate social responsibil- 

ty. If not penalized by governments, companies that excessively 

ollute might still lose revenues as environmentally conscious cus- 

omers take their business elsewhere ( Dong et al., 2019 ). 

The developments described above highlight the urgency for 

ompanies to explicitly incorporate GHG emissions in their supply 
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tion. 
hain decision making. In this paper, we study the inbound supply 

ode and inventory decision making of a company that sells an 

ssortment of products which are sourced from outside suppliers. 

he company wishes to keep the total GHG emissions associated 

ith using different supply modes across the assortment below a 

ertain target level in the most economically viable manner. As is 

ften the case in practice, the company may rely on a third party 

ogistics (3PL) provider for the inbound transport of the products. 

PLs typically offer several transport modes for the transportation 

f products – these may differ in terms of transportation costs, 

ransit times, and GHG emissions. Alternatively, there may be dif- 

erent suppliers (e.g. a near and offshore supplier) for a product 

hat naturally have different costs and transportation emissions. In 

he remainder of the paper, we will use the terminology of a 3PL 

rovider that offers multiple transportation modes. 

The company can utilize the heterogeneity in the fleet of the 

PL to its advantage. While some transport modes are low emit- 

ing but slow, others may be fast but result in more emissions. 

ast transport modes also typically come at the expense of a cost 

remium, and yet they are often relied upon when responsive- 

ess is required (e.g. in case of imminent stock outs). Thus the 

ompany should rely dynamically on both transport modes. Imple- 

enting this holistically across the entire assortment of products 

llows the company to reduce emissions significantly for products 

or which it is relatively cost-efficient to do so and less for prod- 

cts for which this is more expensive. It additionally enables the 

ompany to reduce the total inventory and transportation costs by 

hipping the majority of products with a relatively cheap but slow 

ransport modes while simultaneously resorting to faster but more 

xpensive and often more polluting transport modes whenever ex- 

edited shipments are needed. While the advantages of dynami- 

ally selecting different transport modes are evident, two impor- 

ant and interrelated questions remain: 

1. When should the company ship how many units of which prod- 

uct with what transport mode? 

2. What is the value of dynamically shipping products with differ- 

ent transport modes? 

These questions are interesting but also intricate when one 

ishes to answer them for an entire assortment of products where 

he combined total of GHG emissions from transportation must not 

xceed a certain target level. 

To tractably answer the questions above, we focus on the set- 

ing where the 3PL offers two distinct transport modes for the 

ransport of each product (or, equivalently, the setting where the 

ompany has already decided on the two transport modes for each 

roduct). These transport modes need not be the same for every 

roduct; they will depend on the characteristics of the suppliers 

s well as the 3PL (e.g., some products can be transported using 

ircraft or rolling stock while others can be shipped via inland 

aterways or ocean shipping). We consider long distance and/or 

igh volume transport lanes where the impact of the transport 

ode decisions of any particular individual shipper on the ac- 

ual shipping and carbon footprint is negligible. The company de- 

ides periodically how many units it wishes to transport with what 

ransport mode and incurs mode specific unit transportation costs. 

hipments arrive at the company after a deterministic transit time 

hat depends on the transport mode that is used. Demand for each 

roduct in every period is stochastic and independent and identi- 

ally distributed across periods. Any demand in excess of on-hand 

nventory is backlogged and satisfied in later periods. The company 

ncurs per unit holding and backorder penalty costs, and the spe- 

ific cost parameters may vary from product to product. The com- 

any seeks to minimize the long-run average holding, backorder, 

nd transportation costs while keeping the total long-run average 
2 
HG emissions from transportation of the entire assortment below 

 certain target level. 

It is well-known that the optimal policy for the inventory sys- 

em described above is complex, even in the simplest case of a 

ingle product and absent of the emission constraint ( Feng et al., 

006; Whittemore & Saunders, 1977 ). For the control of each prod- 

ct, we therefore use a heuristic policy that is originally due to 

eeraraghavan & Scheller-Wolf (2008) . They show that their so- 

alled dual-index policy performs quite well compared to the op- 

imal policy. The dual-index policy tracks two inventory positions 

or each product: The slow inventory position, which equals the 

n-hand inventory plus all in-transit products minus backlog, and 

he fast inventory position, which is defined similarly but includes 

nly those in-transit products that are due to arrive within the 

ransit time of the fastest transport mode. Under the dual-index 

olicy, we place orders with both modes such that these inven- 

ory positions are kept at (or above) certain target levels, also re- 

erred to as base-stock levels. As such, the dual-index policy dy- 

amically prescribes shipment quantities for both transport modes 

ased on the net inventory level and the number of products that 

re still in-transit. To find the optimal base-stock levels for the en- 

ire assortment of products, we formulate the decision problem as 

 non-linear non-convex integer programming problem. A parti- 

ion reformulation of this problem allows us to use column gen- 

ration techniques to solve the decision problem. These techniques 

nable us to decompose the complex multi-product decision prob- 

em into simpler sub-problems per product. Leveraging a separabil- 

ty result of Veeraraghavan & Scheller-Wolf (2008) , we show that 

his sub-problem constitutes a special Newsvendor problem that 

an be solved efficiently through a simulation-based optimization 

rocedure. 

The main contributions of this paper are: 

1. We are the first to study dynamic mode selection for an assort- 

ment of products with stochastic demand where the total aver- 

age GHG emissions from the inbound transport of those prod- 

ucts must be kept below a certain target level. 

2. We provide a tractable optimization model that finds a tight 

lower bound on the optimal solution as well as near-optimal 

feasible solutions within reasonable time. We show that our 

mathematical formulation of the decision problem allows us 

to decompose the non-linear non-convex integer programming 

problem into sub-problems per product. We leverage results 

from Veeraraghavan & Scheller-Wolf (2008) to show that the 

sub-problems can be solved efficiently through a one dimen- 

sional search procedure in which each instance constitutes a 

Newsvendor type problem that is readily solved through sim- 

ulation. 

3. We perform an extensive computational experiment based on 

data from different industries. Through these experiments: 

i. We establish the value of dynamic mode selection by com- 

paring our model with a model in which only one transport 

mode per assortment product can be used. This value can 

go up to 15 percent in cost savings; 

ii. We show that decomposing an aggregate carbon emission 

reduction target into targets for each product in the assort- 

ment individually is financially detrimental. Our holistic ap- 

proach can lead to cost savings of over 40 percent relative to 

the approach with reduction targets per individual product; 

iii. We find that the emission differences between transport 

modes relative to the cost difference between modes is 

the main determinant of emission reduction potential for a 

given assortment. In our experiments we find that, 20 per- 

cent of the products for which this ratio is highest con- 

tribute between 59 and 94 percent of the emission reduc- 
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he remainder of this paper is organized as follows. In Section 2 , 

e review the existing literature and position our work within 

he literature. Section 3 contains the model description as well as 

he mathematical formulation of the decision problem. A column 

eneration procedure to solve the decision problem is provided in 

ection 4 . We subsequently report on an extensive computational 

xperiment in Section 5 , and we provide concluding remarks in 

ection 6 . 

. Related literature 

This paper integrates carbon emissions from inbound trans- 

ortation into an inventory system with two supply modes. As 

uch, our work contributes to the large stream of literature that 

tudies multi-mode or multi-supplier inventory systems. For an ex- 

ellent overview of such systems, we refer the reader to the re- 

iew papers of Engebrethsen & Dauzére-Pérés (2019) ; Thomas & 

yworth (2006) and Svoboda et al. (2021) , and references therein. 

e also contribute to the extensive body of literature that revolves 

round the integration of environmental aspects into supply chain 

ecision making; see Barbosa-Póvoa et al. (2018) ; Brandenburg 

t al. (2014) ; Dekker et al. (2012) , and references therein, for an

verview of this field. In what follows, we focus on contributions 

hat are most relevant to the present paper. 

The decision how many products to order from which sup- 

lier is considered a canonical problem in the inventory manage- 

ent literature. It has been studied extensively since the sixties, 

ostly under the assumption that lead times are deterministic, 

hat unmet demand is backlogged, and that only two distinct sup- 

liers are at the disposal of the decision maker; the fastest being 

ore expensive than the slowest. Fukuda (1964) and Whittemore 

 Saunders (1977) were the first to study this system. Assum- 

ng periodic review, they show that its optimal policy is a sim- 

le base-stock rule only under the assumption that the difference 

etween the lead times of both suppliers is one period. For gen- 

ral lead time differences, the optimal policy is complex and can 

nly be computed through dynamic programming for small in- 

tances. Since then, most researchers have focused on developing 

ell-performing heuristic polices for which the best control policy 

arameters can be tractably obtained. 

In this paper, we rely on the so-called dual-index policy 

o decide upon the shipment sizes for both transport modes 

or each product. Under this policy, which is originally due to 

eeraraghavan & Scheller-Wolf (2008) , two different inventory po- 

itions are kept track off: One that includes all outstanding ship- 

ents and one that includes only those outstanding shipments 

hat are due to arrive within the lead time of the fastest mode. 

eeraraghavan & Scheller-Wolf (2008) show numerically that the 

ual-index policy performs well compared to the optimal policy. 

n fact, Drent & Arts (2022) show that the dual-index policy is 

symptotically optimal as the cost of the fastest transport mode 

nd the backorder penalty cost become large simultaneously. The 

olicy has received quite some attention in recent years (see, e.g., 

rts et al., 2011; Sheopuri et al., 2010; Sun & Van Mieghem, 2019 ).

e employ the dual-index policy because it is intuitive, has good 

erformance, and can be optimized efficiently. Unlike the present 

ork, the dual-index policy has so far been studied exclusively in 

ingle product settings under conventional cost criteria absent of 

ny emission considerations. 

Within the transportation literature, inventory systems with 

ultiple transport modes have received considerable attention too. 

o properly embed the present work in the existing literature, we 

roup contributions to this field into two categories depending on 

he modelling assumptions regarding the usage of the available 

ransport modes (c.f. Engebrethsen & Dauzére-Pérés, 2019 ). The 
3 
rst category, which we refer to as dynamic mode selection, is con- 

erned with inventory systems in which multiple transport modes 

re used simultaneously over a given (possibly infinite) planning 

orizon. Since we study an infinite horizon periodic review inven- 

ory model in which products can be transported with two dis- 

inct modes in each period, our work falls into this category – as 

o all the inventory papers with two suppliers described so far. 

nly few papers exist in this category that explicitly account for 

arbon emissions, and the few that do differ substantially from 

he present work in terms of modelling choices as well as analy- 

is. They either assume deterministic demand and a finite horizon 

 Palak et al., 2014 ) or study the closely related yet different prob-

em of splitting an order among several transport modes ( Konur 

t al., 2017 ). While not explicitly modeling carbon emissions, Dong 

t al. (2018) and Lemmens et al. (2019) also study the benefit of 

ynamically switching between multiple transport modes in the 

ontext of multi-modal transport. They show that this can lead to 

ore usage of less polluting transport modes without compromis- 

ng on costs or responsiveness. Different from our work, all pa- 

ers mentioned above consider the inventory control and transport 

ode decisions for a single product only. 

The second category concerns inventory systems in which a sin- 

le transport mode is selected a priori at the start of a planning 

orizon; all replenishment orders until the end of that planning 

orizon are then shipped with this mode. We refer to this category 

s static mode selection. Two papers belonging to this category 

re particularly relevant to our work. Hoen et al. (2014b) study 

 periodic review inventory system under backlogging where in- 

ound transport is outsourced to a 3PL that offers multiple trans- 

ort modes. Assuming base-stock control for each mode, they are 

nterested in selecting the transportation mode that leads to the 

owest long-run average total cost consisting of holding, backlog- 

ing, ordering, and emission costs. For calculating transportation 

missions, they rely on the well-known NTM methodology (we 

iscuss this methodology in more detail later in Section 3.1 and 

ppendix A ). We extend Hoen et al. (2014b) in two important di- 

ections. First, we move from static to dynamic mode selection, 

hereby incorporating the flexibility to dynamically switch between 

ifferent transport modes for each product. Second, we consider 

n assortment of products under a single constraint on the total 

verage transportation emissions from those products. Hoen et al. 

2014a) consider a similar constraint in a multi-product variant of 

he setting of Hoen et al. (2014b) under the assumption that de- 

and is deterministic and inversely related to the price set by 

he decision maker. They show that because of the portfolio effect 

f such an assortment-wide emission constraint, carbon emissions 

rom transportation can be reduced substantially at hardly any ad- 

itional cost. 

The dual-index policy studied in this paper has the appealing 

eature that it can mimic static mode selection. This is useful in 

ur computational experiment where we establish the added value 

f dynamic mode selection over static mode selection. A closely 

elated paper in that respect is Berling & Martínez de Albéniz 

2016) who study dynamic speed optimization of a single transport 

ode in a single-product stochastic inventory problem. They show 

hat the value of dynamically controlling the speed of outstanding 

hipments, as opposed to a static speed policy, can be significant, 

oth financially and from a carbon emission perspective. 

Our review so far has almost exclusively revolved around pa- 

ers on multi-period inventory systems. We note that there is also 

 stream of literature that integrates carbon emissions into sin- 

le period multi-supplier models, see e.g., Arıkan & Jammernegg 

2014) ; Rosi ̆c & Jammernegg (2013) , and Chen & Wang (2016) . Sim-

lar to the majority of the papers discussed so far, these papers fo- 

us on single-product settings. 
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. Model description 

In this section, we first provide a description of the inventory 

ystem under consideration and introduce the notation that we 

se throughout this paper. We then describe the policy we propose 

o dynamically ship products with two transport modes. We con- 

lude with providing a mathematical formulation of the decision 

roblem. 

.1. Description and notation 

We consider a company that sells an assortment of products. 

he inventories for these products are replenished from external 

uppliers through a third party logistics provider (3PL). A 3PL often 

ffers several transport modes. We focus on the setting where the 

ompany has already decided upon two distinct transport modes 

hat it would like to use for the transport of each product. These 

wo transport modes will differ in terms of costs, lead times, emis- 

ions, or a combination thereof. Given these two transport modes 

or each product, the operational question that remains is how 

any units of each product the company should transport us- 

ng which transport mode at what time so that costs –holding, 

acklog, and ordering– are minimized and an overall emission 

onstraint is met. Companies will increasingly impose such con- 

traints, either voluntarily or due to government regulation. 

The inventory system runs in discrete time with t ∈ N 0 denot- 

ng the period index. Without loss of generality, we assume that 

he period is of unit length and coincides with the review epoch. 

et J = { 1 , 2 , . . . , | J|} denote the nonempty set of products that the

ompany offers for sale. Demand for product j ∈ J across periods is 

 sequence of non-negative independent and identically distributed 

i.i.d.) random variables { D 

t 
j 
} . Any demand in excess of on-hand 

nventory is backlogged. Let I t 
j 

denote the net inventory level (on- 

and inventory minus backlog) of product j at the beginning of pe- 

iod t after any outstanding orders have arrived. Each unit of prod- 

ct j in on-hand inventory (I t 
j 
− D 

t 
j 
) + carried over to the next pe- 

iod and incurs a holding cost h j > 0 . Similarly, each unit of prod-

ct j in backlog (D 

t 
j 
− I t 

j 
) + incurs a penalty cost p j > 0 . Here we

se the standard notation x + = max (0 , x ) . 

Each product can be shipped using two distinct transport 

odes from one supplier (or, equivalently, using one or two dis- 

inct transport modes from two distinct suppliers). Let M = { f, s }
enote the set of available transport modes, where we use f and s 

o refer to the faster and slower transport mode, respectively. As- 

ociated with the transport of one unit of product j ∈ J with mode 

 ∈ M is a cost c j,m 

≥ 0 , a deterministic lead time l j,m 

∈ N 0 , a dis-

ance traveled from the supplier to the company d j,m 

> 0 , and a

ertain number of units CO2 emission e j,m 

≥ 0 . The weight of one 

nit of product j is denoted w j > 0 . Recall that the company out- 

ources its transport to a 3PL provider and hence has no control 

ver the actual shipping. We therefore consider variable emissions 

hat depend only on product and transport mode specific charac- 

eristics as well as on distance traveled, and we refrain from incor- 

orating a fixed emission factor per actual shipment. This is a rea- 

onable assumption for long distance and/or high volume transport 

anes where the impact of the decisions of any particular individ- 

al shipper on the carbon footprint are negligible. In line with pre- 

ious literature that models transportation emissions in the con- 

ext of mode selection (e.g., Hoen et al., 2014a; 2014b ), we en- 

ow e j,m 

with the following structure which is based on the NTM 

ethodology: 

 j,m 

= w j (a m 

+ d j,m 

b m 

) , (1) 

here a m 

≥ 0 and b m 

> 0 are a fixed and variable transport mode

pecific emission constant, respectively. Consistent with the NTM 
4 
ethodology, we assume that each product is shipped with an 

veragely loaded transport mode. We define the lead-time differ- 

nce between the fast and slow mode as l j = l j,s − l j, f ≥ 0 for each

roduct j ∈ J. Conventional literature on dual model problems (e.g., 

heopuri et al., 2010 ) imposes the assumption that the cost pre- 

ium of using the fast mode does not exceed the lead-time differ- 

nce multiplied by the penalty costs, i.e., (c j, f − c j,s ) < l j p j to en-

ure that using the fast mode is attractive. We do not impose this 

ssumption as whether using the fast supply mode will also de- 

end on the target carbon reduction. When the fast supply mode 

s less polluting than the fast mode, the fast mode may become 

ttractive even when (c j, f − c j,s ) < l j p j . Conversely, the fast sup- 

ly mode may become unattractive when the fast supply mode 

s more polluting, even when (c j, f − c j,s ) < l j p j . Thus our model

llows for situations where, e.g., the expensive transport mode is 

ither the fastest and most polluting or the fastest and least pol- 

uting. Finally, the amount of items of product j ∈ J to be shipped 

ith transport mode m ∈ M in period t is denoted by Q 

t 
j,m 

. With 

his notation, observe that shipments Q 

t−l j, f 

j, f 
and Q 

t−l j,s 
j,s 

arrive in 

eriod t so that we can write the following recursion for the in- 

entory level I t 
j 

of each product j: 

 

t 
j = I t−1 

j 
− D 

t−1 
j 

+ Q 

t−l j, f 

j, f 
+ Q 

t−l j,s 
j,s 

. 

All notation introduced so far as well as notation that we will 

ntroduce later is summarized in Table 1 . 

.2. Control policy 

It is well-known that even for the simplest case where | J| = 1

nd absent of the emission constraint, the policy that prescribes 

he optimal shipment quantities is complex and can only be com- 

uted through dynamic programming for very small instances that 

re arguably not representative for practice ( Feng et al., 2006; 

hittemore & Saunders, 1977 ). For the control of this inventory 

ystem, we therefore use a heuristic policy that is originally due to 

eeraraghavan & Scheller-Wolf (2008) . They show numerically that 

heir so-called dual-index policy performs quite well compared to 

he optimal policy. The dual index policy tracks two indices: One 

hat contains all orders that are still in-transit and one that con- 

ains only those in-transit orders that are due to arrive within the 

ead time of the fast mode. Based on these outstanding orders, the 

olicy dynamically ships orders with both modes to keep these in- 

ices at certain target levels. In line with standard inventory man- 

gement nomenclature, we also refer to these target levels as base- 

tock levels. More specifically, the policy operates as follows. At the 

eginning of every period t after orders Q 

t−l j, f 

j, f 
and Q 

t−l j,s 
j,s 

have ar- 

ived, we review the fast inventory position, which includes all in- 

ransit orders – i.e. shipped with both the slow and the fast trans- 

ort mode – that will arrive within the lead time of the fast trans- 

ort mode: 

 P t j, f = I t j + 

t−1 ∑ 

k = t−l j, f +1 

Q 

k 
j, f + 

t−l j ∑ 

k = t−l j,s +1 

Q 

k 
j,s . 

hen, if necessary, we place order Q 

t 
j, f 

with the fast transport 

ode to raise the fast inventory position to its target level S j, f . 

hat is, the amount of product j shipped in period t with the fast 

ransport mode equals: 

 

t 
j, f = (S j, f − IP t j, f ) 

+ . 

fter placing the fast shipment order, we inspect the slow inven- 

ory position, which includes the fast order just placed 

 P t j,s = I t j + 

t ∑ 

k = t−l j, f +1 

Q 

k 
j, f + 

t−1 ∑ 

k = t−l j,s +1 

Q 

k 
j,s , 
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Table 1 

Overview of notation. 

Notation Description 

Sets 

J Assortment; Set of all products. 

M Set of available transport modes, i.e. M = { f, s } . 
Input 

D t 
j 

Random demand for product j ∈ J in period t ∈ N 0 . 
p j Penalty cost for one unit of product j ∈ J in backlog carried over to the next period. 

h j Holding cost for one unit of product j ∈ J in on-hand inventory carried over to the next period. 

c j,m Cost of shipping one unit of product j ∈ J with transport mode m ∈ M. 

l j,m Transportation lead time for product j ∈ J by transport mode m ∈ M. 

l j Transportation lead time difference between the fast and slow mode for product j ∈ J, i.e. l j = l j,s − l j, f . 

d j,m Distance for the transport of product j ∈ J with transport mode m ∈ M. 

a m Fixed emission constant corresponding with transport mode m ∈ M. 

b m Variable emission constant corresponding with transport mode m ∈ M. 

w j Unit weight of product j ∈ J. 
e j,m Total units CO2 emission associated with shipping one unit of product j ∈ J with transport mode m ∈ M. 

E max The maximally allowable carbon emissions for the transport of the entire assortment of products. 

Decision variables 

S j,m Base-stock level for product j ∈ J and transport mode m ∈ M. 

� j Difference between the slow and fast base-stock level for product j ∈ J, i.e. S j,s − S j, f . 

S f The vector (S 1 , f , S 2 , f , . . . , S | J| , f ) . 

� The vector (�1 , �2 , . . . , �| J| ) . 
State variables 

I t 
j 

Inventory level of product j ∈ J at the beginning of period t ∈ N 0 after orders have arrived. 

IP t 
j, f 

Fast inventory position of product j ∈ J in period t ∈ N 0 before shipping orders. 

IP t 
j,s 

Slow inventory position of product j ∈ J in period t ∈ N 0 after shipping orders with the fast transport mode. 

Q t 
j,m 

Amount of product j ∈ J shipped with transport mode m ∈ M in period t ∈ N 0 . 
O t 

j 
The overshoot of product j ∈ J in period t ∈ N 0 , i.e. (IP t 

j, f 
− S j, f ) 

+ . 
Output of model 

C(S f , �) Total long-run average holding, backlog, and ordering costs under a given control policy (S f , �) . 

E(S f , �) Total emissions from transportation under a given control policy (S f , �) . 

C UB 
P (C LB 

P ) Upper (lower) bound for the optimal solution to Problem (P) . 
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a

t

C

a

E

w

nd ship an order with the slow transport mode such that this 

nventory position is raised to its target level S j,s , with S j,s ≥ S j, f 

ince the fast inventory position is contained in the slow inven- 

ory position. Thus the amount of product j shipped with the slow 

ransport mode in period t equals: 

 

t 
j,s = S j,s − IP t j,s . 

ote that, contrary to the fast inventory position, the slow inven- 

ory position can never be larger than its base stock level S j,s . Af-

er shipping both orders, demand D 

t 
j 

is satisfied or backlogged, de- 

ending on whether there is sufficient inventory available or not. 

he period then concludes with charging holding or backlog costs. 

The order of events in a period t for each product j is thus as 

ollows: 

1. Orders Q 

t−l j, f 

j, f 
and Q 

t−l j,s 
j,s 

arrive with the fast and slow transport 

mode, respectively, and are added to the on-hand inventory I t 
j 
. 

2. Review the fast inventory position and ship order Q 

t 
j, f 

with the 

fast transport mode at unit cost c j, f . 

3. Review the slow inventory position and ship order Q 

t 
j,s 

with the 

slow transport mode at unit cost c j,s . 

4. Demand D 

t 
j 

occurs and is satisfied from on-hand inventory if 

possible, and otherwise backlogged. 

5. Incur a cost h j for any unit in on-hand inventory (I t 
j 
− D 

t 
j 
) + and

a cost p j for any unit in backlog (D 

t 
j 
− I t 

j 
) + . 

Observe that under a dual-index policy, slow orders entering 

he information horizon of the fast transport mode may cause the 

ast inventory position to exceed its target level. The amount by 

hich the fast inventory position exceeds its target level is referred 

o as the overshoot. The fast inventory position in period t after 

lacing orders with both modes thus equals S j, f + O 

t 
j 
, where O 

t 
j 

de-

otes the overshoot for product j in period t: 

 

t 
j = IP t j, f + Q 

t 
j, f − S j, f = (IP t j, f − S j, f ) 

+ . 
5 
ater, in Section 4.2 , we shall see that computing the steady state 

istribution of the overshoot is crucial for determining the perfor- 

ance of a given control policy for a single product. 

We furthermore define � j = S j,s − S j, f , j ∈ J, so that the con- 

rol policy for a product can be specified in terms of its base- 

tock levels S j,s and S j, f or in terms of its base-stock level for 

he fast transport mode S j, f and the difference � j . We mostly use 

he latter specification in our subsequent analysis. A control policy 

S f , �) for the entire assortment of products consists of the vec- 

ors S f = (S 1 , f , S 2 , f , . . . , S | J| , f ) and � = (�1 , �2 , . . . , �| J| ) . 
In what follows, for all sequences of random variables X t , we 

efine their stationary expectation as E [ X] = lim T →∞ 

(1 /T ) 
∑ T 

t=0 X 
t 

nd their distribution as P (X ≤ x ) = lim T →∞ 

(1 /T ) 
∑ T 

t=0 1 { X t ≤ x } ,
here 1 { A } is the indicator function for the event A . Whenever we

rop the period index t we refer to the generic stationary random 

ariable X with expectation and distribution as defined above. 

.3. Decision problem 

For a given control policy (S f , �) , we define the total long-run 

verage holding, backlog, and ordering costs per period for the en- 

ire assortment of products as 

(S f , �) = 

∑ 

j∈ J 
C j (S j, f , � j ) 

= 

∑ 

j∈ J 

( 

h j E [(I j − D j ) 
+ ] + p j E [(D j − I j ) 

+ ] + 

∑ 

m ∈ M 

c j,m 

E [ Q j,m 

] 

) 

, 

(2) 

nd the total emissions as 

(S f , �) = 

∑ 

j∈ J 
E j (S j, f , � j ) = 

∑ 

j∈ J 

∑ 

m ∈ M 

e j,m 

E [ Q j,m 

] , 

here it is understood that the expectation operators are 
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onditional on the control policy (S f , �) . Veeraraghavan & 

cheller-Wolf (2008) show that C(S f , �) is well-defined for any 

ontrol policy (S f , �) as long as E [ D j ] < ∞ for all products j ∈ J. 

The objective of our decision problem is to minimize the total 

ong-run average costs while keeping the total emissions below a 

arget level E max . Combining the above-mentioned leads to the fol- 

owing mathematical formulation of our decision problem which 

e refer to as problem (P ) : 

P ) min C(S f , �) 

subject to E(S f , �) ≤ E max , 

S f ∈ R 

| J| , � ∈ R 

| J| 
0 

. 

et ( S ∗
f 
, �∗) denote an optimal solution to problem (P ) and let C P 

e the corresponding optimal cost. Note that Problem (P ) is a non- 

inear non-convex knapsack problem where more than one copy 

f each item can be selected. It is well-known that even the sim- 

lest types of such knapsack problems are N P -hard (e.g. Kellerer 

t al., 2004 ). Since our knapsack is more complex, we conclude 

hat Problem (P ) also falls in that same complexity class; it is 

ence likely that also for our problem no exact polynomial time 

olution algorithm exists. 

We remark that Problem (P ) enables companies to reduce car- 

on emissions from their inbound logistics by imposing a con- 

traint on the maximally allowable carbon emissions. This is par- 

icularly useful for companies that seek to reduce carbon emis- 

ions proactively. However, companies may also take a reactive po- 

ition and make supply mode decisions based only on inventory 

nd transport costs. This cost will also include a carbon emission 

rice component in regions where emissions are subject to carbon 

ricing mechanisms such as carbon crediting or taxing. We now 

riefly show that our model and analysis also apply to that setting. 

o that end, let c e denote the price of one unit of carbon emissions.

his price can also depend on the transport mode m and/or prod- 

ct j, but for ease of exposition we omit those dependencies. The 

ong-run average costs per period in Eq. (2) can now be redefined 

s follows: 

˜ 
 (S f , �) = 

∑ 

j∈ J 

(
h j E [(I j − D j ) 

+ ] + p j E [(D j − I j ) 
+ ] 

+ 

∑ 

m ∈ M 

(c j,m 

+ c e e j,m 

) E [ Q j,m 

] 

)
. 

he decision problem is now to minimize the long-run average 

osts per period: 

 ̃

 P ) min 

˜ C (S f , �) 

subject to S f ∈ R 

| J| , � ∈ R 

| J| 
0 

. 

roblem ( ̃  P ) is less complex than the original decision prob- 

em since it does not involve a constraint that links the indi- 

idual products. As such, Problem ( ̃  P ) can be decomposed in | J| 
roduct specific problems, each of which can be solved individ- 

ally. The column generation sub-problem that we will discuss in 

ection 4.2 has a similar structure as the product specific problems 

f ( ̃  P ) , and the solution method we discuss there thus also applies

o ( ̃  P ) . 

. Analysis 

This section focuses on finding the optimal control policy for 

roblem (P ) . Our approach relies on the technique of column gen- 

ration – also named Dantzig–Wolfe decomposition after its pio- 

eers ( Dantzig & Wolfe, 1960 ). This technique enables a natural 

ecomposition of the original multi-product decision problem into 

maller single-product problems that have more structure. We re- 

er the interested reader to Lübbecke & Desrosiers (2005) for a 
6 
omprehensive survey on column generation. Below, we first ex- 

lain how we apply column generation to Problem (P ) , and we 

hen describe a simulation-based optimization method for solving 

he sub-problem of this column generation procedure. 

.1. The column generation procedure 

We first reformulate decision problem (P ) as an integer linear 

rogram in which each binary decision variable corresponds to a 

ertain combination of values for the decision variables of our orig- 

nal decision problem. We subsequently relax the integrality con- 

traint and we call this problem the master problem ( MP ) . For- 

ally, let K j be the set of all possible dual index policies for prod-

ct j ∈ J. Each policy k ∈ K j is determined by its policy parameters

 

k 
j, f 

and �k 
j 
. Let x k 

j 
∈ { 0 , 1 } denote the decision variable that in-

icates whether policy k ∈ K j is selected ( x k 
j 
= 1 ) for product j ∈ J

r not ( x k 
j 
= 0 ). By relaxing the integrality constraint on this binary

ecision variable, we arrive at the mathematical formulation of the 

aster problem ( MP ) : 

 MP ) min 

∑ 

j∈ J 

∑ 

k ∈ K j 
C j (S k j, f , �

k 
j ) x 

k 
j (3) 

ubject to 

∑ 

j∈ J 

∑ 

k ∈ K j 
E j (S k j, f , �

k 
j ) x 

k 
j ≤ E max , (4) 

∑ 

k ∈ K j 
x k j = 1 , ∀ j ∈ J (5) 

x k j ≥ 0 , ∀ j ∈ J, ∀ k ∈ K j . 

et C LB 
P 

denote the optimal cost for master problem (MP ) . Due to 

he linear relaxation of the integrality constraint on x k 
j 
, an optimal 

ost C LB 
P 

is also a lower bound on the optimal cost for Problem (P ) ,

 P . 

Due to its large number of decision variables, master problem 

 MP ) is solved using column generation. To this end, we first re- 

trict master problem ( MP ) to a small subset ˜ K j ⊆ K j of trivial poli- 

ies per product j ∈ J (i.e. columns) that are feasible for Problem 

P ) (and thus also for Problem ( MP ) ). Such a trivial policy pre-

cribes, for instance, to ship orders exclusively with the least pol- 

uting mode. This restricted problem is referred to as the restricted 

aster problem ( RMP ) . We then solve ( RMP ) to optimality, and 

e are interested in new policies k ∈ K j \ ˜ K j , j ∈ J, that will im-

rove the objective value of ( RMP ) if they are added to ˜ K j . Such

olicies k ∈ K j \ ˜ K j are identified through solving a column gener- 

tion sub-problem for each product j ∈ J. The objective function of 

uch a sub-problem is the reduced cost as a function of the policy 

ith respect to the current dual variables obtained through solving 

 RMP ) to optimality. If a policy k ∈ K j \ ˜ K j has a negative reduced

ost, then adding that policy as a column to ˜ K j in ( RMP ) will re-

uce the objective value of ( RMP ) . More formally, the column gen- 

ration sub-problem for product j ∈ J has the following form: 

 SP ( j) ) min h j E [(I j − D j ) 
+ ] + p j E [(D j − I j ) 

+ ] 

+ 

∑ 

m ∈ M 

(c j,m 

− ηe j,m 

) E [ Q j,m 

] − υ j , 

subject to S j, f ∈ R , � j ∈ R 0 , 

here η denotes the dual variable of ( RMP ) that corresponds with 

mission constraint (4) and υ j denotes the dual variable of ( RMP ) 

hat corresponds with constraint (5) that assures that for each 

roduct j ∈ J a convex combination of policies is chosen. Note 

hat these dual variables can also be interpreted as the Lagrange 
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ultipliers of relaxing the corresponding constraints ( Lübbecke & 

esrosiers, 2005 ). If for product j ∈ J a feasible solution for ( SP ( j) ) 

xists with a negative objective value (i.e. a negative reduced cost), 

hen this policy is added to ˜ K j since the objective value of ( RMP ) 

an be improved when solved with the enlarged set ˜ K j . 

We continue with iterating between optimizing ( RMP ) and 

nding new policies through solving ( SP ( j)) , j ∈ J, until no prod- 

ct for which there is a policy with a negative reduced cost exists. 

n optimal solution for ( RMP ) is then also an optimal solution for 

 MP ) . If this optimal solution contains integer values only, then it 

s also an optimal solution for (P ) . If this is not the case, then we

olve ( RMP ) one last time as an integer program to find an integer

olution for ( RMP ) , which is then also a feasible solution for (P ) .

ecent inventory literature has shown that solving the restricted 

aster program as an integer program to arrive at an integer so- 

ution leads to good performance in terms of optimality gaps (e.g., 

rent & Arts, 2021; Haubitz & Thonemann, 2021 ), and often out- 

erforms alternative approaches such as local searches or rounding 

rocedures ( Alvarez et al., 2013 ). The corresponding cost of the re- 

ulting feasible solution is also an upper bound, denoted C P UB , for 

 

P . 

In the next section, we provide a simulation-based optimization 

rocedure to solve the column generation sub-problem ( SP ( j)) . 

.2. Solving the column generation sub-problem 

The column generation sub-problem ( SP ( j) ) has the same 

tructure as the problem studied by Veeraraghavan & Scheller-Wolf 

2008) . We follow their simulation-based optimization procedure 

o solve ( SP ( j) ) . This procedure is grounded in the following sepa- 

ability result that allows us to find the optimal S j, f for a given � j 

s the solution to a special Newsvendor problem. 

emma 1 ( Veeraraghavan & Scheller-Wolf, 2008 , Proposition 

.1) . The distributions of the overshoot O j , the fast transport mode 

hipment size Q j, f , and the slow transport mode shipment size Q j,s 

re functions of � j only, independent of S j, f . 

Let O 

t 
j 
(� j ) denote the overshoot of product j in period t for 

 given � j . Recall that the fast inventory position of product j in 

eriod t after shipping equals S j, f + O 

t 
j 
(� j ) . Consequently, for the 

et inventory level of product j in each period t , we can also write 

 

t 
j = S j, f −

( 

t−1 ∑ 

k = t−l j, f 

D 

k 
j − O 

t−l j, f 

j 
(� j ) 

) 

. (6) 

y plugging (6) in the objective function of ( SP ( j) ) , and using 

emma 1 as well as the fact that in each period the overshoot is 

ndependent of the demand and S j, f , we readily recognize that for 

iven � j the objective function is convex in S j, f . This implies the 

ollowing result. 

emma 2 ( Veeraraghavan & Scheller-Wolf, 2008 , Theorem 4.1) . The 

ptimal base-stock level S ∗
j, f 

for a given � j , denoted S ∗
j, f 

(� j ) , equals 

 

∗
j, f (� j ) = inf 

{ 

S j, f ∈ R : P 

( 

l j, f +1 ∑ 

i =1 

D i − O j (� j ) ≤ S j, f 

) 

≥ p j 

p j + h j 

} 

. 

It now remains to calculate the objective value of SUB ( j) for 

iven � j and corresponding S ∗
j, f 

(� j ) . Observe that in each period 

mmediately after shipping orders with both modes, the slow in- 

entory position equals the fast inventory position plus the over- 

hoot and all remaining outstanding slow orders. Since these in- 

entory positions are equal to their respective base-stock levels 
7 
ollowing order placement, we have for each product j in each 

eriod t: 

 j,s = S j, f + O 

t 
j + 

l j −1 ∑ 

k =0 

Q 

t−k 
j,s 

. (7) 

rom (7) it follows that E [ Q j,s ] = (� j − E [ O j ]) /l j . Since under back-

ogging the sum of both orders must on average be equal to the 

eriod demand, we finally find E [ Q j, f ] = E [ D j ] − E [ Q j,s ] . 

To solve ( SP ( j) ) , j ∈ J, to optimality, it thus suffices to perform a

ne-dimensional search over � j . For each � j , we compute the sta- 

ionary distribution of the overshoot. With this stationary distribu- 

ion we readily find the optimal base-stock level S ∗
j, f 

(� j ) through 

emma 2 and the total reduced cost through the identities follow- 

ng Eq. (7) . As there is in general no closed-form expression for the 

tationary distribution of the overshoot, we follow Veeraraghavan 

 Scheller-Wolf (2008) and rely on simulation to compute this dis- 

ribution. 

Note that our optimization model and analysis readily ex- 

ends to settings where the slow transport modes of all (or 

ome) products are operated according to any other rule that 

epends only on the current overshoot as well as all in-transit 

rders that are not yet included in the fast inventory posi- 

ion. That is, any other rule that depends only on the infor- 

ation state (O 

t 
j 
, Q 

t−1 
j,s 

, Q 

t−2 
j,s 

, . . . , Q 

t−l j +1 

j,s 
) , j ∈ J, t ∈ N 0 . Most well-

erforming control policies satisfy this condition, e.g., the Capped 

ual-Index policy ( Sun & Van Mieghem, 2019 ), the Tailored Base- 

urge policy ( Allon & Van Mieghem, 2010 ), and the Projected Ex- 

edited Inventory Position policy ( Drent & Arts, 2022 ). Sheopuri 

t al. (2010) show that for such control policies, the stationary dis- 

ribution of the overshoot is a function of only the parameter(s) 

or operating the slow transport mode, and that consequently a 

ewsvendor result similar to Lemma 2 holds for all such policies. 

. Computational experiment 

Our test-bed has three different types of assortments of prod- 

cts, each representing a different type of industry. The first assort- 

ent type consists solely of products for which emissions from the 

lowest transport mode are less than the emissions from the faster 

ransport mode. This assortment is inspired by apparel goods that 

re delivered from Vietnam to Europe by sea transport as the slow- 

st mode and by air transport as the fastest mode. In this exam- 

le, the fast supply mode has a higher carbon footprint. The op- 

osite holds for the second assortment type. Here we are inspired 

y industrial goods that are delivered from China to Europe by sea 

ransport as the slowest mode and from Germany by truck as the 

astest mode. In this case, the slow supply mode is associated with 

ore emissions as goods are transported over a longer distance. 

he third assortment has products of both types. 

We perform a parametric computational experiment. The base 

ase is set up as follows. We consider 100 products for each assort- 

ent type, i.e. | J| = 100 . The input parameters in the base case are

dentical for all three assortments, except for the carbon emissions 

rom transportation. For each product j ∈ J, the period demand D j 

ollows a negative binomial distribution. To create heterogeneous 

ssortments, the parameters of this negative binomial distribution 

re randomly drawn from two separate distributions for each prod- 

ct j. The mean μD j 
:= E [ D j ] is randomly drawn from a gamma

istribution with mean 100 and coefficient of variation of 0.5. The 

oefficient of variation CV D j := 

√ 

Var [ D j ] /μD j 
is randomly drawn 

rom a shifted beta distribution with mean 0.9, standard deviation 

f 0.25, and shifted to the right by 0.3. Since low demand products 

ypically have higher holding cost, the holding cost h j is negatively 

orrelated with the mean demand μD j 
of each product j through 
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Table 2 

Generating the base case input parameters. 

Input parameter Generation 

| J| 100 

D j NB (μD j , CV D j ) , with μD j ∼ �(100 , 0 . 5) and CV D j ∼ B (0 . 9 , 0 . 25 , 0 . 3) 

l j, f 0 

l j,s 3 

h j �(1 , 0 . 5) , with ρμD j 
,h j 

= −0 . 5 

p j ψ p χ
p 
j 

h j , with ψ p = 9 and χ p 
j 

∼ B (0 . 98 , 0 . 1 , 0 . 02) 

c j,s 0 

c j, f χ c 
j 
p j l j, f , with χ c 

j 
∼ B (0 . 25 , 0 . 1) 

Table 3 

Generating the emission units for the base case. 

Assortment type Emission parameter Generation 

1 e j,s �(0 . 35 , 0 . 21) 

e j, f e j,s + LN (1 . 52 , 0 . 21) 

2 e j, f �(0 . 19 , 1 . 27) 

e j,s e j, f + �(2 . 19 , 1 . 27) 

3 e j, f W B (0 . 87 , 0 . 77) 

e j,s �(3 . 31 , 1 . 34) 
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 Gaussian copula with a fitting covariance matrix. In particular, h j 
s drawn from a gamma distribution with mean 1 and coefficient 

f variation equal to CV D j , with a Pearson correlation coefficient of 

0 . 5 . Details regarding our approach to generate correlated ran- 

om numbers are relegated to Appendix B . 

We set l j, f and c j,s to 0 for all products, and focus on l j,s and

 j, f , which now coincide with the lead time difference and the cost 

remium of product j ∈ J, respectively. We set l j, f = 3 for all prod-

cts. The back-order penalty cost p j for product j is a function of 

ts holding cost h j . The ratio between the holding and the penalty 

ost is an important determinant of the service level in an inven- 

ory system. Therefore we set p j = ψ j χ
p 
j 

h j where ψ j is a parame-

er we use to control the ratio between p j and h , and χ p 
j 

is a ran-

om perturbation. That is, χ p 
j 

has a shifted beta distribution with 

ean 0.98, standard deviation 0.1, and shifted 0.02 to the right. 

The cost premium c j, f of the fast transport mode of product j

quals χ c 
j 
p j l j, f , where χ c 

j 
has a beta distribution with mean 0.25 

nd standard deviation 0.1. Table 2 provides a summary of how 

e randomly generated the products of the base case; we shortly 

xplain how we randomly generated the emission units for these 

roducts for all the three assortment types. In Table 2 , NB (μ, cv )
enotes a negative binomial random variable with mean μ and co- 

fficient of variation cv , �(μ, cv ) denotes a gamma random vari- 

ble with mean μ and coefficient of variation cv , and B (μ, σ, s )

enotes a beta random variable with mean μ and standard devia- 

ion σ that is shifted to the right by s ; if we drop s then this beta

andom variable is not shifted, i.e. B (μ, σ, s ) = d B (μ, σ ) + s where

 d denotes equality in distribution. 

As explained in Section 3 , we rely on the NTM framework 

 NTM, 2015 ) to set emissions based on the structure of Eq. (1) . We

pply the NTM framework to data from the UN Comtrade Database 

 United Nations Comtrade Database, 2020 ) to obtain sample emis- 

ion units; details regarding this methodology are relegated to 

ppendix A . We then apply maximum likelihood estimation on 

hese sample unit emissions to obtain three distinct sets of two 

istribution functions; two for each assortment type of products. 

he number of carbon emission units e j,m 

for product j ∈ J with 

ransport mode m ∈ M are then randomly drawn from these distri- 

utions. These distributions are presented in Table 3 . In this table, 

N(μ, σ ) denotes a random variable whose logarithm is normally 

istributed with mean μ and standard deviation σ , and W B (λ, k ) 

enotes a Weibull random variable with scale λ and shape k . 
8

The total allowable carbon emissions from transportation E max 

s set as a percentage of the total reducible carbon emissions. For 

ach instance of the test-bed, the reducible carbon emissions is de- 

ned as the difference between the total amount of carbon emis- 

ions of the control policy that is optimal for Problem (P ) absent of

he emission constraint and the total amount of carbon emissions 

f the control policy that leads to the lowest possible total car- 

on emissions. The latter implies that each product is only shipped 

ith its least polluting transport mode. Under the dual-index pol- 

cy, setting � j to zero implies that all orders for product j ∈ J are 

hipped with its fastest transport mode. Alternatively, letting S j, f 

o to −∞ implies that all orders for product j are shipped with its 

lowest transport mode ( Veeraraghavan & Scheller-Wolf, 2008 ). 

To evaluate the effectiveness of the column generation proce- 

ure in solving Problem (P ) , we compute for each instance of the 

est-bed the relative difference between the total average cost un- 

er a feasible solution and the corresponding lower bound. That is, 

 GAP = 100 · C UB 
P − C LB 

P 

C LB 
P 

, 

here C LB 
P and C UB 

P 
are obtained using the methods described in 

ection 4 . In what follows, we also refer to this feasible solution as 

ynamic mode selection (DMS). Hence the long run average cost 

f dynamic mode selection equals C UB 
P 

. 

To quantify the benefit of using two transport modes dynami- 

ally rather than relying statically on one transport mode, we de- 

ne for each instance of the test-bed a benchmark instance in 

hich we can only select one transport mode for each product. As 

escribed above, the dual-index policy can mimic static mode se- 

ection (SMS). Hence, to find a feasible static mode selection solu- 

ion to this benchmark instance of Problem (P ) , we apply our col- 

mn generation procedure of Section 4 in which we restrict the so- 

ution space for each product j ∈ J such that all orders are shipped 

ith either the fastest or the slowest transport mode. The mathe- 

atical formulation for the static mode selection approach as well 

s the benchmark approach described in the next paragraph can 

e found in Appendix C . (Note that in the Master Problem ( MP )

or this approach the set of possible policies K j for each product 

 ∈ J contains only two single transport mode policies.) The long 

un average cost of this solution is denoted C SMS 
P 

. To quantify the 

alue of dynamic mode selection, we compare for each instance 

f the test-bed the long run average cost of static mode selection 

ith the long run average cost of dynamic mode selection. That is, 

 SMS = 100 · C SMS 
P − C UB 

P 

C UB 
P 

, 

here % SMS indicates the relative increase in the long run aver- 

ge cost when the company chooses to rely on only one transport 

ode for each product in meeting an assortment wide constraint 

n total emissions. 

To quantify the portfolio effect, we define for each instance 

f the test-bed an additional benchmark in which we enforce an 
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Fig. 1. Optimal normalized absolute costs of each approach for different targets on the reducible emissions. 
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mission constraint for each product j ∈ J. This emission constraint 

s set as a percentage of the total reducible emissions of the in- 

ividual product rather than of the entire assortment of products. 

e compute a feasible solution for this benchmark instance with 

he column generation procedure of Section 4 , which can readily 

e modified so that it can be applied to settings where we have 

dditional emission constraints. (An alternate solution procedure 

s to use a simple search procedure per product.) This approach, 

hich we refer to as blanket mode selection (BMS), seems a plau- 

ible approach for most practitioners. Indeed, they can consider 

ach product individually absent of the complicating linking emis- 

ion constraint and yet they are guaranteed that the total emis- 

ions of the entire assortment is kept below the target level. The 

ong run average cost of the blanket mode selection approach is 

enoted C BMS 
P 

. To quantify the portfolio effect, we compare for each 

nstance of the test-bed the long run average cost of blanket mode 

election with the long run average cost of dynamic mode selec- 

ion. That is, 

 BMS = 100 · C BMS 
P − C UB 

P 

C UB 
P 

, 

here % BMS indicates the relative increase in the long run average 

ost when the company enforces an emission constraint on each 

ndividual product rather than one single constraint for the emis- 

ions from the entire assortment. 

In solving the column generation sub-problem for each product, 

e simulated 10 samples of 9500 time periods following a 5000 

ime periods warm-up. The width of the 95 percent confidence 

nterval of the long run average cost per period for each product 

as no larger than 3 percent of its corresponding point estimate 

or each instance of the column generation sub problem that we 

olved. The average computational time of our column generation 

rocedure was 23 minutes, 5 minutes for blanket dynamic mode 

election, and less than 5 sec for static mode selection. 

.1. Results for the base case 

Fig. 1 presents the normalized optimal average costs of each 

pproach for each assortment group under emission targets that 

ange from 0 to 100 percent of the total reducible carbon emis- 

ions. Observe that for each assortment group, all approaches 

ave the same performance when the emission target is set at 

00 percent of the total reducible emissions. In this case, all ap- 

roaches solely utilize the least polluting transport mode. Alter- 

atively, when we impose no target on the emissions from trans- 

ortation, then both dual mode approaches perform equally well 

hile the static mode selection approach seems to perform the 

oorest over all possible emission targets. Indeed, static mode se- 

ection is around 15 percent more expensive than both dual dual 

ode approaches for all assortment types when transportation 
9 
missions are not constrained. Based on Fig. 1 , we conclude that 

ynamic mode selection, as opposed to static and blanket mode 

election, has great potential to efficiently curb carbon emissions 

rom transportation at relatively little additional costs across all as- 

ortment types. 

We explicitly compare our dynamic mode selection with the 

enchmark approaches in Fig. 2 , which presents the % SMS and 

 BMS percentages for each assortment group under emission tar- 

ets that range from 0 to 100 percent of the total reducible car- 

on emissions. The figure indicates that the performance of static 

ode selection over dynamic mode selection is consistent across 

ll assortments. The relative increase in its total cost over dynamic 

ode selection is the largest when there is no emission target, and 

radually decreases as the emission constraint tightens. At moder- 

te carbon emission targets, around 40 to 60 percent of the total 

educible emissions, static mode selection still leads to increases in 

he total average cost per period of around 10 to 15 percent for all 

ssortment types. 

The performance of the blanket mode selection approach de- 

ends on the specific assortment type. Fig. 2 (a) illustrates that 

hen the unit emissions from the fast transport mode are more 

han those from the slow transport mode, the performance of the 

lanket mode selection approach seems to be quite reasonable. 

his can be explained as in this setting, the cost of the fastest 

ransport mode is larger than the cost of the slowest transport 

ode. The most polluting transport mode is thus also the most 

xpensive transport mode. The portfolio effect is limited for this 

ssortment type. 

For the other two assortment types, however, the cheapest 

ransport mode is not necessarily also the least polluting transport 

ode, and the portfolio effect is more prevalent. Fig. 2 (b) and (c) 

how that % BMS can be more than 35 and 20 percent in assort- 

ent type 2 and 3, respectively, under carbon emission reduction 

argets of 50 percent. The static mode selection approach, which 

lso takes advantage of the portfolio effect, even outperforms the 

lanket mode selection approach for quite some emission targets. 

Fig. 3 shows the usage of the fast supply mode as a function of 

he carbon emission reduction target under dynamic mode selec- 

ion as measured by 

 F = 100 · 1 

| J| 
∑ 

j∈ J 

E [ Q j, f ] 

E [ Q j, f ] + E [ Q j,s ] 
. 

ynamic mode selection is economically attractive regardless of 

missions targets. Carbon reduction targets make dynamic mode 

election even more attractive for assortment type 2, and mixed 

ssortments, but not for assortments of type 1. 

To recapitulate, the value of dynamically shipping products with 

wo transport modes simultaneously rather than statically select- 

ng one transport mode a priori is quite large. Regardless of the as- 

ortment type, % SMS is in between 5 and 15 percent for emission 
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Fig. 2. Relative surplus of the optimal cost of the alternative approaches (BMS and SMS) compared to the DMS approach for different targets on the reducible emissions. 

Fig. 3. Percentage of products shipped with the fast mode for different carbon emission reduction targets. 

Table 4 

Average slack in emission constraints for the base case analysis. 

Approach Assortment type 

1 2 3 

DMS 0.00% 0.00% 0.00% 

BMS 0.08% 0.61% 0.12% 

SMS 12.16% 0.17% 0.97% 
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eduction targets up to 90 percent. The portfolio effect depends 

n the specific assortment type. If the least polluting transport 

ode of each product is also its cheapest transport mode, then 

he fastest and most polluting transport modes are typically only 

elied upon in case of imminent backorders. This behavior remains 

n case of an assortment-wide emission target, and the portfolio 

ffect is consequently rather limited. If the least polluting trans- 

ort modes are not necessarily the cheapest transport modes, then 

here is substantial value to be reaped in optimizing the assort- 

ent of products under a single emission constraint rather than 

nder separate emission constraints for each individual product. 

ndeed, % BMS can go up to 40 and 20 percent for assortment type 

 and 3, respectively. 

Table 4 below presents the average relative slack in the emis- 

ion constraints for each assortment over the different emission 

argets considered in the base case analysis. The table shows that 

ue to the binary nature of the static mode selection approach, the 

otal average emissions under this approach are often substantially 

ower than the target level. This leads to particularly poor perfor- 

ance for assortment type 1. We observed in our computational 

xperiments that for this assortment type, the static mode selec- 

ion approach selects the cheapest and thus least polluting trans- 

ort mode for almost all products under each emission target. 

The average % GAP of the base case over all emission targets is 

ess than 0.01 percent, indicating that the column generation pro- 

edure finds feasible solutions that are close to optimal. Such a low 

verage % GAP occurs because there can be at most 1 product for 
10 
hich the optimal solution to Problem (MP ) is fractional. Indeed, 

roblem (MP ) has | J| + 1 constraints and an optimal solution for 

his problem has the same number of basic variables. Constraint 

5) assures that for each product j ∈ J a convex combination of 

olicies is chosen. As such, there is at least one basic variable for 

ach product j. This implies that there is at most 1 product for 

hich the optimal solution to Problem (MP ) is fractional. 

.2. Determinant of emission reduction potential 

The base case analysis of our DMS approach indicates that the 

mission reductions are not evenly distributed across the prod- 

cts. Products can be ordered by their contribution to emission re- 

uction following the DMS optimization. In this manner we can 

onstruct the cumulative reduction in emissions as shown in the 

orenz curves ( Fig. 4 ) with the dashed line. Fig. 4 shows that 20%

f the products in assortments 1 through 3 account for 61.22%, 

4.19%, and 91.88% of the emission reduction, respectively. This 

uggests that most of the emission reduction can be achieved by 

sing dynamic mode selection for a limited subset of a given as- 

ortment. Although it is possible to determine the limited subset 

f products that account for most of the emission reduction after 

erforming the DMS optimization, it would be convenient to know 

hich products to focus on without having to solve a sophisti- 

ated optimization problem. Suppose we order products in increas- 

ng order of 
| e j, f −e j,s | 
c j, f −c j,s 

, i.e., we sort products according to the how 

uch emission can be saved by using the least polluting transport 

ode relative to the additional cost of the faster transport mode. 

ig. 4 shows the cumulative emission saving by products ordered 

his way with the solid line. Here we see that focusing on the 20% 

f products in assortments 1 through 3 for which 

| e j, f −e j,s | 
c j, f −c j,s 

is high- 

st, already achieves 58.93%, 93.63%, and 82.64% of the potential 

mission reduction, respectively. Thus firms seeking to minimize 

he carbon footprint of their inbound logistics should focus their 

ttention on products for which the difference in emission in dif- 

erent transport modes is large relative to the additional cost of 
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Fig. 4. The cumulative emissions reduction share of items arranged based on different criteria. 

Table 5 

Changes in the base case input parameters. 

Parameter Generation Base case Changes 

| J| 100 | J| ∈ { 40 , 60 , 80 } 
μD j �(100 , CV μD j 

) 0.5 CV μD j 
∈ { 0 . 3 , 0 . 4 , 0 . 6 , 0 . 7 } 

CV D j B (0 . 9 , 0 . 25 , s D j ) 0.3 s D j ∈ { 0 . 2 , 0 . 25 , 0 . 35 , 0 . 4 } 
ρμD j 

,h j 
-0.5 ρμD j 

,h j 
∈ {−0 . 3 , −0 . 4 , −0 . 6 , −0 . 7 } 

ψ p 9 ψ p ∈ { 3 , 4 , 5 , 19 , 99 } 
χ c 

j 
B (0 . 25 , σc ) 0.1 σc ∈ { 0 . 15 , 0 . 2 , 0 . 3 , 0 . 35 } 

l j,s 3 l j,s ∈ { 2 , 4 } 
δe 1 δe ∈ { 0 . 8 , 0 . 9 , 1 . 1 , 1 . 2 } 
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ast transportation modes. That is emission differences between 

odes relative to cost difference between modes is the main de- 

erminant of emission reduction potential for a given assortment. 

.3. Comparative statics 

In this section, we study how changes in the input parame- 

ers with respect to the base case affect the performance of the 

lanket mode selection and the static mode selection approach. 

n what follows, we keep the emission target fixed at a 50 per- 

ent reduction of the reducible emissions, and we study the effects 

f changing a certain input parameter while generating the other 

nput parameters as in the base case, i.e. as in Table 2 . We also

nvestigate the effect of scaling the emission differences between 

he most polluting and least polluting transport modes when the 

arget on the total emissions is kept fixed. To achieve this, we 

rst generate emission units as in the base case. We subsequently 

hange the emission units of the most polluting transport mode 

hrough scaling | e j,s − e j, f | by a constant δe while keeping the 

mission units from the least polluting mode fixed at its base level. 

he changes in the parameters we investigate are summarized in 

able 5 . 

Fig. 5 shows the effect of changing the coefficient of variation 

f the gamma distribution from which we sample the mean de- 

ands per period for each product. The figure indicates that this 

ffect is relatively limited. With respect to the base case, both 

 BMS and % SMS only change up to 1 percent point for all three 

ssortment types. We can draw a similar conclusion for the ef- 

ect of changing the Pearson correlation coefficient between the 

olding cost and the mean demand per period of each product. 

ig. 6 shows that both % BMS and % SMS change at most 1 per- 

ent point with respect to the base case for all three assortment 

ypes. 
11 
Alterations in the shift parameter of the beta distribution from 

hich we sample the coefficient of variation of the demand per 

eriod for each product has a relatively moderate effect on both 

 BMS and % SMS . Fig. 7 illustrates that for all assortment types, the 

 SMS tends to increase in the variability of the demand while the 

 BMS decreases. This indicates that the flexibility to dynamically 

hip products with two transport modes has particular merit in 

ighly variable demand settings. 

Fig. 8 indicates that for all assortment types, an increase (de- 

rease) in the lead time difference between the fastest and the 

lowest transport modes of each product leads to an increase (de- 

rease) in both % SMS and % BMS . The blanket mode selection ap- 

roach seems to be more susceptible to changes in the lead time 

ifference than the static mode selection approach. For assortment 

ype 2, for instance, an increase in the lead time difference to 4 

eads to an increase in % BMS of 7 percent points with respect to 

he base case. By contrast, % SMS increases only slightly by 0.5 per- 

ent points. This can be attributed to the fact that the blanket 

ode selection approach imposes constraints on the emissions of 

ach individual product while the static mode selection approach 

mposes a single constraint on the entire assortment of products. 

Fig. 9 illustrates the effect of changing the critical ratio for all 

roducts through varying ψ p . We conclude that this effect is quite 

arge. For assortment type 1, for instance, % SMS varies from 20 per- 

ent to 2 percent. While % SMS seems to decrease in the critical ra- 

io for all products, % BMS tends to increase. For assortment type 

 and 3, for instance, % BMS increases from 15 percent to over 80 

ercent. These effects can be explained by the fact that as the crit- 

cal ratios of all products approach 1, our dynamic mode selection 

pproach will mimic the static mode selection approach in which 

he assortment wide emission constraint is met by relying on less 

olluting transport mode for product for which this is relatively 

heap to do so. The blanket mode selection approach, however, 

ust meet emission targets for each product individually which 

eads to poor performance if we increase the critical ratios for all 

roducts. 

Fig. 10 indicates that % SMS decreases in the cost of the fast 

ransport mode. This can again be explained by the fact that 

ur dynamic mode selection approach will also rely more on the 

heaper transport mode as the cost premium for the fast trans- 

ort mode increases, and that consequently the gap with the static 

ode selection approach decreases. By contrast, % BMS increases in 

he cost of the fast transport mode for assortment type 2 and 3. 

his can be attributed to the fact that the blanket mode selection 

pproach, contrary to the other two approaches, imposes itemized 

mission constraints and relying on the most expensive but least 
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Fig. 5. Effect of changing CV μD j 
while keeping the rest of the parameters as in the base case. 

Fig. 6. Effect of changing ρμD j 
,h j 

while keeping the rest of the parameters as in the base case. 

Fig. 7. Effect of changing s D j while keeping the rest of the parameters as in the base case. 

12 
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Fig. 8. Effect of changing l j,s while keeping the rest of the parameters as in the base case. 

Fig. 9. Effect of changing ψ p while keeping the rest of the parameters as in the base case. 

Fig. 10. Effect of changing χ c 
j 

while keeping the rest of the parameters as in the base case. 
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Fig. 11. Effect of changing δe while keeping the rest of the parameters as in the base case. 

Fig. 12. Effect of changing | J| while keeping the rest of the parameters as in the base case. 
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olluting transport mode is therefore inevitable. Note that this is 

ot true for assortment type 1 because there the fast, expensive 

ransport mode is also the most polluting transport mode. We can 

raw similar conclusions for the effects scaling the emission units 

f the most polluting transport mode, see Fig. 11 . Finally, Fig. 12 

ndicates that the impact of the assortment size on both % SMS 

nd % BMS is relatively limited. With respect to the base case, both 

 BMS and % SMS only change up to 2 percent point for all three 

ssortment types. 

. Concluding remarks 

As carbon emissions from the transportation sector are pro- 

ected to increase over the next decades, it is important for com- 

anies to rethink their supply chain strategies and explicitly in- 

orporate carbon emissions into their decision making. In this pa- 

er, we have studied the inbound transport and inventory manage- 

ent decision making for a company that sells an assortment of 

roducts. The company wishes to minimize inventory costs while 

eeping the total emissions from the inbound transport of the en- 

ire assortment below a certain target level. Each product can be 

hipped using two distinct transport modes. As each mode has its 

wn merits, we have proposed a dynamic mode selection model 

hat allows the company to ship products with either mode de- 
14 
ending on when one mode is more favorable than the other. Since 

he optimal policy for dual transport mode problems are known 

o be complex, we have assumed that shipment shipment quanti- 

ies for each product are governed by a dual-index policy. We have 

ormulated the resulting decision problem as a mixed integer lin- 

ar program that we have solved through a column generation so- 

ution procedure. This column generation procedure decomposes 

he complex multi-product problem into smaller sub-problems per 

roduct. These sub-problems are readily solved through a simple 

isection search over Newsvendor type problems. 

In an extensive computational experiment, we have compared 

he performance of our dynamic mode selection approach with 

wo alternative approaches that are considered state of the art. The 

rst benchmark, static mode selection, lacks the flexibility to dy- 

amically ship products with two transport modes; it rather se- 

ects one transport mode for each product a priori. The second 

enchmark, blanket mode selection, does have the flexibility to 

ely on two transport modes simultaneously but it makes trans- 

ort decisions for each product individually rather than holistically 

or the entire assortment. Our computational experiments indicate 

hat the value of our dynamic mode selection approach over the 

lanket mode selection approach is particularly high for assort- 

ents of products for which the fastest transport modes are not 

ecessarily the most polluting transport modes. For such settings, 
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ur dynamic mode selection approach can reduce the long run av- 

rage costs by 40 percent under moderate carbon emission tar- 

ets. These huge savings can be attributed to the portfolio effect 

nherent to our approach. The computational experiments further 

ndicate that dynamic mode selection can significantly outperform 

tatic mode selection. Under moderate emission targets, dynami- 

ally relying on two transport modes rather than a single transport 

ode can lead to cost savings of up to 15 percent. 

Future studies can extend the current model by studying other 

ettings with multiple transport modes such as multiple eche- 

ons in a serial system (e.g. Arts & Kiesmüller, 2013; Lawson & 

orteus, 20 0 0 ) or assembly systems (e.g. Angelus & Özer, 2016 ).

lternatively one may consider more sophisticated dual mode 

euristic policies such as the projected expedited inventory posi- 

ion policy ( Drent & Arts, 2022 ), capped base-stock policy ( Sun &

an Mieghem, 2019 ), or vector base-stock policy ( Sheopuri et al., 

010 ). 
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ppendix A. Carbon accounting 

In this section, we briefly explain how we determine the distri- 

ution functions that we use for pseudo-random generation of the 

nit emissions in our computational experiments. We utilize the 

nited Nations Comtrade Database (2020) to calculate the average 

nit weights for 122 groups of products imported by The Nether- 

ands in 2020. These product groups consist of two categories: (i) 

pparel goods that are imported from Vietnam and (ii) industrial 

oods that are imported from China and Germany. We consider air 

ransport (from Tan Son Nhat international airport) and sea trans- 

ort (from Haiphong port) as the fast and slow transport mode 

or the apparel category, respectively. For the industrial goods cat- 

gory, we assume sea transport from Shanghai, China, as the slow 

ode and road transportation from Stuttgart, Germany, as the fast 

ode. 

We rely on the Network for Transport Measures methodology 

 NTM, 2015 ) to model and measure transportation emissions based 

n Eq. (1) . This model has been widely used in literature (e.g., 

oen et al., 2014a; 2014b ). Following the NTM methodology, we 

rst compute the overall carbon emissions generated by a single 

ehicle and then allocate a proportion of those emissions to each 

reight unit carried by the vehicle. 

Sea transportation . We assume that all products are shipped 

ia container. The average age of the container fleet worldwide 

s around 12 years and the average vessel size (dwt) of con- 

ainer ships with age 10–14 is 43,993 ton ( United Nations Confer- 

nce on Trade & Development, 2020 ). Based on section 7 of the 

TM framework and resolutions of the Marine Environment Pro- 

ection Committee ( International Maritime Organization, 2011 ), we 

pproximate sea transportation emissions in kilograms of CO 2 of 

ne unit of a certain product with weight w (in kilogram) for a 

ertain trip with distance d (in kilometers) using the following re- 

ation, 

 sea = w · EI ship · 10 

−3 · d 
15 
here EI ship is kilograms of CO 2 emissions per kilogram weight per 

ilometer. Furthermore EI ship is computed through, 

I ship = 

(a · dwt −c ) / (P DR ship · LCU) 

1 . 852 

here a and c are constants, dwt is the deadweight tonnage of 

he ship, LCU is average load capacity utilization, F (LCU) is fuel 

onsumption as a function of load, and P DR ship is the payload of 

he ship. 1.852 is the nautical mile to km conversion coefficient. 

or a container ship, NTM methodology states: a = 0 . 17422 , c =
 . 201 , LCU = 0 . 70 , F (LCU) = 1 , and P DR = 0 . 8 . Succinctly, we have

or the total emissions in kilograms of CO 2 of one unit of a prod- 

ct with weight w (in kilogram) for a sea trip with distance d (in 

ilometers) 

 sea = w (1 . 996 × 10 

−5 · d) . (8) 

ir transportation . Our calculations for the emissions of air trans- 

ortation are based on section 8 of the NTM Framework. We con- 

ider an Airbus A310-300 F as the aircraft. Based on the May 2021 

ir Cargo Market Analysis of The International Air Transport As- 

ociation, we assume an average international cargo load factor of 

5%. Following the NTM Framework, we have the following rela- 

ion for air transportation emissions 

 air = 

w 

c max 
(CE F + V E F · d) , 

here c max is the maximum freight load, CEF is the constant emis- 

ions factor, and V EF is the variable emissions factor. CEF and V EF 

re the outcomes of applying a linear regression on real data pro- 

ided by the NTM. We obtain the CEF and V EF parameters via in-

erpolation over the associated tables provided by the NTM. We 

urthermore assume c max = 39 , 0 0 0 kilograms as per section 8.3.1

nd perform the interpolation on table 4.1 of section 8.2.1. Suc- 

inctly, we have for the total emissions in kilograms of CO 2 of one 

nit of a product with weight w (in kilogram) for an air trip with

istance d (in kilometers) 

 air = w (1 . 525 × 10 

−1 + 4 . 938 × 10 

−4 · d) . (9)

Road transportation . We rely on Hoen et al. (2014a) to obtain the 

mission units of road transportation. They too rely on the NTM 

ramework to estimate CO 2 emissions from road transportation in 

urope. In particular, they approximate the total emissions in kilo- 

rams of CO 2 of one unit of a product with weight w (in kilogram) 

or a truck trip with distance d (in kilometers) as 

 road = w (3 . 214 × 10 

−4 + 4 . 836 × 10 

−5 · d) . (10)

Distances . We use NTMCalc Basic 4.0 NTM (n.d.) , which is an 

nline tool provided by the NTM for approximating emissions, 

o calculate travel distances between the origin destination pairs 

s described at the beginning of this section. Based on this tool 

e find that the sea distance between Haiphong and Rotter- 

am is 9610 nautical miles (17,798 kilometers) and the sea dis- 

ance between Shanghai and Rotterdam is 10,525 nautical miles 

19,492 kilometers). The distance traveled by aircraft between Tan 

on Nhat international airport and Rotterdam The Hague Airport 

s 10,073 kilometers, and the road distance between Stuttgart and 

otterdam is 633 kilometers. With these distances, we compute the 

otal kilogram CO 2 emissions of one unit of product with weight 

 for each mode-trip category using Eqs. (8) –(10) . We call these 

mission coefficients and they are presented in Table 6 below. 

Fitting distribution functions. We use the emission coefficients 

rom Table 6 to calculate the unit emissions for the 122 groups 

f products mentioned at the beginning of this section. We subse- 

uently use maximum likelihood estimation on the resulting emis- 

ion units to find distribution functions from which we can sam- 

le the emission units of the fast and slow transport modes for 
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Table 6 

Emissions coefficients for each mode-trip category. 

Industry Slow mode Fast mode 

Apparel 3 . 552 × 10 −1 5.127 

Industrial 3 . 891 × 10 −1 3 . 093 × 10 −2 
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ll three assortment types in our computational experiment. The 

mission unit distributions for assortment type 1 are based on the 

pparel category, the emission unit distributions for assortment 

ype 2 are based on the industrial category, and the emission unit 

istributions for assortment type 3 are based on both categories. 

he final distribution functions are provided in Table 3 . 

ppendix B. Generating correlated random numbers 

Suppose X and Y are two real random variables with marginal 

istribution functions F and G , respectively. Suppose their joint dis- 

ribution is bi-variate standard normal N ρ with Pearson’s corre- 

ation coefficient ρ = Cov (X, Y ) / ( 
√ 

Var [ X] 
√ 

Var [ Y ] ) ( Nelsen, 2006 ). 

et Z be a vector of size two with independent random elements 

hat have standard normal distributions �, and let W = AZ be a 

inear combination of Z with 

 = 

[
1 0 

ρ
√ 

1 − ρ2 

]
. 

It can be shown that W has a bivariate normal distribution N ρ

ith covariance matrix  = AA 

T (see, e.g., Gut, 2009 ). We use this 

esult to sample from X and Y as follows: 

1. Generate the vector Z = 

[
Z 1 
Z 2 

]
by independently sampling from 

a standard normal distribution function, 

2. Calculate the bivariate normal sample W = 

[
W 1 

W 2 

]
= AZ, 

3. Generate the required samples by inversion 

[
X 

Y 

]
= [

F −1 (�(W 1 )) 

G 

−1 (�(W 2 )) 

]
. 

ppendix C. Benchmark approaches 

The mathematical formulation for the blanket mode selection 

pproach, which enforces emission constraints E max 
j 

per item j ∈ J, 

s called Problem ( BMS ) and is given as follows: 

 BMS ) min C(S f , �) 

subject to E j (S j, f , � j ) ≤ E max 
j , ∀ j ∈ J, 

(S j, f , � j ) ∈ (R × R 0 ) , ∀ j ∈ J. 

The mathematical formulation for the static mode selection ap- 

roach, which selects one transportation mode per item, is called 

roblem ( SMS ) and is given as follows: 

 SMS ) min 

∑ 

j∈ J 
C j,s (S ∗j,s ) x j,s + 

∑ 

j∈ J 
C j, f (S ∗j, f ) x j, f 

subject to 
∑ 

j∈ J 
E j,s x j,s + 

∑ 

j∈ J 
E j, f x j, f ≤ E max , 

x j,s , x j, f ∈ { 0 , 1 } , ∀ j ∈ J, 

here C j,s (S j,s ) := h j E 

[(
S j,s −

∑ l j,s 
t=0 

D 

t 
j 

)+ ]
+ p j E 

[(∑ l j,s 
t=0 

D 

t 
j 
− S j,s 

)+ ]
+ 

 j,s E [ D j ] , and C j, f (S j, f ) := h j E 

[(
S j, f −

∑ l j, f 

t=0 
D 

t 
j 

)+ ]
+

16 
p j E 

[(∑ l j, f 

t=0 
D 

t 
j 
− S j, f 

)+ ]
+ c j, f E [ D j ] are the average cost-rate 

or using the slow and fast transport mode respectively, 

 

∗
j,s 

:= argmin S j,s 
C j,s (S j,s ) , and S ∗

j, f 
:= argmin S j, f 

C j, f (S j, f ) are the

ase-stock levels that minimize inventory related costs when 

xclusively using the slow and fast transport mode respectively, 

nd E j,s := e j,s E [ D j ] and E j, f := e j, f E [ D j ] are the emissions per

ime unit of shipping exclusively with the slow and fast transport 

ode respectively. 
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